DASY5 Validation Report for Head TSL Date: 01.07.2022 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 3500 MHz; Type: D3500V2; Serial: D3500V2 - SN:1016 Communication System: UID 0 - CW; Frequency: 3500 MHz, Frequency: 3400 MHz, Frequency: 3600 MHz Medium parameters used: f = 3500 MHz; σ = 2.92 S/m; ϵ_r = 37.2; ρ = 1000 kg/m³ , Medium parameters used: f = 3400 MHz; σ = 2.84 S/m; ϵ_r = 37.3; ρ = 1000 kg/m³ , Medium parameters used: f = 3600 MHz; σ = 2.99 S/m; ϵ_r = 37.1; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(7.91, 7.91, 7.91) @ 3500 MHz, ConvF(7.97, 7.97, 7.97) @ 3400 MHz, ConvF(7.91, 7.91, 7.91) @ 3600 MHz; Calibrated: 08.03.2022 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 02.05.2022 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) #### Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3500MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.69 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 18.5 W/kg SAR(1 g) = 6.79 W/kg; SAR(10 g) = 2.54 W/kg Smallest distance from peaks to all points 3 dB below = 8.6 mm Ratio of SAR at M2 to SAR at M1 = 74.7% Maximum value of SAR (measured) = 13.1 W/kg #### Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3400MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.52 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 18.5 W/kg SAR(1 g) = 6.85 W/kg; SAR(10 g) = 2.57 W/kg Smallest distance from peaks to all points 3 dB below = 8.4 mm Ratio of SAR at M2 to SAR at M1 = 75.4% Maximum value of SAR (measured) = 12.9 W/kg Certificate No: D3500V2-1016_Jul22 Page 6 of 8 Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3600MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.51 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 18.5 W/kg SAR(1 g) = 6.66 W/kg; SAR(10 g) = 2.49 W/kg Smallest distance from peaks to all points 3 dB below = 8.4 mm Ratio of SAR at M2 to SAR at M1 = 74.3% Maximum value of SAR (measured) = 12.9 W/kg 0 dB = 13.1 W/kg = 11.17 dBW/kg ## Impedance Measurement Plot for Head TSL Certificate No: D3500V2-1016_Jul22 Page 8 of 8 ## 3700 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates | | D3700V2 - SN:10 | 004 | | |--|---|---|---| | | QA CAL-22.v6
Calibration Proce | dure for SAR Validation Sources | between 3-10 GHz | | Calibration date: | July 01, 2022 | | | | All calibrations have been conducted Calibration Equipment used (M&TE | | y facility: environment temperature (22 ± 3)°C | and humidity < 70%. | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | D UDD TO | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | Power sensor NRP-Z91 | | | | | | SN: 103245 | 04-Apr-22 (No. 217-03525) | Apr-23 | | Power sensor NRP-Z91 | SN: 103245
SN: BH9394 (20k) | 04-Apr-22 (No. 217-03525)
04-Apr-22 (No. 217-03527) | Apr-23
Apr-23 | | Power sensor NRP-Z91
Reference 20 dB Attenuator | | | | | Power sensor NRP-Z91
Reference 20 dB Attenuator
Type-N mismatch combination | SN: BH9394 (20k) | 04-Apr-22 (No. 217-03527) | Apr-23 | | Power sensor NRP-Z91
Reference 20 dB Attenuator
Type-N mismatch combination
Reference Probe EX3DV4 | SN: BH9394 (20k)
SN: 310982 / 06327 | 04-Apr-22 (No. 217-03527)
04-Apr-22 (No. 217-03528) | Apr-23
Apr-23 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 | SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503 | 04-Apr-22 (No. 217-03527)
04-Apr-22 (No. 217-03528)
08-Mar-22 (No. EX3-3503_Mar22) | Apr-23
Apr-23
Mar-23 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards | SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503
SN: 601 | 04-Apr-22 (No. 217-03527)
04-Apr-22 (No. 217-03528)
08-Mar-22 (No. EX3-3503_Mar22)
02-May-22 (No. DAE4-601_May22)
Check Date (in house) | Apr-23
Apr-23
Mar-23
May-23
Scheduled Check | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B | SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503
SN: 601 | 04-Apr-22 (No. 217-03527)
04-Apr-22 (No. 217-03528)
08-Mar-22 (No. EX3-3503_Mar22)
02-May-22 (No. DAE4-601_May22) | Apr-23
Apr-23
Mar-23
May-23 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A | SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503
SN: 601
ID #
SN: GB39512475 | 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 08-Mar-22 (No. EX3-3503_Mar22) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) | Apr-23 Apr-23 Mar-23 May-23 Scheduled Check In house check: Oct-22 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A | SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503
SN: 601
ID #
SN: GB39512475
SN: US37292783 | 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 08-Mar-22 (No. EX3-3503_Mar22) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) | Apr-23 Apr-23 Mar-23 May-23 Scheduled Check In house check: Oct-22 In house check: Oct-22 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06 | SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41093315 | 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 08-Mar-22 (No. EX3-3503_Mar22) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) | Apr-23 Apr-23 Mar-23 May-23 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41093315
SN: 100972 | 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 08-Mar-22 (No. EX3-3503_Mar22) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) | Apr-23 Apr-23 Mar-23 May-23 Scheduled Check In house check: Oct-22 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477 | 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 08-Mar-22 (No. EX3-3503_Mar22) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | Apr-23 Apr-23 Mar-23 May-23 Scheduled Check In house check: Oct-22 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06 | SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477 Name | 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 08-Mar-22 (No. EX3-3503_Mar22) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | Apr-23 Apr-23 Mar-23 May-23 Scheduled Check In house check: Oct-22 | Certificate No:
D3700V2-1004_Jul22 Page 1 of 7 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. | Certificate No: D3700V2-1004_Jul22 | Page 2 of 7 | | |------------------------------------|-------------|--| | | | | | | | | | | | | #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | ASY system configuration, as far as no | given on page 1. | | |--|--------------------------------------|----------------------------------| | DASY Version | DASY52 | V52.10.4 | | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 3700 MHz ± 1 MHz
3800 MHz ± 1 MHz | | # Head TSL parameters at 3700 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.7 | 3.12 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.0 ± 6 % | 3.07 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL at 3700 MHz | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | | |---|--------------------|--------------------------|--| | SAR measured | 100 mW input power | 6.74 W/kg | | | SAR for nominal Head TSL parameters | normalized to 1W | 67.3 W/kg ± 19.9 % (k=2) | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.44 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.4 W/kg ± 19.5 % (k=2) | # Head TSL parameters at 3800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.6 | 3.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 36.8 ± 6 % | 3.15 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL at 3800 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.57 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 65.7 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.40 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.9 W/kg ± 19.5 % (k=2) | Certificate No: D3700V2-1004_Jul22 Page 3 of 7 # Appendix (Additional assessments outside the scope of SCS 0108) # Antenna Parameters with Head TSL at 3700 MHz | Impedance, transformed to feed point | 48.6 Ω - 6.6 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.3 dB | | Tetalii 2000 | | # Antenna Parameters with Head TSL at 3800 MHz | Impedance, transformed to feed point | 57.5 Ω - 5.9 jΩ | |--------------------------------------|-----------------| | Return Loss | - 21.0 dB | | Totalii 2000 | | # General Antenna Parameters and Design | Electrical Delay (one direction) | 1.138 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | Γ | M | SPEAG | |---|-----------------|-------| | | Manufactured by | | Certificate No: D3700V2-1004_Jul22 Page 4 of 7 # **DASY5 Validation Report for Head TSL** Date: 01.07.2022 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2 - SN:1004 Communication System: UID 0 - CW; Frequency: 3700 MHz, Frequency: 3800 MHz Medium parameters used: f=3700 MHz; $\sigma=3.07$ S/m; $\epsilon_r=37$; $\rho=1000$ kg/m 3 , Medium parameters used: f=3800 MHz; $\sigma=3.15$ S/m; $\epsilon_r=36.8$; $\rho=1000$ kg/m 3 Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) DASY52 Configuration: Probe: EX3DV4 - SN3503; ConvF(7.73, 7.73, 7.73) @ 3700 MHz, ConvF(7.73, 7.73, 7.73) @ 3800 MHz; Calibrated: 08.03.2022 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 02.05.2022 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3700MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.98 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 19.1 W/kg SAR(1 g) = 6.74 W/kg; SAR(10 g) = 2.44 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 73.9% Maximum value of SAR (measured) = 13.1 W/kg Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3800MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.05 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 18.9 W/kg SAR(1 g) = 6.57 W/kg; SAR(10 g) = 2.40 W/kg Smallest distance from peaks to all points 3 dB below = 8.2 mm Ratio of SAR at M2 to SAR at M1 = 73.1% Maximum value of SAR (measured) = 13.0 W/kg Certificate No: D3700V2-1004_Jul22 Page 5 of 7 0 dB = 13.1 W/kg = 11.17 dBW/kg ## Impedance Measurement Plot for Head TSL Certificate No: D3700V2-1004_Jul22 Page 7 of 7 # 3700 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates | Dbject | D3700V2 - SN:10 | 004 | | |------------------------------------
---|--|------------------------| | Calibration procedure(s) | QA CAL-22.v6 Calibration Procedure for SAR Validation Sources between 3-10 GHz | | | | Calibration date: | July 01, 2022 | | | | | | onal standards, which realize the physical unitrobability are given on the following pages and | | | All calibrations have been conduct | ed in the closed laborator | y facility: environment temperature (22 ± 3)°C | and humidity < 70%. | | | | , | , | | Calibration Equipment used (M&T | E critical for calibration) | | | | Primany Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Primary Standards Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | ower meter NRP-Z91 | SN: 103244 | 04-Apr-22 (No. 217-03523/03524) | Apr-23 | | ower sensor NRP-Z91 | SN: 103245 | 04-Apr-22 (No. 217-03524) | Apr-23 | | deference 20 dB Attenuator | SN: BH9394 (20k) | 04-Apr-22 (No. 217-03527) | Apr-23 | | ype-N mismatch combination | SN: 310982 / 06327 | 04-Apr-22 (No. 217-03528) | Apr-23 | | Reference Probe EX3DV4 | SN: 3503 | 08-Mar-22 (No. EX3-3503 Mar22) | Mar-23 | | AE4 | SN: 601 | 02-May-22 (No. DAE4-601_May22) | May-23 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 | | | Name | Function | Signature | | Calibrated by: | CONTRACTOR OF THE PARTY | | Signature | | ramorated by. | Joanna Liesnaj | Lauviatory recrinician | Afflery | | Approved by: | Sven Kühn | Technical Manager | | | Calibrated by: | Joanna Lleshaj | Laboratory Technician | diffus | Certificate No: D3700V2-1004_Jul22 Page 1 of 7 ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. | Certificate No: D3700V2-1004_Jul22 | Page 2 of 7 | | |------------------------------------|-------------|--| | | | | | | | | ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | ASY system configuration, as far as no | | V52.10.4 | |--|--------------------------------------|----------------------------------| | DASY Version | DASY52 | V52.10.4 | | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 3700 MHz ± 1 MHz
3800 MHz ± 1 MHz | | # Head TSL parameters at 3700 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.7 | 3.12 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.0 ± 6 % | 3.07 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL at 3700 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.74 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 67.3 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.44 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.4 W/kg ± 19.5 % (k=2) | # Head TSL parameters at 3800 MHz The following parameters and calculations were applied. | • | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.6 | 3.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 36.8 ± 6 % | 3.15 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL at 3800 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.57 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 65.7 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.40 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.9 W/kg ± 19.5 % (k=2) | Certificate No: D3700V2-1004_Jul22 Page 3 of 7 # Appendix (Additional assessments outside the scope of SCS 0108) # Antenna Parameters with Head TSL at 3700 MHz | Impedance, transformed to feed point | 48.6 Ω - 6.6 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.3 dB | # Antenna Parameters with Head TSL at 3800 MHz | Impedance, transformed to feed point | 57.5 Ω - 5.9 j Ω | |--------------------------------------|--------------------------------| | Return Loss | - 21.0 dB | | Ttotall 2000 | | # General Antenna Parameters and Design | Electrical Delay (one direction) | 1.138 ns | |----------------------------------|----------| After long term use with 100W radiated power,
only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| | | | Certificate No: D3700V2-1004_Jul22 Page 4 of 7 # **DASY5 Validation Report for Head TSL** Date: 01.07.2022 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2 - SN:1004 Communication System: UID 0 - CW; Frequency: 3700 MHz, Frequency: 3800 MHz Medium parameters used: f=3700 MHz; $\sigma=3.07$ S/m; $\epsilon_r=37$; $\rho=1000$ kg/m 3 , Medium parameters used: f=3800 MHz; $\sigma=3.15$ S/m; $\epsilon_r=36.8$; $\rho=1000$ kg/m 3 Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) DASY52 Configuration: Probe: EX3DV4 - SN3503; ConvF(7.73, 7.73, 7.73) @ 3700 MHz, ConvF(7.73, 7.73, 7.73) @ 3800 MHz; Calibrated: 08.03.2022 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 02.05.2022 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3700MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.98 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 19.1 W/kg SAR(1 g) = 6.74 W/kg; SAR(10 g) = 2.44 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 73.9% Maximum value of SAR (measured) = 13.1 W/kg Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3800MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.05 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 18.9 W/kg SAR(1 g) = 6.57 W/kg; SAR(10 g) = 2.40 W/kg Smallest distance from peaks to all points 3 dB below = 8.2 mm Ratio of SAR at M2 to SAR at M1 = 73.1% Maximum value of SAR (measured) = 13.0 W/kg Certificate No: D3700V2-1004_Jul22 Page 5 of 7 0 dB = 13.1 W/kg = 11.17 dBW/kg ## Impedance Measurement Plot for Head TSL Certificate No: D3700V2-1004_Jul22 Page 7 of 7 # 3900 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client CTTL (Auden) Certificate No: D3900V2-1024_Jul22 | bject | D3900V2 - SN:10 | 24 | | |--|------------------------------------|---|--| | Calibration procedure(s) | QA CAL-22.v6
Calibration Proced | dure for SAR Validation Sources | between 3-10 GHz | | Calibration date: | July 01, 2022 | | | | The measurements and the uncerta | inties with confidence pr | onal standards, which realize the physical unit
obability are given on the following pages and
y facility: environment temperature $(22 \pm 3)^{\circ}$ C | I are part of the certificate. | | Calibration Equipment used (M&TE | | | | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-22 (No. 217-03525) | Apr-23 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 04-Apr-22 (No. 217-03527) | Apr-23 | | Type-N mismatch combination | SN: 310982 / 06327 | 04-Apr-22 (No. 217-03528) | Apr-23 | | Reference Probe EX3DV4 | SN: 3503 | 08-Mar-22 (No. EX3-3503_Mar22) | Mar-23 | | DAE4 | SN: 601 | 02-May-22 (No. DAE4-601_May22) | May-23 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power meter E44 190 | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | BN 10/11000015 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | NAME AND ADDRESS OF THE PARTY O | SN: MY41093315 | Of Oct 10 (III flouded of look out 20) | | | Power sensor HP 8481A
Power sensor HP 8481A | SN: MY41093315
SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A
Power sensor HP 8481A
RF generator R&S SMT-06 | 30-77137 / 2003 Ormanica | | In house check: Oct-22
In house check: Oct-22 | | Power sensor HP 8481A | SN: 100972 | 15-Jun-15 (in house check Oct-20) | | | Power sensor HP 8481A
Power sensor HP 8481A
RF generator R&S SMT-06
Network Analyzer Agilent E8358A | SN: 100972
SN: US41080477 | 15-Jun-15 (in house check Oct-20)
31-Mar-14 (in house check Oct-20)
Function | In house check: Oct-22 | | Power sensor HP 8481A
Power sensor HP 8481A
RF generator R&S SMT-06 | SN: 100972
SN: US41080477 | 15-Jun-15 (in house check Oct-20)
31-Mar-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A
Power sensor HP 8481A
RF generator R&S SMT-06
Network Analyzer Agilent E8358A | SN: 100972
SN: US41080477 | 15-Jun-15 (in house check Oct-20)
31-Mar-14 (in house check Oct-20)
Function | In house check: Oct-22 | Certificate No: D3900V2-1024_Jul22 Page 1 of 8 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage S Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ## **Additional Documentation:** c) DASY System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR
measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D3900V2-1024_Jul22 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 3900 MHz ± 1 MHz
4000 MHz ± 1 MHz
4100 MHz ± 1 MHz | | # Head TSL parameters at 3900 MHz The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.5 | 3.32 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 36.7 ± 6 % | 3.24 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL at 3900 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.96 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 69.6 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.42 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.1 W/kg ± 19.5 % (k=2) | ## Head TSL parameters at 4000 MHz The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.4 | 3.43 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 36.6 ± 6 % | 3.33 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL at 4000 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.82 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 68.2 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.38 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.6 W/kg ± 19.5 % (k=2) | Certificate No: D3900V2-1024_Jul22 Page 3 of 8 ## Head TSL parameters at 4100 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.2 | 3.53 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 36.5 ± 6 % | 3.41 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL at 4100 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.82 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 68.3 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.37 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.6 W/kg ± 19.5 % (k=2) | Certificate No: D3900V2-1024_Jul22 Page 4 of 8 # Appendix (Additional assessments outside the scope of SCS 0108) ## Antenna Parameters with Head TSL at 3900 MHz | Impedance, transformed to feed point | 46.3 $Ω$ - 6.6 j $Ω$ | | |--------------------------------------|----------------------|--| | Return Loss | - 22.1 dB | | # Antenna Parameters with Head TSL at 4000 MHz | Impedance, transformed to feed point | 52.1 Ω - 2.7 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 29.5 dB | | ## Antenna Parameters with Head TSL at 4100 MHz | Impedance, transformed to feed point | 59.8 Ω - 1.9 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 20.8 dB | | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.107 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| | | | Certificate No: D3900V2-1024_Jul22 Page 5 of 8 #### **DASY5 Validation Report for Head TSL** Date: 01.07.2022 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 3900 MHz; Type: D3900V2; Serial: D3900V2 - SN:1024 Communication System: UID 0 - CW; Frequency: 3900 MHz, Frequency: 4000 MHz, Frequency: 4100 MHz Medium parameters used: f = 3900 MHz; σ = 3.24 S/m; ϵ_r = 36.7; ρ = 1000 kg/m³ , Medium parameters used: f = 4000 MHz; σ = 3.33 S/m; ϵ_r = 36.6; ρ = 1000 kg/m³ , Medium parameters used: f = 4100 MHz; σ = 3.41 S/m; ϵ_r = 36.5; ρ = 1000 kg/m³ , Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(7.39, 7.39, 7.39) @ 3900 MHz, ConvF(7.39, 7.39, 7.39) @ 4000 MHz, ConvF(7.26, 7.26, 7.26) @ 4100 MHz; Calibrated: 08.03.2022 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 02.05.2022 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3900MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 71.06 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 20.0 W/kg SAR(1 g) = 6.96 W/kg; SAR(10 g) = 2.42 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 74.2% Maximum value of SAR (measured) = 13.9 W/kg # Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=4000MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 71.32 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 20.0 W/kg SAR(1 g) = 6.82 W/kg; SAR(10 g) = 2.38 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 73.6% Maximum value of SAR (measured) = 13.8 W/kg Certificate No: D3900V2-1024_Jul22 Page 6 of 8 # Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=4100MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.19 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 19.7 W/kg SAR(1 g) = 6.82 W/kg; SAR(10 g) = 2.37 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 74.2% Maximum value of SAR (measured) = 13.7 W/kg 0 dB = 13.9 W/kg = 11.43 dBW/kg Certificate No: D3900V2-1024_Jul22 Page 7 of 8 ## Impedance Measurement Plot for Head TSL Certificate No: D3900V2-1024_Jul22 Page 8 of 8 # **5 GHz Dipole Calibration Certificate** Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client CTTL (Auden) Certificate No: D5GHzV2-1060_Jul22 | Object | D5GHzV2 - SN:1 | 060 | | |---|--|---|--| | Suject | D00112V2 - 014.1 | 000 | | | Calibration procedure(s) | QA CAL-22.v6
Calibration Proce | dure for SAR Validation Sources | between 3-10 GHz | |
Calibration date: | July 05, 2022 | | | | he measurements and the uncerta | ainties with confidence pr | onal standards, which realize the physical unit
obability are given on the following pages and
y facility: environment temperature (22 ± 3)°C | d are part of the certificate. | | Calibration Equipment used (M&TE | critical for calibration) | | | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-22 (No. 217-03525) | Apr-23 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 04-Apr-22 (No. 217-03527) | Apr-23 | | Type-N mismatch combination
Reference Probe EX3DV4 | SN: 310982 / 06327
SN: 3503 | 04-Apr-22 (No. 217-03528) | Apr-23 | | | SN: 601 | 08-Mar-22 (No. EX3-3503_Mar22)
02-May-22 (No. DAE4-601_May22) | Mar-23
May-23 | | | 1 | | | | DAE4 | ID# | Check Date (in house) | Scheduled Check | | DAE4
Secondary Standards | 1 | Check Date (in house) 30-Oct-14 (in house check Oct-20) | Scheduled Check In house check: Oct-22 | | DAE4
Secondary Standards
Power meter E4419B | ID# | | | | DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A | ID#
SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 | 30-Oct-14 (in house check Oct-20)
07-Oct-15 (in house check Oct-20)
07-Oct-15 (in house check Oct-20)
15-Jun-15 (in house check Oct-20) | In house check: Oct-22
In house check: Oct-22 | | DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | ID #
SN: GB39512475
SN: US37292783
SN: MY41093315 | 30-Oct-14 (in house check Oct-20)
07-Oct-15 (in house check Oct-20)
07-Oct-15 (in house check Oct-20) | In house check: Oct-22
In house check: Oct-22
In house check: Oct-22 | | DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477 Name | 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | In house check: Oct-22
In house check: Oct-22
In house check: Oct-22
In house check: Oct-22 | | DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by: | ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477 | 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | In house check: Oct-22
In house check: Oct-22
In house check: Oct-22
In house check: Oct-22
In house check: Oct-22 | Certificate No: D5GHzV2-1060_Jul22 Page 1 of 13 ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D5GHzV2-1060_Jul22 Page 2 of 13 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5200 MHz ± 1 MHz 5250 MHz ± 1 MHz 5300 MHz ± 1 MHz 5500 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz 5750 MHz ± 1 MHz | | # Head TSL parameters at 5200 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 36.0 | 4.66 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.9 ± 6 % | 4.50 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL at 5200 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.84 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 77.8 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.26 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.3 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1060_Jul22 ## Head TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.8 ± 6 % | 4.55 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL at 5250 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.87 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 78.1 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.25 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.3 W/kg ± 19.5 % (k=2) | ### Head TSL parameters at 5300 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.76 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.7 ± 6 % | 4.60 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL at 5300 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.17 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 81.1 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.33 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.1 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1060_Jul22 Page 4 of 13 ## Head TSL parameters at 5500 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.6 | 4.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.4 ± 6 % | 4.80 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL at 5500 MHz | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | |
---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.60 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 85.3 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.44 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.1 W/kg ± 19.5 % (k=2) | # Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.3 ± 6 % | 4.90 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.39 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 83.2 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.40 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.7 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1060_Jul22 Page 5 of 13