http://www.chinattl.cn Client Sporton **Certificate No:** Z19-60062 #### **CALIBRATION CERTIFICATE** Object D5GHzV2 - SN: 1128 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: March 5, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRP2 | 106277 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | Power sensor NRP8S | 104291 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | ReferenceProbe EX3DV4 | SN 3617 | 31-Jan-19(SPEAG,No.EX3-3617_Jan19) | Jan-20 | | DAE4 | SN 1331 | 06-Feb-19(SPEAG,No.DAE4-1331_Feb19) | Feb-20 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 23-Jan-19 (CTTL, No.J19X00336) | Jan-20 | | NetworkAnalyzerE5071C | MY46110673 | 24-Jan-19 (CTTL, No.J19X00547) | Jan-20 | | | | | | | | Name | Function | Signature | |----------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 复数二 | | Reviewed by: | Lin Hao | SAR Test Engineer | 林地 | | Approved by: | Qi Dianyuan | SAR Project Leader | 200 - | Issued: March 9, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)". March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z19-60062 Page 2 of 14 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.2.1495 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5250 MHz ± 1 MHz
5600 MHz ± 1 MHz
5750 MHz ± 1 MHz | | #### Head TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.9 ± 6 % | 4.58 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | #### SAR result with Head TSL at 5250 MHz | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.67 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 76.2 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.21 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 21.9 W/kg ± 24.2 % (k=2) | Certificate No: Z19-60062 Page 3 of 14 #### Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.5 ± 6 % | 4.92 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | #### SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.05 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 79.9 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.32 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.0 W/kg ± 24.2 % (k=2) | #### Head TSL parameters at 5750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.4 | 5.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.4 ± 6 % | 5.08 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | #### SAR result with Head TSL at 5750 MHz | A Tesuit With Flead TOE at 5700 Mile | | | |---------------------------------------------------------|--------------------|--------------------------| | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 7.83 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 77.8 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.24 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.2 W/kg ± 24.2 % (k=2) | Certificate No: Z19-60062 Page 4 of 14 #### Body TSL parameters at 5250 MHz The following parameters and calculations were applied. | The following parameters and salesans were | Temperature | Permittivity | Conductivity | |--------------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.9 | 5.36 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 47.7 ± 6 % | 5.28 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | SAR result with Body TSL at 5250 MHz | t recart with Body relateles in i | | | |------------------------------------------------|--------------------|--------------------------| | SAR averaged over 1 cm^3 (1 g) of Body TSL | Condition | | | SAR measured | 100 mW input power | 7.41 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 73.7 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 cm^3 (10 g) of Body TSL | Condition | | | SAR measured | 100 mW input power | 2.11 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.0 W/kg ± 24.2 % (k=2) | ### Body TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.5 | 5.77 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 47.1 ± 6 % | 5.76 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | SAR result with Body TSL at 5600 MHz | troodit With Body 102 at 0000 Minz | | · · · · · · · · · · · · · · · · · · · | |---------------------------------------------------------|--------------------|---------------------------------------| | SAR averaged over 1 cm^3 (1 g) of Body TSL | Condition | | | SAR measured | 100 mW input power | 7.73 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 76.9 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 100 mW input power | 2.20 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.8 W/kg ± 24.2 % (k=2) | Certificate No: Z19-60062 Page 5 of 14 # Body TSL parameters at 5750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.3 | 5.94 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.9 ± 6 % | 5.97 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | SAR result with Body TSL at 5750 MHz | SAR averaged over 1 cm^3 (1 g) of Body TSL | Condition | | |------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.31 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 72.7 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 ${\it cm}^3$ (10 g) of Body TSL | Condition | | | SAR measured | 100 mW input power | 2.05 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.4 W/kg ± 24.2 % (k=2) | Certificate No: Z19-60062 Page 6 of 14 #### Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point | 52.0Ω - 0.52jΩ | |--------------------------------------|----------------| | Return Loss | - 34.0dB | #### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 58.5Ω + 3.77jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 21.3dB | | #### Antenna Parameters with Head TSL at 5750 MHz | Impedance, transformed to feed point | 51.6Ω + 2.03jΩ | |--------------------------------------|----------------| | Return Loss | - 31.9dB | #### Antenna Parameters with Body TSL at 5250 MHz | Impedance, transformed to feed point | 50.8Ω + 1.34jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 36.3dB | | #### Antenna Parameters with Body TSL at 5600 MHz | Impedance, transformed to feed point | 59.1Ω + 5.73jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 20.1dB | | #### Antenna Parameters with Body TSL at 5750 MHz | Impedance, transformed to feed point | 52.5Ω + 4.81jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 25.5dB | | Certificate No: Z19-60062 Page 7 of 14 #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.075 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: Z19-60062 Page 8 of 14 #### **DASY5 Validation Report for Head TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1128 Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Date: 03.05.2019 Frequency: 5750 MHz, Medium parameters used: f = 5250 MHz; σ = 4.575 S/m; ϵ_r = 34.92; ρ = 1000 kg/m3, Medium parameters used: f = 5600 MHz; σ = 4.922 S/m; ϵ_r = 34.45; ρ = 1000 kg/m3, Medium parameters used: f = 5750 MHz; σ = 5.078 S/m; ϵ_r = 34.44; ρ = 1000 kg/m3, Phantom section: Center Section #### DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(5.39, 5.39, 5.39) @ 5250 MHz; Calibrated: 1/31/2019, ConvF(5.06, 5.06, 5.06) @ 5600 MHz; Calibrated: 1/31/2019, ConvF(5.07, 5.07, 5.07) @ 5750 MHz; Calibrated: 1/31/2019, - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1331; Calibrated: 2/6/2019 - Phantom: MFP V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450) Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.88 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 31.8 W/kg SAR(1 g) = 7.67 W/kg; SAR(10 g) = 2.21 W/kg Maximum value of SAR (measured) = 17.9 W/kg #### Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.83 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 36.7 W/kg SAR(1 g) = 8.05 W/kg; SAR(10 g) = 2.32 W/kg Maximum value of SAR (measured) = 19.9 W/kg #### Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.01 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 36.7 W/kg SAR(1 g) = 7.83 W/kg; SAR(10 g) = 2.24 W/kg Maximum value of SAR (measured) = 19.4 W/kg Certificate No: Z19-60062 Page 9 of 14 0 dB = 19.4 W/kg = 12.88 dBW/kg #### Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1128 Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Date: 03.04.2019 Frequency: 5750 MHz, Medium parameters used: f = 5250 MHz; σ = 5.282 S/m; ϵ_r = 47.67; ρ = 1000 kg/m3, Medium parameters used: f = 5600 MHz; σ = 5.763 S/m; ϵ_r = 47.12; ρ = 1000 kg/m3, Medium parameters used: f = 5750 MHz; σ = 5.966 S/m; ϵ_r = 46.87; ρ = 1000 kg/m3, Phantom section: Right Section #### **DASY5** Configuration: - Probe: EX3DV4 SN3617; ConvF(4.76, 4.76, 4.76) @ 5250 MHz; Calibrated: 1/31/2019, ConvF(4.23, 4.23, 4.23) @ 5600 MHz; Calibrated: 1/31/2019, ConvF(4.36, 4.36, 4.36) @ 5750 MHz; Calibrated: 1/31/2019, - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1331; Calibrated: 2/6/2019 - Phantom: MFP V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450) Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 62.01 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 28.3 W/kg SAR(1 g) = 7.41 W/kg; SAR(10 g) = 2.11 W/kg Maximum value of SAR (measured) = 17.0 W/kg Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 61.69 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 33.0 W/kg SAR(1 g) = 7.73 W/kg; SAR(10 g) = 2.2 W/kg Maximum value of SAR (measured) = 18.6 W/kg Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 60.19 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 33.2 W/kg SAR(1 g) = 7.31 W/kg; SAR(10 g) = 2.05 W/kg Maximum value of SAR (measured) = 18.1 W/kg Certificate No: Z19-60062 Page 12 of 14 #### Impedance Measurement Plot for Body TSL CALIBRATION **CNAS L0570** Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 Http://www.chinattl.cn Client: Sporton Certificate No: Z19-60028 #### CALIBRATION CERTIFICATE Object DAE4 - SN: 690 Calibration Procedure(s) FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: January 23, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |------------------------|---------|------------------------------------------|-----------------------| | Process Calibrator 753 | 1971018 | 20-Jun-18 (CTTL, No.J18X05034) | June-19 | | | | | | Calibrated by: Name Function Signature Yu Zongying SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: January 24, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z19-60028 Glossary: DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. ### Methods Applied and Interpretation of Parameters: - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The report provide only calibration results for DAE, it does not contain other performance test results. Certificate No: Z19-60028 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn # DC Voltage Measurement A/D - Converter Resolution nominal High Range: 1LSB = $6.1 \mu V$, full range = -100...+300 mV Low Range: 1LSB = 61nV, full range = -1.....+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | х | Υ | z | | | |---------------------|-----------------------|-----------------------|-----------------------|--|--| | High Range | 404.780 ± 0.15% (k=2) | 404.400 ± 0.15% (k=2) | 405.364 ± 0.15% (k=2) | | | | Low Range | 3.96820 ± 0.7% (k=2) | 3.96625 ± 0.7% (k=2) | 3.99228 ± 0.7% (k=2) | | | #### **Connector Angle** | Connector Angle to be used in DASY system | 306° ± 1 ° | |-------------------------------------------|------------| |-------------------------------------------|------------| Certificate No: Z19-60028 #### 7Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 C Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Certificate No: EX3-3843_Sep19 ## CALIBRATION CERTIFICATE Object EX3DV4 - SN:3843 Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v5, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes Calibration date: September 26, 2019 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | man of the same | ID | Cal Date (Certificate No.) | Scheduled Calibration | | |----------------------------|------------------|-----------------------------------|------------------------|--| | Primary Standards | | 03-Apr-19 (No. 217-02892/02893) | Apr-20 | | | Power meter NRP | SN: 104778 | 03-Apr-19 (No. 217-02892) | Apr-20 | | | Power sensor NRP-Z91 | SN: 103244 | | | | | Power sensor NRP-Z91 | SN: 103245 | 03-Apr-19 (No. 217-02893) | Apr-20 | | | Reference 20 dB Attenuator | SN: S5277 (20x) | 04-Apr-19 (No. 217-02894) | Apr-20 | | | DAE4 | SN: 660 | 19-Dec-18 (No. DAE4-660_Dec18) | Dec-19 | | | Reference Probe ES3DV2 | SN: 3013 | 31-Dec-18 (No. ES3-3013_Dec18) | Dec-19 | | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-18) | In house check: Jun-20 | | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-18) | In house check: Oct-19 | | | | | | | | Calibrated by: Name Function Jeton Kastrati Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: October 1, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: tissue simulating liquid TSL sensitivity in free space NORMx,y,z sensitivity in TSL / NORMx,y,z ConvF diode compression point DCP crest factor (1/duty_cycle) of the RF signal CF modulation dependent linearization parameters A. B. C. D o rotation around probe axis Polarization o 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), Polarization 3 i.e., 8 = 0 is normal to probe axis information used in DASY system to align probe sensor X to the robot coordinate system Connector Angle ### Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### Methods Applied and Interpretation of Parameters: NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF). NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. Sensor Offset. The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Page 2 of 9 Certificate No: EX3-3843_Sep19 September 26, 2019 EX3DV4 - SN:3843 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3843 **Basic Calibration Parameters** | Dasic Calibration Fara | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------------------------|----------|----------|----------|-----------| | Norm (μV/(V/m) ²) ^A | 0.34 | 0.35 | 0.25 | ± 10.1 % | | DCP (mV) ^b | 110.9 | 96.1 | 101.1 | | Calibration Results for Modulation Response | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Max
dev. | Unc (k=2) | |-----|---------------------------|---|---------|------------|-----|---------|----------|-------------|-----------| | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 134.1 | ±3.8 % | ±4.7 % | | 17. | | Y | 0.0 | 0.0 | 1.0 | | 146.5 | | | | | | Z | 0.0 | 0.0 | 1.0 | | 132.2 | | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Page 3 of 9 Certificate No: EX3-3843_Sep19 The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 5). Numerical linearization parameter; uncertainty not required. Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. EX3DV4- SN:3843 September 26, 2019 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3843 #### Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (*) | -34.3 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2,5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | Page 4 of 9 September 26, 2019 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3843 Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ° | Parameter D
Relative
Permittivity | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |-----------|---|-------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 41.9 | 0,89 | 9.37 | 9.37 | 9.37 | 0.50 | 0.87 | ± 12.0 % | | 835 | 41.5 | 0.90 | 9.07 | 9.07 | 9.07 | 0.43 | 0.80 | ± 12.0 % | | 900 | 41.5 | 0.97 | 8.92 | 8.92 | 8.92 | 0.41 | 0.90 | ± 12.0 % | | 1450 | 40.5 | 1.20 | 8.17 | 8.17 | 8.17 | 0.32 | 0.80 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 7.95 | 7.95 | 7.95 | 0.34 | 0.87 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 7.67 | 7.67 | 7.67 | 0.32 | 0.87 | ± 12.0 % | | 2000 | 40.0 | 1.40 | 7.66 | 7.66 | 7.66 | 0.34 | 0.87 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 7.30 | 7.30 | 7.30 | 0.26 | 0.90 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.06 | 7.06 | 7.06 | 0.35 | 0.90 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 6.90 | 6.90 | 6.90 | 0.43 | 0,80 | ± 12.0 % | | 5250 | 35.9 | 4.71 | 4.74 | 4.74 | 4.74 | 0.40 | 1.80 | ± 14.0 % | | 5600 | 35.5 | 5.07 | 4.47 | 4.47 | 4,47 | 0.40 | 1.80 | ± 14.0 % | | 5750 | 35.4 | 5.22 | 4.44 | 4.44 | 4.44 | 0,40 | 1.80 | ± 14.0 % | Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvE uncertainty for indicated target tissue parameters. the ConvF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. September 26, 2019 EX3DV4- SN:3843 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) EX3DV4- SN:3843 September 26, 2019 # Receiving Pattern (φ), 9 = 0° Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) September 26, 2019 ### Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) EX3DV4- SN:3843 September 26, 2019 ### **Conversion Factor Assessment** ### Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz