

ISED Radio Test Report

IC: 31152-C425V1

This report concerns: Original Grant

Project No.	:	2311G133
Equipment	:	Smart Wire-Free Security Camera
Brand Name	:	tp-link
Test Model	:	Tapo C425
Series Model	:	TC85
Applicant	:	TP-LINK CORPORATION PTE. LTD.
Address	:	7 Temasek Boulevard #29-03 Suntec Tower One, Singapore 038987
Manufacturer	:	TP-LINK CORPORATION PTE. LTD.
Address	:	7 Temasek Boulevard #29-03 Suntec Tower One, Singapore 038987
Date of Receipt	:	Jan. 03, 2024
Date of Test	:	Jan. 04, 2024 ~ Feb. 06, 2024
Issued Date	:	Mar. 12, 2024
Report Version	:	R01
Test Sample	:	Engineering Sample No.: SSL2024010340 for radiated,
		SSL2024010341 for conducted.
Standard(s)	:	RSS-247,Issue 3, Aug. 2023 RSS-Gen,Issue 5, Amendment 2, Feb. 2021

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

Prepared by

: <u>Granj Zhou</u> Grani Zhou Welly zhou

Approved by

Velly Zhou

Room 108, Building 2, No. 1, Yile Road, Songshan Lake Zone, Dongguan City, Guangdong 523000 China.

Tel: +86-769-8318-3000 Web: www.newbtl.com

Service mail: btl_qa@newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the ISO/IEC 17025: 2017 requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective. Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Table of Contents	Page
REPORT ISSUED HISTORY	6
1. APPLICABLE STANDARDS	7
2 . SUMMARY OF TEST RESULTS	7
2.1 TEST FACILITY	8
2.2 MEASUREMENT UNCERTAINTY	8
2.3 TEST ENVIRONMENT CONDITIONS	9
3 . GENERAL INFORMATION	10
3.1 GENERAL DESCRIPTION OF EUT	10
3.2 DESCRIPTION OF TEST MODES	11
3.3 PARAMETERS OF TEST SOFTWARE	12
3.4 DUTY CYCLE	13
3.5 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	14
3.6 SUPPORT UNITS	14
4 . AC POWER LINE CONDUCTED EMISSIONS	15
4.1 LIMIT	15
4.2 TEST PROCEDURE	15
4.3 DEVIATION FROM TEST STANDARD	15
4.4 TEST SETUP	16
4.5 EUT OPERATION CONDITIONS	16
4.6 TEST RESULTS	16
5. RADIATED EMISSIONS	17
5.1 LIMIT	17
5.2 TEST PROCEDURE	18
5.3 DEVIATION FROM TEST STANDARD	19
5.4 TEST SETUP	19
5.5 EUT OPERATION CONDITIONS	20
5.6 TEST RESULTS - 9 KHZ TO 30 MHZ	20
5.7 TEST RESULTS - 30 MHZ TO 1000 MHZ	20
5.8 TEST RESULTS - ABOVE 1000 MHZ	20
6 . BANDWIDTH	21
6.1 LIMIT	21
6.2 TEST PROCEDURE	21
6.3 DEVIATION FROM STANDARD	21

Table of Contents	Page
6.4 TEST SETUP	21
6.5 EUT OPERATION CONDITIONS	21
6.6 TEST RESULTS	21
7 . MAXIMUM OUTPUT POWER & E.I.R.P.	22
7.1 LIMIT	22
7.2 TEST PROCEDURE	22
7.3 DEVIATION FROM STANDARD	22
7.4 TEST SETUP	22
7.5 EUT OPERATION CONDITIONS	22
7.6 TEST RESULTS	22
8 . CONDUCTED SPURIOUS EMISSIONS	23
8.1 LIMIT	23
8.2 TEST PROCEDURE	23
8.3 DEVIATION FROM STANDARD	23
8.4 TEST SETUP	23
8.5 EUT OPERATION CONDITIONS	23
8.6 TEST RESULTS	23
9 . POWER SPECTRAL DENSITY	24
9.1 LIMIT	24
9.2 TEST PROCEDURE	24
9.3 DEVIATION FROM STANDARD	24
9.4 TEST SETUP	24
9.5 EUT OPERATION CONDITIONS	24
9.6 TEST RESULTS	24
10 . MEASUREMENT INSTRUMENTS LIST	25
11 . EUT TEST PHOTO	27
APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS	32
APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ	35
APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ	40
APPENDIX D - RADIATED EMISSION- ABOVE 1000 MHZ	43
APPENDIX E - BANDWIDTH	74
APPENDIX F - MAXIMUM OUTPUT POWER & E.I.R.P.	78

Table of Contents	Page
APPENDIX G - CONDUCTED SPURIOUS EMISSIONS	81
APPENDIX H - POWER SPECTRAL DENSITY	88

REPORT ISSUED HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-ISEDR-1-2311G133	R00	Original Report.	Feb. 21, 2024	Invalid
BTL-ISEDR-1-2311G133	R01	Added the PMN and HVIN.	Mar. 12, 2024	Valid

1. APPLICABLE STANDARDS

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards: ANSI C63.10-2013

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

RSS-247,Issue 3, Aug. 2023 RSS-Gen,Issue 5, Amendment 2, Feb. 2021				
Standard(s) Section	Test Item	Test Result	Judgment	Remark
RSS-Gen 8.8	AC Power Line Conducted Emissions	APPENDIX A	PASS	
RSS-247 5.5 RSS-Gen 8.9 RSS-Gen 8.10	Radiated Emissions	APPENDIX B APPENDIX C APPENDIX D	PASS	
RSS-247 5.2 (a) RSS-Gen 6.7	Bandwidth	APPENDIX E	PASS	
RSS-247 5.4 (d)	Maximum Output Power & e.i.r.p.	APPENDIX F	PASS	
RSS-247 5.5	Conducted Spurious Emissions	APPENDIX G	PASS	
RSS-247 5.2 (b)	Power Spectral Density	APPENDIX H	PASS	

Note:

(1) "N/A" denotes test is not applicable in this test report.

2.1 TEST FACILITY

The test facilities used to collect the test data in this report is at the location of No. 3 Jinshagang 1st Rd. Shixia, Dalang Town, Dongguan City, Guangdong 523792. BTL's Company Number for ISED: 4428B BTL's CAB Identifier for ISED: CN0042

2.2 MEASUREMENT UNCERTAINTY

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95.45% confidence level (based on a coverage factor (k=2)) The BTL measurement uncertainty as below table:

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	<i>U</i> ,(dB)
DG-C02	CISPR	150kHz ~ 30MHz	2.88

B. Radiated emissions test:

Test Site	Method	Measurement Frequency Range	<i>U</i> ,(dB)
DG-CB01	CISPR	9kHz ~ 30MHz	2.36

Test Site	Method	Measurement Frequency Range	Ant. H / V	<i>U</i> ,(dB)
DG-CB03 (3m)	CISPR	30MHz ~ 200MHz	V	4.40
		30MHz ~ 200MHz	Н	3.62
		200MHz ~ 1,000MHz	V	4.58
		200MHz ~ 1,000MHz	Н	3.98

Test Site	Method	Measurement Frequency Range	<i>U</i> ,(dB)
DG-CB03	CISPR	1GHz ~ 6GHz	4.08
(3m)	CISER	6GHz ~ 18GHz	4.62

Test Site	Method	Measurement Frequency Range	<i>U</i> ,(dB)
DG-CB03 (1m) CISPR		18 ~ 26.5 GHz	3.36
	26.5 ~ 40 GHz	3.58	

C. Other Measurement:

Test Item	Uncertainty
Bandwidth	0.90 %
Maximum Output Power & e.i.r.p.	1.3 dB
Conducted Spurious Emission	1.9 dB
Power Spectral Density	1.4 dB
Temperature	0.8 °C
Humidity	2.2 %

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

2.3 TEST ENVIRONMENT CONDITIONS

Test Item	Temperature	Humidity	Test Voltage	Tested By
AC Power Line Conducted Emissions	22°C	42%	AC 120V/60Hz	Hayden Chen
Radiated Emissions-9kHz to 30 MHz	21°C	53%	AC 120V/60Hz	Hayden Chen
Radiated Emissions-30MHz to 1000MHz	25°C	42%	AC 120V/60Hz	Allen Tong
Radiated Emissions-Above 1000MHz	24°C	42%	AC 120V/60Hz	Berton Luo
Bandwidth	24-25°C	48-49 %	AC 120V/60Hz	Steve Zhou
Maximum Output Power & e.i.r.p.	22°C	54-56 %	AC 120V/60Hz	Oliver Wang
Conducted Spurious Emissions	24-25°C	48-49 %	AC 120V/60Hz	Steve Zhou
Power Spectral Density	24-25°C	48-49 %	AC 120V/60Hz	Steve Zhou

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	Smart Wire-Free Security Camera		
Brand Name	tp-link		
Test Model	Tapo C425		
Series Model	TC85		
Model Difference(s)	Only differ in model name.		
Hardware Version	1.20		
Software Version	1.X		
PMN	Smart Wire-Free Security Camera		
HVIN	Tapo C425V1		
Power Source	1# DC voltage supplied from AC adapter. Model: DSA-10PF06-05 FUS 050200 2# Supplied from battery. Model: Tapo A111-INT		
Power Rating	1# I/P: 100-240V~ 50/60Hz 0.3A O/P: +5.0V===2.0A 2# 3.6V 10000mAh 36Wh		
Operation Frequency	2412 MHz ~ 2462 MHz		
Modulation Type	IEEE 802.11b: DSSS IEEE 802.11g: OFDM IEEE 802.11n: OFDM		
Bit Rate of Transmitter	IEEE 802.11b: 11/5.5/2/1 Mbps IEEE 802.11g: 54/48/36/24/18/12/9/6 Mbps IEEE 802.11n: up to 72.2 Mbps		
Maximum Output Power	Ant.1: IEEE 802.11n(HT20): 23.18 dBm (0.2080 W) Ant.2: IEEE 802.11n(HT20): 22.97 dBm (0.1982 W)		
Maximum e.i.r.p.	Ant.1: IEEE 802.11n(HT20): 23.18 dBm (0.2080 W) Ant.2: IEEE 802.11n(HT20): 22.97 dBm (0.1982 W)		

Note:

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
- 2. Channel List:

CH01 - CH11 for IEEE 802.11b, IEEE 802.11g, IEEE 802.11n(HT20)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	04	2427	07	2442	10	2457
02	2417	05	2432	08	2447	11	2462
03	2422	06	2437	09	2452		

3. Table for Filed Antenna:

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	tp-link	N/A	Dipole	N/A	0
2	tp-link	N/A	Dipole	N/A	0

Note:

The antenna gain is provided by the manufacturer.
 The Ant.2 is the reserve antenna.

3.2 DESCRIPTION OF TEST MODES

The test system was pre-tested based on the consideration of all possible combinations of EUT operation mode.

Pretest Mode	Description	
Mode 1	TX B Mode Channel 01/06/11	
Mode 2	TX G Mode Channel 01/06/11	
Mode 3	TX N(HT20) Mode Channel 01/06/11	
Mode 4	TX B Mode Channel 01/02/06/10/11	
Mode 5	TX G Mode Channel 01/02/06/10/11	
Mode 6	TX N(HT20) Mode Channel 01/02/06/10/11	
Mode 7	TX N(HT20) Mode Channel 06	

Following mode(s) was (were) found to be the worst case(s) and selected for the final test.

AC power line conducted emissions test			
Final Test Mode Description			
Mode 7	TX N(HT20) Mode Channel 06		

Radiated emissions test - Below 1GHz			
Final Test Mode	Description		
Mode 7	TX N(HT20) Mode Channel 06		

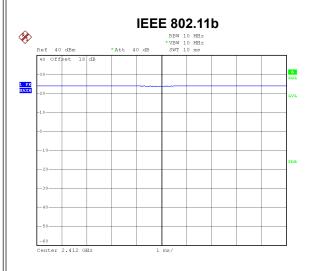
Radiated emissions test- Above 1GHz			
Final Test Mode	Description		
Mode 4	TX B Mode Channel 01/02/06/10/11		
Mode 5	TX G Mode Channel 01/02/06/10/11		
Mode 6	e 6 TX N(HT20) Mode Channel 01/02/06/10/11		

Conducted test			
Final Test Mode Description			
Mode 1	TX B Mode Channel 01/06/11		
Mode 2	TX G Mode Channel 01/06/11		
Mode 3	Mode 3 TX N(HT20) Mode Channel 01/06/11		

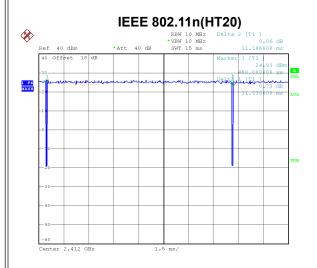
NOTE:

- (1) All the bit rate of transmitter have been tested and found the lowest rate is found to be the worst case and recorded.
- (2) For AC power line conducted emissions and radiated emission below 1 GHz test, the TX N(HT20) Mode Channel 06 is found to be the worst case and recorded.
- (3) For radiated emission above 1 GHz test, the spurious points of 1GHz~26.5GHz have been pre-tested and in this report only recorded the worst case. The remaining spurious points are all below the limit value of 20dB.
- (4) For radiated emission above 1 GHz test: The polarization of vertical and horizontal are evaluated, the worst case is vertical and recorded.
- (5) The Output Power for Ant.1 and Ant.2 are tested are recorded in the report. The worst case is Ant.1 and only the worst case is documented for other test items

3.3 PARAMETERS OF TEST SOFTWARE


Ant.1					
Test Software Version		IPOP V4.0			
Frequency (MHz)	2412	2437	2462		
IEEE 802.11b	85	85	93		
IEEE 802.11g	62	122	75		
IEEE 802.11n(HT20)	55	118	68		

Test Software Version		IPOP V4.0	
Frequency (MHz)	2412	2437	2462
IEEE 802.11b	80	80	90
IEEE 802.11g	61	100	75
IEEE 802.11n(HT20)	50	110	68


3.4 DUTY CYCLE

If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered. The output power = measured power + duty factor.

Date: 11.JAN.2024 05:22:04

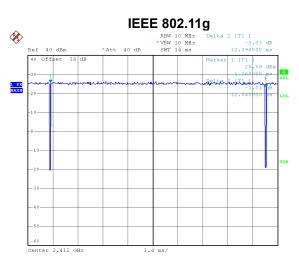
Duty cycle = 1000.000 ms / 1000.000 ms = 100% Duty Factor = 10 log(1/Duty cycle) = 0.00

Date: 11.JAN.2024 05:21:22

Duty cycle = 11.138 ms / 11.186 ms = 99.57% Duty Factor = 10 log(1/Duty cycle) = 0.00

NOTE:

For IEEE 802.11b:

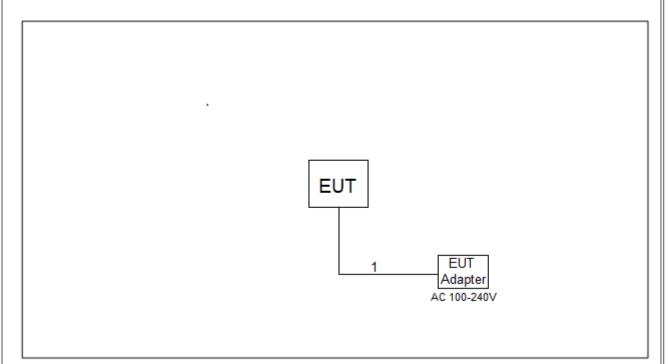

For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 1 kHz.

For IEEE 802.11g:

For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 1 kHz.

For IEEE 802.11n(HT20):

For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 1 kHz.



Date: 11.JAN.2024 05:18:00

Duty cycle = 12.040 ms / 12.096 ms = 99.54% Duty Factor = 10 log(1/Duty cycle) = 0.00

3.5 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

3.6 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.
-	-	-	-	-

Item	Cable Type	Shielded Type	Ferrite Core	Length
1	Micro USB Cable	NO	NO	0.5m

4. AC POWER LINE CONDUCTED EMISSIONS

4.1 LIMIT

Frequency of Emission (MHz)	Limit (dBµV)		
Frequency of Emission (Minz)	Quasi-peak	Average	
0.15 - 0.5	66 to 56*	56 to 46*	
0.5 - 5.0	56	46	
5.0 - 30.0	60	50	

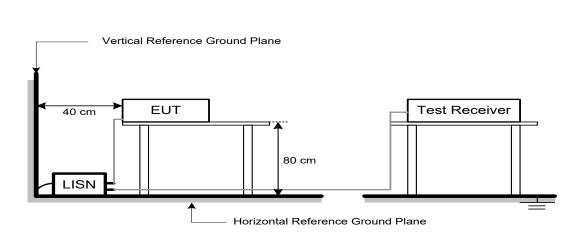
NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

4.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

The following table is the setting of the receiver:


Receiver Parameters	Setting
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

4.3 DEVIATION FROM TEST STANDARD

No deviation.

4.4 TEST SETUP

4.5 EUT OPERATION CONDITIONS

EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULTS

Please refer to the APPENDIX A.

5. RADIATED EMISSIONS

5.1 LIMIT

In case the emission fall within the restricted band specified on RSS-Gen 8.10, then the RSS-Gen 8.9 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (9 kHz-30 MHz)

Frequency	Magnetic field strength (H-Field)	Measurement Distance
(MHz)	(µA/m)	(meters)
0.009-0.490	6.37/F(F in kHz)	300
0.490-1.705	63.7/F(F in kHz)	30
1.705-30.0	0.08	30

LIMITS OF RADIATED EMISSION MEASUREMENT (30 MHz-1000 MHz)

Frequency (MHz)	Field Strength (μV/m at 3m)
30-88	100
88-216	150
216-960	200
Above 960	500

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000 MHz)

Frequency (MHz)	(dBuV/m at 3 m)	
	Peak	Average
Above 1000	74	54

NOTE:

(1) The limit for radiated test was performed according to RSS-Gen.

(2) The tighter limit applies at the band edges.

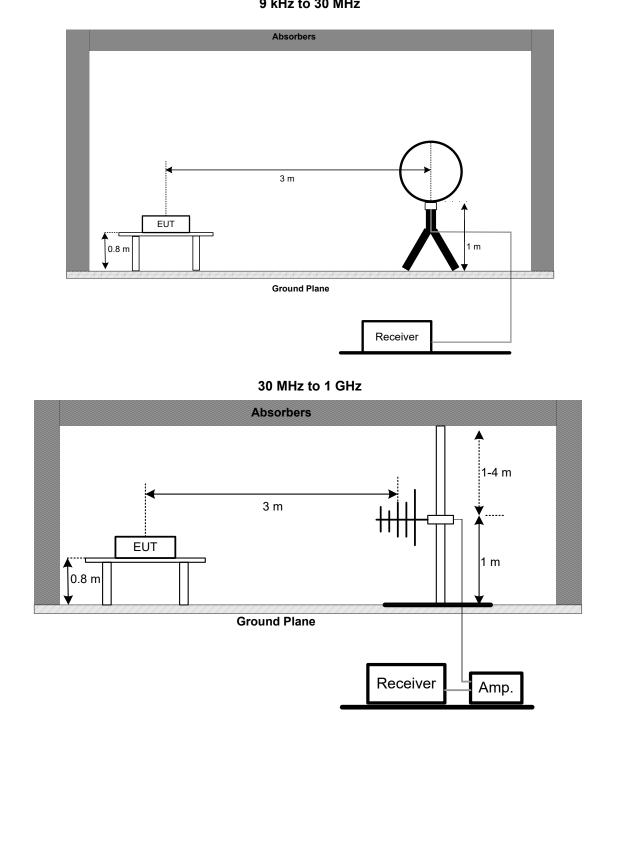
(3) Emission level (dBuV/m)=20log Emission level (uV/m).

5.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1 GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1 GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8m or 1.5m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1 GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1 GHz)
- i. For the actual test configuration, please refer to the related Item -EUT Test Photos.

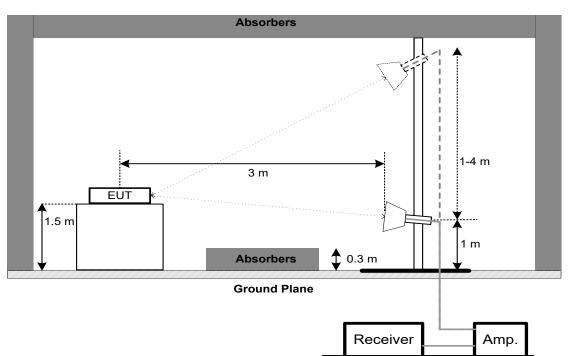
The following table is the setting of the receiver:

Spectrum Parameters	Setting	
Start ~ Stop Frequency	9 kHz~150 kHz for RBW 200 Hz	
Start ~ Stop Frequency	0.15 MHz~30 MHz for RBW 9 kHz	
Start ~ Stop Frequency	30 MHz~1000 MHz for RBW 100 kHz	
Spectrum Parameters	Setting	
Start Frequency	1000 MHz	
Stop Frequency	10th carrier harmonic	
RBW / VBW	1 MHz / 3 MHz for PK value	
(Emission in restricted band)	1 MHz / 1/T Hz for AVG value	
Receiver Parameters	Setting	
Start ~ Stop Frequency	9 kHz~90 kHz for PK/AVG detector	
Start ~ Stop Frequency	90 kHz~110 kHz for QP detector	
Start ~ Stop Frequency	110 kHz~490 kHz for PK/AVG detector	
Start ~ Stop Frequency	490 kHz~30 MHz for QP detector	
Start ~ Stop Frequency	30 MHz~1000 MHz for QP detector	
Start ~ Stop Frequency	1 GHz~26.5 GHz for PK/AVG detector	



5.3 DEVIATION FROM TEST STANDARD

No deviation.


5.4 TEST SETUP

Above 1 GHz

5.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

5.6 TEST RESULTS - 9 KHZ TO 30 MHZ

Please refer to the APPENDIX B.

Remark:

- (1) Distance extrapolation factor = 40 log (specific distance / test distance) (dB).
- (2) Limit line = specific limits (dBuV) + distance extrapolation factor.

5.7 TEST RESULTS - 30 MHZ TO 1000 MHZ

Please refer to the APPENDIX C.

5.8 TEST RESULTS - ABOVE 1000 MHZ

Please refer to the APPENDIX D.

Remark:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

6. BANDWIDTH

6.1 LIMIT

Section	Test Item	Limit
RSS-Gen 6.7 RSS-247 5.2 (a)	6 dB Bandwidth	Minimum 500 kHz
	99% Emission Bandwidth	-

6.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

For 6 dB Bandwidth:

Spectrum Parameters	Setting
Span Frequency	> Measurement Bandwidth
RBW	100 kHz
VBW	300 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

For 99% Emission Bandwidth:

Spectrum Parameters	Setting	
Span Frequency	Between 1.5 times and 5.0 times the OBW	
RBW	300 kHz For 20MHz 1 MHz For 40MHz	
VBW	1 MHz For 20MHz 3 MHz For 40MHz	
Detector	Peak	
Trace	Max Hold	
Sweep Time	Auto	

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

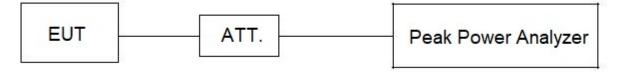
6.6 TEST RESULTS

Please refer to the APPENDIX E.

7. MAXIMUM OUTPUT POWER & E.I.R.P.

7.1 LIMIT

Section	Test Item	Limit
	Maximum Output Power	1.0000 Watt or 30.00 dBm
RSS-247 5.4 (d)	Maximum e.i.r.p.	4.0000 Watt or 36.02 dBm


7.2 TEST PROCEDURE

- a. The EUT was directly connected to the peak power analyzer and antenna output port as show in the block diagram below.
- b. The maximum conducted output power was performed in accordance with method 11.9.2.3.1 (for AVG power) of ANSI C63.10-2013.

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

7.6 TEST RESULTS

Please refer to the APPENDIX F.

8. CONDUCTED SPURIOUS EMISSIONS

8.1 LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak Output Power limits. If the transmitter complies with the Output Power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting
Start Frequency	30 MHz
Stop Frequency	26.5 GHz
RBW	100 kHz
VBW	300 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

8.6 TEST RESULTS

Please refer to the APPENDIX G.

9. POWER SPECTRAL DENSITY

9.1 LIMIT

Section	Test Item	Limit	
PSS 247 5 2 (b)	Dowor Spectral Depoits	8 dBm	
RSS-247 5.2 (b)	Power Spectral Density	(in any 3 kHz)	

9.2 TEST PROCEDURE

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.

b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting			
Span Frequency	25 MHz (20 MHz) / 60 MHz (40 MHz)			
RBW	3 kHz			
VBW	10 kHz			
Detector	Peak			
Trace	Max Hold			
Sweep Time	Auto			

9.3 DEVIATION FROM STANDARD

No deviation.

9.4 TEST SETUP

9.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

9.6 TEST RESULTS

Please refer to the APPENDIX H.

10. MEASUREMENT INSTRUMENTS LIST

	AC Power Line Conducted Emissions								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until				
1	EMI Test Receiver	R&S	ESR3	103027	Jun. 16, 2024				
2	TWO-LINE V-NETWORK	R&S	ENV216	101447	Dec. 22, 2024				
3	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A				
4	Cable	N/A	SFT205-NMNM-9M -001	9M	Nov. 27, 2024				
5	643 Shield Room	ETS	6*4*3	N/A	N/A				

	Radiated Emissions - 9 kHz to 30 MHz								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until				
1	Active Loop Antenna	Schwarzbeck	FMZB 1513-60B	1513-60 B-034	Apr. 01, 2024				
2	MXE EMI Receiver	Keysight	N9038A	MY56400091	Dec. 22, 2024				
3	Cable	N/A	RW2350-3.8A-NMB M-1.5M	N/A	Jun. 10, 2024				
4	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01		N/A				
5	966 Chamber room	ETS	9*6*6	N/A	Jul. 11, 2024				

	Radiated Emissions - 30 MHz to 1 GHz								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until				
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	1462	Dec. 13, 2024				
2	Attenuator	EMC INSTRUMENT	EMCI-N-6-06	AT-06009	Dec. 13, 2024				
3	Preamplifier	EMC INSTRUMENT	EMC001330	980863	Nov. 17, 2024				
4	Cable	RegalWay	LMR400-NMNM-12.5m	N/A	Jul. 04, 2024				
5	Cable	RegalWay	LMR400-NMNM-3m	N/A	Jul. 04, 2024				
6	Cable	RegalWay	LMR400-NMNM-0.5m	N/A	Jul. 04, 2024				
7	Receiver	Agilent	N9038A	MY52130039	Dec. 22, 2024				
8	Positioning Controller	MF	MF-7802		N/A				
9	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A				
10	966 Chamber room			N/A	May 17, 2024				

			missions - Above 1 GH	z Serial No.			
Item	Kind of Equipment	Manufacturer	ufacturer Type No.		Calibrated until		
1	Receiver	Agilent	N9038A	MY52130039	Dec. 22, 2024		
2	Preamplifier	EMC INSTRUMENT	EMC118A45SE	980888	Nov. 17, 2024		
3	EXA Spectrum Analyzer	Keysight	N9010A	MY55150209	Jun. 16, 2024		
4	Double Ridged Guide Antenna	ETS	3115	75789	May 31, 2024		
5	Cable	RegalWay	A81-SMAMSMAM-12.5 M	N/A	Aug. 08, 2024		
6	Cable	RegalWay	RWLP50-4.0A-NMRAS M-2.5M	N/A	Aug. 08, 2024		
7	Cable	RegalWay	RWLP50-4.0A-NMRAS MRA-0.8M	N/A	Aug. 08, 2024		
8	Low Noise Amplifier	CONNPHY	CLN-18G40G-4330-K	619413	Jul. 06, 2024		
9	Cable	RegalWay	RWLP50-2.6A-2.92M2. 92M-1.1M	N/A	Jul. 26, 2024		
10	Cable	Tonscend	HF160-KMKM-3M	N/A	Jul. 26, 2024		
11	Broad-Band Horn Antenna	Schwarzbeck	BBHA9170(3m)	9170-319	Jun. 20, 2024		
12	966 Chamber room	CM	9*6*6	N/A	May 17, 2024		
13	Attenuator	Talent Microwave	TA10A2-S-18	N/A	N/A		
14	Filter	STI	STI15-9912	N/A	Jun. 16, 2024		
15	Positioning Controller	MF	MF-7802	N/A	N/A		

Bandwidth & Conducted Spurious Emissions & Power Spectral Density

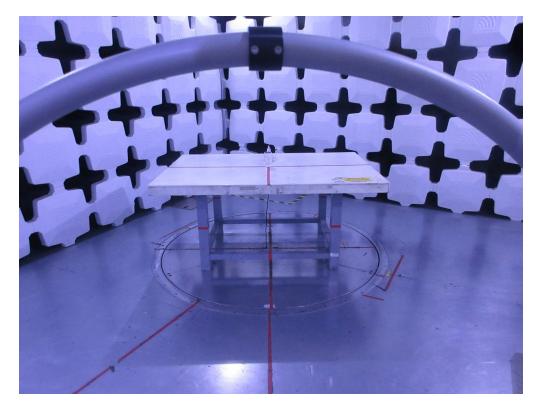
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until			
1	Spectrum Analyzer	R&S	FSP40	100185	Jun. 16, 2024			
2	Attenuator	Talent Microwave	TA10A0-S-26.5	N/A	N/A			
3	Attenuator	Talent Microwave	TA10A0-S-26.5	N/A	N/A			
4	DC Block	N/A	N/A	N/A	N/A			
5	EXA Spectrum Analyzer	Keysight	N9010A	MY55150209	Jun. 16, 2024			
6	Measurement Software	BTL	BTL Conducted Test	N/A	N/A			

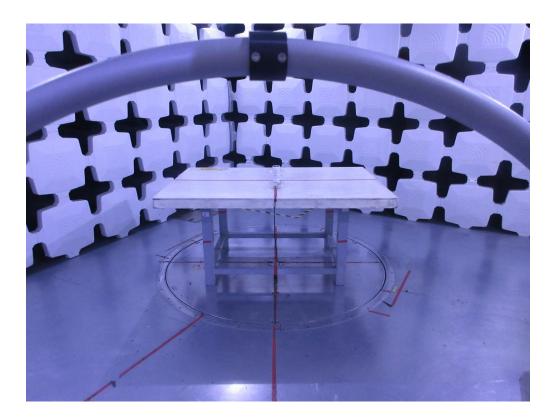
	Maximum Output Power & e.i.r.p.								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until				
1	Table top type high and low temperature test chamber	CEPREI	REI CEEC-M64T-40 15-008		Dec. 22, 2024				
2	X-series USB Peak and Average Power Sensor	Keysight	U2021XA	MY55190003	Jun. 17, 2024				
3	Cable	Cable Woke		RWP50-402-SMSM- 1M	N/A				
4	Measurement BTL		EN300328	N/A	N/A				
5	Attenuator	Talent Microwave	TA10A2-S-18	N/A	N/A				

Remark: "N/A" denotes no model name, serial no. or calibration specified.

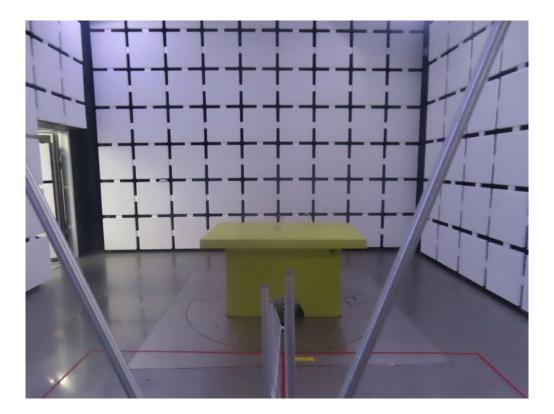
All calibration period of equipment list is one year.

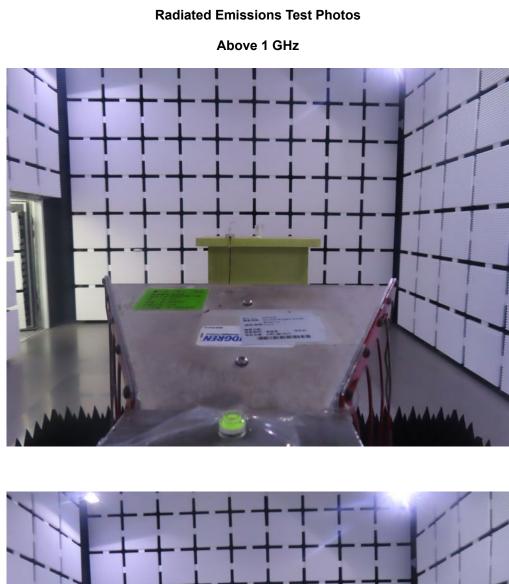
AC Power Line Conducted Emissions Test Photos

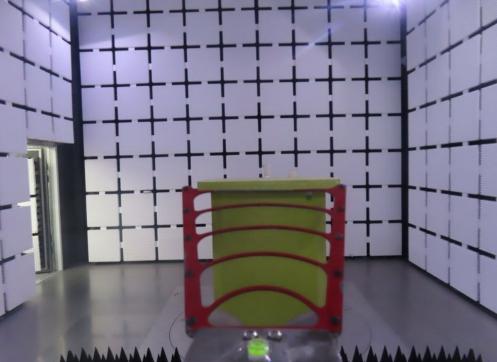


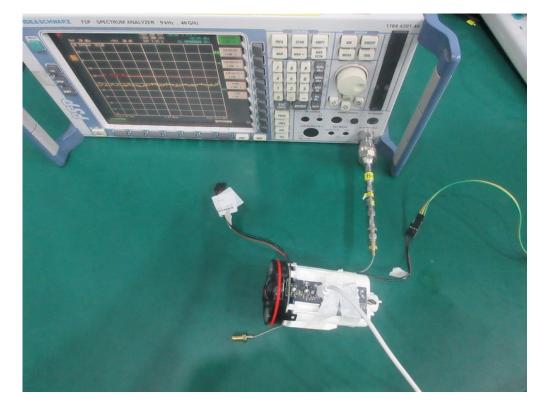


9 kHz to 30 MHz

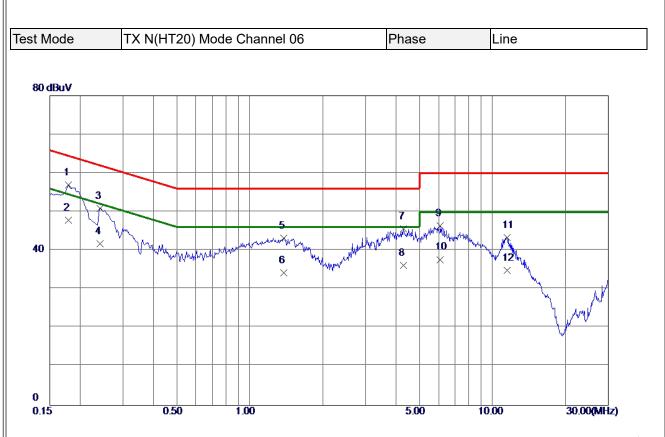



Radiated Emissions Test Photos

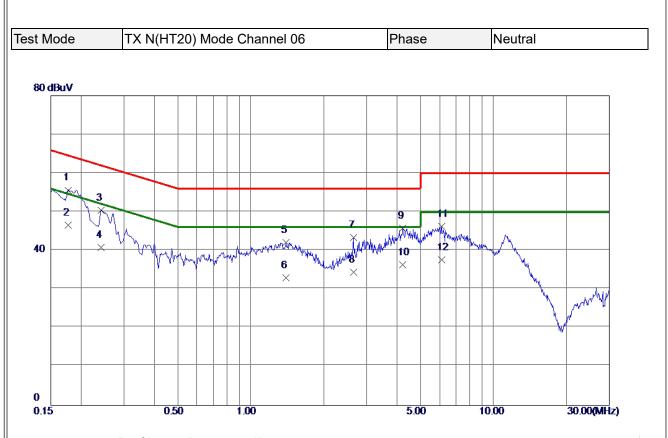

30 MHz to 1 GHz



Conducted Test Photos



APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS

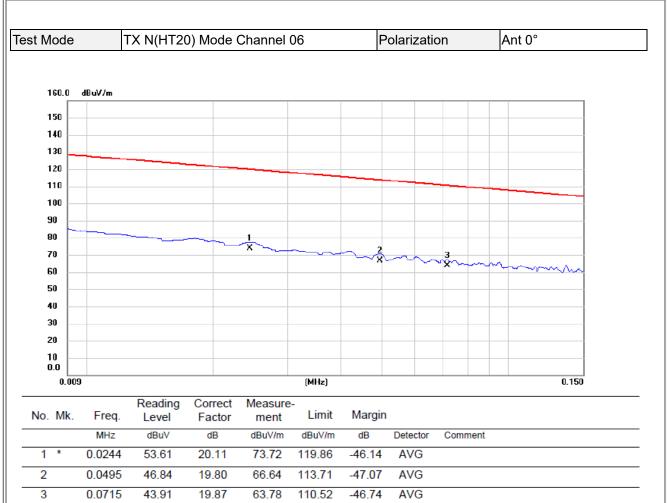


No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1793	47.34	9.68	57.0 2	64. 52	-7. 50	QP	
2 *	0.1793	38.20	9.68	47.88	54. 52	-6.64	AVG	
3	0.2423	41.19	9.68	50.87	62. 0 2	-11. 15	QP	
4	0.2423	32.09	9.68	41.77	52. 0 2	-10.25	AVG	
5	1.3808	33. 42	9.74	43.16	56.00	-12.84	QP	
6	1. 3808	24. 50	9.74	34.24	46.00	-11.76	AVG	
7	4. 3034	35.79	9.83	45.62	56.00	-10.38	QP	
8	4. 3034	26.39	9.83	36.22	46.00	-9.78	AVG	
9	6.0923	36. 54	9.88	46.42	60.00	-13. 58	QP	
10	6.0923	27.80	9.88	37.68	50.00	-12.32	AVG	
11	11. 4945	33. 42	10.01	43. 43	60.00	-16. 57	QP	
12	11. 4945	24.90	10.01	34.91	50.00	-15. 09	AVG	

REMARKS:

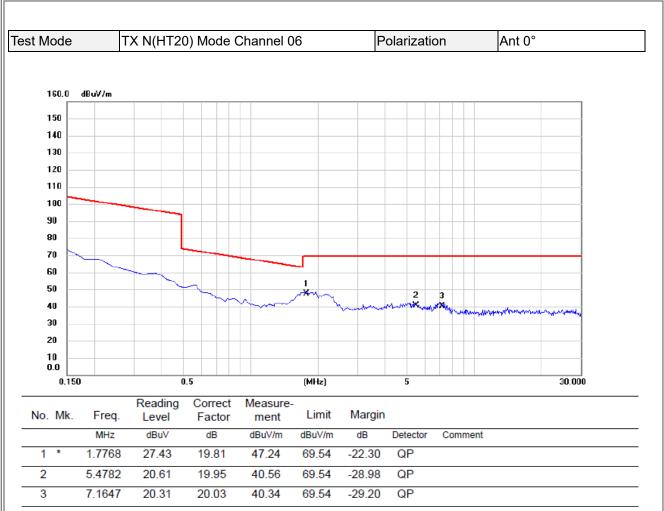
- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1770	45.94	9.66	55.60	64.63	-9.03	QP	
2 *	0.1770	36.90	9.66	46.56	54.63	-8.07	AVG	
3	0.2423	40.81	9.65	50.46	62. 0 2	-11. 56	QP	
4	0.2423	31. 20	9.65	40.85	52. 0 2	-11.17	AVG	
5	1.3965	32.36	9.71	42.07	56.00	-13. 93	QP	
6	1. 3965	23. 30	9.71	33. 01	46.00	-12. 99	AVG	
7	2.6475	33.61	9.75	43.36	56.00	-12.64	QP	
8	2.6475	24.60	9.75	34.35	46.00	-11. 65	AVG	
9	4. 2248	35.98	9.79	45.77	56.00	-10.23	QP	
10	4. 2248	26.50	9.79	36. 29	46.00	-9.71	AVG	
11	6.1170	36.35	9.86	46.21	60.00	-13. 79	QP	
12	6.1170	27.80	9.86	37.66	50.00	-12.34	AVG	

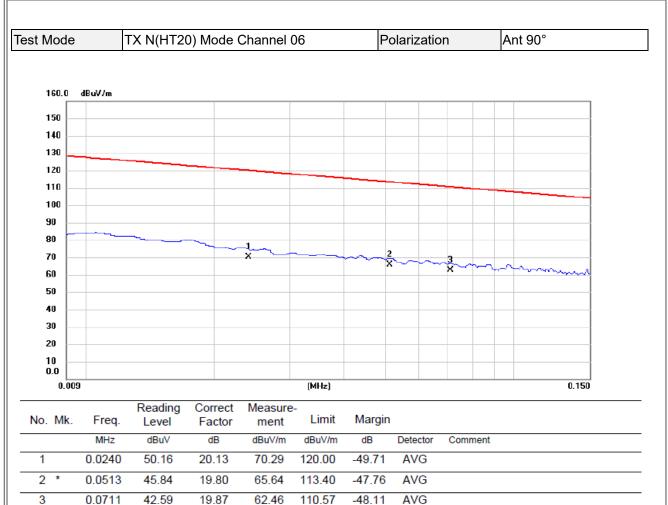

REMARKS:

- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ



REMARKS:


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

t Mode		TX N(HT2	0) Mode (Channel 0	6	P	olarizatio	on	Ant 90°
160.0 dBuV	/m								
150									
140									
130									
120									
110									
100	_								
90									
80									
70	_								
60	_				-				
50					man		2	3	
40				~~~~		men marine	muserinter	Mar man have to	water water and the second
30 20									
10									
0.0									
0.150		0	.5		(MHz)		5		30.000
lo. Mk. F	req.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	1		
Ν	Hz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1 * 1.9	111	24.20	19.80	44.00	69.54	-25.54	QP		
2 4.8	961	19.84	19.95	39.79	69.54	-29.75	QP		
3 11.5	975	17.43	20.23	37.66	69.54	-31.88	QP		

- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ

est N	Node	TX N(HT	20) Mode C	hanne	06		Polarizati	ion	Vertical	
80 d	lBuV/m									
[
40					2	3				
				1		\times \times	5 ×	6 ×		
				^	`	^				
0 30.0	0 127.00	224.00	321.00	418.00	515.	00 612	.00 709.	00 806.00	•	1000.00
										(MHz)
No.	Freq.	Reading Level	Correct Factor	Meas ment		Limit	Margin			
	MHz	dBuV/m	dB	dBuV		dBuV/m	dB	Detector	Comme	ent
L	435. 4600	0 40. 85	-7.17	33.6	8	46.00	-12.32	Peak		
2 *	481.0500	0 43. 31	-6.33	36.9	8	46.00	-9.02	Peak		
3	527.1250		-5. 50	35.1		46.00	-10.87	Peak		
1	572.715		-4.42	33.8		46.00	-12.18	Peak		
5	617.3350	1 26 60	-3. 41	33.2	0	46.00	-12.72	Peak		

46.00 -11.66

Peak

REMARKS:

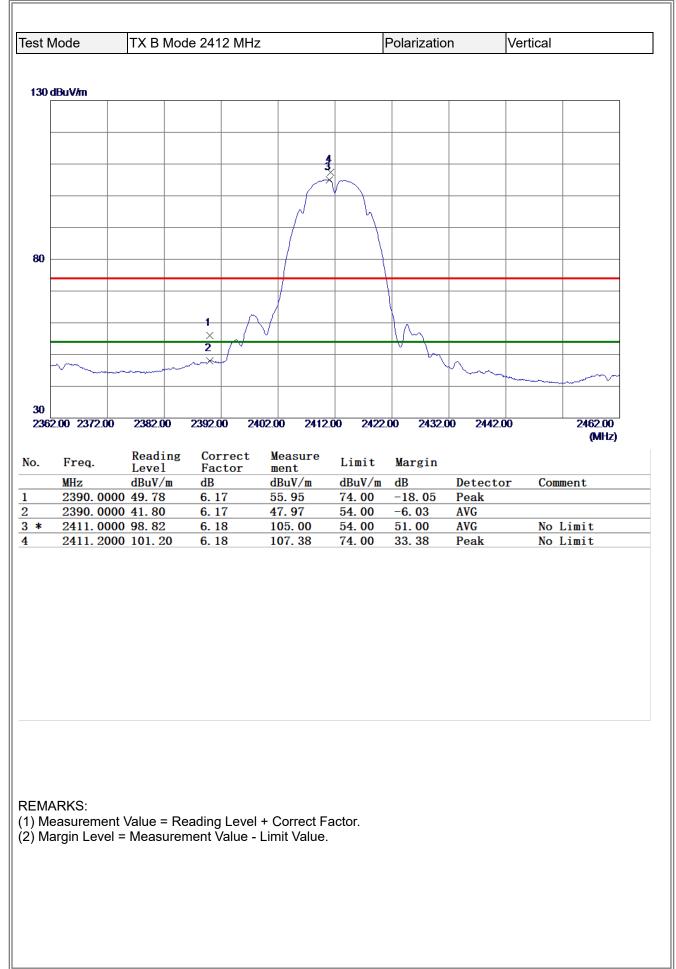
6

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

-1.30

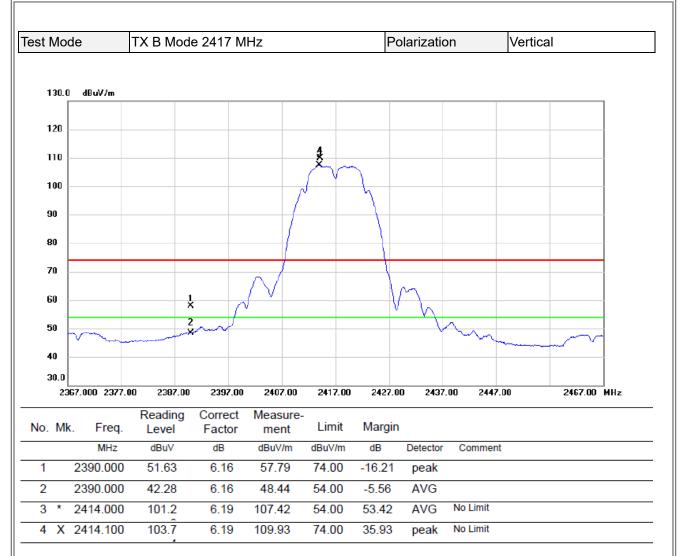
34.34

779. 3250 35. 64

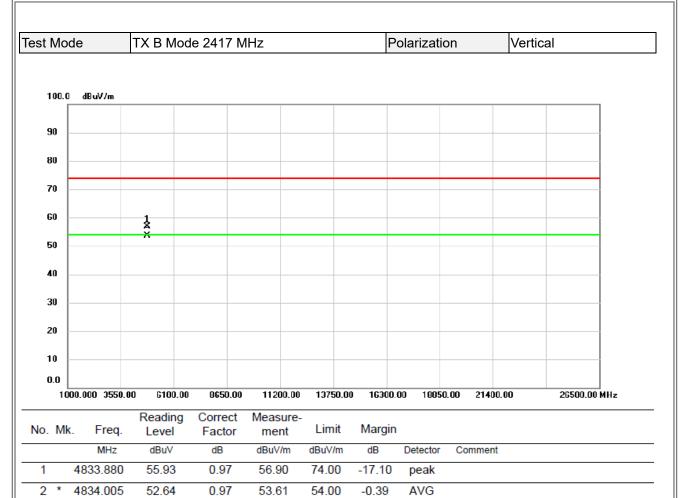


Test N	lode	TX N(HT	20) Mode C	Channel 06		Polarizati	ion	Horizontal	
80 d	BuV/m								
-									
40				2 3			5		6
-			1 ×	× ×		4 ×	5 ×		×
0 30.0	0 127.00	224.00	321.00	418.00 515	5.00 612	2.00 709.	00 806.00)	1000.00 (MHz)
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin			
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Commer	nt
1	297.7200	40.08	-10. 66	29.42	46.00	-16. 58	Peak		
2	435. 4600		-7.17	36.22	46.00	- 9 . 78	Peak		
3	481.0500		-6.33	37.08	46.00	- 8. 9 2	Peak		
4	636.7350		-3.12	32. 30	46.00	-13. 70	Peak		
5	736. 6450	36. 56	-1.51	35.05	46.00	-10. 95	Peak		
6 *	956.8350	97 10	0.44	37.62	46.00	-8.38	Peak		

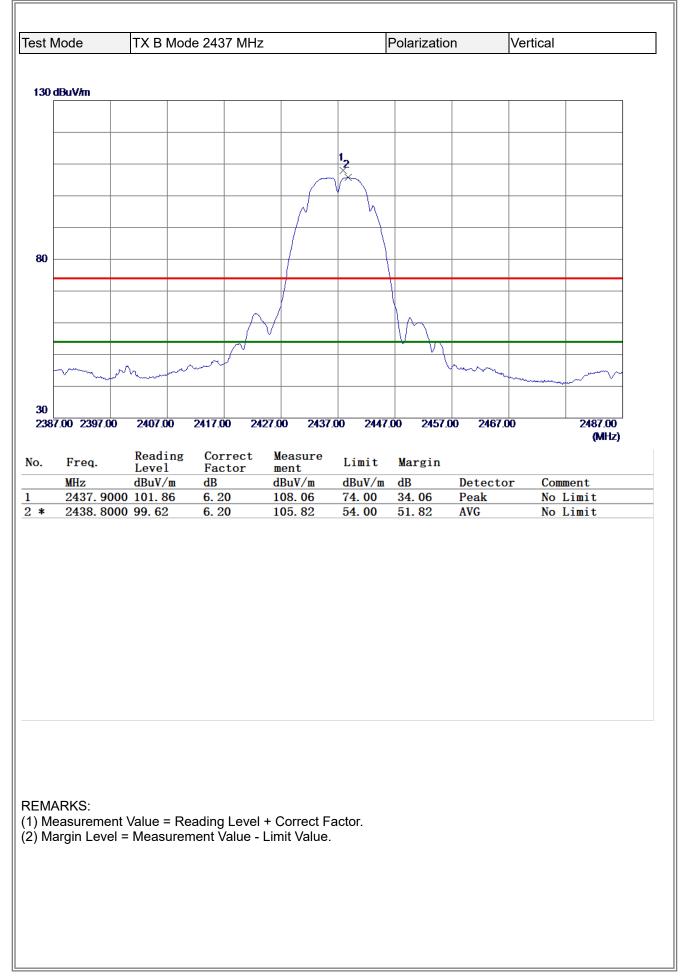
- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.



APPENDIX D - RADIATED EMISSION- ABOVE 1000 MHZ

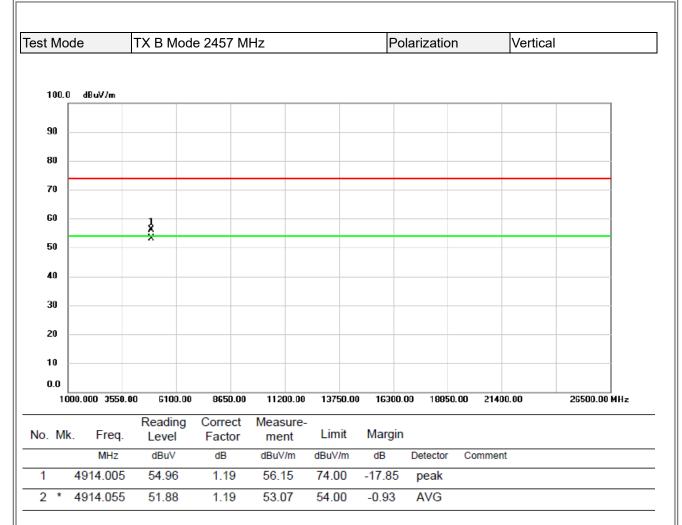


BTL

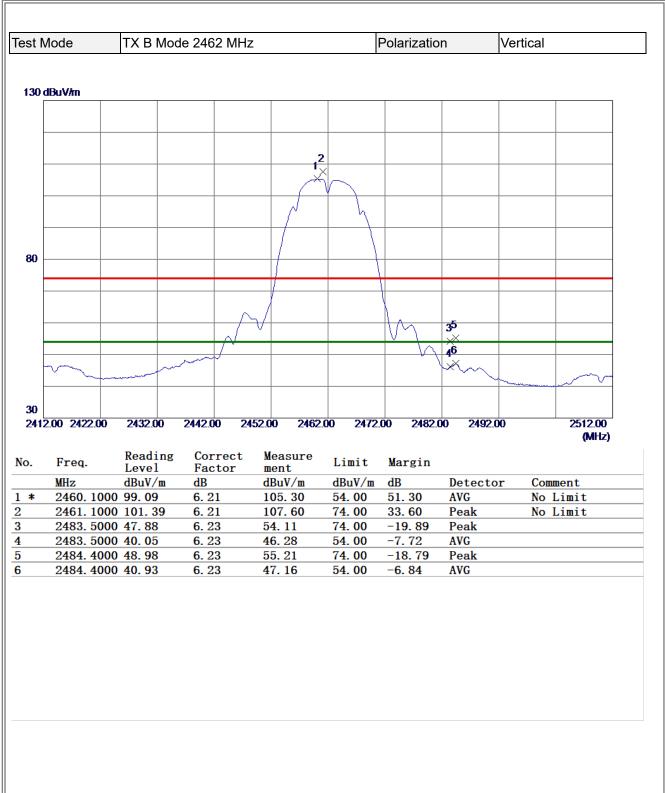

	IX B MO	de 2412 MH	z		Polarizatic	on	Vertical	
) dBuV/m						1		
	1							
	2 ×							
00.00 3550.00	0 6100.00	8650.00 1	1200.00 1375	0.00 1630	0.00 18850	0 2140	0.00	26500.00 (MHz)
	Reading	Correct	Measure					(MILZ)
Freq.	Level	Factor	ment	Limit	Margin			
MHz 4823 93	dBuV/m 00 55.75	dB 0.95	dBuV/m 56.70	dBuV/m 74.00	dB -17. 30	Detect Peak	or Con	ment
	50 52.45	0.95	53. 40	54.00	-0.60	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

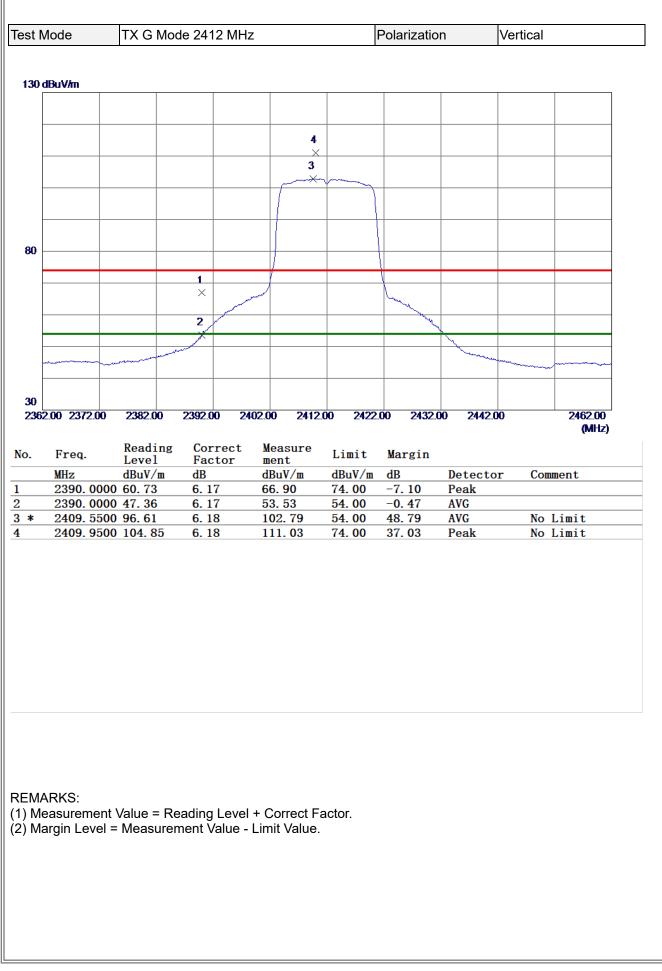

BTL

MH No. Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBUV/m dB Detector Comment 4873.9250 55.46 1.08 56.54 74.00 -17.46 Peak	est Mode	TX B Mo	de 2437 MH	Z		Polarizatio	n	Vertical	
1 1 1 1 2 1 1 1 1 30 × 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 × 1									
2	00 dBuV/m								
2									
2									
2									
2									
2									
50 ×									
0 0	50								
1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500 (MH o. Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4873.9250 55.46 1.08 56.54 74.00 -17.46 Peak	50								
1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500 (MH io. Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4873.9250 55.46 1.08 56.54 74.00 -17.46 Peak									
1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500 (MH io. Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4873.9250 55.46 1.08 56.54 74.00 -17.46 Peak									
1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500 (MH io. Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4873.9250 55.46 1.08 56.54 74.00 -17.46 Peak									
1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500 (MH No. Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4873.9250 55.46 1.08 56.54 74.00 -17.46 Peak									
1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500 (MH Io. Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4873.9250 55.46 1.08 56.54 74.00 -17.46 Peak									
1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500 (MH Io. Freq. Reading Level Correct Factor ment Measure Limit Limit Margin Margin MHz 0BuV/m dB 0BuV/m dBuV/m 0B Detector Comment 4873.9250 55.46 1.08 56.54 74.00 -17.46 Peak	0								
o.Freq.Reading LevelCorrect FactorMeasure mentLimitMarginMHzdBuV/mdBdBuV/mdBuV/mdBDetectorComment4873.925055.461.0856.5474.00-17.46Peak		0 6100.00	8650.00 1	1200.00 1375	0.00 16300	0.00 18850	.00 2140	D.00	26500.00
o. Freq. Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4873.9250 55.46 1.08 56.54 74.00 -17.46 Peak			000000	1200.00 1010					
4873. 9250 55. 46 1. 08 56. 54 74. 00 -17. 46 Peak									(MHz)
	o. Freq.	Reading	Correct	Measure		Margin			(MHZ)
	MHz	Reading Level dBuV/m	Correct Factor dB	Measure ment dBuV/m	Limit dBuV/m	dB		or Coi	
	MHz 4873.92	Reading Level dBuV/m 250 55.46	Correct Factor dB 1.08	Measure ment dBuV/m 56.54	Limit dBuV/m 74.00	dB −17. 46	Peak	or Co	



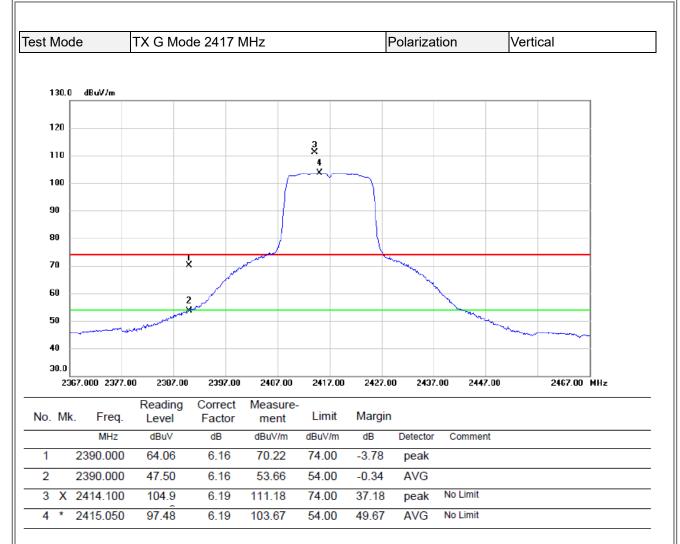
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

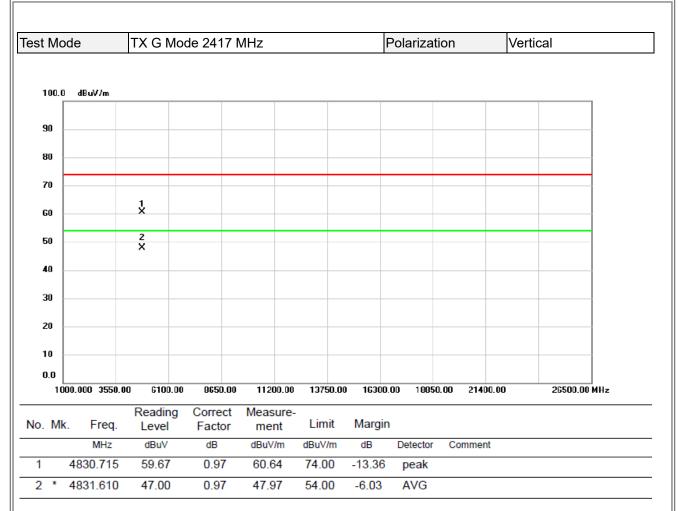


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

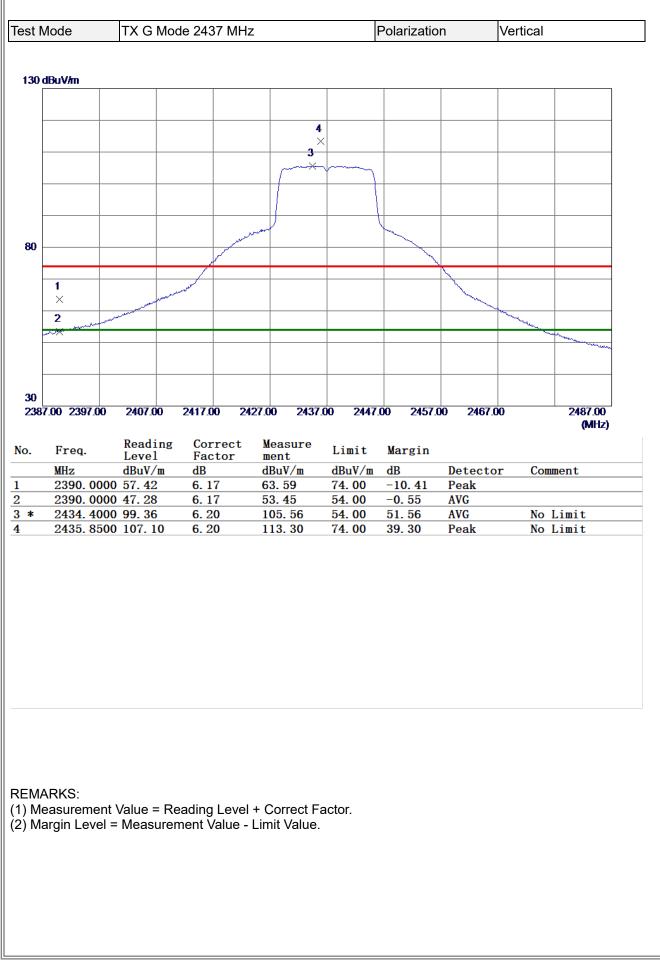
BTL


st N	lode	TX B Mo	de 2462 MH	Ηz		Polarizatio	n	Vertical	
00	dBuV/m						1		
		1 2⁄							
50		X							
50									
•									
0 100	0.00 3550.0	0 6100.00	8650.00	11200.00 1375	0.00 1630	0.00 18850	.00 21400)_00	26500.00
									(MHz)
lo.	Freq.	Reading	Correct		Limit	Margin			
lo.	Freq. MHz	Level	Factor	ment	Limit dBuV/m	Margin dB	Detecto	or Con	ment
	MHz 4924.00	Level dBuV/m 050 55.42	Factor dB 1.21	ment dBuV/m 56.63	dBuV/m 74.00	dB −17. 37	Detecto Peak	or Con	ment
	MHz 4924.00	Level dBuV/m	Factor dB	ment dBuV/m	dBuV/m	dB		or Con	ment
No.	MHz 4924.00	Level dBuV/m 050 55.42	Factor dB 1.21	ment dBuV/m 56.63	dBuV/m 74.00	dB −17. 37	Peak	or Con	ment

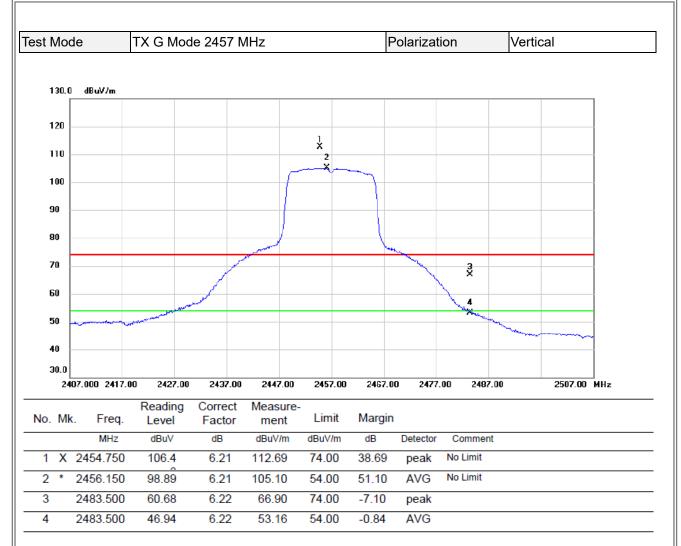
BL



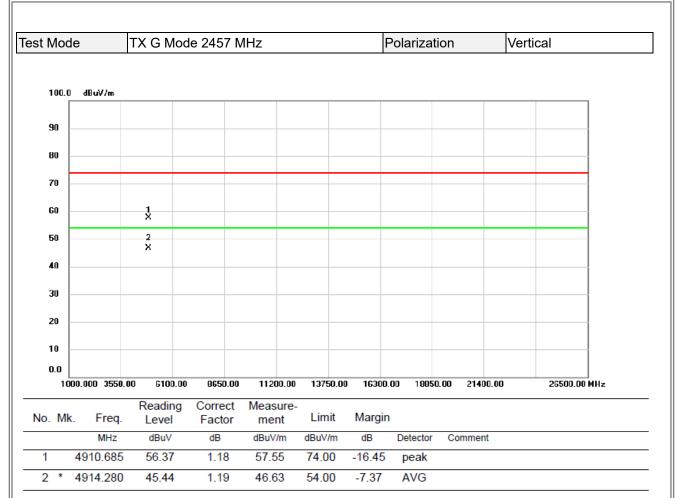
BTL


	IX G	Mode 24	12 MH	Z		Polarizatio	n	Vertical	
0 dBuV/m						1	1	1	
	2								
00.00 35	50.00 6100.0	0 8650	. 00 1 1	1200.00 1375	0.00 1630	0.00 18850	0.00 21400	0.00	26500.00 (MHz)
	Read	ing Co	rrect	Measure	.				ç,
Freq	Level	l Fa	ctor	ment	Limit	Margin			
MHz 4825	dBuV/	′ m d B		dBuV/m	dBuV/m	dB	Detecto	or Co	mment
4825	dBuV/ 5. 2050 42. 57 5. 8350 55. 88	m dB 7 0.	95				Detecto AVG Peak	or Co	mment
4825	. 2050 42. 57	m dB 7 0.	95	dBuV/m 43. 52	dBuV/m 54. 00	dB -10. 48	AVG	or Co	mment

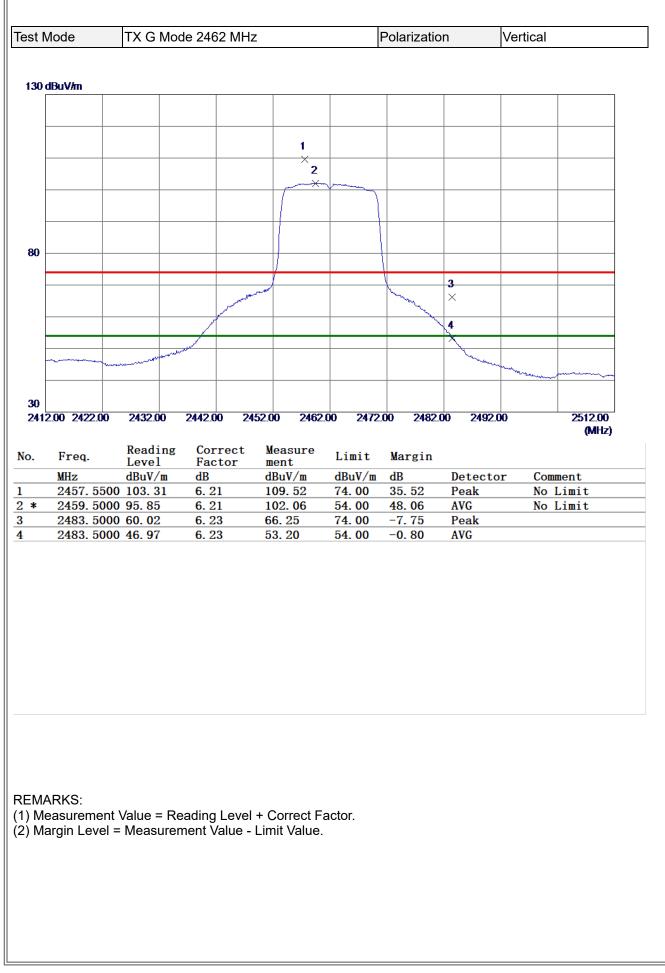
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



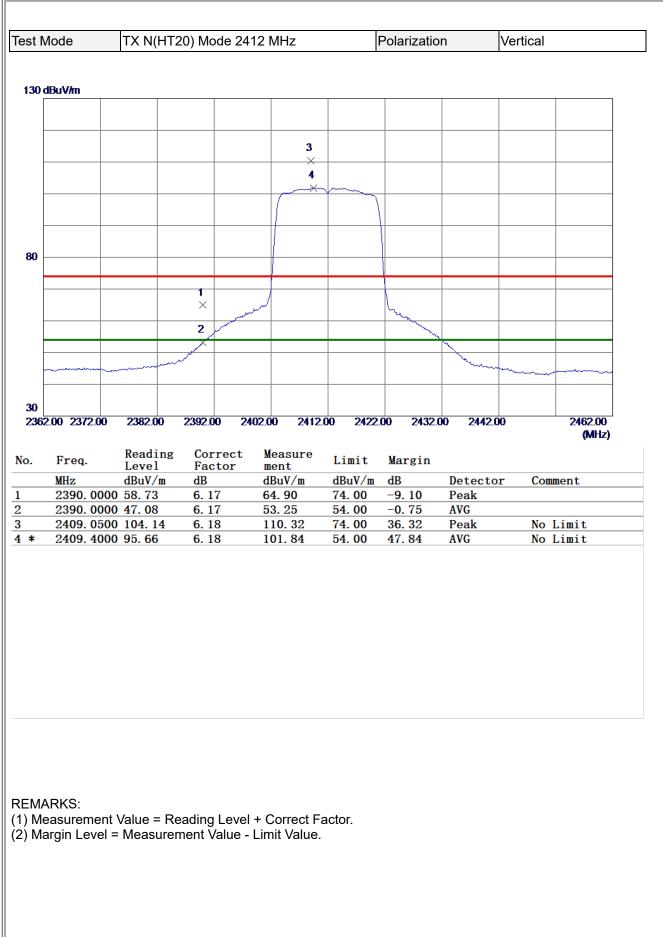
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



BTL

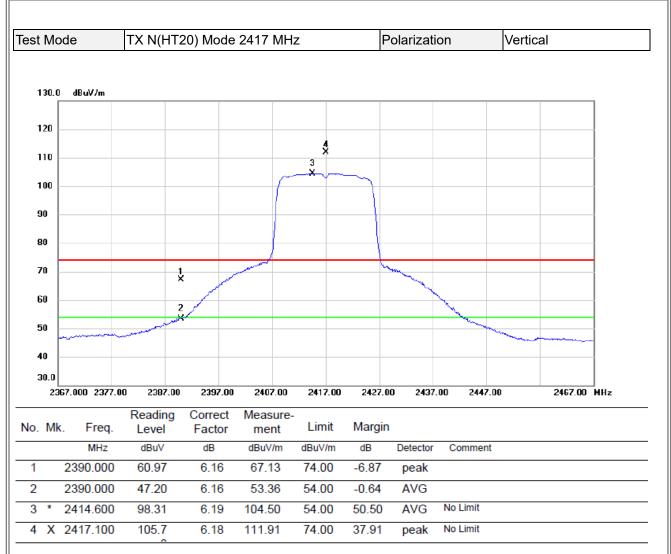

		de 2437 MH	z		Polarizatio	n	Vertical	
dBuV/m								
	2							
	X							
0.00 3550.	00 6100.00	8650.00 1	1200.00 1375	0.00 1630	0.00 18850	0.00 21400	0.00	26500.00
								(MHz)
Freq.	Reading Level	Correct Factor	Measure	Limit	Margin			
MHz	dBuV/m	dB	 dBuV/m	dBuV/m		Detecto	or Com	ient
4874.3	000 50.17	1.08	51.25	54.00	-2.75	AVG		
4875.4	000 62.04	1.08	63.12	74.00	-10.88	Peak		

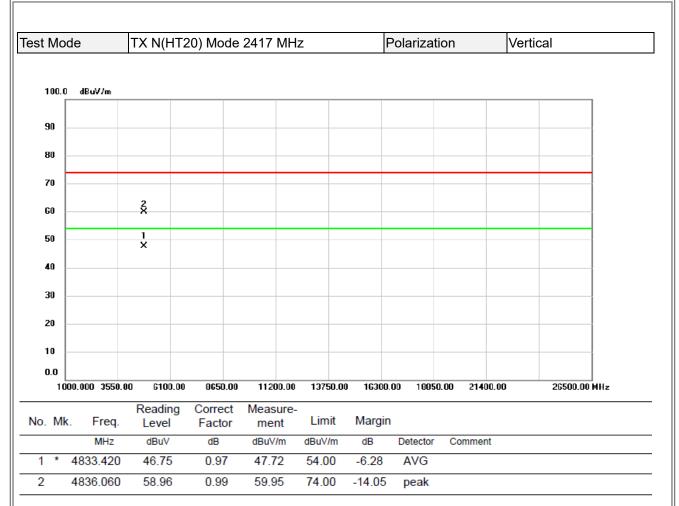
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

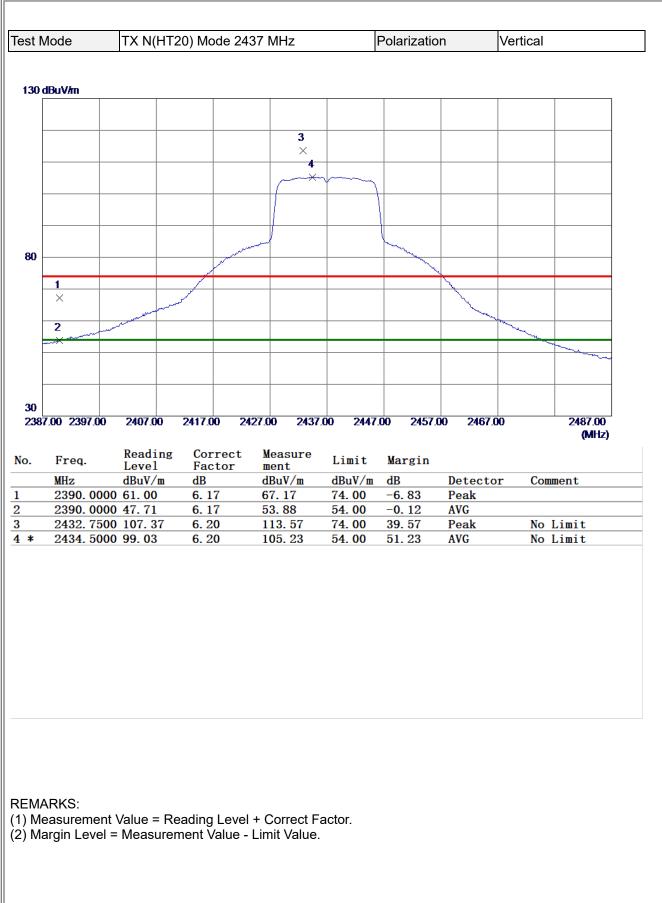
BTL

	lode	TX G Mo	ode 2462 M	Hz		Polarizatio	on	Vertical	
00 d	BuV/m								
-									
		1							
		×							
0 -		2							
		×							
000	.00 3550.00	6100.00	8650.00	11200.00 1375	0.00 1630	0.00 18850	0.00 2140	0.00	26500.00
									(MHz)
	Freq.	Reading Level	g Correc Factor		Limit	Margin			
	MHz	dBuV/m							
	MILZ	адах/ш	d B	abuv/m	dBuV/m	dB	Detecto	or Cor	ment
	4922.693	50 55.78	dB 1.20	56.98	dBuV/m 74.00	-17.02	Detecto Peak	or Cor	nment
*		50 55.78						or Cor	ment
*	4922.693	50 55.78	1.20	56.98	74.00	-17.02	Peak		



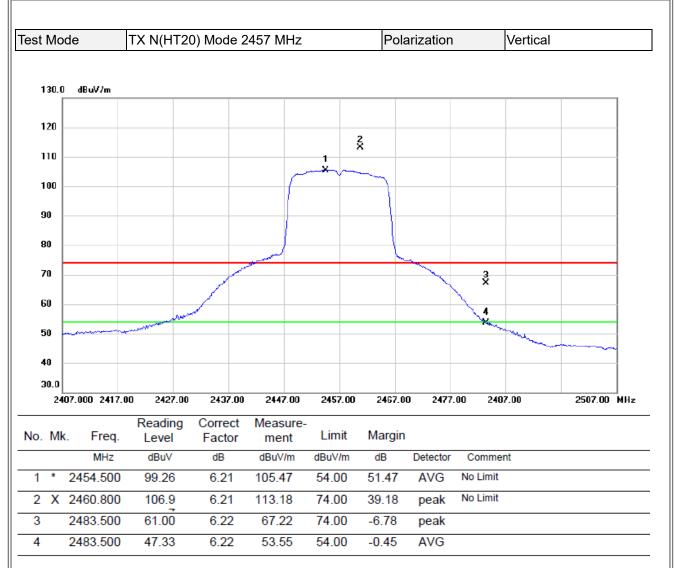


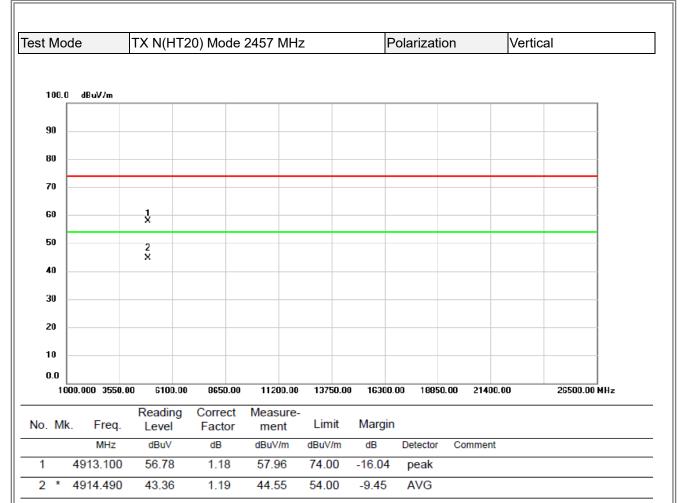
	IX N(HI	20) Mode 24	12 MHz		Polarizatio	n	Vertical	
)dBuV/m				1		1		
	X							
	2 ×							
00.00 3550.	00 6100.00	8650.00 1	1200.00 1375	0.00 1630	0.00 18850	0.00 21400).00	26500.00 (MHz)
Freq.	Reading	Correct	Measure	Limit	Margin			
MHz	Level dBuV/m	Factor dB	ment dBuV/m	dBuV/m		Detecto	or Con	ment
4824.0	250 55.16	0.95	56.11	74.00	-17.89	Peak		
4828.0	400 42.31	0.96	43. 27	54.00	-10. 73	AVG		



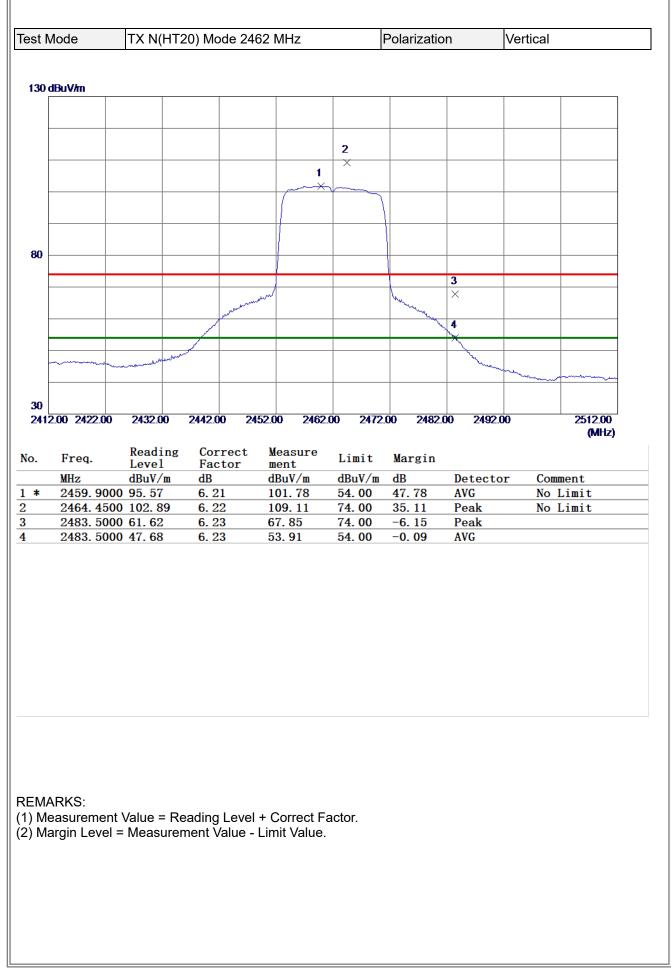
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.





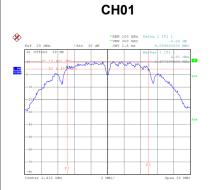
st Mode	TX N	(HT20) Mod	le 243	37 MH	Z		Polarizatio	on	Vertical	
0 dBuV/m											
	1 ×										
	2										
50	×										
b l											
000.00 3550).00 6100.0	30 B	8650.00	112	200.00	13750	00 1630	0.00 1885	0.00 2140	0.00	26500.00 (MHz)
. Freq.	Read	ing	Comm								
. Preq.		0		ect	Meas		limit	Margin			
	Leve dBuV	1	Fact		ment	t	Limit dBuV/m	Margin dB	Detect	or Co	mment
MHz 4874.	dBuV/ 1150 61.61	1 /m L	Fact dB 1.08	or	ment dBuV 62.6	t 7/m 59	dBuV/m 74.00	dB -11. 31	Detect Peak	or Co	mment
MHz 4874.	dBuV	1 /m L	Fact dB	or	ment dBuV	t 7/m 59	dBuV/m	dB		or Co	mment
MHz 4874.	dBuV/ 1150 61.61	1 /m L	Fact dB 1.08	or	ment dBuV 62.6	t 7/m 59	dBuV/m 74.00	dB -11. 31	Peak	or Co	mment

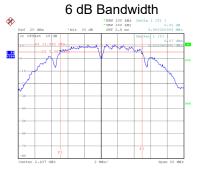


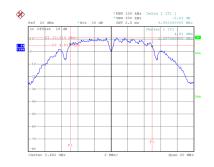
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

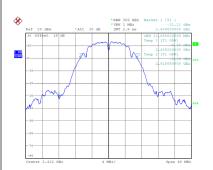
1 1 1 1 50 2 1 1 1 × 1 1 1 1 1 50 2 1 1 1 1 1 1 1 1 1 1 1 1 1 50 2 1	1 1 1 1 50 2 1 1 1 × 1 1 1 1 1 50 2 1 1 1 1 1 1 1 1 1 1 1 1 1 50 2 1	1	X X	1 1	3550.00 eq. z 21. 8000	2 × 6100.00 Readin Level dBuV/m 55. 19	ng Corn Fact dB 1.20	rect l tor i 0 5	Measure ment dBuV/m 56.39	Limit dBuV/m 74.00	Margin dB -17.61	Detecto Peak		(MHz)
1 1 1 1 50 2 1 1 1 × 1 1 1 1 1 50 2 1 1 1 1 1 1 1 1 1 1 1 1 1 50 2 1	1 1 1 1 50 2 1 1 1 × 1 1 1 1 1 50 2 1 1 1 1 1 1 1 1 1 1 1 1 1 50 2 1	1	1 1 1 1 50 2 1 1 1 × 1 1 1 1 1 50 2 1 1 1 1 1 1 1 1 1 1 1 1 1 50 2 1	1 1	3550.00 eq. z 21. 8000	2 × 6100.00 Readin Level dBuV/m 55. 19	ng Corn Fact dB 1.20	rect l tor i 0 5	Measure ment dBuV/m 56.39	Limit dBuV/m 74.00	Margin dB -17.61	Detecto Peak		(MHz)
X X	X X	50 ×	X X	S0 X I	eq. z 21. 8000	2 × 6100.00 Readin Level dBuV/m 55. 19	ng Corn Fact dB 1.20	rect l tor i 0 5	Measure ment dBuV/m 56.39	Limit dBuV/m 74.00	Margin dB -17.61	Detecto Peak		(MHz)
50 ×	50 ×	50 ×	50 ×	S0 X I	eq. z 21. 8000	2 × 6100.00 Readin Level dBuV/m 55. 19	ng Corn Fact dB 1.20	rect l tor i 0 5	Measure ment dBuV/m 56.39	Limit dBuV/m 74.00	Margin dB -17.61	Detecto Peak		(MHz)
X X	X X	X X	X X	MARKS: MARKS:	eq. z 21. 8000	2 × 6100.00 Readin Level dBuV/m 55. 19	ng Corn Fact dB 1.20	rect l tor i 0 5	Measure ment dBuV/m 56.39	Limit dBuV/m 74.00	Margin dB -17.61	Detecto Peak		(MHz)
X X	X X	X X	X X	MARKS: MARKS:	eq. z 21. 8000	2 × 6100.00 Readin Level dBuV/m 55. 19	ng Corn Fact dB 1.20	rect l tor i 0 5	Measure ment dBuV/m 56.39	Limit dBuV/m 74.00	Margin dB -17.61	Detecto Peak		(MHz)
X X	X X	50 ×	50 ×	S0 X I	eq. z 21. 8000	2 × 6100.00 Readin Level dBuV/m 55. 19	ng Corn Fact dB 1.20	rect l tor i 0 5	Measure ment dBuV/m 56.39	Limit dBuV/m 74.00	Margin dB -17.61	Detecto Peak		(MHz)
50 2	50 2	50 2	50 2	S0 2	eq. z 21. 8000	2 × 6100.00 Readin Level dBuV/m 55. 19	ng Corn Fact dB 1.20	rect l tor i 0 5	Measure ment dBuV/m 56.39	Limit dBuV/m 74.00	Margin dB -17.61	Detecto Peak		(MHz)
× ×	× ×	× ×	× ×	X X	eq. z 21. 8000	6100.00 Readin, Level dBuV/m 55. 19	ng Corn Fact dB 1.20	rect l tor i 0 5	Measure ment dBuV/m 56.39	Limit dBuV/m 74.00	Margin dB -17.61	Detecto Peak		(MHz)
1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) p. Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4921.8000 55.19 1.20 56.39 74.00 -17.61 Peak	1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) p. Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4921.8000 55.19 1.20 56.39 74.00 -17.61 Peak	MHz dBuV/m dB dBuV/m dB Muv/m dB V/m dB Comment 4921.8000 55.19 1.20 56.39 74.00 -17.61 Peak	1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) p. Freq. Reading Level Correct Factor ment Measure Limit dBuV/m Limit Margin Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4921.8000 55.19 1.20 56.39 74.00 -17.61 Peak	1000:00 3550:00 6100:00 8650:00 11200:00 13750:00 16300:00 18850:00 21400:00 26500:00 (MHz) b. Freq. Level Factor ment Limit Margin (MHz) b. Freq. Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dB Detector Comment 4921.8000 55.19 1.20 56.39 74.00 -17.61 Peak * 4924.5850 39.70 1.21 40.91 54.00 -13.09 AVG	eq. z 21. 8000	Readin Level dBuV/m 55.19	ng Corn Fact dB 1.20	rect l tor i 0 5	Measure ment dBuV/m 56.39	Limit dBuV/m 74.00	Margin dB -17.61	Detecto Peak		(MHz)
1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) p. Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4921.8000 55.19 1.20 56.39 74.00 -17.61 Peak	1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) p. Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4921.8000 55.19 1.20 56.39 74.00 -17.61 Peak	MHz dBuV/m dB dBuV/m dB Muv/m dB V/m dB Comment 4921.8000 55.19 1.20 56.39 74.00 -17.61 Peak	1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) p. Freq. Reading Level Correct Factor ment Measure Limit dBuV/m Limit Margin Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4921.8000 55.19 1.20 56.39 74.00 -17.61 Peak	1000:00 3550:00 6100:00 8650:00 11200:00 13750:00 16300:00 18850:00 21400:00 26500:00 (MHz) b. Freq. Level Factor ment Limit Margin (MHz) b. Freq. Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dB Detector Comment 4921.8000 55.19 1.20 56.39 74.00 -17.61 Peak * 4924.5850 39.70 1.21 40.91 54.00 -13.09 AVG	eq. z 21. 8000	Readin Level dBuV/m 55.19	ng Corn Fact dB 1.20	rect l tor i 0 5	Measure ment dBuV/m 56.39	Limit dBuV/m 74.00	Margin dB -17.61	Detecto Peak		(MHz)
1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) p. Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4921.8000 55.19 1.20 56.39 74.00 -17.61 Peak	1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) p. Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4921.8000 55.19 1.20 56.39 74.00 -17.61 Peak	MHz dBuV/m dB dBuV/m dB Muv/m dB V/m dB Comment 4921.8000 55.19 1.20 56.39 74.00 -17.61 Peak	1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) o. Freq. Reading Correct Measure Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4921.8000 55.19 1.20 56.39 74.00 -17.61 Peak	1000:00 3550:00 6100:00 8650:00 11200:00 13750:00 16300:00 18850:00 21400:00 26500:00 (MHz) b. Freq. Level Factor ment Limit Margin (MHz) b. Freq. Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dB Detector Comment 4921.8000 55.19 1.20 56.39 74.00 -17.61 Peak * 4924.5850 39.70 1.21 40.91 54.00 -13.09 AVG	eq. z 21. 8000	Readin Level dBuV/m 55.19	ng Corn Fact dB 1.20	rect l tor i 0 5	Measure ment dBuV/m 56.39	Limit dBuV/m 74.00	Margin dB -17.61	Detecto Peak		(MHz)
1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) p. Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4921.8000 55.19 1.20 56.39 74.00 -17.61 Peak	1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) p. Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4921.8000 55.19 1.20 56.39 74.00 -17.61 Peak	MHz dBuV/m dB dBuV/m dB Muv/m dB V/m dB Comment 4921.8000 55.19 1.20 56.39 74.00 -17.61 Peak	1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) o. Freq. Reading Correct Measure Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4921.8000 55.19 1.20 56.39 74.00 -17.61 Peak	1000:00 3550:00 6100:00 8650:00 11200:00 13750:00 16300:00 18850:00 21400:00 26500:00 (MHz) b. Freq. Level Factor ment Limit Margin (MHz) b. Freq. Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dB Detector Comment 4921.8000 55.19 1.20 56.39 74.00 -17.61 Peak * 4924.5850 39.70 1.21 40.91 54.00 -13.09 AVG	eq. z 21. 8000	Readin Level dBuV/m 55.19	ng Corn Fact dB 1.20	rect l tor i 0 5	Measure ment dBuV/m 56.39	Limit dBuV/m 74.00	Margin dB -17.61	Detecto Peak		(MHz)
1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) p. Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4921.8000 55.19 1.20 56.39 74.00 -17.61 Peak	1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) p. Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4921.8000 55.19 1.20 56.39 74.00 -17.61 Peak	MHz dBuV/m dB dBuV/m dB Muv/m dB V/m dB Comment 4921.8000 55.19 1.20 56.39 74.00 -17.61 Peak	1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) p. Freq. Reading Level Correct Factor ment Measure Limit dBuV/m Limit Margin Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4921.8000 55.19 1.20 56.39 74.00 -17.61 Peak	1000:00 3550:00 6100:00 8650:00 11200:00 13750:00 16300:00 18850:00 21400:00 26500:00 (MHz) b. Freq. Level Factor ment Limit Margin (MHz) b. Freq. Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dB Detector Comment 4921.8000 55.19 1.20 56.39 74.00 -17.61 Peak * 4924.5850 39.70 1.21 40.91 54.00 -13.09 AVG	eq. z 21. 8000	Readin Level dBuV/m 55.19	ng Corn Fact dB 1.20	rect l tor i 0 5	Measure ment dBuV/m 56.39	Limit dBuV/m 74.00	Margin dB -17.61	Detecto Peak		(MHz)
MHz Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4921.8000 55.19 1.20 56.39 74.00 -17.61 Peak	MHz Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4921.8000 55.19 1.20 56.39 74.00 -17.61 Peak	MHz Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4921.8000 55.19 1.20 56.39 74.00 -17.61 Peak	MHz Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4921.8000 55.19 1.20 56.39 74.00 -17.61 Peak	MHz Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dB Detector Comment 4921.8000 55.19 1.20 56.39 74.00 -17.61 Peak * 4924.5850 39.70 1.21 40.91 54.00 -13.09 AVG	eq. z 21. 8000	Readin Level dBuV/m 55.19	ng Corn Fact dB 1.20	rect l tor i 0 5	Measure ment dBuV/m 56.39	Limit dBuV/m 74.00	Margin dB -17.61	Detecto Peak		(MHz)
Reading LevelCorrect FactorMeasure mentLimitMarginMHzdBuV/mdBdBuV/mdBuV/mdBDetectorComment4921.800055.191.2056.3974.00-17.61Peak	Reading LevelCorrect FactorMeasure mentLimitMarginMHzdBuV/mdBdBuV/mdBuV/mdBDetectorComment4921.800055.191.2056.3974.00-17.61Peak	Reading LevelCorrect FactorMeasure mentLimitMarginMHzdBuV/mdBdBuV/mdBuV/mdBDetectorComment4921.800055.191.2056.3974.00-17.61Peak	Reading LevelCorrect FactorMeasure mentLimitMarginMHzdBuV/mdBdBuV/mdBuV/mdBDetectorComment4921.800055.191.2056.3974.00-17.61Peak	Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dB Detector Comment 4921.8000 55.19 1.20 56.39 74.00 -17.61 Peak * 4924.5850 39.70 1.21 40.91 54.00 -13.09 AVG	z 21. 8000	Level dBuV/m 55.19	Fact dB 1.20	tor i c D §	ment dBuV/m 56.39	dBuV/m 74.00	dB −17.61	Peak	or Co	
MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4921.8000 55.19 1.20 56.39 74.00 -17.61 Peak	MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4921.8000 55.19 1.20 56.39 74.00 -17.61 Peak	MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4921.8000 55.19 1.20 56.39 74.00 -17.61 Peak	MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4921.8000 55.19 1.20 56.39 74.00 -17.61 Peak	MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4921.8000 55.19 1.20 56.39 74.00 -17.61 Peak * 4924.5850 39.70 1.21 40.91 54.00 -13.09 AVG	z 21. 8000	dBuV/m 55.19	dB 1.20	0 5 0	dBuV/m 56. 39	dBuV/m 74.00	dB −17.61	Peak	or Co	omment
				* 4924. 5850 39. 70 1. 21 40. 91 54. 00 -13. 09 AVG :MARKS: Measurement Value = Reading Level + Correct Factor.										
* 4924.5850 39.70 1.21 40.91 54.00 -13.09 AVG	* 4924.5850 39.70 1.21 40.91 54.00 -13.09 AVG	* 4924.5850 39.70 1.21 40.91 54.00 -13.09 AVG	* 4924.5850 39.70 1.21 40.91 54.00 -13.09 AVG	:MARKS: Measurement Value = Reading Level + Correct Factor.	24. 5850	39.70	1. 21	1 4	40. 91	54.00	-12 00			
				Measurement Value = Reading Level + Correct Factor.										
				Measurement Value = Reading Level + Correct Factor.										
				Measurement Value = Reading Level + Correct Factor.										
				Measurement Value = Reading Level + Correct Factor.	. .									
	-MARKS.	MADIZO.		Margin Level = Measurement Value - Limit Value.		Value = I	Reading	Level +	Correct I	actor.				
					Level =	· Measur	rement Va	alue - Lir	mit Value) .				
) Measurement Value = Reading Level + Correct Factor.) Measurement Value = Reading Level + Correct Factor.	Measurement Value = Reading Level + Correct Factor.	EMARKS:) Measurement Value = Reading Level + Correct Factor.) Margin Level = Measurement Value - Limit Value.											
) Measurement Value = Reading Level + Correct Factor.) Measurement Value = Reading Level + Correct Factor.	Measurement Value = Reading Level + Correct Factor.) Measurement Value = Reading Level + Correct Factor.											
) Measurement Value = Reading Level + Correct Factor.) Measurement Value = Reading Level + Correct Factor.	Measurement Value = Reading Level + Correct Factor.) Measurement Value = Reading Level + Correct Factor.											
) Measurement Value = Reading Level + Correct Factor.) Measurement Value = Reading Level + Correct Factor.	Measurement Value = Reading Level + Correct Factor.) Measurement Value = Reading Level + Correct Factor.											
						rement	rement Value =	rement Value = Reading	rement Value = Reading Level +	rement Value = Reading Level + Correct I	rement Value = Reading Level + Correct Factor.	rement Value = Reading Level + Correct Factor.	rement Value = Reading Level + Correct Factor.	rement Value = Reading Level + Correct Factor.




APPENDIX E - BANDWIDTH

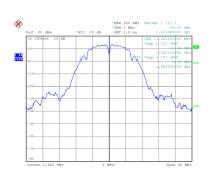

Test Mode	e TX E	3 Mode			
Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Result
01	2412	9.860	13.680	0.5	Complies
06	2437	9.900	13.840	0.5	Complies
11	2462	9.900	13.680	0.5	Complies

CH06



CH11

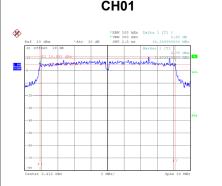
Date: 11.JAN.2024 03:19:25

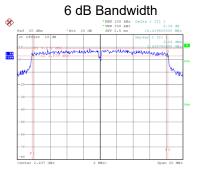

Date: 11.JAN.2024 04:36:22

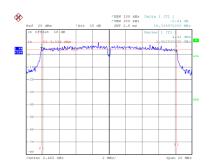
99 % Occupied Bandwidth

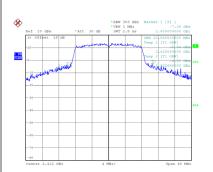
Date: 11.JAN.2024 03:21:14

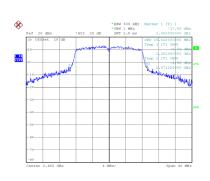
Date: 11.JAN.2024 04:47:14




Date: 11.JAN.2024 04:43:13


Date: 11.JAN.2024 03:20:12

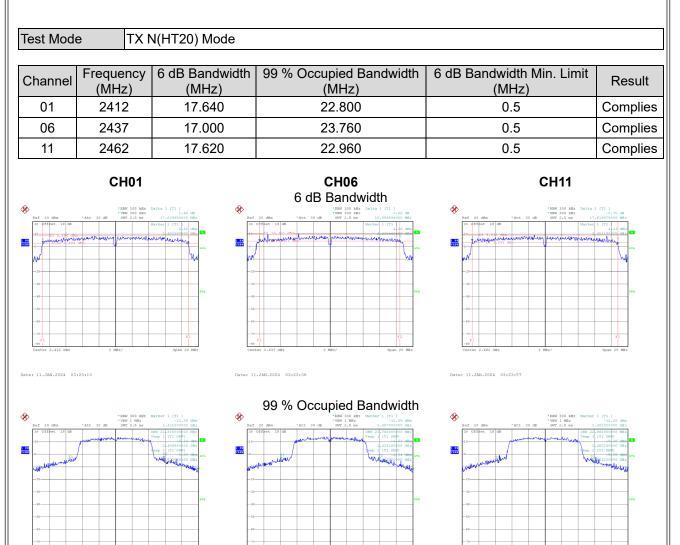

Test Mode	e TX (G Mode			
Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Result
01	2412	16.360	20.560	0.5	Complies
06	2437	16.420	21.200	0.5	Complies
11	2462	16.340	18.640	0.5	Complies
	CH01		CH06	CH11	



Date: 11.JAN.2024 03:21:43

99 % Occupied Bandwidth Þ 1 PE VIEW n tâl 473 in the second

Date: 11.JAN.2024 03:22:35


Date: 11.JAN.2024 04:51:44

Date: 11.JAN.2024 04:54:51

Date: 11.JAN.2024 03:22:08

Date: 11.JAN.2024 04:58:24

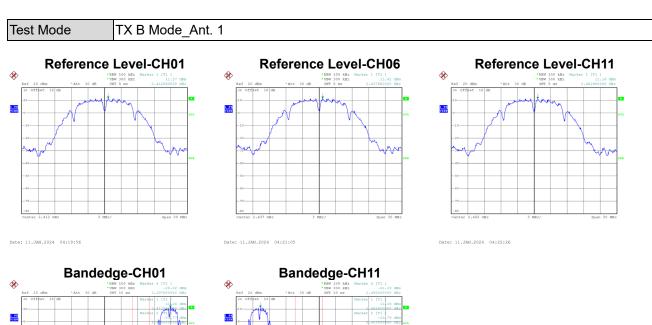
Date: 11.JAN.2024 05:01:53

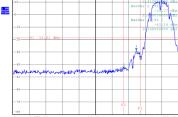
Date: 11.JAN.2024 05:06:01

Date: 11.JAN.2024 05:09:38

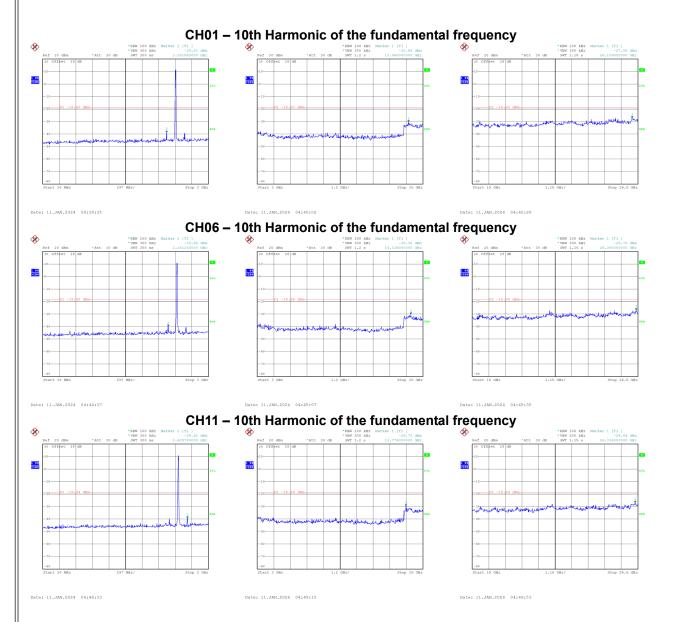
APPENDIX F - MAXIMUM OUTPUT POWER & E.I.R.P.

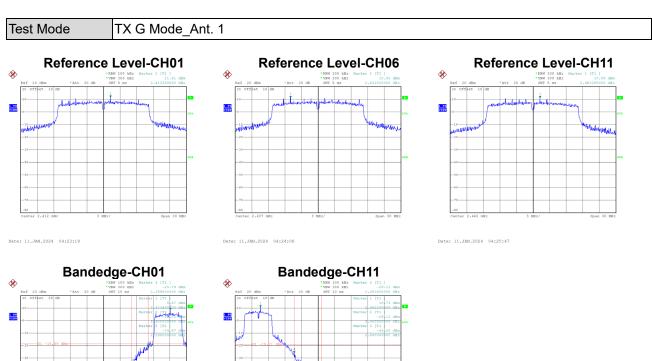
Test Mode	TX B M	lode_Ant. 1					
Channel	Frequency (MHz)	Output Power (dBm)	Duty Factor	Output Power + Duty Factor (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	20.88	0.00	20.88	30.00	1.0000	Complies
06	2437	21.21	0.00	21.21	30.00	1.0000	Complies
11	2462	21.77	0.00	21.77	30.00	1.0000	Complies
Channel	Frequency		e.i.r.p.		Max. Limit	Max. Limit	Result
_	(MHz)		(dBm)		(dBm)	(W)	
01	2412		20.88		36.02	4.0000	Complie
06	2437		21.21		36.02	4.0000	Complie
11	2462		21.77		36.02	4.0000	Complie
Fest Mode	TX G M	lode_Ant. 1					
	_			Output Power			
Channel	Frequency (MHz)	Output Power (dBm)	Duty Factor	+ Duty Factor (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	20.73	0.00	20.73	30.00	1.0000	Complie
06	2437	23.07	0.00	23.07	30.00	1.0000	Complie
11	2462	20.42	0.00	20.42	30.00	1.0000	Complie
	Frequency		e.i.r.p.		Max. Limit	Max. Limit	
Channel	(MHz)		(dBm)		(dBm)	(W)	Result
01	2412		20.73		36.02	4.0000	Complie
06	2437		23.07		36.02	4.0000	Complie
11	2462		20.42		36.02	4.0000	Complie
Test Mode	TX N(H	IT20) Mode Ant	. 1				
		, _					
Channel	Frequency (MHz)	Output Power (dBm)	Duty Factor	Output Power + Duty Factor (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	20.02	0.00	20.02	30.00	1.0000	Complie
06	2437	23.18	0.00	23.18	30.00	1.0000	Complie
11	2462	19.84	0.00	19.84	30.00	1.0000	Complie
Channel	Frequency (MHz)		e.i.r.p. (dBm)		Max. Limit (dBm)	Max. Limit (W)	Result
01	2412		20.02		36.02	4.0000	Complie
06	2437		23.18		36.02	4.0000	Complie
00							



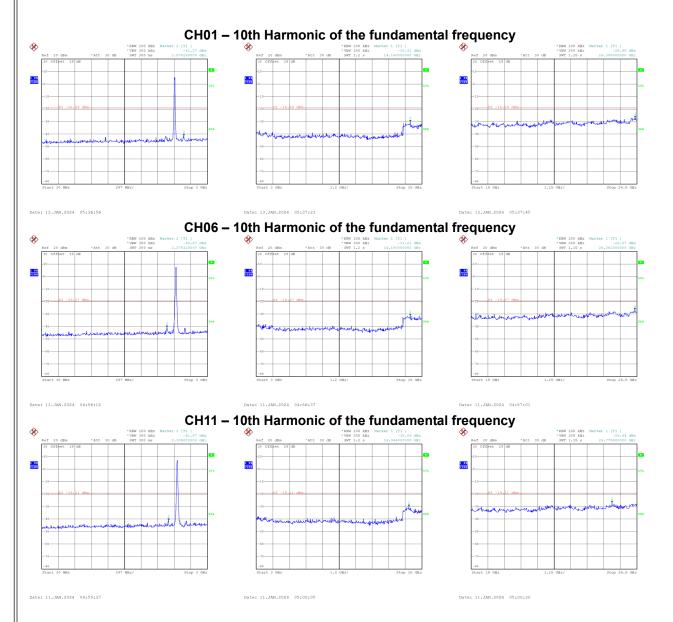

Test Mode	TX B M	lode_Ant. 2					
Channel	Frequency (MHz)	Output Power (dBm)	Duty Factor	Output Power + Duty Factor (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	20.74	0.00	20.74	30.00	1.0000	Complies
06	2437	20.94	0.00	20.94	30.00	1.0000	Complies
11	2462	21.21	0.00	21.21	30.00	1.0000	Complies
Channel	Frequency (MHz)		e.i.r.p. (dBm)		Max. Limit (dBm)	Max. Limit (W)	Result
01	2412		20.74		36.02	4.0000	Complies
06	2437		20.94		36.02	4.0000	Complies
11	2462		21.21		36.02	4.0000	Complies
Test Mode	TX G M	lode_Ant. 2					
Channel	Frequency (MHz)	Output Power (dBm)	Duty Factor	Output Power + Duty Factor (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	20.12	0.00	20.12	30.00	1.0000	Complies
06	2437	22.75	0.00	22.75	30.00	1.0000	Complies
11	2462	20.26	0.00	20.26	30.00	1.0000	Complies
Channel	Frequency (MHz)		e.i.r.p. (dBm)		Max. Limit (dBm)	Max. Limit (W)	Result
01	2412		20.12		36.02	4.0000	Complies
06	2437		22.75		36.02	4.0000	Complies
11	2462		20.26		36.02	4.0000	Complies
Test Mode	TX N(H	IT20) Mode_Ant	. 2				
Channel	Frequency (MHz)	Output Power (dBm)	Duty Factor	Output Power + Duty Factor (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	19.12	0.00	19.12	30.00	1.0000	Complies
06	2437	22.97	0.00	22.97	30.00	1.0000	Complies
11	2462	19.33	0.00	19.33	30.00	1.0000	Complies
Channel	Frequency (MHz)		e.i.r.p. (dBm)		Max. Limit (dBm)	Max. Limit (W)	Result
	2412		19.12		36.02	4.0000	Complies
01	2412						
01 06	2437		22.97		36.02	4.0000	Complies

APPENDIX G - CONDUCTED SPURIOUS EMISSIONS





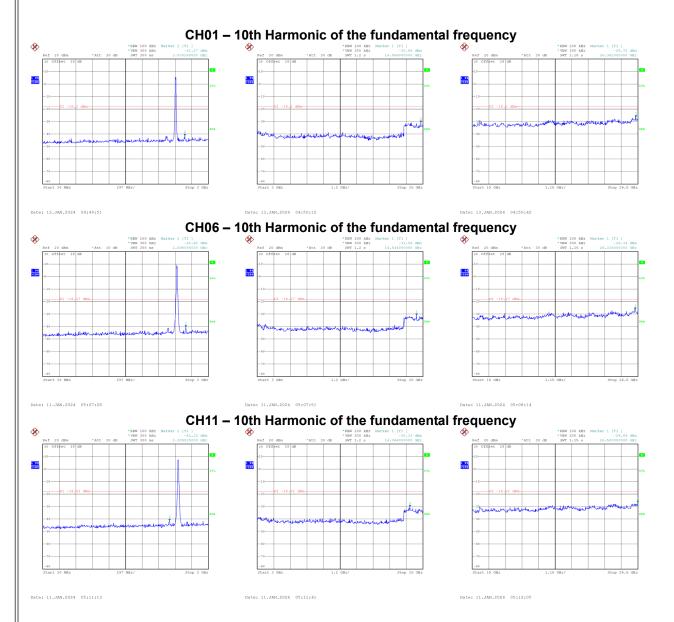
Date: 11.JAN.2024 04:38:31


الم

 10
 30
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10<

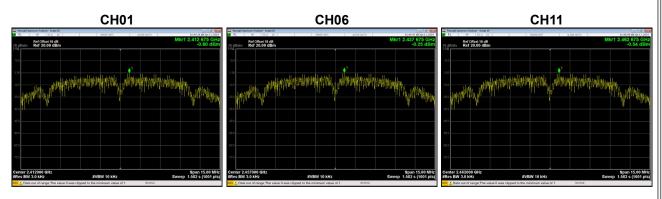
Date: 11.JAN.2024 04:59:07

Date: 13.JAN.2024 05:36:28

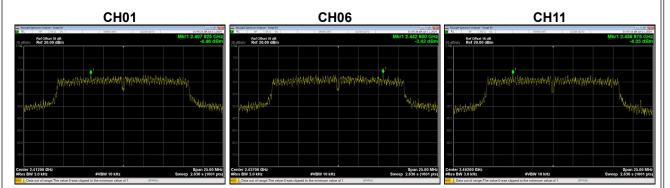


Date: 13.JAN.2024 04:48:56

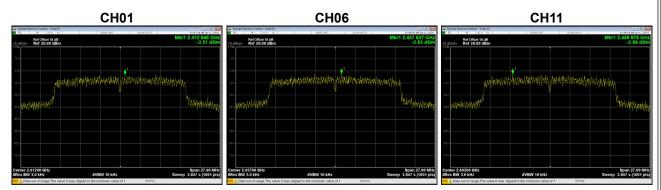
Date: 11.JAN.2024 05:10:27



APPENDIX H - POWER SPECTRAL DENSITY


Test Mode	TX B Mode_Ant. 1			
Channel	Frequency (MHz)	Power Spectral Density (dBm/3kHz)	Max. Limit (dBm/3kHz)	Result
01	2412	-0.60	8.00	Complies
06	2437	-0.25	8.00	Complies
11	2462	-0.54	8.00	Complies

Test Mode	TX G Mode	Ant.


1

Channel	Frequency (MHz)	Power Spectral Density (dBm/3kHz)	Max. Limit (dBm/3kHz)	Result
01	2412	-4.46	8.00	Complies
06	2437	-3.42	8.00	Complies
11	2462	-4.05	8.00	Complies

Test Mode	TX N(HT20) Mode_A	Ant. 1		
Channel	Frequency (MHz)	Power Spectral Density (dBm/3kHz)	Max. Limit (dBm/3kHz)	Result
01	2412	-3.51	8.00	Complies
06	2437	-2.64	8.00	Complies
11	2462	-2.89	8.00	Complies

End of Test Report