FCC ID: WA5WH40H

RF EXPOSURE EVALUATION

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency(RF) Radiation as specified in §1.1307(b) § 2.1091(b)

KDB447498 D01 General RF Exposure Guidance v06 Limits for Maximum Permissible Exposure (MPE)

Frequency	Electric Field	Magnetic Field	Power	Average Time				
Range(MHz)	Strength(V/m)	Strength(A/m)	Density(mW/cm ²)					
(A) Limits for Occupational/Control Exposures								
300-1500			F/300	6				
1500-100000			5	6				
(B) Limits for General Population/Uncontrol Exposures								
300-1500		F/1500		6				
1500-100000			1	30				

11.1 Friis transmission formula: Pd= (Pout*G)\ (4*pi*R2)

Where

Pd= Power density in mW/cm²

Pout=output power to antenna in mW

G= Numeric gain of the antenna relative to isotropic antenna

Pi=3.1416

R= distance between observation point and center of the radiator in cm(20cm)

Pd the limit of MPE, 1mW/cm². If we know the maximum gain of the antenna and total power input to the antenna, through the calculation, we will know the distance where the MPE limit is reached.

mW=10^(dBm/10)

11.2 Measurement Result

Operation Frequency: 915MHz Antenna Type: WIRE antenna

Antenna gain: 1dBi,

R=20cm

 $mW=10^{(dBm/10)}$

Transmit power

Frequency	EIRP power	EIRP power	EIRP power
(MHz)	(dBuV/m)	(dBm)	(mW)
915	90.9	-4.36	0.3666

EIRP=E-104.8+20log(D)

Maximum Permissible Exposure:

Channel Freq. (MHz)	modulation	EIRP power (dBm)	EIRP power (mW)	Tune-up power (dBm)	Max tune-up power (dBm)	Evaluation result (mW/cm2)	Power density Limits (mW/cm2)
915	FSK	-4.36	0.3666	-4±1	-3	0.0001	0.61

Conclusion:

For the max result : 0.0001≤ 0.61 for 1g SAR, No SAR is required.

Signature: Date: 2025-03-27

NAME AND TITLE (Please print or type): Alex Li/Manager

Alex

COMPANY (Please print or type): Shenzhen NTEK Testing Technology Co., Ltd./ No. 24 Xinfa East Road, Xiangshan Community, Xinqiao Street, Baoan District, Shenzhen, Guangdong, People's Republic of China.