

FCC CFR47 PART 15 SUBPART C CERTIFICATION TEST REPORT

FOR

RECESSED DOOR/WINDOW SENSOR

MODEL NUMBER: EV-DW4955

FCC ID: QNPEV-DW4955

REPORT NUMBER: 05U3847-1B

ISSUE DATE: JANUARY 27, 2006

Prepared for

SECURE WIRELESS, INC. 5817 DRYDEN PLACE, SUITE D CARLSBAD, CA 92008, USA

Prepared by COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD MORGAN HILL, CA 95037, USA TEL: (408) 463-0885 FAX: (408) 463-0888

Revision History

Rev.	Issue Date	Revisions	Revised By
Α	1/17/06	Initial Issue	Thu Chan
В	1/27/06	Revised Sections 5.2 and 7.4.1 Below 1GHz	Thu Chan

Page 2 of 27

TABLE OF CONTENTS

 TEST METH FACILITIES 	ON OF TEST RESULTS ODOLOGY AND ACCREDITATION ON AND UNCERTAINTY	5 5
4.1. MEASUI	RING INSTRUMENT CALIBRATION	5
	REMENT UNCERTAINTY UNDER TEST	
5.1. DESCRI	PTION OF EUT	6
5.2. SOFTWA	RE AND FIRMWARE	6
5.3. MODIFI	CATIONS	6
5.4. WORST-	CASE CONFIGURATION AND MODE	6
6. TEST AND N	PTION OF TEST SETUP IEASUREMENT EQUIPMENT	9
7.1. 20dB BA	NDWIDTHI	0
7.2. MAXIMU	JM MODULATION PERCENTAGE (M%) I	2
7.3. LESS TH	AN 5 SECONDS PLOT	8
7.4.1. TRA	ED EMISSIONS	20

Page 3 of 27

1. ATTESTATION OF TEST RESULTS

FCC PART 15 SUBPART C		NO NON-COMPLIANCE NOTED		
STANDARD		TEST RESULTS		
APPLICABLE STANDARDS				
DATE TESTED: NOVEMBER		2005 & JANUARY 17, 2006		
SERIAL NUMBER: ESN25678A				
MODEL: EV-DW4955				
EUT DESCRIPTION:	RECESSED DOOR/WINDOW SENSOR			
COMPANY NAME: SECURE WIRE 5817 DRYDEN CARLSBAD, C		,		

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

Tested By:

THU CHAN EMC SUPERVISOR COMPLIANCE CERTIFICATION SERVICES

Chin Pany

CHIN PANG EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2 and FCC CFR 47 Part 15.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The Recessed Door/Window Sensor is at a single fixed frequency of 433.92MHz, and is power by a 3V CR2450N Lithium.

Equipment Type	433.92MHz Transmitter
Fundamental Frequency	433.92 MHz
Power Source	3V Lithium Battery
Transmitting Time	Periodic <u><</u> 5 seconds
Manufacturer	Secure Wireless, Inc.

5.2. SOFTWARE AND FIRMWARE

To activate the EUT by using a magnet and make contact.

5.3. MODIFICATIONS

- 1. The C8 capacitor was replaced with 680 pF.
- 2. The C7 capacitor was replaced with 220 pF.

5.4. WORST-CASE CONFIGURATION AND MODE

The worst-case channel is determined by X, Y, and Z-axis. The highest measured output power was at Y-Axis.

Page 6 of 27

5.5. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

N/A

I/O CABLES

N/A

TEST SETUP

The EUT is stand-alone unit and is battery operated.

Page 7 of 27

SETUP DIAGRAM FOR TESTS

EUT 3V Battery		
3V Battery	EUT	
	3V Battery	

Page 8 of 27

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST					
Description	Manufacturer	Model	Serial Number	Cal Due	
Antenna, Horn 1 ~ 18 GHz	Ertco	3115	6717	4/22/2006	
Preamplifier, 1 ~ 26 GHz	Miteq	NSP2600-SP	924342	9/2/2006	
Spectrum Analyzer 3 Hz ~ 44 GHz	Agilent	E4446A	MY43360112	3/28/2006	
EMI Receiver, 9 kHz ~ 2.9 GHz	HP	8542E	3942A00286	3/29/2006	
RF Filter Section	HP	85420E	3705A00256	3/29/2006	
Antenna, Bilog 30MHz ~ 2Ghz	Solar	JB1	A121003	3/3/2006	

Page 9 of 27

7. LIMITS AND RESULTS

7.1. 20dB BANDWIDTH

<u>LIMIT</u>

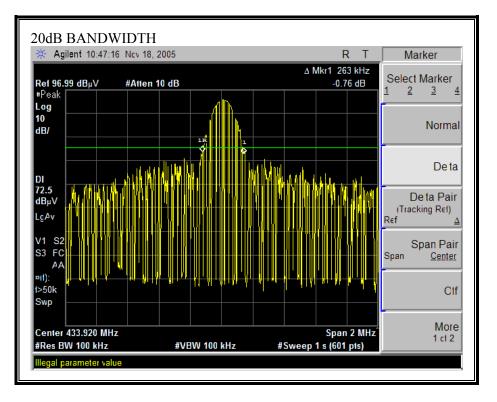
\$15.231 (c) The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer.

20dB Bandwidth: The RBW is set to 100 KHz. The VBW is set to 100 KHz. The sweep time is coupled. Bandwidth is determined at the points 20 dB down from the modulated carrier.

RESULTS


No non-compliance noted:

20dB Bandwidth

Frequency	20dB Bandwidth	Limit	Margin
(MHz)	(KHz)	(KHz)	(KHz)
433.92	263	1084.8	-821.8

Page 10 of 27

20dB BANDWIDTH

Page 11 of 27

7.2. MAXIMUM MODULATION PERCENTAGE (M%)

<u>LIMIT</u>

\$15.35 (c) the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted with any application for certification or shall be retained in the measurement data file for equipment subject to notification or verification.

TEST PROCEDURE

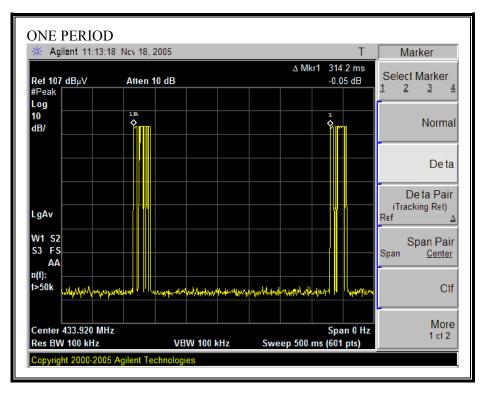
The transmitter output is connected to a spectrum analyzer or radiated field strength. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is coupled and the span is set to 0 Hz. The number of pulses is measured and calculated in a 100 ms scan.

CALCULATION:

Average Reading = Peak Reading (dBuV/m)+ 20log (Duty Cycle), Where Duty Cycle is (# of long pulses * long pulse width) + (# of short pulses * short pulse width) / 100 or T

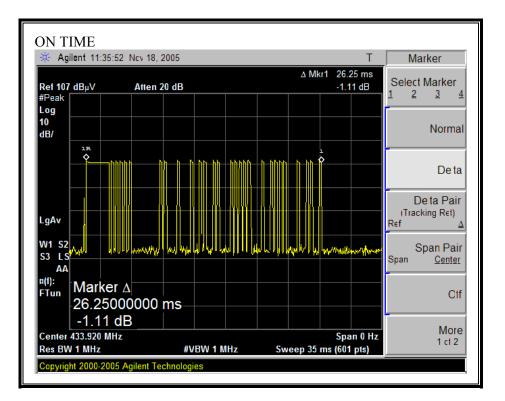
RESULTS

No non-compliance noted:

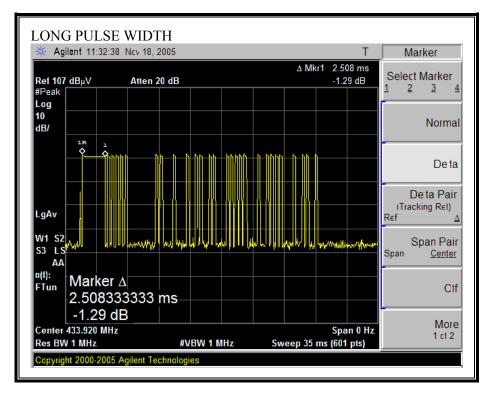

Page 12 of 27

MAXIMUM MODULATION PERCENTAGE

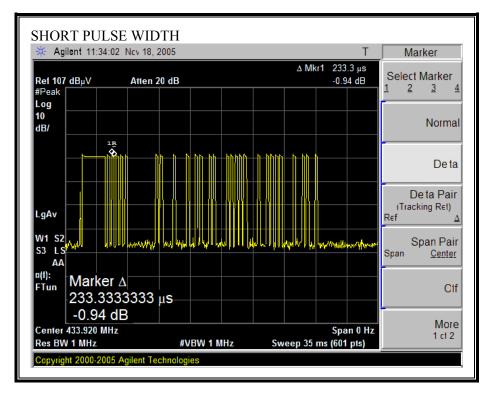
One	Long Pulse	# of	Short	# of	Duty	20*Log
Period	Width	Long	Width	Short	Cycle	Duty Cycle
(ms)	(ms)	Pulses	(ms)	Pulses		(dB)
314.2	2.508	1	0.23	27	0.088	-21.10


Page 13 of 27

ONE PERIOD


Page 14 of 27

ON TIME


Page 15 of 27

LONG PULSE WIDTH

Page 16 of 27

SHORT PULSE WIDTH

Page 17 of 27

7.3. LESS THAN 5 SECONDS PLOT

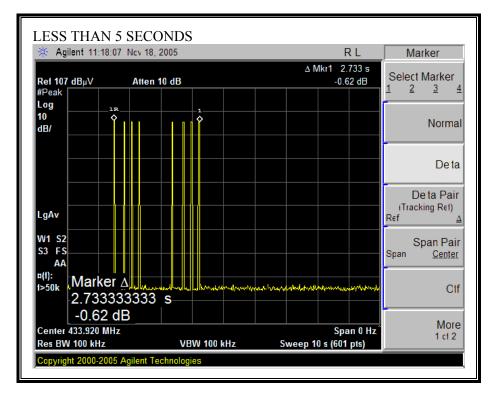
LIMIT

§15.231 (a) (1) a manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

(a) (2) a transmitter activated automatically shall cease transmission within 5 seconds after activation.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer or radiated field strength. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is set to 10 seconds and the span is set to 0 Hz.


RESULTS

No non-compliance noted:

Transmission begins approximately 1.35 seconds after activation and transmission ceases approximately 4.083 seconds after activation.

Page 18 of 27

LESS THAN 5 SECONDS

Page 19 of 27

7.4. RADIATED EMISSIONS

7.4.1. TRANSMITTER RADIATED SPURIOUS EMISSIONS

LIMITS

§15.231 (b) In addition to the provisions of § 15.205, the field strength of emissions from Intentional radiators operated under this section shall not exceed the following:

Fundamental Frequency	Field Strength of Fundamental Frequency Spuri	
(MHz)	(microvolts/meter)	(microvolts/meter)
40.66 - 40.70	2,250	225
	· · · · · · · · · · · · · · · · · · ·	
70 - 130	1,250	125
130 - 174	$1,250$ to $3,750^1$	125 to 375^1
174 - 260	3,750	375
260 - 470	$3,750$ to $12,500^1$	375 to $1,250^1$
Above 470	12,500	1,250

¹Linear interpolation

\$15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	$(^{2})$
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

§15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

\$15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

Page 21 of 27

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Page 22 of 27

FUNDAMENTAL, HARMONICS AND SPURIOUS EMISSIONS 30 - 1000 MHz

	FCC, VO	CCI, CISPR, A, TUV, BSN Y ROAD, S	Servic CE, AUSTE M, DHHS, N AN JOSE, (EIS L, NZ VLAP CA 95037-9	9001				Rep Date&	ject #: port #: Tim e: Engr:	05U3847-1 060117Chm 01/17/06 Thanh Nguy			
			Con	pany:	Secure									
			T Descri			Wireless S	Sensor							
		Test C	onfigure Type of		EUT only FCC	y 15.231b								
		Mode			Transmit									
			-, -, -, -, -, -, -, -, -, -, -, -, -, -			9								
MO(- //:4		T) * CC 02	0/ -	0.004				Au Deed'			1/140/)		1	
M% = ((t1+	+t2+t3+)/	1) ^ 66.83	% =	8.8%					¥	ading + 20*	10g(IVI%)			
								20 * log (N	1%) =	-21.11				
Freq.	Pk Rdg	Av Rda	AF	Closs	Pre-amp	Pk Level	Av Level	Pk Limit	Av Limit	Pk Margin	Avg Margin	Pol	Az	Height
(MHz)	(dBuV)	(dBuV)	(dB)	(dB)	(dB)		(dBuV/m)		FCC B	(dB)	(dB)	(H/V)	(Deg)	(Meter)
429.175Mh	z Fundame	ental frequ	iency											
X-Position	(EUT Lay	down)												
433.92	94.66	74.66	17.01	1.83	27.51	85.99	65.99	100.83	80.83	-14.84	-14.84	3mV	0.00	1.00
433.92	86.39	66.39	17.01	1.83	27.51	77.72	57.72	100.83	80.83	-23.11	-23.11	3mH	0.00	1.00
Y-Position	`	/												
433.92	94.47	74.47	17.01	1.83	27.51	85.80	65.80	100.83	80.83	-15.03	-15.03	3mV	0.00	1.00
433.92 7 Desition	89.34	69.34	17.01	1.83	27.51	80.67	60.67	100.83	80.83	-20.16	-20.16	3mH	0.00	1.00
Z-Position 433.92	(EUT Side 83.67	way) 63.67	17.01	1.83	27.51	75.00	55.00	100.83	80.83	-25.83	-25.83	3mV	0.00	1.00
433.92	03.07 91.92	71.92	17.01	1.63	27.51	83.25	63.25	100.83	80.83	-25.03	-25.03	3mH	0.00	1.00
The Data s					21.31	03.23	03.23	100.03	00.03	-17.50	-11.50	3001	0.00	1.00
867.86	63.05	43.05	22.63	2.84	26.70	61.82	41.82	80.83	60.83	-19.01	-19.01	3mV	0.00	1.00
867.86	58.04	38.04	22.63	2.84	26.70	56.81	36.81	80.83	60.83	-24.02	-24.02	3mH	0.00	1.50

Page 23 of 27

HARMONICS AND SPURIOUS EMISSIONS ABOVE 1GHz

Project # Compan	#:05U3# y:Secui scrip.:F	e Wireles: Recessed I	5	ndow Se	nso	r.										
'est Tai		C 15.231b														
est Eq	uipmen	<u>t:</u>														
Horn 1-18GHz Pre-amplifer 1-26GHz						Pre-am	plifer	26-40GH	z	н	orn > 18	GHz		Limit		
T60; S/N: 2238 @3m 🖵 T87 Miteq 924342					342	-	-						-	FCC 15.205 🗸		
Hi Frequency Cables				ot c	able		12 foot cable				HPF	Reject Filter			Peak Measurements	
		•	. Thanh 187215003 🚽			•	Thanh 208946003					-	•		RBW=VBW=1MHz Average Measurements RBW=1MHz; VBW=10Hz	
f GHz	Dist (m)	Read Pk dBuV	Read A			CL dB	Amp dB	D Corr dB	Fltr dB	Peak dBuV/m	Avg dBuV/m		Avg Lim dBuV/m	Pk Mar dB	Avg Mar dB	Notes (V/H)
position	is the wo	rst case					•									v v
305	3.0	74.0	54.0			1.7	-44.9	0.0	0.0	56.1	36.1	74	54	-17 <i>.</i> 9	-17 <i>9</i>	v
.743 175	3.0 3.0	63.4 80.2	43.4 60.2			1.8	-44.8 -44.8	0.0 0.0	0.0 0.0	47.3 65.5	27.3 45.5	80.8 80.8	60.8 60.8	-33.5 -15.4	-33.5 -15.4	v v
.608	3.0	88.1	68.1			2.1	-44.6	0.0	0.0	74.5	54 <i>.</i> 5	80.8	60.8	-6.3	-6.3	v
.037	3.0	76.4	56.4			2.2	-44.2	0.0	0.0	64.6	44.6	80.8	60.8	-16.2	-16.2	<u>v</u>
475 909	3.0 3.0	65.6 72.3	45.0 52.3			2.3	-44.5 -44.8	0.0 0.0	0.0 0.0	54.8 62.4	34.8 42.4	80.8 74	60.8 54	-26.1 -11.6	-26.1 -11.6	v v
343	3.0	773	57.2			25	-45.0	0.0	0.0	67.8	47.8	74	54	-6.2	-6.2	Н
305	3.0	73.9	53.5			1.7	-44.9	0.0	0.0	56.0	36.0	74	54	-18.0	-18.0	Н
.743 .167	3.0 3.0	60.7 80.9	40.7			1.8	-44.8 -44.8	0.0 0.0	0.0 0.0	44.6 66.2	24.6 46.2	80.8 80.8	60.8 60.8	-36.2 -14.7	-36.2 -14.7	H H
.680	3.0	88.9	68.9			2.1	-44.5	0.0	0.0	75.7	55.7	80.8	60.8	-5.2	-5.2	H
.040	3.0	67.4	47.4			2.2	-44.2	۵0	0.0	55.6	35.6	80.8	60.8	-25.2	-25.2	Н
.475 .909	3.0 3.0	68.8 68.5	48.8	·····		2.3 2.4	-44.5 -44.8	0.0 0.0	0.0 0.0	57.9 58.5	37.9 38.5	80.8 74	60.8 54	-22.9 -15.5	-22.9 -15.5	H H
345	3.0	62.6	42.6			2.5	-44.0	0.0	0.0	53.1	33.1	74	54 54	-10.0	-10.0	H
f Measurement Frequency Amp Dist Distance to Antenna D Con Read Analyzer Reading Avg AF Antenna Factor Peak CL Cable Loss HPF						D Corr Avg Peak	Preamp Gain Distance Correct to 3 meters Average Field Strength @ 3 m Calculated Peak Field Strength High Pass Filter					Avg Lim Average Field Strength Limit Pk Lim Peak Field Strength Limit Avg Mar Margin vs. Average Limit Pk Mar Margin vs. Peak Limit				

Page 24 of 27

8. SETUP PHOTOS

RADIATED RF MEASUREMENT SETUP FOR PORTABLE CONFIGURATION

Page 25 of 27

Page 26 of 27

END OF REPORT

Page 27 of 27