Testing the Future LABORATORIES, INC.

Nalloy, LLC

REVISED TEST REPORT TO 108788-57

JZ7XYR

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)

15.207 & 15.247 (HYBRID 902-928 MHZ)

Report No.: 108788-57A

Date of issue: November 30, 2023

Test Certificate # 803.01

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 61 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Revision History	3
Report Authorization	3
Test Facility Information	4
Software Versions	4
Site Registration & Accreditation Information	4
Summary of Results	5
Modifications During Testing	5
Conditions During Testing	5
Equipment Under Test	6
General Product Information	7
FCC Part 15 Subpart C	11
15.247(a) Transmitter Characteristics	11
15.247(a)(1) Occupied Bandwidth	12
15.247(a)(1) Carrier Separation	17
15.247(a)(1)(i) Number of Channels	18
15.247(b)(2) Output Power	19
15.247(d) RF Conducted Emissions & Band Edge	22
15.247(d) Radiated Emissions & Band Edge	30
15.247 (f) Hybrid Systems Time of Occupancy	49
15.247 (f) Hybrid Systems Power Spectral Density	51
15.207 AC Conducted Emissions	54
Supplemental Information	60
Measurement Uncertainty	60
Emissions Test Details	60

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

Nalloy, LLC
2301 5th Avenue
CKC Laboratories, Inc.
Seattle, WA 98108
5046 Sierra Pines Drive
Mariposa, CA 95338

Representative: Naga Suryadevara Project Number: 108788

Customer Reference Number: 2D-11530595

DATE OF EQUIPMENT RECEIPT: October 16, 2023

DATE(S) OF TESTING:October 16, 17, 19, 23-27, 2023 and November 2, 2023

Revision History

Original: Testing of the JZ7XYR to FCC Part 15 Subpart C Section(s) 15.207 & 15.247 (HYBRID 902-928 MHZ). **Revision A:** To update data in the General Product Information table.

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm
Director of Quality Assurance & Engineering Services
CKC Laboratories, Inc.

Steve 2 Be

Page 3 of 61 Report No.: 108788-57A

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable, and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 22116 23rd Drive SE, Suite A Bothell, WA 98021

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.20

Site Registration & Accreditation Information

Location	*NIST CB #	FCC	Canada	Japan
Canyon Park, Bothell, WA	US0103	US1024	3082C	A-0136
Brea, CA	US0103	US1024	3082D	A-0136
Fremont, CA	US0103	US1024	3082B	A-0136
Mariposa, CA	US0103	US1024	3082A	A-0136

^{*}CKC's list of NIST designated countries can be found at: https://standards.gov/cabs/designations.html

Page 4 of 61 Report No.: 108788-57A

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.247 (Hybrid 902-928MHz)

Test Procedure	Description	Modifications	Results
15.247(a)(1)(i)	Occupied Bandwidth	NA	Pass
15.247(a)(1)	Carrier Separation	NA	Pass
15.247(a)(1)(i)	Number of Hopping Channels	NA	NA1
15.247(a)(1)(i)	Average Time of Occupancy	NA	NA1
15.247(b)(2)	Output Power	NA	Pass
15.247(d)	RF Conducted Emissions & Band Edge	NA	Pass
15.247(d)	Radiated Emissions & Band Edge	NA	Pass
15.247 (f)	Hybrid Systems Time of Occupancy	NA	Pass
15.247 (f)	Hybrid Systems Power Spectral Density	NA	Pass
15.207	AC Conducted Emissions	NA	Pass

NA = Not Applicable

NA1 = This test is not applicable under Hybrid System requirements section 15.247 (f)

ISO/IEC 17025 Decision Rule

The equipment sample utilized for testing is selected by the manufacturer. The declaration of pass or fail herein is a binary statement for simple acceptance rule (ILAC G8) based upon assessment to the specification(s) listed above, without consideration of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary	OT CO	naitions

None

Page 5 of 61 Report No.: 108788-57A

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1

Equipment Tested:

Device	Manufacturer	Model #	S/N
NA	Nalloy, LLC	JZ7XYR	NA

Support Equipment:

Device	Manufacturer	Model #	S/N
Laptop	Chuwi	Herobook Pro	JHeroBP2563201012960
AC Adapter	Apple	A1357	NA

Configuration 2

Equipment Tested:

Device	Manufacturer	Model #	S/N
NA	Nalloy, LLC	JZ7XYR	NA

Support Equipment:

- - - - - - - - -			
Device	Manufacturer	Model #	S/N
Laptop	Chuwi	Herobook Pro	JHeroBP2563201012960
NA	Nalloy, LLC	24F9HC	NA
Laptop (for WISA network)	Lenovo	X230	9901661685
PoE Injector	Microsemi	PD-9601GC	NA

Configuration 5

Equipment Tested:

Device	Manufacturer	Model #	S/N
NA	Nalloy, LLC	JZ7XYR	NA

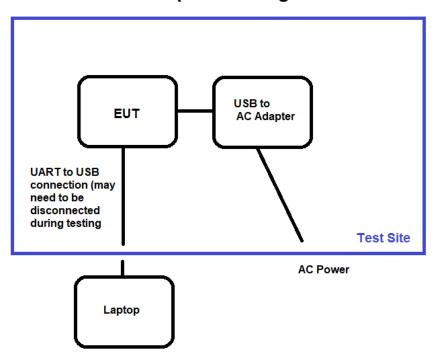
Support Equipment:

Device	Manufacturer	Model #	S/N
Laptop	HP	Elitebook	5CG213CCQ6
PoE Injector	Microsemi	PD-9601GC	NA
Wireless Access Point	Nalloy, LLC	LSMGY4	G3L201153016001D

Page 6 of 61 Report No.: 108788-57A

General Product Information:

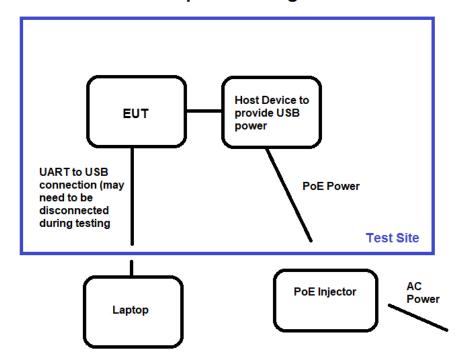
Product Information	Manufacturer-Provided Details	
Equipment Type:	Radio Module	
Type of Wideband System:	Hybrid	
Operating Frequency Range:	902.4-927.6	
Number of Hopping Channels:	64	
Modulation Type(s):	GFSK-2	
Maximum Duty Cycle:	Tested 100% as worst case	
Number of TX Chains:	1	
Antenna Type(s) and Gain:	Swivel Type Dipole, 1.57dBi declared per manufacturer	
Beamforming Type:	NA	
Antenna Connection Type:	External Connector	
Nominal Input Voltage:	5VDC	
Realterm 2.0.0.70 Railtest_v3.01_Mongoose_EV1_200kB_GFSK2_902.4M_0-63ch_BER_mode_0dBm_Stream_PA1.8V.hex ihm-halcyon-node-halcyon-2.2.0 (1).hex		
The velidity of possible is described		
The validity of results is dependent on the stated product details, the accuracy of which the manufacturer assumes full responsibility.		


Page 7 of 61 Report No.: 108788-57A

Block Diagram of Test Setup(s)

Configuration 1

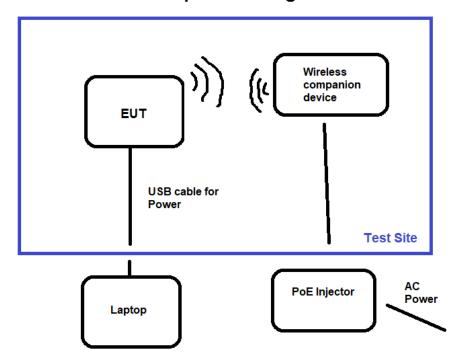
Test Setup Block Diagram



Page 8 of 61 Report No.: 108788-57A

Configuration 2

Test Setup Block Diagram



Page 9 of 61 Report No.: 108788-57A

Configuration 5

Test Setup Block Diagram

Page 10 of 61 Report No.: 108788-57A

FCC Part 15 Subpart C

Note: Test setup photos are located in a separate attachment, #108788-57_TestSetupPhotos

15.247(a) Transmitter Characteristics

	Test Setup/Conditions				
Test Location:	Bothell Lab Bench	Test Engineer:	M. Atkinson		
Test Method:	ANSI C63.10 (2013)	ANSI C63.10 (2013) Test Date(s): 10/23/23			
Configuration:	1				
Test Setup:	EUT is directly connected to spectrum analyzer with appropriate attenuation and cables.				
	The EUT is continuously transmitt	ing being controlled th	rough support laptop.		

Environmental Conditions				
Temperature (ºC)	Temperature (°C) 20-22 Relative Humidity (%): 38-55			

Test Equipment					
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due
03803	Spectrum Analyzer	Agilent	E4440A	2/23/2022	2/23/2024
P07226	Attenuator	Pasternack	PE7004-6	8/25/2023	8/25/2025
P07610	Cable	Andrews	Heliax	4/19/2023	4/19/2025

Page 11 of 61 Report No.: 108788-57A

15.247(a)(1) Occupied Bandwidth

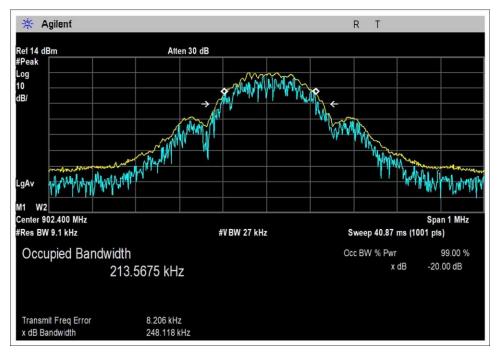
20dB Occupied Bandwidth

	Test Data Summary				
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results
902.4	1	GFSK-2	248.118		
914.8	1	GFSK-2	248.335	*See Note	NA
927.6	1	GFSK-2	247.942		

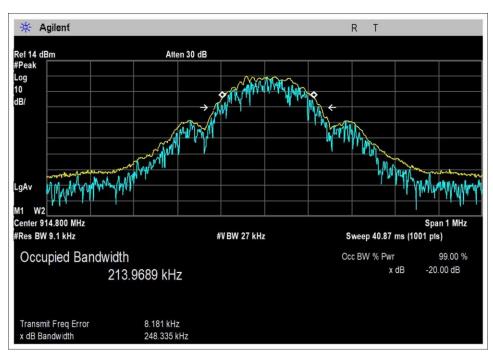
^{*}For this Hybrid mode there is no requirement to meet the FHSS or DTS bandwidth limits. See 15.247 (f) Hybrid Systems.

6dB DTS Occupied Bandwidth

	Test Data Summary				
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results
902.4	1	GFSK-2	243.965		
914.8	1	GFSK-2	244.123	*See Note	NA
927.6	1	GFSK-2	243.597		

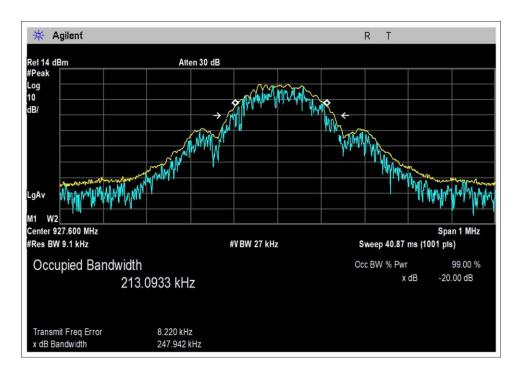

^{*}For this Hybrid mode there is no requirement to meet the FHSS or DTS bandwidth limits. See 15.247 (f) Hybrid Systems.

Page 12 of 61 Report No.: 108788-57A



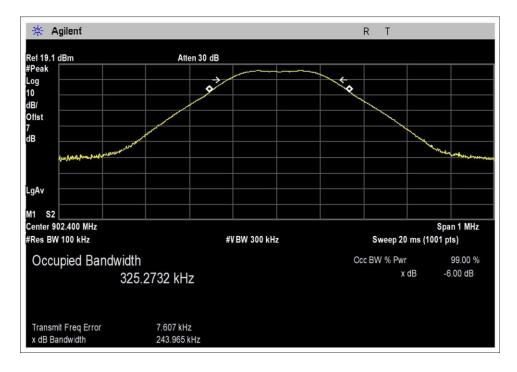
Plot(s)

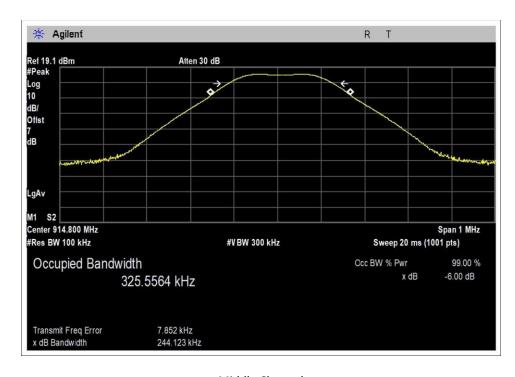
20dB Occupied Bandwidth



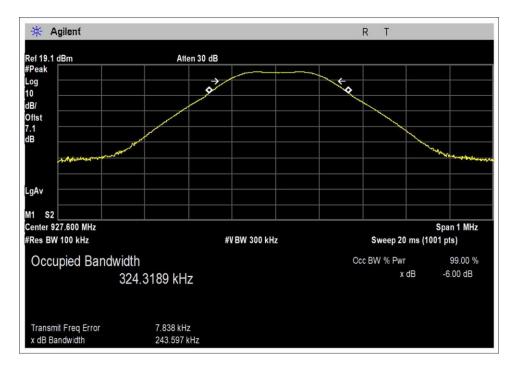
Low Channel

Middle Channel



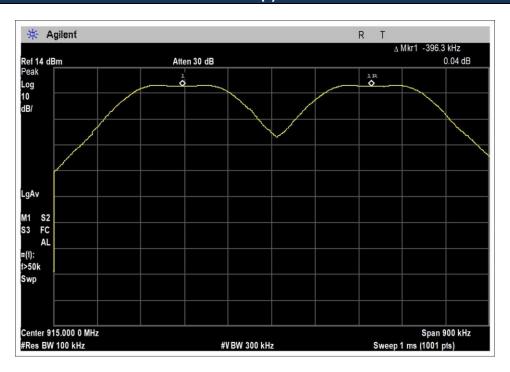

High Channel

6dB DTS Occupied Bandwidth



Low Channel

Middle Channel


High Channel

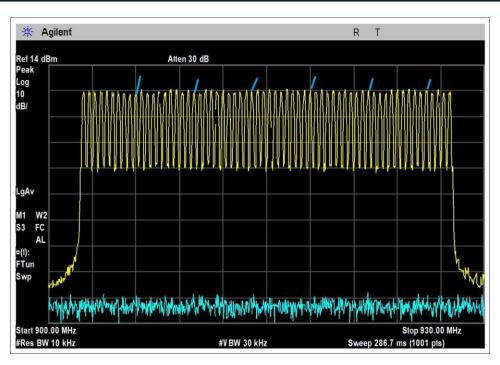
15.247(a)(1) Carrier Separation

	Test Data Summary			
Limit applied: 2	Limit applied: 20dB bandwidth of the hopping channel.			
Antenna Port	Operational Mode	Measured (kHz)	Limit (kHz)	Results
1	Transmitting	396.3	≥248.335	Pass

Plot(s)

Channel Separation

Page 17 of 61 Report No.: 108788-57A



15.247(a)(1)(i) Number of Channels

Test Data Summary				
Antenna Port	Operational Mode	Measured (Channels)	Limit (Channels)	Results
1	Transmitting	64	*See Note	NA

^{*}For this Hybrid Mode there is no minimum number of hopping channels.

Plot(s)

Number Channels

Page 18 of 61 Report No.: 108788-57A

15.247(b)(2) Output Power

	Test Setup/Conditions			
Test Location:	Bothell Lab Bench	Test Engineer:	M. Atkinson	
Test Method:	ANSI C63.10 (2013)	Test Date(s):	10/23/23 to 10/27/23	
Configuration:	1			
Test Setup:	EUT is directly connected to spectrum analyzer with appropriate attenuation and cables. The EUT is continuously transmitting being controlled through support laptop. The correction factor for the system has been loaded into the spectrum analyzer.			

Environmental Conditions			
Temperature (°C) 20-22 Relative Humidity (%): 38-55			

	Test Equipment				
Asset	Description	Manufacturer	Model	Cal Date	Cal Due
03803	Spectrum Analyzer	Agilent	E4440A	2/23/2022	2/23/2024
P07226	Attenuator	Pasternack	PE7004-6	8/25/2023	8/25/2025
P07610	Cable	Andrews	Heliax	4/19/2023	4/19/2025
1318	Multimeter	Fluke	85	7/20/2023	7/20/2025
P07788	DC 5 amp Power Supply	Rigol	DP711	1/19/2022	1/19/2024

	Test Data Summary - Voltage Variations				
Frequency (MHz)	Modulation	V _{Minimum} (dBm)	V _{Nominal} (dBm)	V _{Maximum} (dBm)	Max Deviation from V _{Nominal} (dB)
902.4	GFSK-2	14.5	14.5	14.5	0.0
914.8	GFSK-2	14.3	14.3	14.3	0.0
927.6	GFSK-2	14.2	14.2	14.2	0.0

Test performed using operational mode with the highest output power, representing worst case.

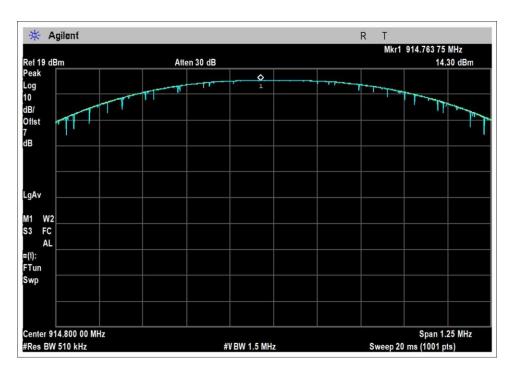
Parameter Definitions:

Measurements performed at input voltage Vnominal ± 15%.

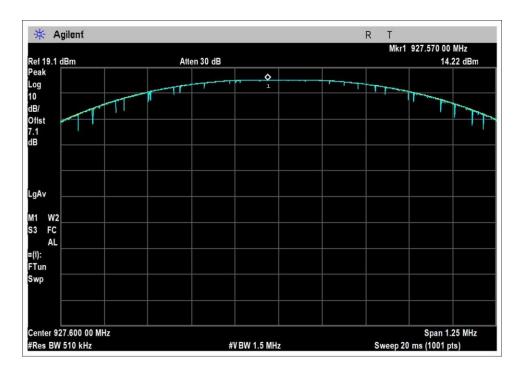
wicasarcinicitis periorinica at inpa	Voltage Vitorimia ± 1570.
Parameter	Value
V _{Nominal} :	5.00VDC
V _{Minimum} :	4.25VDC
V _{Maximum} :	5.75VDC

Limit = 30a	Test Data Summary - RF Conducted Measurement Limit = 30dBm Conducted/36dBm EIRP									
Frequency (MHz)	Modulation	Ant Gain	Measured (dBm)	Limit (dBm)	Results					
902.4	GFSK-2	1.57 dBi	14.5	≤30	Pass					
914.8	GFSK-2	1.57 dBi	14.3	≤30	Pass					
927.6	GFSK-2	1.57 dBi	14.2	≤30	Pass					

For this Hybrid Mode there is no minimum number of hopping channels required for the 1 Watt (30dBm) limit.


Page 19 of 61 Report No.: 108788-57A

Plot(s)



Low Channel

Middle Channel

High Channel

15.247(d) RF Conducted Emissions & Band Edge

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Nallov, LLC

Specification: 15.247(d) Conducted Spurious Emissions

Work Order #: 108788 Date: 10/23/2023
Test Type: Conducted Emissions
Tested By: Michael Atkinson Sequence#: 22

Software: EMITest 5.03.20 120V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

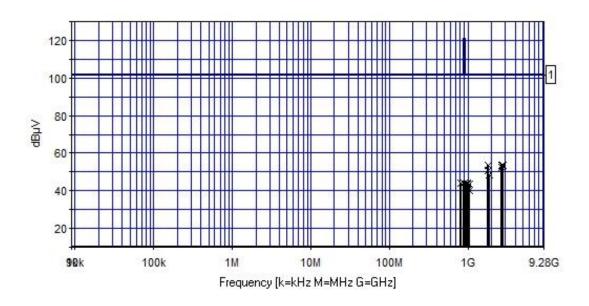
Test Environment Conditions:

Temperature: 22°C Humidity: 55% Pressure: 100.9.6kPa

Test Method: ANSI C63.10 (2013)

Frequency Range: 9kHz-10GHz

Test Setup:


EUT is directly connected to spectrum analyzer with appropriate attenuation and cables. The EUT is continuously transmitting being controlled through support laptop.

Low, Middle, High channels investigated.

Page 22 of 61 Report No.: 108788-57A

Nalloy, LLC WO#: 108788 Sequence#: 22 Date: 10/23/2023 15.247(d) Conducted Spurious Emissions Test Lead: 120V 60Hz RF Port

Readings

1 - 15.247(d) Conducted Spurious Emissions

Peak Readings

Software Version: 5.03.20

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN03803	Spectrum Analyzer	E4440A	2/23/2022	2/23/2024
T1	ANP07226	Attenuator	PE7004-6	8/25/2023	8/25/2025
T2	ANP05542	Cable	Heliax	2/8/2023	2/8/2025

Page 23 of 61 Report No.: 108788-57A

Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lea	ad: RF Port		
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	2782.000M	45.4	+5.9	+2.1			+0.0	53.4	101.3	-47.9	RF Po
									927.6		
2	2708.000M	45.5	+5.9	+2.0			+0.0	53.4	101.3	-47.9	RF Po
									902.4		
3	1805.000M	45.8	+5.9	+1.7			+0.0	53.4	101.3	-47.9	RF Po
									902.4		
4	2744.000M	44.7	+5.9	+2.0			+0.0	52.6	101.3	-48.7	RF Po
									914.8		
5	1830.000M	43.3	+5.9	+1.7			+0.0	50.9	101.3	-50.4	RF Po
									914.8		
6	1855.000M	40.6	+5.9	+1.8			+0.0	48.3	101.3	-53.0	RF Po
									927.6		
7	812.500M	37.2	+5.9	+1.1			+0.0	44.2	101.3	-57.1	RF Po
									927.6		
8	889.000M	37.2	+5.9	+1.1			+0.0	44.2	101.3	-57.1	RF Po
									927.6		
9	979.000M	36.9	+5.9	+1.2			+0.0	44.0	101.3	-57.3	RF Po
									902.4		
10	1030.000M	36.6	+5.9	+1.2			+0.0	43.7	101.3	-57.6	RF Po
									914.8		
11	991.500M	36.2	+5.9	+1.2			+0.0	43.3	101.3	-58.0	RF Po
									914.8		
12	941.000M	36.2	+5.9	+1.2			+0.0	43.3	101.3	-58.0	RF Po
									902.4		
13	967.000M	35.0	+5.9	+1.2			+0.0	42.1	101.3	-59.2	RF Po
									927.6		
14	1042.000M	32.8	+5.9	+1.3			+0.0	40.0	101.3	-61.3	RF Po
									927.6		

Page 24 of 61 Report No.: 108788-57A

Band Edge

Band Edge Summary

Limit applied: Max Power/100kHz - 20dB.

Operating Mode: Single Channel (Low and High)

100kHz measured in dB μ V = 121.3

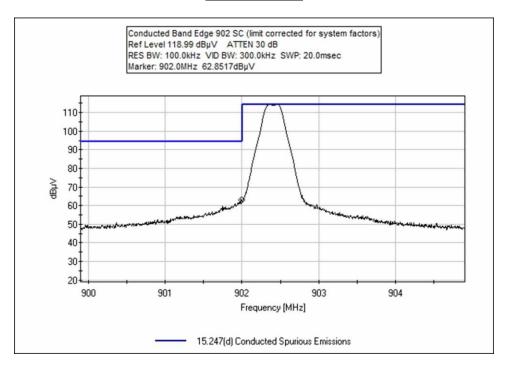
Frequency (MHz)	Modulation	Measured (dBμV)	Limit (dBμV)	Results
902	GFSK-2	69.9	<101.3	Pass
928	GFSK-2	67.3	<101.3	Pass

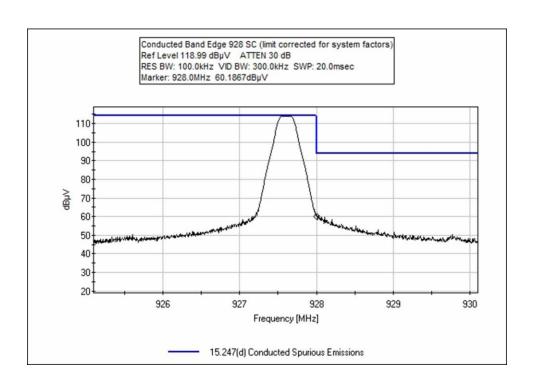
Band Edge Summary

Limit applied: Max Power/100kHz - 20dB.

Operating Mode: Hopping

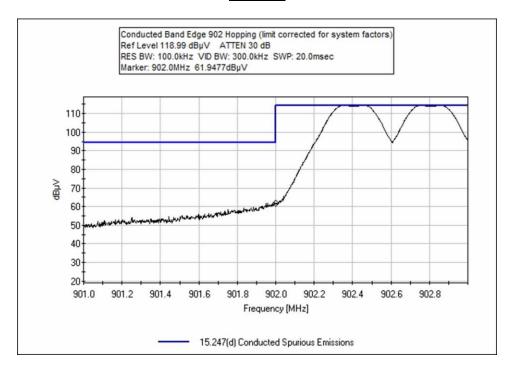
100kHz measured in dB μ V = 121.3

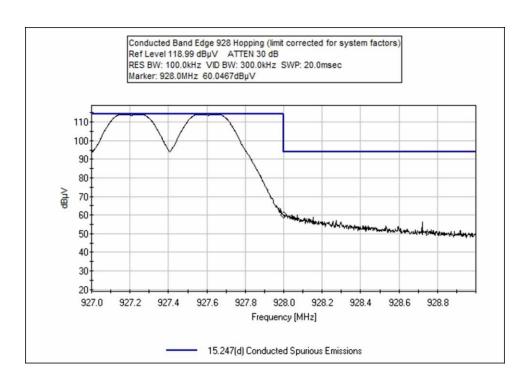

Frequency (MHz)	Modulation	Measured (dBμV)	Limit (dBμV)	Results
902	GFSK-2	68.9	<101.3	Pass
928	GFSK-2	67.1	<101.3	Pass


Page 25 of 61 Report No.: 108788-57A

Band Edge Plots

Single Channel





Page 26 of 61 Report No.: 108788-57A

Hopping

Page 27 of 61 Report No.: 108788-57A

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Nalloy, LLC

Specification: 15.247(d) Conducted Spurious Emissions

Work Order #: 108788 Date: 10/23/2023
Test Type: Conducted Emissions Time: 15:24:03
Tested By: Michael Atkinson Sequence#: 21

Software: EMITest 5.03.20 120V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Test Environment Conditions:

Temperature: 22°C Humidity: 55% Pressure: 100.9.6kPa

Test Method: ANSI C63.10 (2013)

Frequency Range: Band Edge

Test Setup:

EUT is directly connected to spectrum analyzer with appropriate attenuation and cables. The EUT is continuously transmitting being controlled through support laptop.

Single Channel and Hopping modes investigated.

Page 28 of 61 Report No.: 108788-57A

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03803	Spectrum Analyzer	E4440A	2/23/2022	2/23/2024
T2	ANP07226	Attenuator	PE7004-6	8/25/2023	8/25/2025
T3	ANP05542	Cable	Heliax	2/8/2023	2/8/2025

Measu	Measurement Data:		Reading listed by margin.				Test Lead: RF Port				
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	902.000M	62.9	+0.0	+5.9	+1.1		+0.0	69.9	101.3	-31.4	RF Po
									SC		
2	902.000M	61.9	+0.0	+5.9	+1.1		+0.0	68.9	101.3	-32.4	RF Po
									Hopping		
3	928.000M	60.2	+0.0	+5.9	+1.2		+0.0	67.3	101.3	-34.0	RF Po
									SC		
4	928.000M	60.0	+0.0	+5.9	+1.2	•	+0.0	67.1	101.3	-34.2	RF Po
									Hopping		

Page 29 of 61 Report No.: 108788-57A

15.247(d) Radiated Emissions & Band Edge

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Nallov, LLC

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 108788 Date: 10/17/2023
Test Type: Maximized Emissions Time: 09:14:15
Tested By: Michael Atkinson Sequence#: 4

Software: EMITest 5.03.20

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Test Environment Conditions:

Temperature: 22°C Humidity: 56% Pressure: 100.9kPa

Test Method: ANSI C63.10 (2013)

Frequency Range: 9kHz-30MHz

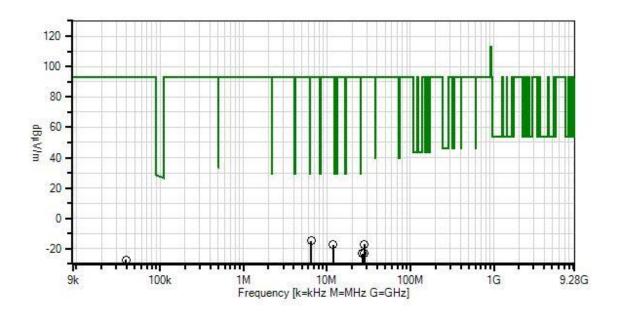
Test Setup:

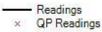
Low Channel (0) 902.4 MHz, Mid (31) 914.8MHz, High (63) 927.6MHz

GFSK-2

100% Duty Cycle

PWR Level Setting: 140


3 x orthogonal axes investigated, worst case reported.


X, Y, Z orientations and tx antenna straight and bent investigated with worst case reported.

Page 30 of 61 Report No.: 108788-57A

Nalloy, LLC WO#: 108788 Sequence#: 4 Date: 10/17/2023 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Various

▼ Ambient

- 1 - 15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings

Average Readings Software Version: 5.03.20

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	3/2/2023	3/2/2025
T1	ANP05546	Cable	Heliax	8/1/2023	8/1/2025
T2	ANP06515	Cable	Heliax	3/1/2023	3/1/2025
Т3	AN00052	Loop Antenna	6502	5/11/2022	5/11/2024

Page 31 of 61 Report No.: 108788-57A

Measur	ement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	6.452M	16.3	+0.1	+0.1	+8.9		-40.0	-14.6	93.0	-107.6	Para
2	27.941M	18.1	+0.1	+0.3	+4.5		-40.0	-17.0	93.0	-110.0	Groun
3	11.933M	13.7	+0.1	+0.2	+8.8		-40.0	-17.2	93.0	-110.2	Para
4	27.941M	12.1	+0.1	+0.3	+4.5		-40.0	-23.0	93.0	-116.0	Para
5	26.607M	11.2	+0.1	+0.3	+5.2		-40.0	-23.2	93.0	-116.2	Perp
6	39.394k	42.4	+0.0	+0.0	+10.3		-80.0	-27.3	93.0	-120.3	Groun

Page 32 of 61 Report No.: 108788-57A

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Nalloy, LLC

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 108788 Date: 10/17/2023
Test Type: Maximized Emissions Time: 08:36:55
Tested By: Michael Atkinson Sequence#: 2

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Test Environment Conditions:

Temperature: 22°C Humidity: 56% Pressure: 100.9kPa

Test Method: ANSI C63.10 (2013)

Frequency Range: 30-1000MHz

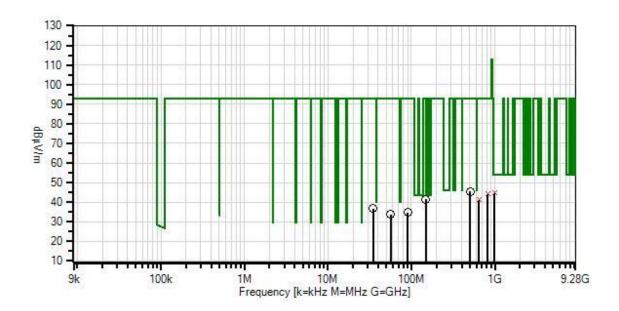
Test Setup:

Low Channel (0) 902.4 MHz, Mid (31) 914.8MHz, High (63) 927.6MHz

GFSK-2

100% Duty Cycle

PWR Level Setting: 140


Horizontal and Vertical polarities investigated, worst case reported.

X, Y, Z orientations and tx antenna straight and bent investigated with worst case reported.

Page 33 of 61 Report No.: 108788-57A

Nalloy, LLC WO#: 108788 Sequence#: 2 Date: 10/17/2023 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters H+V

Readings
 QP Readings

▼ Ambient

- 1 - 15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings

Average Readings Software Version: 5.03.20

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	3/2/2023	3/2/2025
T1	ANP05546	Cable	Heliax	8/1/2023	8/1/2025
T2	ANP05333	Cable	Heliax	8/8/2023	8/8/2025
Т3	ANP05360	Cable	RG214	8/8/2023	8/8/2025
T4	AN03824	Biconilog Antenna	3142E	5/9/2023	5/9/2025

Page 34 of 61 Report No.: 108788-57A

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distance	e: 3 Meters	1	
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\muV/m$	dB	Ant
1	986.400M	9.4	+0.7	+1.6	+2.6	+30.4	+0.0	44.7	54.0	-9.3	Vert
QP											
^	986.400M	16.2	+0.7	+1.6	+2.6	+30.4	+0.0	51.5	54.0	-2.5	Vert
3	507.200M	17.0	+0.5	+1.1	+2.0	+24.8	+0.0	45.4	93.0	-47.6	Vert
4	815.800M QP	9.6	+0.6	+1.4	+2.5	+30.2	+0.0	44.3	93.0	-48.7	Horiz
^	815.800M	16.6	+0.6	+1.4	+2.5	+30.2	+0.0	51.3	93.0	-41.7	Horiz
6	148.660M	24.8	+0.3	+0.6	+0.9	+14.9	+0.0	41.5	93.0	-51.5	Vert
7	644.800M QP	9.3	+0.5	+1.3	+2.4	+27.7	+0.0	41.2	93.0	-51.8	Vert
٨	644.800M	15.6	+0.5	+1.3	+2.4	+27.7	+0.0	47.5	93.0	-45.5	Vert
9	34.590M	16.6	+0.1	+0.3	+0.4	+19.3	+0.0	36.7	93.0	-56.3	Vert
10	90.100M	20.9	+0.2	+0.4	+0.6	+12.6	+0.0	34.7	93.0	-58.3	Horiz
11	56.200M	20.7	+0.1	+0.3	+0.5	+12.2	+0.0	33.8	93.0	-59.2	Vert

Page 35 of 61 Report No.: 108788-57A

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Nalloy, LLC

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 108788 Date: 10/17/2023
Test Type: Maximized Emissions Time: 15:54:10
Tested By: Steven Pittsford Sequence#: 5

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Test Environment Conditions:

Temperature: 22°C Humidity: 56% Pressure: 100.9kPa

Test Method: ANSI C63.10 (2013)

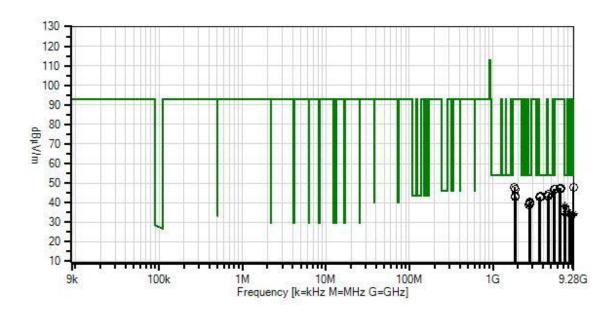
Frequency Range: 1-10GHz

Test Setup:

Low Channel (0) 902.4 MHz, Mid (31) 914.8MHz, High (63) 927.6MHz

GFSK-2

100% Duty Cycle


PWR Level Setting: 140

Vertical and Horizontal polarities, X, Y, Z axis, tx antenna straight and bent investigated with worst case reported.

Page 36 of 61 Report No.: 108788-57A

Nalloy, LLC WO#: 108788 Sequence#: 5 Date: 10/17/2023 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters H+V

Readings
 QP Readings

▼ Ambient
 1 - 15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings

Average Readings Software Version: 5.03.20

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02673	Spectrum Analyzer	E4446A	3/2/2023	3/2/2025
T2	ANP05546	Cable	Heliax	8/1/2023	8/1/2025
T3	AN03170	High Pass Filter	HM1155-11SS	9/27/2023	9/27/2025
T4	AN02374ANSI	Horn Antenna	RGA-60	5/26/2023	5/26/2025
T5	ANP06515	Cable	Heliax	3/1/2023	3/1/2025
T6	ANP07504	Cable	CLU40-KMKM-	1/24/2023	1/24/2025
			02.00F		
T7	AN03540	Preamp	83017A	3/24/2023	3/24/2025

Page 37 of 61 Report No.: 108788-57A

Measu	rement Data:	Re	eading lis	ted by ma	ırgin.		Te	est Distanc	e: 3 Meters	.	
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\muV/m$	dB	Ant
1	5414.175M	38.4	+0.0	+1.7	+0.4	+34.4	+0.0	47.0	54.0	-7.0	Horiz
			+4.9	+1.0	-33.8				902.4		156
2	4638.265M	38.5	+0.0	+1.3	+0.5	+32.4	+0.0	44.5	54.0	-9.5	Horiz
			+4.2	+1.4	-33.8				927.6		151
3	4571.810M	38.1	+0.0	+1.3	+0.4	+32.2	+0.0	43.6	54.0	-10.4	Horiz
			+4.2	+1.2	-33.8				914.8		146
4	4608.760M	37.8	+0.0	+1.3	+0.5	+32.3	+0.0	43.6	54.0	-10.4	Horiz
			+4.2	+1.3	-33.8				922.0		151
5	4510.665M	38.2	+0.0	+1.2	+0.4	+32.1	+0.0	43.4	54.0	-10.6	Horiz
			+4.2	+1.1	-33.8				902.4		156
6	3710.080M	39.3	+0.0	+1.5	+0.3	+31.6	+0.0	43.2	54.0	-10.8	Horiz
			+3.6	+0.8	-33.9				927.6		151
7	3688.305M	39.3	+0.0	+1.5	+0.3	+31.5	+0.0	43.0	54.0	-11.0	Horiz
			+3.6	+0.8	-34.0				922.0		151
8	3658.955M	39.2	+0.0	+1.4	+0.3	+31.4	+0.0	42.9	54.0	-11.1	Horiz
			+3.7	+0.9	-34.0				914.8		146
9	3608.180M	39.0	+0.0	+1.4	+0.4	+31.3	+0.0	42.8	54.0	-11.2	Horiz
			+3.7	+1.0	-34.0				902.4		156
10	2782.430M	40.8	+0.0	+1.2	+0.3	+29.3	+0.0	40.6	54.0	-13.4	Horiz
			+3.0	+0.5	-34.5				927.6		151
11	2766.015M	40.3	+0.0	+1.2	+0.3	+29.3	+0.0	40.1	54.0	-13.9	Horiz
			+3.0	+0.5	-34.5				922.0		151
12	2744.805M	39.5	+0.0	+1.2	+0.3	+29.3	+0.0	39.3	54.0	-14.7	Horiz
- 10	2505 0201 6	20.0	+3.0	+0.5	-34.5	20.2	0.0	20.5	914.8	1.7.0	146
13	2707.030M	38.9	+0.0	+1.2	+0.3	+29.3	+0.0	38.7	54.0	-15.3	Horiz
1.4	7210 00014	27.0	+3.0	+0.5	-34.5	. 27. 2	. 0. 0	20.2	902.4	15.0	156
	7318.980M	27.0	+0.0	+1.9	+0.5	+37.2	+0.0	38.2	54.0	-15.8	Horiz
	Ave	20.0	+5.3	+1.4	-35.1	. 27. 2	. 0. 0	40.2	914.8	4.0	146
^	7318.980M	38.0	+0.0	+1.9	+0.5	+37.2	+0.0	49.2	54.0	-4.8	Horiz
1.0	0120 41534	22.2	+5.3	+1.4	-35.1	. 20.0	. 0. 0	25.5	914.8	10.5	146
	8120.415M	22.3	+0.0	+2.6	+0.5	+38.9	+0.0	35.5	54.0	-18.5	Horiz
	Ave 9120 415M	37.8	+5.7	+0.9	-35.4	1200	100	51.0	902.4 54.0	-3.0	156 Horiz
	8120.415M	31.8	+0.0 +5.7	+2.6 +0.9	+0.5 -35.4	+38.9	+0.0	31.0	54.0 902.4	-3.0	Horiz 156
10	7377.835M	22.8	+0.0	+2.0	+0.5	+37.3	+0.0	34.3	54.0	-19.7	Horiz
	Ave	22.0	+0.0 +5.5	+2.0	+0.5 -35.1	+31.3	+0.0	34.3	922.0	-19./	151
	7377.835M	37.2	+0.0	+2.0	+0.5	+37.3	+0.0	48.7	54.0	-5.3	Horiz
	1311.033141	31.4	+5.5	+2.0	-35.1	131.3	10.0	70.7	922.0	-5.5	151
20	8232.585M	21.9	+0.0	+2.6	+0.5	+38.4	+0.0	34.2	54.0	-19.8	Horiz
	Ave	21.7	+5.5	+0.7	-35.4	1 50.4	10.0	57.2	914.8	17.0	146
	8232.585M	37.2	+0.0	+2.6	+0.5	+38.4	+0.0	49.5	54.0	-4.5	Horiz
	3232.303141	31.2	+5.5	+0.7	-35.4	1 30. 1	. 0.0	17.5	914.8	1.0	146
2.2.	7420.420M	22.5	+0.0	+2.0	+0.5	+37.4	+0.0	34.0	54.0	-20.0	Horiz
	Ave		+5.5	+1.2	-35.1		. 0.0	20	927.6	-0.0	151
	7420.420M	37.9	+0.0	+2.0	+0.5	+37.4	+0.0	49.4	54.0	-4.6	Horiz
			+5.5	+1.2	-35.1				927.6		151
L											

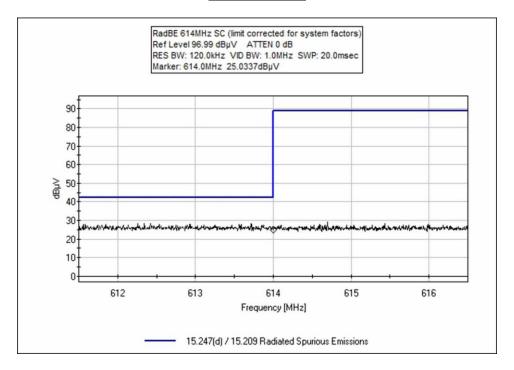
Page 38 of 61 Report No.: 108788-57A

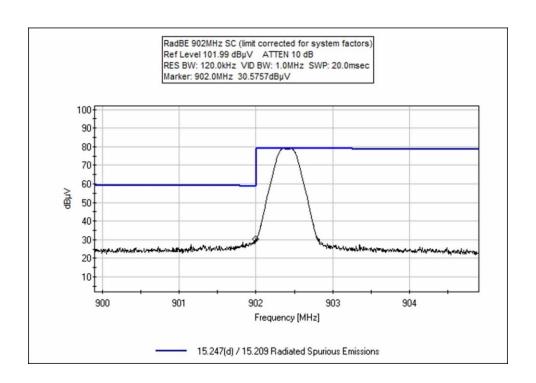
24 9	9147.375M	20.9	+0.0	+2.4	+0.9	+37.7	+0.0	33.9	54.0	-20.1	Horiz
A	ve		+5.9	+0.8	-34.7				914.8		146
^ 9	147.375M	36.3	+0.0	+2.4	+0.9	+37.7	+0.0	49.3	54.0	-4.7	Horiz
			+5.9	+0.8	-34.7				914.8		146
26 8	3299.740M	21.6	+0.0	+2.6	+0.7	+38.3	+0.0	33.9	54.0	-20.1	Horiz
	ve		+5.5	+0.6	-35.4				922.0		151
	3299.740M	36.5	+0.0	+2.6	+0.7	+38.3	+0.0	48.8		-5.2	Horiz
	,_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	00.0	+5.5	+0.6	-35.4		. 0.0		922.0	5.2	151
28 8	3346.245M	21.4	+0.0	+2.6	+0.8	+38.3	+0.0	33.7		-20.3	Horiz
	ve	21.7	+5.5	+0.4	-35.3	130.3	10.0	33.1	927.6	20.3	151
	3346.245M	37.8	+0.0	+2.6	+0.8	+38.3	+0.0	50.1	54.0	-3.9	Horiz
	55+0.2+51 v1	37.0	+5.5	+0.4	-35.3	130.3	10.0	30.1	927.6	-3.7	151
20. 0	0024.430M	19.9	+0.0	+2.4	+0.7	+37.9	+0.0	33.3	54.0	-20.7	Horiz
		19.9				+37.9	+0.0	33.3		-20.7	
	ve	25.1	+6.0	+1.2	-34.8	. 27.0	. 0. 0	40.5	902.4		156
^ 9	0024.430M	35.1	+0.0	+2.4	+0.7	+37.9	+0.0	48.5	54.0	-5.5	Horiz
22 0	221 622 5	25.5	+6.0	+1.2	-34.8	. 27. 0	. 0. 0	40.0	902.4	45.0	156
32 9	0221.630M	35.5	+0.0	+2.4	+0.7	+37.8	+0.0	48.0	93.0	-45.0	Horiz
	00406737	# . · ·	+5.8	+0.5	-34.7	2= 2	0.0	4= 0	922.0		151
33 1	804.925M	51.9	+0.0	+0.7	+0.5	+27.3	+0.0	47.9	93.0	-45.1	Horiz
			+2.2	+0.4	-35.1				902.4		156
34 6	5492.535M	37.3	+0.0	+2.1	+0.6	+34.8	+0.0	47.5	93.0	-45.5	Horiz
			+5.8	+1.2	-34.3				927.6		151
35 6	5454.470M	37.6	+0.0	+2.1	+0.6	+34.7	+0.0	47.5	93.0	-45.5	Horiz
			+5.7	+1.1	-34.3				922.0		151
36 5	5491.170M	37.8	+0.0	+1.7	+0.5	+34.4	+0.0	47.0	93.0	-46.0	Horiz
			+5.1	+1.3	-33.8				914.8		146
37 5	5531.435M	37.5	+0.0	+1.7	+0.5	+34.4	+0.0	46.8	93.0	-46.2	Horiz
			+5.2	+1.3	-33.8				922.0		151
38 1	829.495M	50.4	+0.0	+0.7	+0.4	+27.6	+0.0	46.7	93.0	-46.3	Horiz
			+2.3	+0.4	-35.1				914.8		146
39 6	5318.950M	37.2	+0.0	+2.1	+0.5	+34.7	+0.0	46.6	93.0	-46.4	Horiz
			+5.4	+0.9	-34.2				902.4		156
40 5	5565.185M	37.3	+0.0	+1.8	+0.4	+34.4	+0.0	46.6	93.0	-46.4	Horiz
		27.0	+5.2	+1.3	-33.8		. 0.0	.0.0	927.6		151
41 6	5403.115M	37.0	+0.0	+2.1	+0.5	+34.7	+0.0	46.6	93.0	-46.4	Horiz
		37.0	+5.6	+1.0	-34.3	151.7	. 0.0	.0.0	914.8	10.1	146
//2 1	843.825M	46.9	+0.0	+0.7	+0.4	+27.7	+0.0	43.4		-49.6	Horiz
+4 1	.0 1 0.0431 VI	+0.7	+0.0	+0.7	-35.0	<i>⊤∠1.1</i>	+0.0	+3.4	922.0	-+ 7.0	151
/2 1	.855.510M	46.3	+0.0	+0.4	+0.4	+27.8	+0.0	42.9	93.0	-50.1	Horiz
45 1	IVIVI C.CCO.	40.3	+0.0	+0.7	-35.0	T41.0	+0.0	42.9	93.0	-30.1	151
44 7	7216 920M	27.2				1260	ι Ο Ο	20.0		55.0	
	⁷ 216.830M	27.3	+0.0	+1.8	+0.5	+36.8	+0.0	38.0	93.0	-55.0	Horiz
	ve	20.4	+5.2	+1.4	-35.0	.250	. 0. 0	40.1	902.4	40.0	151
^ 7	² 216.830M	38.4	+0.0	+1.8	+0.5	+36.8	+0.0	49.1	93.0	-43.9	Horiz
			+5.2	+1.4	-35.0	_			902.4		156
	277.720M	21.7	+0.0	+2.4	+0.6	+37.9	+0.0	34.3	93.0	-58.7	Horiz
	ve		+5.9	+0.4	-34.6				927.6		151
^ 9	9277.720M	36.7	+0.0	+2.4	+0.6	+37.9	+0.0	49.3	93.0	-43.7	Horiz
1			+5.9	+0.4	-34.6				927.6		151

Page 39 of 61 Report No.: 108788-57A

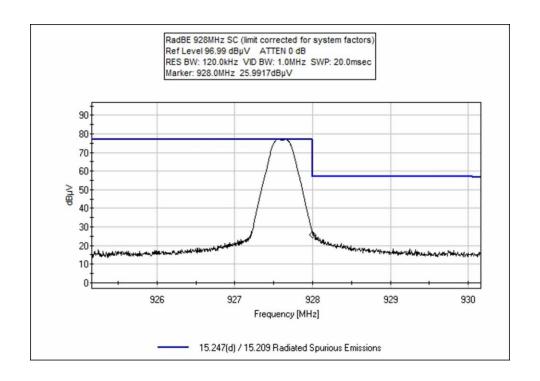
Band Edge

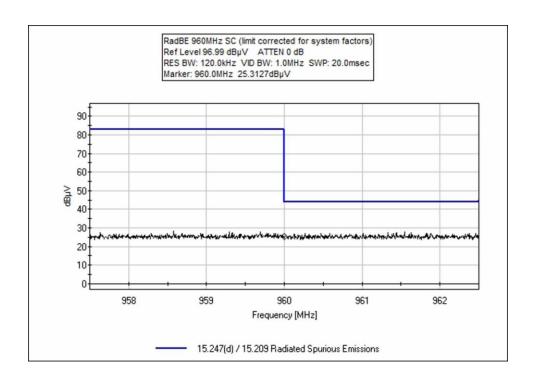
	Band Edge Summary										
Operating Mo	Operating Mode: Single Channel (Low and High)										
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results						
614	GFSK-2	Swivel Type Dipole	28.9	<46	Pass						
902	GFSK-2	Swivel Type Dipole	64.7	<93	Pass						
928	GFSK-2	Swivel Type Dipole	62.0	< 93	Pass						
960	GFSK-2	Swivel Type Dipole	35.2	<54	Pass						


	Band Edge Summary										
Operating Mo	Operating Mode: Hopping										
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results						
614	GFSK-2	Swivel Type Dipole	30.2	<46	Pass						
902	GFSK-2	Swivel Type Dipole	61.9	<93	Pass						
928	GFSK-2	Swivel Type Dipole	64.3	< 93	Pass						
960	GFSK-2	Swivel Type Dipole	36.7	<54	Pass						

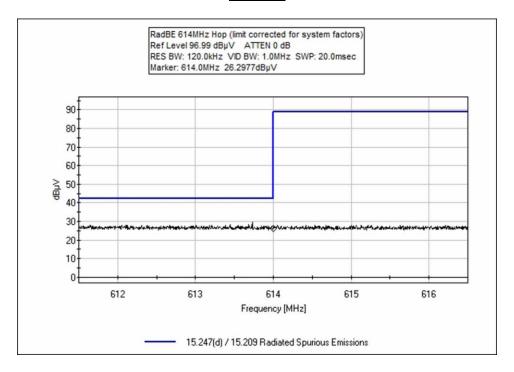

Page 40 of 61 Report No.: 108788-57A

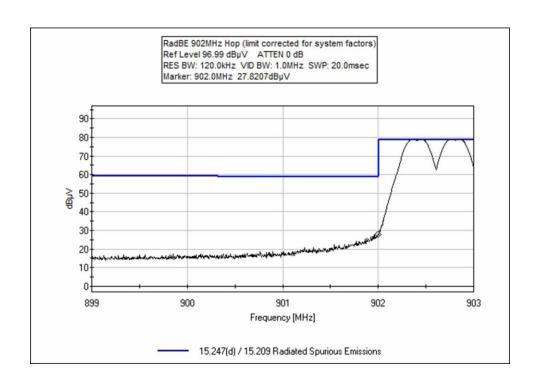
Band Edge Plots

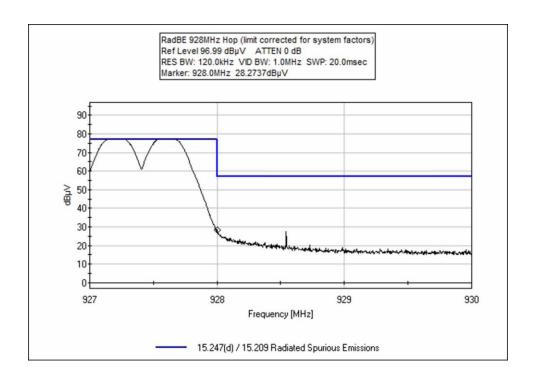

Single Channel

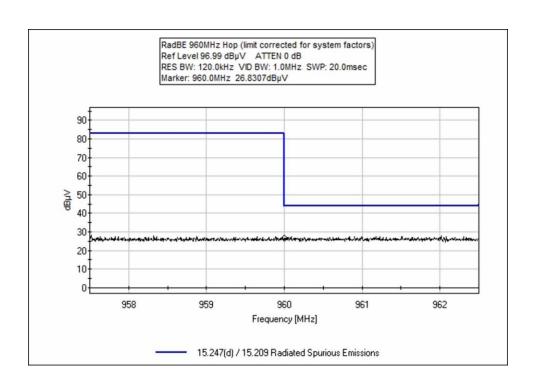


Page 41 of 61 Report No.: 108788-57A






Hopping



Page 43 of 61 Report No.: 108788-57A

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Nalloy, LLC

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 108788 Date: 10/16/2023
Test Type: Maximized Emissions Time: 16:08:28
Tested By: Michael Atkinson Sequence#: 1

Software: EMITest 5.03.20

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Test Environment Conditions:

Temperature: 22°C Humidity: 56% Pressure: 100.9kPa

Test Method: ANSI C63.10 (2013)

Frequency Range: Band Edge

Test Setup: Halcyon

Low Channel (0) 902.4 MHz, High (63) 927.6MHz

GFSK-2

100% Duty Cycle

PWR Level Setting: 140 PWR Output: 14dBm

Single channel mode

X, Y, Z EUT orientations investigated, each with straight and bent antenna orientations investigated, worst case reported. Horizontal and Vertical antenna polarities investigated, worst case reported.

Page 45 of 61 Report No.: 108788-57A

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	3/2/2023	3/2/2025
T1	ANP05546	Cable	Heliax	8/1/2023	8/1/2025
T2	ANP05333	Cable	Heliax	8/8/2023	8/8/2025
Т3	ANP05360	Cable	RG214	8/8/2023	8/8/2025
T4	AN03824	Biconilog Antenna	3142E	5/9/2023	5/9/2025
T5	AN02307	Preamp	8447D	8/9/2023	8/9/2025
Т6	ANP08072	Band Reject Filter	BRC50722	10/3/2023	10/3/2025

Measu	Measurement Data:		Reading listed by margin.			Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	614.000M	25.0	+0.5	+1.2	+2.3	+27.4	+0.0	28.9	46.0	-17.1	Vert
			-27.9	+0.4							
2	960.000M	25.3	+0.7	+1.6	+2.6	+31.1	+0.0	35.2	54.0	-18.8	Vert
			-26.9	+0.8							
3	902.000M	30.6	+0.6	+1.5	+2.5	+29.5	+0.0	64.7	93.0	-28.3	Vert
			+0.0	+0.0							
4	928.000M	26.0	+0.7	+1.5	+2.6	+31.2	+0.0	62.0	93.0	-31.0	Vert
			+0.0	+0.0							

Page 46 of 61 Report No.: 108788-57A

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Nalloy, LLC

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 108788 Date: 10/17/2023
Test Type: Maximized Emissions Time: 10:25:33
Tested By: Michael Atkinson Sequence#: 1

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Test Environment Conditions:

Temperature: 22°C Humidity: 56% Pressure: 100.9kPa

Test Method: ANSI C63.10 (2013)

Frequency Range: Band Edge

Test Setup: Halcyon

Low Channel (0) 902.4 MHz, High (63) 927.6MHz

GFSK-2

100% Duty Cycle

PWR Level Setting: 140 PWR Output: 14dBm

Hopping Mode

X, Y, Z EUT orientations investigated, each with straight and bent antenna orientations investigated, worst case reported. Horizontal and Vertical antenna polarities investigated, worst case reported.

Page 47 of 61 Report No.: 108788-57A

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	3/2/2023	3/2/2025
T1	ANP05546	Cable	Heliax	8/1/2023	8/1/2025
T2	ANP05333	Cable	Heliax	8/8/2023	8/8/2025
T3	ANP05360	Cable	RG214	8/8/2023	8/8/2025
T4	AN03824	Biconilog Antenna	3142E	5/9/2023	5/9/2025
T5	AN02307	Preamp	8447D	8/9/2023	8/9/2025
T6	ANP08072	Band Reject Filter	BRC50722	10/3/2023	10/3/2025

Measu	rement Data:	Re	Reading listed by margin.			Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	614.000M	26.3	+0.5	+1.2	+2.3	+27.4	+0.0	30.2	46.0	-15.8	Vert
			-27.9	+0.4							
2	960.000M	26.8	+0.7	+1.6	+2.6	+31.1	+0.0	36.7	54.0	-17.3	Vert
			-26.9	+0.8							
3	928.000M	28.3	+0.7	+1.5	+2.6	+31.2	+0.0	64.3	93.0	-28.7	Vert
			+0.0	+0.0							
4	902.000M	27.8	+0.6	+1.5	+2.5	+29.5	+0.0	61.9	93.0	-31.1	Vert
			+0.0	+0.0							

Page 48 of 61 Report No.: 108788-57A

15.247 (f) Hybrid Systems Time of Occupancy

	Test Setup/Conditions									
Test Location:	Bothell Lab Bench Test Engineer: M. Harrison									
Test Method:	ANSI C63.10 (2013) Test Date(s): 11/2/23									
Configuration:	5									
Test Setup:	The EUT is continuously transmitting being controlled through support laptop. Normal									
	operation firmware is used for the time of occupancy measurement with a near field probe.									

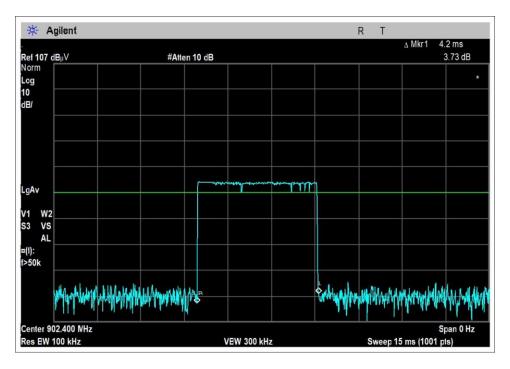
Environmental Conditions						
Temperature (ºC)	20-22	Relative Humidity (%):	38-55			

Test Equipment										
Asset# Description Manufacturer Model Cal Date Cal										
03803	Spectrum Analyzer	Agilent	E4440A	2/23/2022	2/23/2024					
P07226	Attenuator	Pasternack	PE7004-6	8/25/2023	8/25/2025					
P07610	Cable	Andrews	Heliax	4/19/2023	4/19/2025					
02673	Spectrum Analyzer	Agilent	E4446A	3/2/2023	3/2/2025					

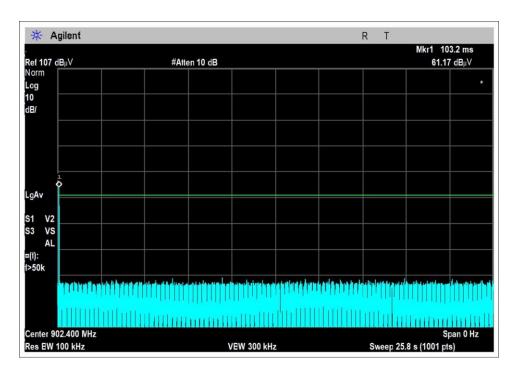
	Test Data Summary									
Observation Pe	Observation Period, P _{obs} is derived from the following:									
P_{Obs} =	= (number of hopping frequencies) $*$ 0).4								
Antenna	Operational Mode	Measured	Limit	Results						
Port	Operational Mode	(ms)	(ms/P _{obs})	Results						
1	Transmitting	4.2	≤400	Pass						

Measured results are calculated as follows:

$$\textit{Dwell time} = \left(\sum_{\textit{Bursts}} \textit{RF Burst On Time} + \sum_{\textit{Control}} \textit{Control Signal On time} \right) \bigg|_{P_{obs}}$$


Actual Calculated Values:

Parameter	Value
Observation Period (Pobs):	25.6s
Number of RF Bursts / Pobs::	1
On time of RF Burst:	4.2ms
Number of Control or other signals / Pobs:	0
On time of Control or other Signals:	0
Total Measured on Time:	4.2ms


Page 49 of 61 Report No.: 108788-57A

Plot(s)

Pulse Width 4.2ms

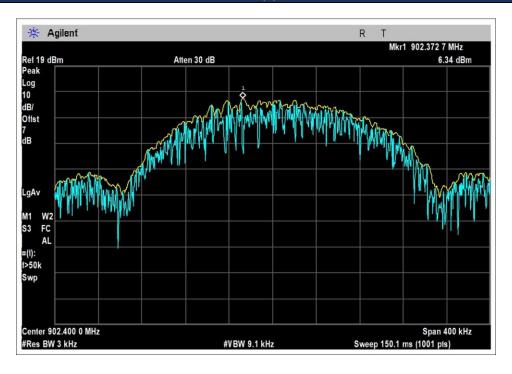
Pulses in 25.6s

15.247 (f) Hybrid Systems Power Spectral Density

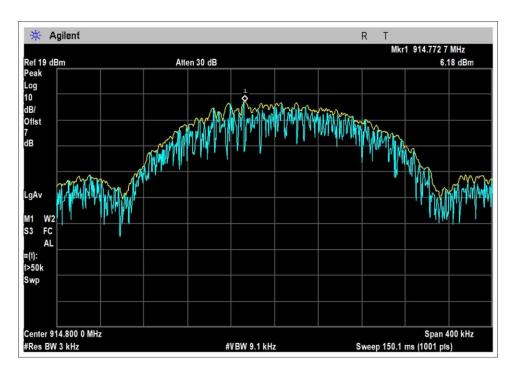
Test Setup/Conditions									
Test Location:	Brea Lab Bench	Test Engineer:	M. Atkinson						
Test Method:	ANSI C63.10 (2013)	Test Date(s):	10/23/23						
Configuration:	1								
Test Setup:	EUT is directly connected to spec The EUT is continuously transm correction factor for the system h	itting being controlle	9						

Environmental Conditions						
Temperature (ºC)	21	Relative Humidity (%):	55			

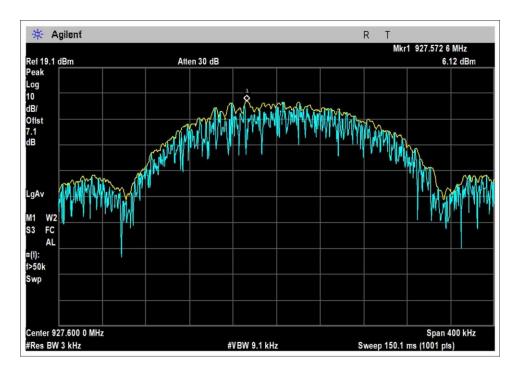
Test Equipment										
Asset#	Cal Date	Cal Due								
03803	Spectrum Analyzer	Agilent	E4440A	2/23/2022	2/23/2024					
P07226	Attenuator	Pasternack	PE7004-6	8/25/2023	8/25/2025					
P07610	Cable	Andrews	Heliax	4/19/2023	4/19/2025					


Power Spectral Density

Test Data Summary - RF Conducted Measurement									
Measurement M	Measurement Method: PKPSD								
Frequency Modulation Measured Limit Res									
902.4	GFSK-2	6.34	≤8	Pass					
914.8	GFSK-2	6.18	≤8	Pass					
927.6	GFSK-2	6.12	≤8	Pass					


Page 51 of 61 Report No.: 108788-57A

Plot(s)



Low Channel

Middle Channel

High Channel

Page 53 of 61 Report No.: 108788-57A

15.207 AC Conducted Emissions

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Nallov, LLC

Specification: 15.207 AC Mains - Average

Work Order #:108788Date:10/19/2023Test Type:Conducted EmissionsTime:14:54:43Tested By:Michael AtkinsonSequence#:17

Software: EMITest 5.03.20 120V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 2

Support Equipment:

Device Manufacturer Model # S/N
Configuration 2

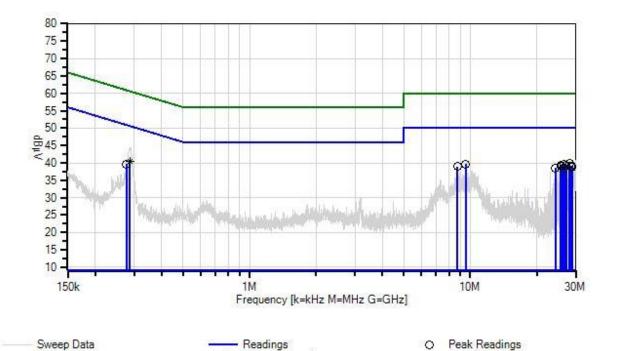
Test Conditions / Notes:

Test Environment Conditions:

Temperature: 22°C Humidity: 50% Pressure: 101.6kPa

Test Method: ANSI C63.10 (2013)

Frequency Range: 0.15-30MHz


Test Setup:

Powered by host device via USB, the host device is powered by a PoE injector connected to AC mains. Tx on low, mid, high channels investigated, worst case reported.

Page 54 of 61 Report No.: 108788-57A

Nalloy, LLC WO#: 108788 Sequence#: 17 Date: 10/19/2023 15.207 AC Mains - Average Test Lead: 120V 60Hz Line

Test Equipment:

QP Readings

Software Version: 5.03.20

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	3/2/2023	3/2/2025
T1	AN02611	High Pass Filter	HE9615-150K-	1/5/2022	1/5/2024
			50-720B		
T2	ANP05546	Cable	Heliax	8/1/2023	8/1/2025
T3	ANP06515	Cable	Heliax	3/1/2023	3/1/2025
T4	ANP06219	Attenuator	768-10	3/23/2022	3/23/2024
T5	AN01311	50uH LISN-Line1 (L)	3816/2	2/23/2022	2/23/2024
	AN01311	50uH LISN-Line2 (N)	3816/2	2/23/2022	2/23/2024

Average Readings 1 - 15.207 AC Mains - Average Ambient

2 - 15.207 AC Mains - Quasi-peak

Page 55 of 61 Report No.: 108788-57A

Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lea	d: Line		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MII	1D - X/	T5	.ID	JD.	JD.	T. 1.1.	ID X	1D. 37	JD.	A 4
	MHz	dBμV	dB	dB	dB	dB	Table	dBμV	dBμV	dB	Ant
1	28.189M	30.3	+0.1 +0.0	+0.1	+0.3	+9.1	+0.0	39.9	50.0	-10.1	Line
2	286.989k	31.2	+0.0	+0.0	+0.0	+9.1	+0.0	40.4	50.6	-10.2	Line
	Ave		+0.1								
٨	289.509k	35.2	+0.0	+0.0	+0.0	+9.1	+0.0	44.4	50.5	-6.1	Line
			+0.1								
4	26.607M	30.1	+0.1	+0.1	+0.3	+9.1	+0.0	39.7	50.0	-10.3	Line
			+0.0								
5	9.533M	30.1	+0.0	+0.1	+0.1	+9.1	+0.0	39.6	50.0	-10.4	Line
			+0.2								
6	26.490M	29.9	+0.1	+0.1	+0.3	+9.1	+0.0	39.5	50.0	-10.5	Line
			+0.0								
7	27.160M	29.7	+0.1	+0.1	+0.3	+9.1	+0.0	39.3	50.0	-10.7	Line
			+0.0								
8	25.697M	29.6	+0.1	+0.1	+0.3	+9.1	+0.0	39.2	50.0	-10.8	Line
			+0.0								
9	28.535M	29.5	+0.1	+0.1	+0.3	+9.1	+0.0	39.1	50.0	-10.9	Line
			+0.0								
10	25.877M	29.5	+0.1	+0.1	+0.3	+9.1	+0.0	39.1	50.0	-10.9	Line
			+0.0								
11	28.738M	29.3	+0.1	+0.1	+0.3	+9.1	+0.0	38.9	50.0	-11.1	Line
			+0.0								
12	8.755M	29.4	+0.0	+0.1	+0.1	+9.1	+0.0	38.9	50.0	-11.1	Line
			+0.2								
13	28.944M	29.2	+0.1	+0.1	+0.3	+9.1	+0.0	38.8	50.0	-11.2	Line
			+0.0								
14	277.404k	30.5	+0.0	+0.0	+0.0	+9.1	+0.0	39.7	50.9	-11.2	Line
		•0.5	+0.1				0.5	• • •	= 0.5		
15	24.346M	29.0	+0.1	+0.1	+0.3	+9.1	+0.0	38.6	50.0	-11.4	Line
			+0.0					20.7	—	4	
16	26.544M	28.9	+0.1	+0.1	+0.3	+9.1	+0.0	38.5	50.0	-11.5	Line
			+0.0								

Page 56 of 61 Report No.: 108788-57A

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Nalloy, LLC

Specification: 15.207 AC Mains - Average

Work Order #: 108788 Date: 10/19/2023
Test Type: Conducted Emissions Time: 14:57:30
Tested By: Michael Atkinson Sequence#: 18

Software: EMITest 5.03.20 120V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 2

Support Equipment:

Device Manufacturer Model # S/N
Configuration 2

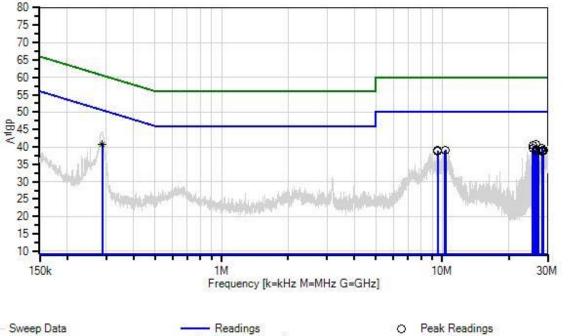
Test Conditions / Notes:

Test Environment Conditions:

Temperature: 22°C Humidity: 50% Pressure: 101.6kPa

Test Method: ANSI C63.10 (2013)

Frequency Range: 0.15-30MHz


Test Setup:

Powered by host device via USB, the host device is powered by a PoE injector connected to AC mains. Tx on low, mid, high channels investigated, worst case reported.

Page 57 of 61 Report No.: 108788-57A

Nalloy, LLC WO#: 108788 Sequence#: 18 Date: 10/19/2023 15.207 AC Mains - Average Test Lead: 120V 60Hz Neutral

× QP Readings Software Version: 5.03.20 Readings

* Average Readings

1 - 15.207 AC Mains - Average

O Peak Readings

Ambient

2 - 15.207 AC Mains - Quasi-peak

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	3/2/2023	3/2/2025
T1	AN02611	High Pass Filter	HE9615-150K-	1/5/2022	1/5/2024
			50-720B		
T2	ANP05546	Cable	Heliax	8/1/2023	8/1/2025
T3	ANP06515	Cable	Heliax	3/1/2023	3/1/2025
T4	ANP06219	Attenuator	768-10	3/23/2022	3/23/2024
	AN01311	50uH LISN-Line1 (L)	3816/2	2/23/2022	2/23/2024
T5	AN01311	50uH LISN-Line2 (N)	3816/2	2/23/2022	2/23/2024

Page 58 of 61 Report No.: 108788-57A

Measur	rement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: Neutral		
#	Freq	Rdng	T1 T5	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	26.607M	31.0	+0.1 +0.0	+0.1	+0.3	+9.1	+0.0	40.6	50.0	-9.4	Neutr
2	25.877M	30.8	+0.1 +0.0	+0.1	+0.3	+9.1	+0.0	40.4	50.0	-9.6	Neutr
3	288.500k Ave	31.5	+0.0 +0.1	+0.0	+0.0	+9.1	+0.0	40.7	50.6	-9.9	Neutr
٨	288.619k	35.4	+0.0 +0.1	+0.0	+0.0	+9.1	+0.0	44.6	50.6	-6.0	Neutr
5	28.325M	30.1	+0.1 +0.0	+0.1	+0.3	+9.1	+0.0	39.7	50.0	-10.3	Neutr
6	25.688M	30.0	+0.1 +0.0	+0.1	+0.3	+9.1	+0.0	39.6	50.0	-10.4	Neutr
7	27.156M	29.5	+0.1 +0.0	+0.1	+0.3	+9.1	+0.0	39.1	50.0	-10.9	Neutr
8	28.628M	29.5	+0.1 +0.0	+0.1	+0.3	+9.1	+0.0	39.1	50.0	-10.9	Neutr
9	10.329M	29.7	+0.0 +0.1	+0.1	+0.1	+9.1	+0.0	39.1	50.0	-10.9	Neutr
10	26.490M	29.5	+0.1 +0.0	+0.1	+0.3	+9.1	+0.0	39.1	50.0	-10.9	Neutr
11	9.529M	29.6	+0.0 +0.1	+0.1	+0.1	+9.1	+0.0	39.0	50.0	-11.0	Neutr
12	10.273M	29.6	+0.0 +0.1	+0.1	+0.1	+9.1	+0.0	39.0	50.0	-11.0	Neutr
13	28.681M	29.3	+0.1 +0.0	+0.1	+0.3	+9.1	+0.0	38.9	50.0	-11.1	Neutr
14	28.408M	29.2	+0.1 +0.0	+0.1	+0.3	+9.1	+0.0	38.8	50.0	-11.2	Neutr
15	28.229M	29.2	+0.1 +0.0	+0.1	+0.3	+9.1	+0.0	38.8	50.0	-11.2	Neutr
16	9.550M	29.3	+0.0 +0.1	+0.1	+0.1	+9.1	+0.0	38.7	50.0	-11.3	Neutr

Page 59 of 61 Report No.: 108788-57A

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter	
4.73 dB	Radiated Emissions	
3.34 dB	Mains Conducted Emissions	
3.30 dB	Disturbance Power	

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS				
	Meter reading	(dBµV)		
+	Antenna Factor	(dB/m)		
+	Cable Loss	(dB)		
-	Distance Correction	(dB)		
-	Preamplifier Gain	(dB)		
=	Corrected Reading	(dBµV/m)		

Page 60 of 61

Report No.: 108788-57A

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE					
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING		
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz		
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz		
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz		
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz		
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz		

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

<u>Average</u>

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

Page 61 of 61 Report No.: 108788-57A