

Test Report (PDF copy) FCC Testing of the **VTFW NA 30" USA Microwave** Oven For **Sharp Manufacturing Company of UK**

Project number C1801	
Author:	
Mr B Renton	
EMC Engineer	
V	n che L
Checked:	10100 M
M Render	
Senior Engineer	
5	M CRo- L
Annroyadı	

Issue	Description	Issue by	Date
1	Issue One	BR	19th December 2014

Disclaimers: The uncertainties are for a confidence probability of not less than 95% This report shall not be reproduced without the prior written approval of York EMC Services (2007) Ltd

Document number 11616/TR/1

Approved:

M Render Senior Engineer

CONTENTS

1	Intro	duction	3
2	Test	Specification	4
	2.1	Environment	4
	2.2	Relevant standards	4
	2.2.1	Emissions	4
	2.2.2	Immunity	4
	2.2.3	Operating modes	4
3	Test	Results	5
	3.1	Power Output measurements (Calorimetric direct method)	5
	3.2	Frequency measurements	6
	3.2	Conducted emissions (150kHz to 30MHz)	8
	3.3	Radiated emissions (100MHz to 1000MHz)	11
	3.4	Radiated emissions (1GHz to 18GHz)	12
	3.5	Radiated emissions (18GHz to 24.5GHz)	14
	3.6	Calculation of Electric Field Strength Limit	15
4	Sum	mary	16
	4.1	Emissions	16
	4.2	Compliance statement	16
5	Appe	endices	17
	5.1	Appendix 1 Conducted emission test method	17
	5.2	Appendix 2 Radiated emission test method (30MHz to 1000MHz)	18
	5.3	Appendix 3 Radiated emission test method (1GHz to 24.5GHz)	19
	5.4	Appendix 4 Conducted emission test results	20
	5.5	Appendix 5 Radiated emission test results	21
	5.6	Appendix 6 Frequency variation measurements	24
	5.7	Appendix 7 EUT test configurations	25
	5.8	Appendix 8 Equipment used	28
	5.9	Appendix 9 Open Area Test Site Description	29
	5.10	Appendix 10 Calibration data	32
	5.11	Appendix 11 Test Report History	33

1 Introduction

Name and address of laboratory: York EMC Services Ltd

Three Lane Ends Business Centre

Methley Road Castleford West Yorkshire WF10 1PN

UKAS testing laboratory N° 1574

Name and address of client: Sharp Manufacturing UK Limited

Davy Way

Llay

Wrexham Clwyd LL12 0PG

The test results contained in this test report relate only to the unit(s) tested.

Equipment under test VTFW 30 inch Glass Fronted Microwave Oven

EUT Model No. MDD30CM/B/TH Serial No. UKM1054

Noise filter board No.FPWBFA496WRKZHV capacitor No.RC-QZA389WRZZTransformer No.RTRN-A041URE0Magnetron No.RV-MZA398WRZZ

Date of receipt 8th October 2014 Number tested One

Date(s) of test(s) 9th, 10th, 14th, 15th, 16th, 17th and 20th October 2014.

5th, 6th and 7th November 2014

Date(s) when EUT was out of laboratory's control None

Personnel witnessing tests

The tests were carried out on an unwitnessed

basis.

Any other relevant information: The operating frequency of the EUT was declared as 2.45GHz;

therefore, as per FCC MP-5, section 2.3(a), measurements were

made to the tenth harmonic, which is 24.5GHz.

2 Test Specification

2.1 Environment

The equipment under test is a microwave oven intended for use in a household environment.

2.2 Relevant standards

2.2.1 Emissions

ANSI C63.4-2009	Conducted disturbance (AC mains port)
CFR 47 Part 18	150kHz-30MHz limit as defined in 18.307 conduction limits
Code of Federal Regulations	Radiated disturbance (enclosure port)
	30MHz-24.5GHz limit as defined in 18.305 Field strength
	limits

Note 1: Testing was limited to the above tests as requested by the customer.

Note 2: The operating frequency of the EUT was declared as 2.45GHz; therefore, measurements were made to the tenth harmonic i.e. 24.5GHz.

2.2.2 Immunity

No Immunity testing required by the customer

2.2.3 Operating modes

The EUT was operated in a total of 1 mode, the selection of which was test dependant.

Mode of operation	Description	Mode No.
	100% microwave power	1

Where the microwave function was being tested, the cavity was loaded with the amount of tap water, as specified within section 4.1 of FCC/OST MP-5 (1986), in a 150mm diameter borosilicate glass container, placed in the centre of the turntable unless otherwise specifically stated. Water was changed periodically to maintain the level and prevent the water boiling.

3 Test Results

3.1 Power Output measurements (Calorimetric direct method)

Mode of operation	Description	Mode No.
	100% microwave power	1

Test standard	Test description	Class/limit
MP-5 1986, section 4.3.	Power output measurements for	N/A
Test method based upon	microwave ovens	
IEC 60705:2010,		
Section 8.		

The Output power was measured and declared by the manufacturer as 895W.

Note 1: The output power used to determine the value regarding out of band field strength limits, under the specified section of 18.305, this was given by the manufacturer as 895W this figure was used to produce the limit line for electric field strength measurements see section 3.6 of this test report.

3.2 Frequency measurements

Mode of operation	Description	Mode No.
	100% microwave power	1

Test standard	Test description	Class/limit
MP-5 1986, section 4.5.	Frequency measurements for microwave	As defined in CFR 18.301
	magnetron fundamental frequency	2,450MHz ±50MHz

3.2.1 Frequency variation over time MP-5 section 4.5 (a)

Time (Mins)	Measured Frequency (MHz)
Start of Test	2464
6	2458
12	2464
18	2464
24	2464
30	2468
36	2468
42	2472
48	2466
54	2464
60	2466

Note 1: The test was performed using 1500milliletres of tap water in a 150mm diameter cylindrical glass vessel placed in the centre of the oven. The test duration was defined by the length of time taken by the microwave to reduce the load by means of evaporation to approximately 20% of the start level. Frequency measurements are shown in figure 5.6.1. The frequency is plotted within the allowable band of variation for the ISM frequency of 2450MHz ± 50MHz i.e. 2400MHz to 2500MHz.

3.2.2 Frequency variation over supply voltage variation MP-5 section 4.5 (b)

Supply Voltage (V) at 60Hz	Frequency (MHz)
96	2462.2
150	2460.4

Note 1: The test was performed using 1500milliletres of tap water in a 150mm diameter cylindrical glass vessel placed in the centre of the oven. The microwave had been operating for 10mins prior to the test start and the load used was started at room temperature. The supply voltage was lowered to 80% of the nominal value and the EUT allowed enough time to respond to the voltage change prior to recording the frequency. The test was then repeated with the supply voltage at 125% of the nominal value.

3.2 Conducted emissions (150kHz to 30MHz)

Mode of operation	Description	Mode No.
	100% microwave power	1

Test standard	Test description	Class/limit	
CFR 47 part 18	Conducted emissions ac power	As defined in 18.307	

Results	Figure	Result	Comments
	C01	Pass	Neutral line
	C02	Pass	Live line

C01 QP Results	Freq (MHz)	Line (L or N)	QP level (dBµV)	Limit (dBµV)	Comments
(Max 6)	0.185	N	38.7	64.3	Pass
	0.825	N	30.3	56	Pass
	1.050	N	31.3	56	Pass
	10.665	N	34.7	60	Pass
	13. 805	N	36.3	60	Pass
	22.060	N	35.8	60	Pass

C01 AV Results	Freq (MHz)	Line (L or N)	AV level (dΒμV)	Limit (dBµV)	Comments
(Max 6)	0.185	N	29. 9	54.3	Pass
	0.785	N	23.2	46	Pass
	0.825	N	24.9	46	Pass
	0.975	N	23.0	46	Pass
	1.050	N	25.6	50	Pass
	13.805	N	26.3	50	Pass

C02 QP Results	Freq (MHz)	Line (L or N)	QP level (dBµV)	Limit (dBµV)	Comments
(Max 6)	0.19	L	37.6	64	Pass
	1.050	L	26.7	56	Pass
	10.510	L	37.9	60	Pass
	11.710	L	26.7	60	Pass
	13.895	L	38.3	60	Pass
	22.060	L	28.9	60	Pass

C02 AV Results	Freq (MHz)	Line (L or N)	AV level (dΒμV)	Limit (dBµV)	Comments
(Max 6)	0.190	L	30.0	54	Pass
	0.825	L	20.4	46	Pass
	1.050	L	20.7	46	Pass
	10.510	L	23.5	50	Pass
	11.710	L	19.3	50	Pass
	13.895	L	27.4	50	Pass

Note 1: The graphical data for this test can be found in Appendix 4 of this report.

3.3 Radiated emissions (100MHz to 1000MHz)

Mode of operation	Description	Mode No.
	100% microwave power	1

Test standard	Test description	Class/limit
CFR 47 Part 18	Radiated emissions	As defined in 18.305

Results	Figure	Result	Comments
	R01	Pass	None

Frequency (MHz)	Polarity (H/V)	Height (m)	Angle (degrees)	Detector Type	Meas distance (m)	Spec distance (m)	E field @ spec distance (dBuV/m)	E field Limit (dBuV/m)	Margin (dB)	Result
102.420	V	1	180	QP	3	300	-12.5	25.9	-38.4	Compliant
102.600	V	1	0	QP	3	300	-11.3	25.9	-37.2	Compliant
102.780	V	1	270	QP	3	300	-12.4	25.9	-38.3	Compliant
103.200	V	1	180	QP	3	300	-12.0	25.9	-37.9	Compliant
103.560	V	1	180	QP	3	300	-12.8	25.9	-38.7	Compliant
303.920	V	1	270	QP	3	300	-12.9	25.9	-38.8	Compliant
304.040	V	1	0	QP	3	300	-12.1	25.9	-38.0	Compliant
304.520	V	1	0	QP	3	300	-12.8	25.9	-38.7	Compliant
906.960	V	1	0	QP	3	300	-17.0	25.9	-42.9	Compliant
918.660	V	1	270	QP	3	300	-16.7	25.9	-42.6	Compliant
920.160	V	1	0	QP	3	300	-16.7	25.9	-42.6	Compliant
920.520	V	1	90	QP	3	300	0.3	25.9	-25.6	Compliant
921.240	V	1	90	QP	3	300	-16.9	26.9	-43.8	Compliant

Table 3.3.1 Final Quasi peak measurements

Note 1: The graphical data of this test can be found in Appendix 5 of this report.

3.4 Radiated emissions (1GHz to 18GHz)

Mode of operation	Description	Mode No.
	100% microwave power	1

Test standard	Test description	Class/limit
CFR 47 Part 18	Radiated emissions	As defined in 18.305

Results	Figure	Figure Result Comments			
	R02	N/A	Measurements were performed in an anechoic chamber.		
	R03	Pass	These tests were performed on the open area test site.		

Frequency (GHz)	1 Analyser Level (dBµV)	2 AF (dB/m)	3 Cable loss (dB)	4 Pre Amplifier Gain (dB)	(1+2+3-4) Average detector Result @3m dBµV/m	Limit@3m dBµV/m
2.209	44.83	27.84	2.22	35.93	38.96	66.11
2.240	42.05	27.84	2.22	35.93	36.18	66.11
2.279	43.52	27.84	2.22	35.93	37.65	66.11
2.384	42.65	28.03	2.22	35.93	36.97	66.11
2.548	43.25	28.29	2.55	35.93	38.16	66.11
2.753	42.30	29.12	2.55	35.93	38.04	66.11
4.332	40.47	32.10	3.31	35.50	40.38	66.11
4.364	42.69	32.10	3.31	35.50	42.60	66.11
4.863	37.83	32.73	4.08	35.50	39.14	66.11
4.979	37.31	33.23	4.08	35.50	39.12	66.11
8.601	40.73	37.40	5.62	35.77	47.98	66.11

Table 3.4.1 Horizontal measurements

Frequency (GHz)	1 Analyser Level (dBµV)	2 AF (dB/m)	3 Cable loss (dB)	4 Pre Amplifier Gain (dB)	(1+2+3-4) Average detector Result @3m dBµV/m	Limit@3m dBµV/m
2.158	44.30	27.85	2.22	35.93	38.44	66.11
2.294	43.38	27.84	2.22	35.93	37.51	66.11
2.351	40.96	28.03	2.22	35.93	35.28	66.11
2.506	43.20	28.29	2.55	35.93	38.11	66.11
2.518	41.95	28.29	2.55	35.93	36.86	66.11
2.557	41.49	28.29	2.55	35.93	36.40	66.11
2.589	40.78	28.29	2.55	35.93	35.69	66.11
2.610	40.74	28.63	2.55	35.93	35.99	66.11
2.619	40.67	28.63	2.55	35.93	35.92	66.11
2.693	42.09	28.63	2.55	35.93	37.34	66.11
2.814	40.45	29.01	2.55	35.93	36.08	66.11
4.332	41.59	32.10	3.31	35.50	41.50	66.11
4.829	35.88	32.73	4.08	35.50	37.19	66.11
4.876	36.59	32.73	4.08	35.50	37.90	66.11
4.916	41.11	33.23	4.08	35.50	42.92	66.11
5.185	38.11	33.62	4.36	35.31	40.78	66.11
8.588	36.65	37.34	5.62	35.77	43.84	66.11

Table 3.4.1 Vertical measurements

Note 1: The tests in the above table carried out between 1GHz to 2GHz and 3GHz to 18GHz were performed with a 2.4GHz notch filter connected, this was to avoid spurious harmonics from the magnetron fundamental frequency of 2.45GHz appearing in the measuring instrumentation. The bands between 2GHz and 3GHz were performed without the filter. Testing was performed over the frequency ranges 1000MHz to 18000MHz. Results were compared with the limit line as defined in 18.305 and scaled for a measurement distance of 3m.

Note 2: The above results >1GHz were recorded using an average detector.

3.5 Radiated emissions (18GHz to 24.5GHz)

Mode of operation	Description	Mode No.
	100% microwave power	1

Test standard	Test description	Class/limit	
CFR 47 Part 18	Radiated emissions	As defined in 18.305	

Results	Figure	Result	Comments
	R04	Pass	Antenna Vertical, 3m measurement distance.
	R05	Pass	Antenna Horizontal, 3m measurement distance.

Note 1: The EUT was rotated from 0° to 360° and back to 0° whilst the peak emissions were recorded, with the antenna first in horizontal polarisation. This was then repeated with the antenna in vertical polarisation.

Note 2: No emissions were detected above the noise floor of the anechoic chamber when investigated at a distance of 3m.

Note 3: The graphical data can be found in Appendix 5 of this test report.

3.6 Calculation of Electric Field Strength Limit

ISM equipment operating on a frequency band specified in Section 18.301 of the FCC Rules is permitted unlimited radiated energy in the band specified for that frequency.

The limit of field strength levels of emissions that lie outside the ISM bands is specified in Section 18.305 of the FCC rules as follows:

a) Where the operating frequency is outside of an ISM frequency band and where the output power is greater than 500W at a measurement distance of 300m the limit for radiated field strength outside of the ISM bands is:

Limit (
$$\mu$$
V/m) at 300m = 15 $\sqrt{\frac{P}{500}}$

Where *P* is the measured output power of the oven in w (refer to section 3.1 of this test report).

b) Where the operating frequency is inside an ISM frequency band and where the output power is greater than 500W at a measurement distance of 300m the limit for radiated field strength outside of the ISM bands is:

Limit (
$$\mu$$
V/m) at 300m = 25 $\sqrt{\frac{P}{500}}$

Where *P* is the measured output power of the oven in w (refer to section 3.1 of this test report).

In units of $dB\mu V/m$, and at a measurement distance of 3m the limit is calculated as (using the lower of the above limits):

Limit (dB
$$\mu$$
V/m) at 3m = 20 log₁₀ $\left(15\sqrt{\frac{P}{500}}\right) + 20 \log_{10} \left(\frac{300}{3}\right)$

The measured oven power P, was 895W (refer to section 3.1 of this test report). Using this measured value of P in above formula this gives a field strength limit of 66.11dB μ V/m at a measurement distance of 3m.

The electric field strength between 100MHz and 24.5GHz was measured at 3m and compared to this limit calculated at 3m.

Note: Section 4.6.1 of FCC Document MP5 dated 1986 states that a conservative value of the field strength limit at closer distances than 300m may be calculated using inverse linear variation of field with distance.

4 Summary

4.1 Emissions

Standard	Test Description	Result
CFR 47 Part 18 (10-1-08 edition)	Conducted disturbance (AC mains port) 150kHz-30MHz, Limit as defined in 18.307	Pass
	Radiated disturbance (enclosure port) 30MHz-24.5GHz, Limit as defined in 18.305	Pass

4.2 Compliance statement

The Wolf VTFW NA 30 Inch Glass microwave oven, as tested was shown to meet the requirements of the tests listed in 4.1 of this report.

5 Appendices

5.1 Appendix 1 Conducted emission test method

5.1.1 Test information

Standard	CFR 47 Part 18 (10-1-08 edition)		
YES Test Method Based upon CEP19			
Measurement	+/- 2.38dB		
uncertainty			
Equipment Used	Rohde & Schwarz ESHS10 receiver		
	Rohde & Schwarz ESH3-Z5 LISN		
	Chase 9206 transient limiter		

The conducted emissions from the ac power port were assessed from both the live and neutral lines with respect to earth.

For this test the EUT was placed in a screened room and the test carried out using equipment compliant to CISPR 16.

Following an initial measurement made with a peak detector, any disturbances within 10dB of the limit line were measured with a quasi-peak and average detector respectively.

5.2 Appendix 2 Radiated emission test method (30MHz to 1000MHz)

5.2.1 Test information

Standards	CFR 47 Part 18
YES Test Method	CEP23
Measurement	±5dB
uncertainty	
Equipment Used	Rohde & Schwarz receiver
	Bilog antenna
	Rohde & Schwarz positioning mast and controller
	EMCO 2m diameter turntable and controller
	80cm non conducting test table

Pre-compliance measurement in an anechoic chamber

The radiated emissions from the enclosure port of the EUT were initially assessed in an anechoic chamber at a test distance of 3m, using an X Wing Bilog antenna at a fixed height of 1.5m. The measurement was made using a peak detector and the emissions were assessed with the antenna in both horizontal and vertical polarisation on the four faces of the EUT i.e. 0°, 90°, 180° and 270°. The purpose of these preliminary investigations is to highlight any frequencies within 15dB of the applied limit line. Any identified frequencies inside the anechoic chamber are then maximised on the open area test site.

Compliance measurement on the Open Area Test Site (OATS)

Any disturbances within 10dB of the limit line, or as a minimum the 10 highest values found during the anechoic chamber scans, were measured with a quasi-peak detector on the OATS using equipment compliant with CISPR16. The EUT was rotated 360°, the antenna was orientated in both horizontal and vertical polarisation with the mast scanned from 1m to 4m to maximise the Quasi-Peak values at the identified frequencies.

5.3 Appendix 3 Radiated emission test method (1GHz to 24.5GHz)

5.3.1 Test information

Standards	CFR 47 Part 18 (10-1-08 edition)			
YES Test Method	CEP27			
Measurement	±4.86dB			
uncertainty				
Equipment Used	Anritsu spectrum analyser			
	HP Pre-amplifier			
	Horn antenna			
	EMCO turntable and controller			
	80cm non conducting (plastic) table			

Pre-compliance measurement in an anechoic chamber

The radiated emissions from the enclosure port of the EUT were initially assessed in an anechoic chamber at a test distance of 3m, using a horn antenna at a fixed height, directed towards the radiation centre of the EUT. The measurement was made using a peak detector and the emissions were assessed with the antenna in both horizontal and vertical polarisation with the EUT rotated 360° in 20° steps.

Compliance measurement on the Open Area Test Site (OATS)

The highest values found during the anechoic chamber scans, were measured with an average detector on the OATS. The EUT was rotated 360°, the antenna was orientated in both horizontal and vertical polarisation with the mast scanned from 1m to 4m to maximise the values at the identified frequencies.

5.4 Appendix 4 Conducted emission test results

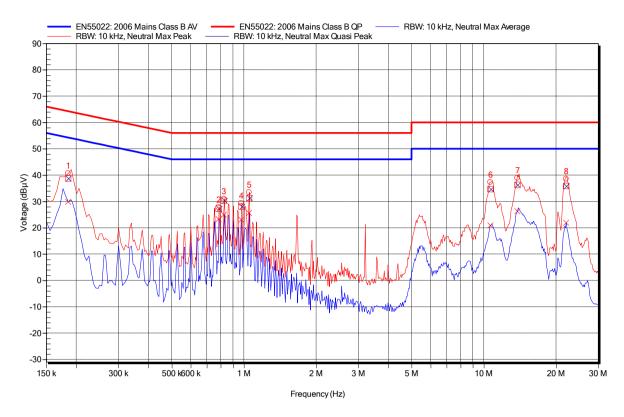


Figure 5.4.1 Conducted emissions results, (C01) Neutral Line.

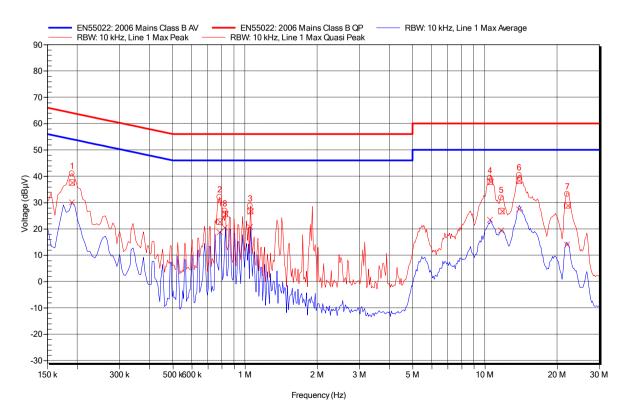


Figure 5.4.2 Conducted emissions result, (C02) Live line.

5.5 Appendix 5 Radiated emission test results

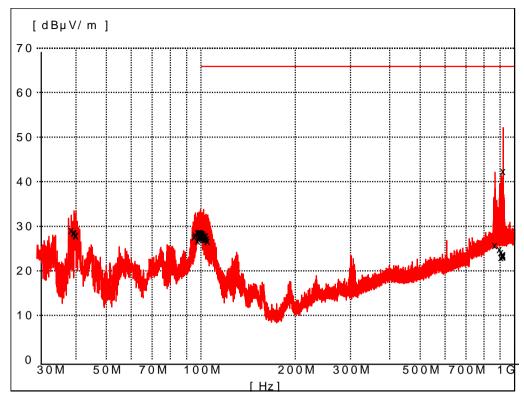


Figure 5.5.1 Radiated emissions results (R01, Peak Detector Chamber – information only).

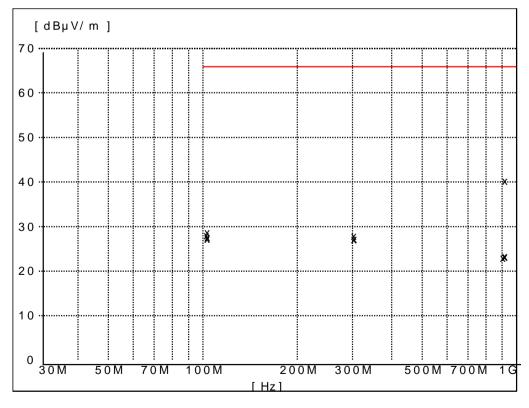


Figure 5.5.2 Radiated emissions results (R02, OATS) – Maximised Quasi Peak data.

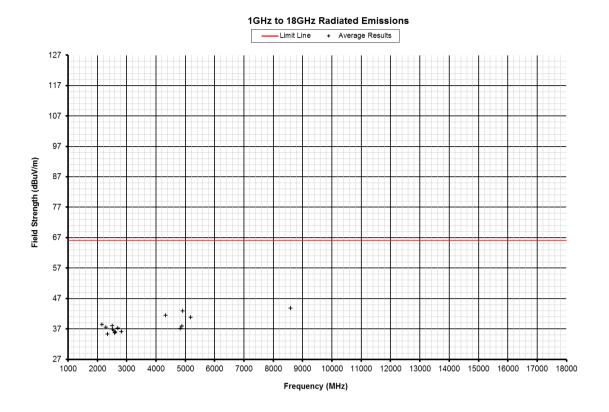


Figure 5.5.3 Radiated emissions maximised Average results Vertical 1-18GHz (R03)

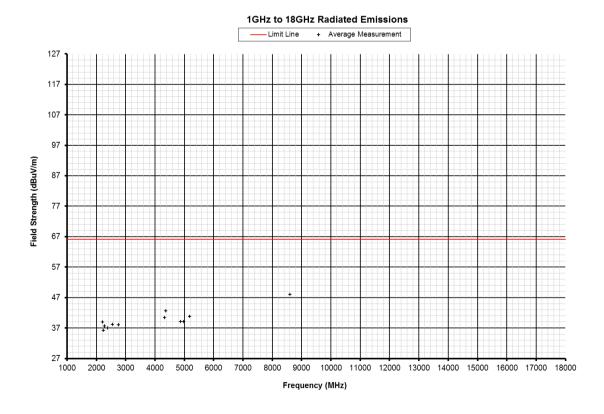


Figure 5.5.4 Radiated emissions Maximised Average results horizontal 1-18GHz (R04)

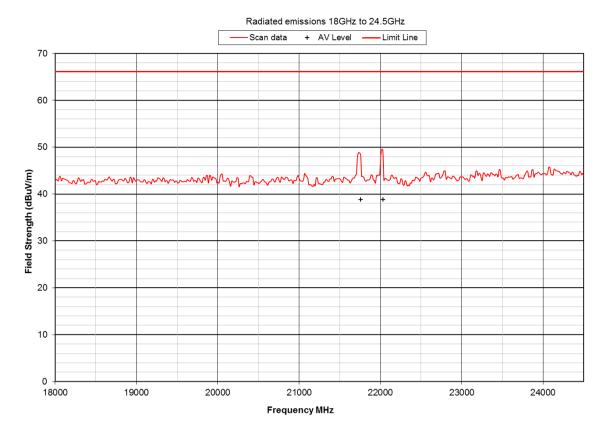


Figure 5.5.5 Radiated emissions, Peak scan, Vertical, 18GHz to 24.5GHz

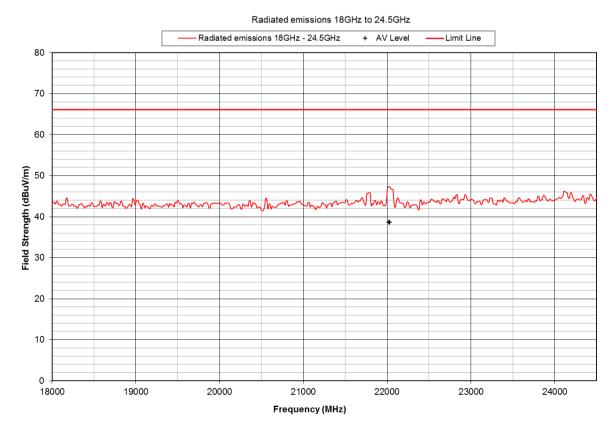


Figure 5.5.6 Radiated emissions, Peak scan, Horizontal, 18GHz to 24.5GHz

Note: The graphs shown in this Appendix contain the limit line extrapolated for a 3m measurement distance

5.6 Appendix 6 Frequency variation measurements

Frequency variation over time

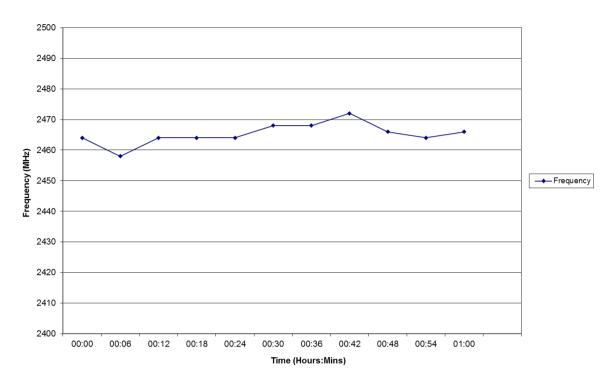


Figure 5.6.1 Frequency variation over time.

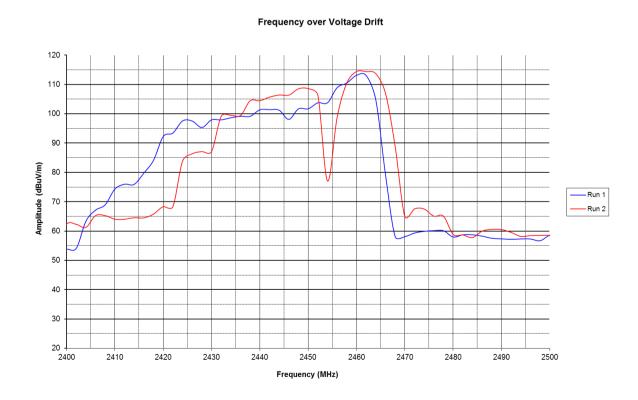


Figure 5.6.2 Frequency variation over voltage.

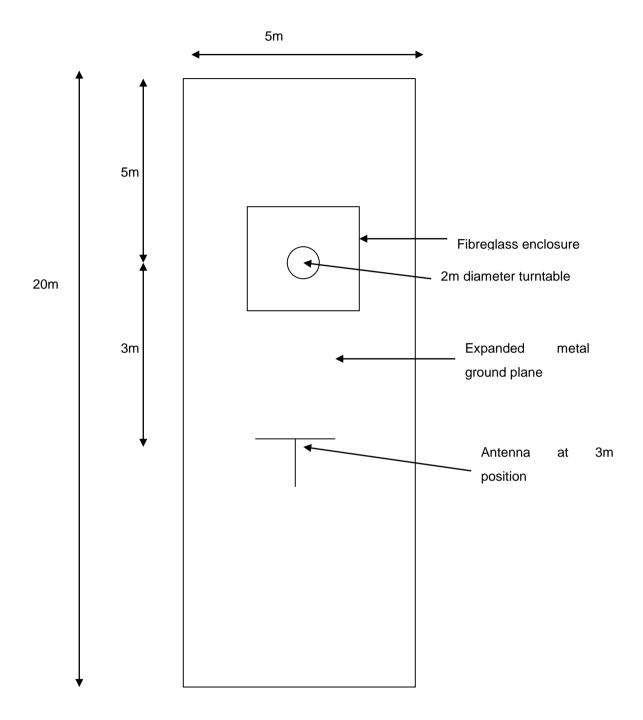
5.7 Appendix 7 EUT test configurations

Photograph 5.7.1 Conducted emissions testing.

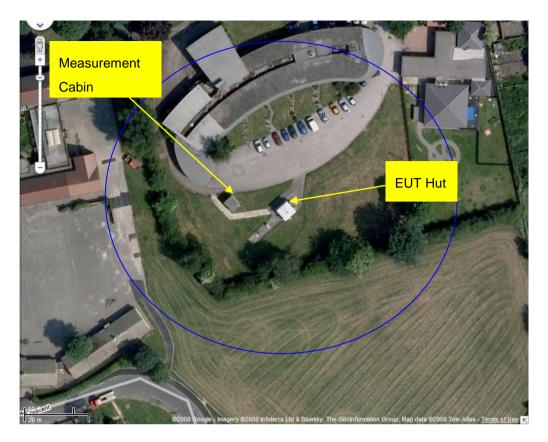
Photograph 5.7.2 Radiated emissions testing 30MHz-1GHz (Anechoic chamber)

Photograph 5.7.3 Radiated emissions testing above 1GHz (Anechoic chamber)

Photograph 5.7.4 Radiated emissions testing above 18GHz (Anechoic chamber)


5.8 Appendix 8 Equipment used

Equipment	No.	Cal Type	Used	Equipment	No.	Cal Type	Used
AR FM2000 Field Probe Set	78211	UKAS		R&S SMT06 Signal Generator	78653	UKAS	
Blackstar Function Generator	78200	In-house		Schaffner NSG1025 EFT/B Gen	78136	UKAS	
Chase Van Veen Loop	78217	In-house		Schaffner NSG2025 EFT/B Gen	78006	UKAS	
Chase CBL 6111A Bilog Antenna	78167	UKAS		Schaffner NSG2050 + PNW2055	78178	UKAS	
Chase CBL 6112B Bilog Antenna	78708	UKAS	✓	R&S SMT06 Signal Generator	79124	UKAS	
Chase CBL 6140 X-Wing Antenna	78309	In-house	✓	Lem-Heme Current Probe	78482	NCS	
Chase CFL 9206 Transient Limiter	78101	In-house		Schaffner NSG435 ESD Simulator	78008	UKAS	
Chase CFL 9206 Transient Limiter	78087	In-house	✓	Schaffner INA 172 surge CDN	78462	In-house	
Chase HLA6120 Loop Antenna	78128	NPL		Schaffner NSG650 + CDN113	78478	UKAS	
Chase MDS21 Absorbing Clamp	78195	UKAS		Schaffner NSG2050 + PNW2056	78458	UKAS	
Fischer FCC-801-M1-16 CDN	78240	UKAS		Schaffner voltage probe CVP2200	78596	UKAS	
Fischer FCC-801-M2-25 CDN	78241	UKAS		Schaffner current probe SMZ11	78569	UKAS	
Fischer FCC-801-M2-16 CDN	78400	UKAS		Schaffner current probe	79020	UKAS	
Fischer FCC-801-M3-16 CDN	78044	UKAS		Schaffner 40 ohm load	78570	In-house	
Fischer FCC-801-M3-25 CDN	78242	UKAS		Schaffner Chase CBL6111C	78707	UKAS	
Fischer FCC-801-M4-25 CDN	78045	UKAS		Schaffner Chase CBL6112B	78708	Manufac	
Emco 3115 Horn Antenna	78347	UKAS	✓	Schaffner INA 175 surge CDN	78461	In-house	
3116 40GHz Horn Antenna	78951	UKAS	✓	Solar 9108-IN Current Probe	78545	UKAS	
Fluke 45 Digital Mutimeter	78655	UKAS		California Inst PACS-1 analyser	79135	UKAS	
Fluke 85 Digital Mutimeter	78375	UKAS		California Inst 5000 iX Power supply	79136	UKAS	✓
Gould 475 Digital Oscilloscope	78057	UKAS		Fischer FCC-801-M3-25 CDN	79008	UKAS	
HP LF spectrum analyser	79129	UKAS		Fischer FCC-801 M1-16 CDN	79001	UKAS	
HP 8449B Pre-amplifier	C0221	UKAS	✓	EM Test UCS 500	79059	UKAS	
Anritsu MS2667C Analyser	78490	UKAS	✓	CDN 118	78460	NCS	
2.4GHz notch filter	79178	UKAS	✓	Schaffner clamp	79045	In-house	
ISO-TECH 9053 LCR meter	78487	NCS		Keytek AC line qualifier	78350	UKAS	
Keytek EMC Pro	78348	UKAS		Spitzenberger & Spies	78131	NCS	
Keytek MZ-15/EC ESD Simulator	78133	UKAS		Arb Waveform Generator	79116	In-house	
LEM HEME clamp	78483	NCS		6dB attenuator	79073	In-house	
Intek Function Generator	78673	UKAS		HP Dynamic Signal Analyzer	79121	In-house	
Rolfe Heine NNB 32A LISN	78205	UKAS	✓	Magnetic immunity loop (multi)	78722	In-house	
R&S ESH3-Z5 LISN	78119	UKAS		Wandel & Golterman EFA-2	78551	Manufac	
R&S ESHS 10 Receiver	78035	UKAS	✓	Schaffner EFT/B clamp	79184	In-house	
R&S ESHS10 Receiver	79182	UKAS		Wandel & Golterman EMC 20	79005	Manufac	
R&S ESVS 30 Receiver	79183	UKAS	✓	AR50S/G4A Amplifier	79095	NCS	
R&S ESVS 10 Receiver	78036	UKAS		AR FM2000 Field Probe Set	78108	UKAS	
R&S ESVS 30 Receiver	78107	UKAS	✓	650V Transformer	78123	In-House	
Schaffner Profline	78374	UKAS		HCP	79099	In-house	
Variac	78192	In-house		VCP	79102	In-house	
MV 2616	79149	In-house		EFT 503	79132	UKAS	
Schaffner Discontinuous Analyser	79215	UKAS		Fischer clamp	78043	In-house	
Variac	78688	In-house		Thermometer and K-Type	79242	UKAS	✓
				Thermocouple		1	


NCS-Not on calibration schedule

5.9 Appendix 9 Open Area Test Site Description

The Open Area Test Site (OATS) is constructed of welded expanded galvanised steel "Expamet" with major aperture size of approximately 28mm. The ground plane was approximately 20mx5m fitted with a 2m diameter flush mounted turntable, covered with a fibreglass enclosure approximately 4.3m x 4.3m x 3.5m high. This enclosure is fitted with double doors at both the front and rear, and has an apex height of approximately 3.5m. The site was fitted with a Rohde and Schwarz antenna mast, which was bolted to the ground plane at a 3m measurement position. No other objects were located within the CISPR ellipse. A "portacabin" type building (approximately 3.9mx3.3m was located to one side of the site, approximately 8.6m from the edge of the ground plane and containing the measuring equipment.

Open Area Test Site Dimensions

Open area test site, via Google, showing all structures within the estimated 5 times the distance between the measuring set and the EUT.

5.10 Appendix 10 Calibration data

Yes No.	Equipment description	Calibration Date	Calibration Frequency
78035	9kHz-30MHz R&S ESHS 10 Receiver	23/12/2013	12 Months
78205	Rolfe Heine 32A LISN	26/07/2013	24 Months
78087	CFL9206 Transient limiter	09/12/2013	12 Months
78107	30MHz-1000MHz R&S ESVS 30 Receiver	27/12/2013	12 Months
78309	Chase X-Wing Bilog antenna- Used for initial pre-compliance chamber measurements	09/01/2013	12 Months
78708	CBL6112B Green Bilog antenna – used for OATS tests	17/12/2013	12 Months
78347	EMCO 3115 horn antenna	02/01/2014	24 Months
78951	EMCO 3116 40GHz horn antenna	14/02/2013	24 Months
78490	Anritsu MS2667C Spectrum analyser	27/12/2013	12 Months
C0221	HP 8449B Pre-amplifier	26/11/2012	24 Months
79178	Microtronics BRM13134 2.4GHz Notch filter	23/12/2013	24 Months
79242	Digital Thermometer and K-Type Thermocouple	01/10/2013	12 Months

5.11 Appendix 11 Test Report History

Issue	Modification details	
1	Original issue of the test report	

Test Report (PDF copy) FCC Testing of the VTFW NA 24 Inch Stainless USA Microwave Oven For Sharp Manufacturing Company of UK

Issue	Description	Issue by	Date	
1	Issue One	BR	19th December 2014	

Disclaimers: The uncertainties are for a confidence probability of not less than 95% This report shall not be reproduced without the prior written approval of York EMC Services (2007) Ltd

CONTENTS

1	Intro	duction	3
2	Test	Specification	4
	2.1	Environment	4
	2.2	Relevant standards	4
	2.2.1	Emissions	4
	2.2.2	lmmunity	4
	2.2.3	Operating modes	4
3	Test	Results	5
	3.1	Power Output measurements (Calorimetric direct method)	5
	3.2	Frequency measurements	6
	3.2	Conducted emissions (150kHz to 30MHz)	8
	3.3	Radiated emissions (100MHz to 1000MHz)	11
	3.4	Radiated emissions (1GHz to 18GHz)	12
	3.5	Radiated emissions (18GHz to 24.5GHz)	14
	3.6	Calculation of Electric Field Strength Limit	15
4	Sum	ımary	16
	4.1	Emissions	16
	4.2	Compliance statement	16
5	App	endices	17
	5.1	Appendix 1 Conducted emission test method	17
	5.2	Appendix 2 Radiated emission test method (30MHz to 1000MHz)	18
	5.3	Appendix 3 Radiated emission test method (1GHz to 24.5GHz)	19
	5.4	Appendix 4 Conducted emission test results	20
	5.5	Appendix 5 Radiated emission test results	21
	5.6	Appendix 6 Frequency variation measurements	24
	5.7	Appendix 7 EUT test configurations	25
	5.8	Appendix 8 Equipment used	27
	5.9	Appendix 9 Open Area Test Site Description	28
	5.10	Appendix 10 Calibration data	30
	5.11	Appendix 11 Test Report History	31

1 Introduction

Name and address of laboratory: York EMC Services Ltd

Three Lane Ends Business Centre

Methley Road Castleford West Yorkshire WF10 1PN

UKAS testing laboratory N° 1574

Name and address of client: Sharp Manufacturing UK Limited

Davy Way

Llay

Wrexham Clwyd LL12 0PG

The test results contained in this test report relate only to the unit(s) tested.

Equipment under test Microwave Oven

EUT Model No. MDD24TE/S/TH **Serial No.** UKM1055

Noise filter board No.FPWBFA496WRKZHV capacitor No.RC-QZA389WRZZTransformer No.RTRN-A041URE0Magnetron No.RV-MZA398WRZZ

Date of receipt 8th October 2014 Number tested One

Date(s) of test(s) 9th, 10th, 14th, 15th, 16th, 17th and 20th October 2014.

5th, 6th and 7th November 2014

Date(s) when EUT was out of laboratory's control None

Personnel witnessing tests The tests were carried out on an unwitnessed

basis.

Any other relevant information: The operating frequency of the EUT was declared as 2.45GHz;

therefore, as per FCC MP-5, section 2.3(a), measurements were

made to the tenth harmonic, which is 24.5GHz.

2 Test Specification

2.1 Environment

The equipment under test is a microwave oven intended for use in a household environment.

2.2 Relevant standards

2.2.1 Emissions

ANSI C63.4-2009 CFR 47 Part 18	Conducted disturbance (AC mains port) 150kHz-30MHz limit as defined in 18.307 conduction limits
Code of Federal Regulations	Radiated disturbance (enclosure port) 30MHz-24.5GHz limit as defined in 18.305 Field strength
	limits

Note 1: Testing was limited to the above tests as requested by the customer.

Note 2: The operating frequency of the EUT was declared as 2.45GHz; therefore, measurements were made to the tenth harmonic i.e. 24.5GHz.

2.2.2 Immunity

No Immunity testing required by the customer

2.2.3 Operating modes

The EUT was operated in a total of 1 mode, the selection of which was test dependant.

Mode of operation	Description	Mode No.
	100% microwave power	1

Where the microwave function was being tested, the cavity was loaded with the amount of tap water, as specified within section 4.1 of FCC/OST MP-5 (1986), in a 150mm diameter borosilicate glass container, placed in the centre of the turntable unless otherwise specifically stated. Water was changed periodically to maintain the level and prevent the water boiling.

3 Test Results

3.1 Power Output measurements (Calorimetric direct method)

Mode of operation	Description	Mode No.
	100% microwave power	1

Test standard	Test description	Class/limit
MP-5 1986, section 4.3.	Power output measurements for	N/A
Test method based upon	microwave ovens	
IEC 60705:2010,		
Section 8.		

The Output power was measured and declared by the manufacturer as 882W.

Note 1: The output power used to determine the value regarding out of band field strength limits, under the specified section of 18.305. This was declared by the manufacturer as 882W. This figure was used to produce the limit line for electric field strength measurements, see section 3.6 of this test report.

3.2 Frequency measurements

Mode of operation	Description	Mode No.
	100% microwave power	1

Test standard	Test description	Class/limit
MP-5 1986, section 4.5.	Frequency measurements for microwave	As defined in CFR 18.301
	magnetron fundamental frequency	2,450MHz ±50MHz

3.2.1 Frequency variation over time MP-5 section 4.5 (a)

Time (Mins)	Measured Frequency (MHz)
Start of Test	2456.4
6	2455.6
12	2463.0
18	2464.0
24	2464.2
30	2459.0
36	2463.6
42	2463.8
48	2463.8
54	2463.2
60	2464.8

Note 1: The test was performed using 1500milliletres of tap water in a 150mm diameter cylindrical glass vessel placed in the centre of the oven. The test duration was defined by the length of time taken by the microwave to reduce the load by means of evaporation to approximately 20% of the start level. Frequency measurements are shown in figure 5.6.1. The frequency is plotted within the allowable band of variation for the ISM frequency of 2450MHz ± 50MHz i.e. 2400MHz to 2500MHz.

3.2.2 Frequency variation over supply voltage variation MP-5 section 4.5 (b)

Supply Voltage (V) at 60Hz	Frequency (MHz)
96	2452.0
150	2457.4

Note 1: The test was performed using 1500milliletres of tap water in a 150mm diameter cylindrical glass vessel placed in the centre of the oven. The microwave had been operating for 10mins prior to the test start and the load used was started at room temperature. The supply voltage was lowered to 80% of the nominal value and the EUT allowed enough time to respond to the voltage change prior to recording the frequency. The test was then repeated with the supply voltage at 125% of the nominal value.

3.2 Conducted emissions (150kHz to 30MHz)

Mode of operation	Description	Mode No.
	100% microwave power	1

Test standard	Test description	Class/limit
CFR 47 part 18	Conducted emissions ac power	As defined in 18.307

Results	Figure	Result	Comments	
	C01	Pass	Neutral line	
	C02	Pass	Live line	

C01 QP Results	Freq (MHz)	Line (L or N)	QP level (dBµV)	Limit (dBµV)	Comments
(Max 6)	0.210	N	29.0	63.2	Pass
	0.825	N	30.6	56	Pass
	1.050	N	32.3	56	Pass
	10.510	N	37.7	60	Pass
	13.815	N	38.0	60	Pass
	21.910	N	34.6	60	Pass

C01 AV Results	Freq (MHz)	Line (L or N)	AV level (dΒμV)	Limit (dBµV)	Comments
(Max 6)	0.790	N	23.4	46	Pass
	0.825	N	25.4	46	Pass
	0.860	N	24.9	46	Pass
	0.900	N	22.8	46	Pass
	1.050	N	26.4	46	Pass
	13.815	N	28.3	50	Pass

C02 QP Results	Freq (MHz)	Line (L or N)	QP level (dBµV)	Limit (dBµV)	Comments
(Max 6)	0.185	L	46.0	64.3	Pass
	0.200	L	39.7	63.6	Pass
	10.625	L	37.9	60	Pass
	11.615	L	29.1	60	Pass
	13.785	L	38.1	60	Pass
	21.985	L	27.3	60	Pass

C02 AV Results	Freq (MHz)	Line (L or N)	AV level (dBµV)	Limit (dBµV)	Comments
(Max 6)	0.185	L	32.1	54.3	Pass
	0.200	L	28.3	53.6	Pass
	1.050	L	21.4	46	Pass
	10.625	L	25.2	50	Pass
	11.615	L	22.3	50	Pass
	13.785	L	27.6	50	Pass

Note 1: The graphical data for this test can be found in Appendix 4 of this report.

3.3 Radiated emissions (100MHz to 1000MHz)

Mode of operation	Description	Mode No.
	100% microwave power	1

Test standard	Test description	Class/limit	
CFR 47 Part 18	Radiated emissions	As defined in 18.305	

Results	Figure	Figure Result Comments						
	R01	N/A	Measurements were performed in an anechoic chamber.					
	R02	Pass	These tests were performed on the open area test site.					

Frequency (MHz)	Polarity (H/V)	Height (m)	Angle (degrees)	Detector Type	Meas distance (m)	Spec distance (m)	E field @ spec distance (dBuV/m)	E field Limit (dBuV/m)	Margin (dB)	Result
943.000	V	1	180	QP	3	300	-10.7	25.9	-36.6	Compliant
943.140	V	1	0	QP	3	300	-10.6	25.9	-36.5	Compliant
944.820	V	1	270	QP	3	300	-10.6	25.9	-36.5	Compliant
946.320	V	1	180	QP	3	300	-10.5	25.9	-36.4	Compliant
947.280	V	1	180	QP	3	300	-10.5	25.9	-36.4	Compliant
947.460	V	1	270	QP	3	300	-10.5	25.9	-36.4	Compliant
948.720	V	1	0	QP	3	300	-10.5	25.9	-36.4	Compliant
949.980	V	1	0	QP	3	300	-10.5	25.9	-36.4	Compliant
950.040	V	1	0	QP	3	300	-10.5	25.9	-36.4	Compliant
952.860	V	1	270	QP	3	300	-10.4	25.9	-36.3	Compliant
953.520	V	1	0	QP	3	300	-10.7	25.9	-36.6	Compliant
954.540	V	1	90	QP	3	300	-10.6	25.9	-36.5	Compliant

Table 3.3.1 Final Quasi peak measurements

Note 1: The graphical data of this test can be found in Appendix 5 of this report.

3.4 Radiated emissions (1GHz to 18GHz)

Mode of operation	Description	Mode No.
	100% microwave power	1

Test standard	Test description	Class/limit	
CFR 47 Part 18	Radiated emissions	As defined in 18.305	

Results	Figure	Result Comments					
	R03	N/A	Measurements were performed in an anechoic chamber.				
	R04	Pass	These tests were performed on the open area test site.				

Eromionov	1	2	3 Cable loss	4	(1+2+3-4) Average detector	Limit@2m
Frequency (GHz)	Analyser Level (dBµV)	AF (dB/m)	(dB)	Pre Amplifier Gain (dB)	Result @3m dBµV/m	Limit@3m dBµV/m
(0112)	Level (abhv)	(ab/iii)	(db)	Gairi (GB)	αυμν/ιιι	αυμν/ιιι
2.160	41.53	27.85	2.22	35.93	35.67	65.92
2.180	40.81	27.85	2.22	35.93	34.95	65.92
2.211	41.01	27.84	2.22	35.93	35.14	65.92
2.225	39.73	27.84	2.22	35.93	33.86	65.92
2.282	40.36	27.84	2.22	35.93	34.49	65.92
2.395	41.69	28.03	2.22	35.93	36.01	65.92
2.542	41.99	28.29	2.55	35.93	36.90	65.92
2.665	41.01	28.63	2.55	35.93	36.26	65.92
2.710	41.15	29.12	2.55	35.93	36.89	65.92
4.854	35.83	32.73	4.08	35.50	37.14	65.92
4.921	38.00	33.23	4.08	35.50	39.81	65.92
8.608	39.16	37.40	5.62	35.77	46.41	65.92

Table 3.4.1 Horizontal measurements

Frequency (GHz)	1 Analyser Level (dBµV)	2 AF (dB/m)	3 Cable loss (dB)	4 Pre Amplifier Gain (dB)	(1+2+3-4) Average detector Result @3m dBµV/m	Limit@3m dBµV/m
2.153	40.85	27.85	2.22	35.93	34.99	65.92
2.208	42.68	27.84	2.22	35.93	36.81	65.92
2.211	41.26	27.84	2.22	35.93	35.39	65.92
2.220	39.99	27.84	2.22	35.93	34.12	65.92
2.236	39.98	27.84	2.22	35.93	34.11	65.92
2.242	39.81	27.84	2.22	35.93	33.94	65.92
2.264	39.98	27.84	2.22	35.93	34.11	65.92
2.320	40.28	28.03	2.22	35.93	34.60	65.92
2.550	40.79	28.29	2.55	35.93	35.70	65.92
2.670	41.30	28.63	2.55	35.93	36.55	65.92
2.705	41.49	29.12	2.55	35.93	37.23	65.92
2.725	41.33	29.12	2.55	35.93	37.07	65.92
2.740	41.28	29.12	2.55	35.93	37.02	65.92
2.754	40.58	29.12	2.55	35.93	36.32	65.92
4.349	38.80	32.10	3.79	35.50	39.19	65.92
4.868	35.20	32.73	4.08	35.50	37.01	65.92
4.909	43.12	33.23	4.08	35.50	44.93	65.92
8.596	39.17	37.34	5.62	35.77	46.36	65.92
8.611	38.26	37.40	5.62	35.77	45.51	65.92

Table 3.4.1 Vertical measurements

Note 1: The tests in the above table carried out between 1GHz to 2GHz and 3GHz to 18GHz were performed with a 2.4GHz notch filter connected, this was to avoid spurious harmonics from the magnetron fundamental frequency of 2.45GHz appearing in the measuring instrumentation. The bands between 2GHz and 3GHz were performed without the filter. Testing was performed over the frequency ranges 1000MHz to 18000MHz. Results were compared with the limit line as defined in 18.305 and scaled for a measurement distance of 3m.

Note 2: The above results >1GHz were recorded using an average detector.

3.5 Radiated emissions (18GHz to 24.5GHz)

Mode of operation	Description	Mode No.
	100% microwave power	1

Test standard	Test description	Class/limit
CFR 47 Part 18	Radiated emissions	As defined in 18.305

Results	Figure	Result	Comments
	R05	Pass	Antenna Vertical, 3m measurement distance.
	R06	Pass	Antenna Horizontal, 3m measurement distance.

Note 1: The EUT was rotated from 0° to 340° in 20° steps the peak emissions were recorded at each angle, with the antenna first in horizontal polarisation. This was then repeated with the antenna in vertical polarisation. The peak envelope on the emissions was then investigated to find if there were any problematic signals which would require further quantification using an average detector.

Note 2: No emissions were detected above the noise floor of the anechoic chamber when investigated at a distance of 3m.

Note 3: The graphical data can be found in Appendix 5 of this test report.

3.6 Calculation of Electric Field Strength Limit

ISM equipment operating on a frequency specified in Section 18.301 of the FCC Rules is permitted unlimited radiated energy in the band specified for that frequency.

The limit of field strength levels of emissions that lie outside the ISM bands is specified in Section 18.305 of the FCC rules as follows:

a Where the operating frequency is within an ISM frequency band and where the output power is greater than 500W at a measurement distance of 300m the limit for radiated field strength outside of the ISM bands is:

Limit (
$$\mu$$
V/m) at 300m = 15 $\sqrt{\frac{P}{500}}$

b Where the operating frequency is within an ISM frequency band and where the output power is greater than 500W at a measurement distance of 300m the limit for radiated field strength outside of the ISM bands is:

Limit (
$$\mu$$
V/m) at 300m = 15 $\sqrt{\frac{P}{500}}$

Where *P* is the measured output power of the oven in w (refer to section 3.1 of this test report).

In units of $dB\mu V/m$, and at a measurement distance of 3m the limit is calculated as (using the lower of the above limits):

Limit (dB
$$\mu$$
V/m) at 3m = 20 log₁₀ $\left(15\sqrt{\frac{P}{500}}\right) + 20 \log_{10} \left(\frac{300}{3}\right)$

The measured oven power P, was 882W (refer to section 3.1 of this test report). Using this measured value of P in above formula this gives a field strength limit of 65.92dB μ V/m at a measurement distance of 3m.

The electric field strength between 100MHz and 24.5GHz was measured at 3m and compared to this limit calculated at 3m.

Note: Section 4.6.1 of FCC Document MP5 dated 1986 states that a conservative value of the field strength limit at closer distances than 300m may be calculated using inverse linear variation of field with distance.

4 Summary

4.1 Emissions

Standard	Test Description	Result
CFR 47 Part 18 (10-1-08 edition)	Conducted disturbance (AC mains port)	Pass
	150kHz-30MHz, Limit as defined in 18.307	
	Radiated disturbance (enclosure port)	Pass
	30MHz-24.5GHz, Limit as defined in 18.305	

4.2 Compliance statement

The Wolf VTFW NA 24 Inch Stainless microwave oven, as tested, was shown to meet the requirements of the tests listed in 4.1 of this report.

5 Appendices

5.1 Appendix 1 Conducted emission test method

5.1.1 Test information

Standard	CFR 47 Part 18 (10-1-08 edition)
YES Test Method	Based upon CEP19
Measurement	+/- 2.38dB
uncertainty	
Equipment Used	Rohde & Schwarz ESHS10 receiver
	Rohde & Schwarz ESH3-Z5 LISN
	Chase 9206 transient limiter

The conducted emissions from the ac power port were assessed from both the live and neutral lines with respect to earth.

For this test the EUT was placed in a screened room and the test carried out using equipment compliant to CISPR 16.

Following an initial measurement made with a peak detector, any disturbances within 10dB of the limit line were measured with a quasi-peak and average detector respectively.

5.2 Appendix 2 Radiated emission test method (30MHz to 1000MHz)

5.2.1 Test information

Standards	CFR 47 Part 18
YES Test Method	CEP23
Measurement	±5dB
uncertainty	
Equipment Used	Rohde & Schwarz receiver
	Bilog antenna
	Rohde & Schwarz positioning mast and controller
	EMCO 2m diameter turntable and controller
	80cm non conducting test table

Pre-compliance measurement in an anechoic chamber

The radiated emissions from the enclosure port of the EUT were initially assessed in an anechoic chamber at a test distance of 3m, using an X Wing Bilog antenna at a fixed height of 1.5m. The measurement was made using a peak detector and the emissions were assessed with the antenna in both horizontal and vertical polarisation on the four faces of the EUT i.e. 0°, 90°, 180° and 270°. The purpose of these preliminary investigations is to highlight any frequencies within 20dB of the applied limit line. Any identified frequencies inside the anechoic chamber are then maximised on the open area test site.

Compliance measurement on the Open Area Test Site (OATS)

Any disturbances within 10dB of the limit line, or as a minimum the 10 highest values found during the anechoic chamber scans, were measured with a quasi-peak detector on the OATS using equipment compliant with CISPR16. The EUT was rotated 360°, the antenna was orientated in both horizontal and vertical polarisation with the mast scanned from 1m to 4m to maximise the Quasi-Peak values at the identified frequencies.

5.3 Appendix 3 Radiated emission test method (1GHz to 24.5GHz)

5.3.1 Test information

Standards	CFR 47 Part 18 (10-1-08 edition)
YES Test Method	CEP27
Measurement	±4.86dB
uncertainty	
Equipment Used	Anritsu spectrum analyser
	HP Pre-amplifier
	Horn antenna
	EMCO turntable and controller
	80cm non conducting (plastic) table

Pre-compliance measurement in an anechoic chamber

The radiated emissions from the enclosure port of the EUT were initially assessed in an anechoic chamber at a test distance of 3m, using a horn antenna at a fixed height, directed towards the radiation centre of the EUT. The measurement was made using a peak detector and the emissions were assessed with the antenna in both horizontal and vertical polarisation with the EUT rotated 360° in 20° steps.

Compliance measurement on the Open Area Test Site (OATS)

The highest values found during the anechoic chamber scans, were measured with an average detector on the OATS. The EUT was rotated 360°, the antenna was orientated in both horizontal and vertical polarisation with the mast scanned from 1m to 4m to maximise the values at the identified frequencies.

5.4 Appendix 4 Conducted emission test results

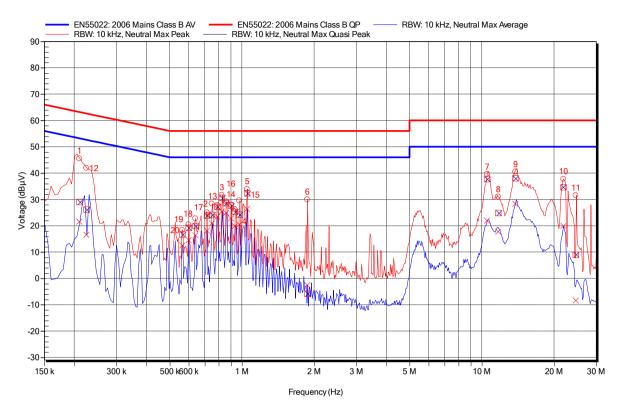


Figure 5.4.1 Conducted emissions results, (C01) Neutral Line.

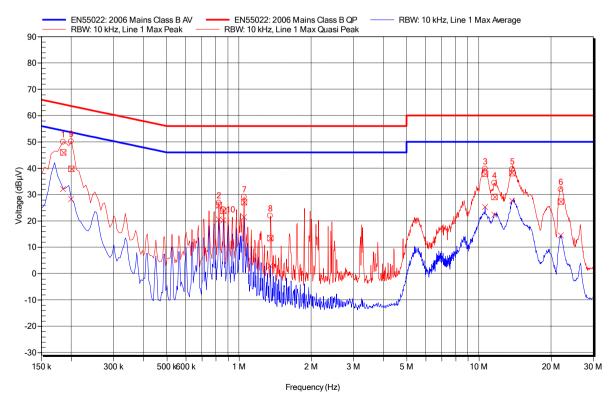


Figure 5.4.2 Conducted emissions result, (C02) Live line.

5.5 Appendix 5 Radiated emission test results

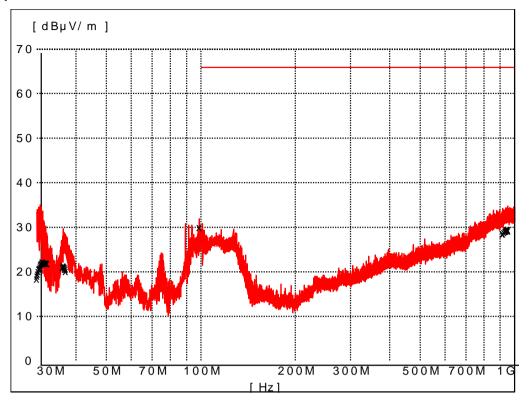


Figure 5.5.1 Radiated emissions results (R01, Peak Detector Chamber – information only).

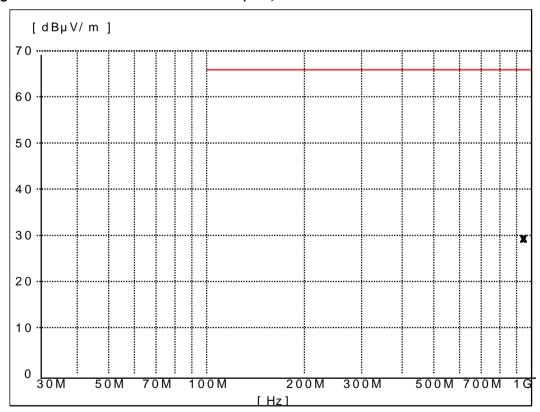


Figure 5.5.2 Radiated emissions results (R02, OATS) - Maximised Quasi Peak data.

1GHz to 18GHz Radiated Emissions

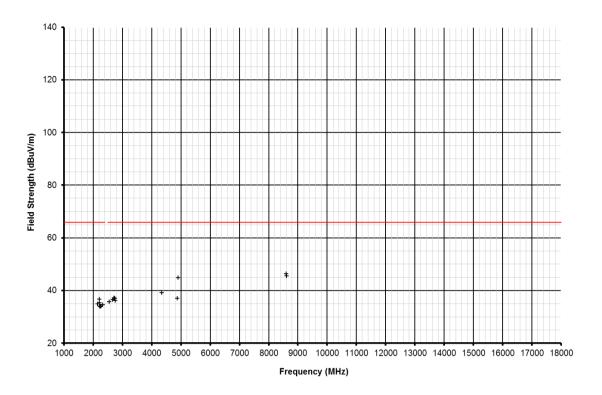


Figure 5.5.3 Radiated emissions maximised Average results Vertical 1-18GHz (R03)

1GHz to 18GHz Radiated Emissions

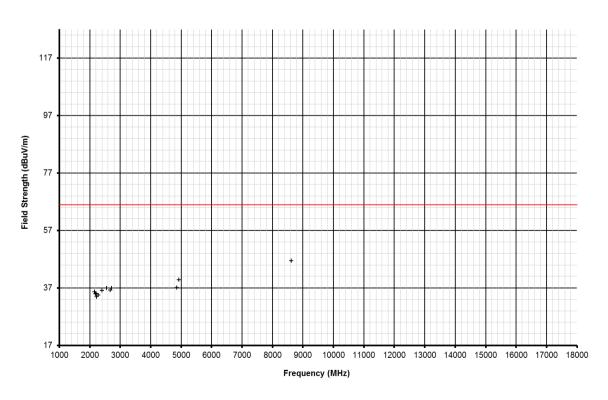


Figure 5.5.4 Radiated emissions Maximised Average results horizontal 1-18GHz (R04)

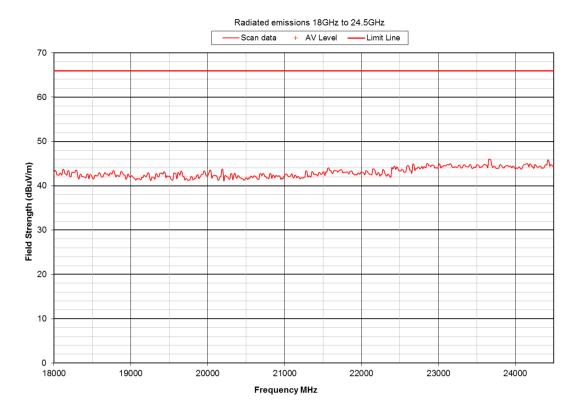


Figure 5.5.5 Radiated emissions, Peak scan, Vertical, 18GHz to 24.5GHz (R05)

Figure 5.5.6 Radiated emissions, Peak scan, Horizontal, 18GHz to 24.5GHz (R06)

Note: The graphs shown in this Appendix contain the limit line extrapolated for a 3m measurement distance

Note. The graphs shown in this Appendix contain the limit line extrapolated for a 5m measurement distance

5.6 Appendix 6 Frequency variation measurements

Frequency variation over time

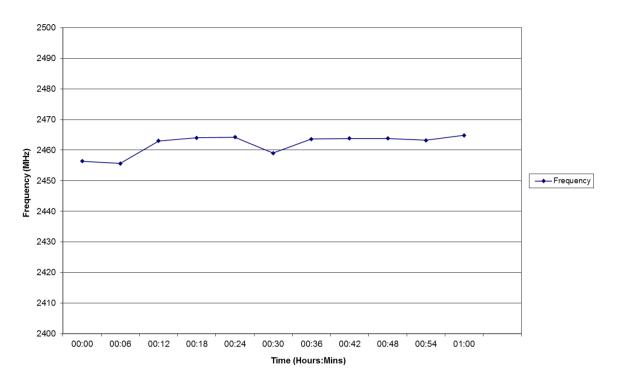


Figure 5.6.1 Frequency variation over time.

Frequency over Voltage Drift

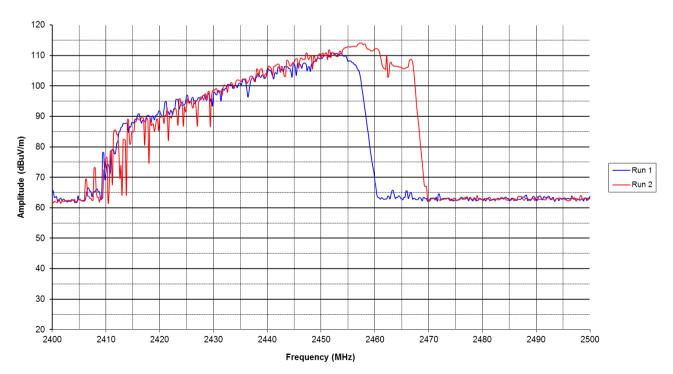
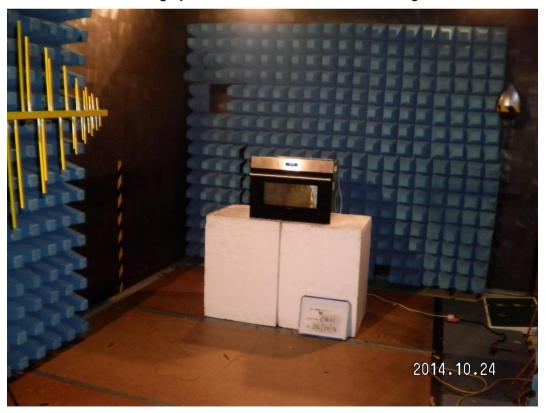



Figure 5.6.2 Frequency variation over voltage.

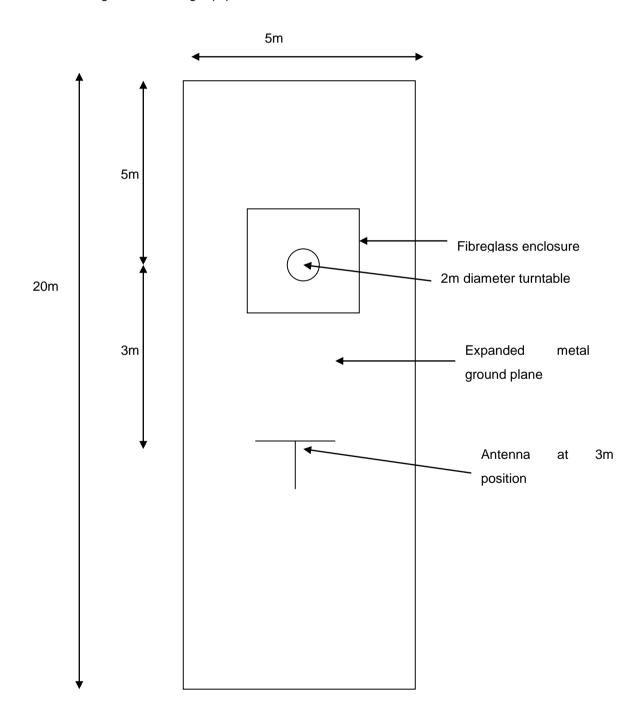
5.7 Appendix 7 EUT test configurations

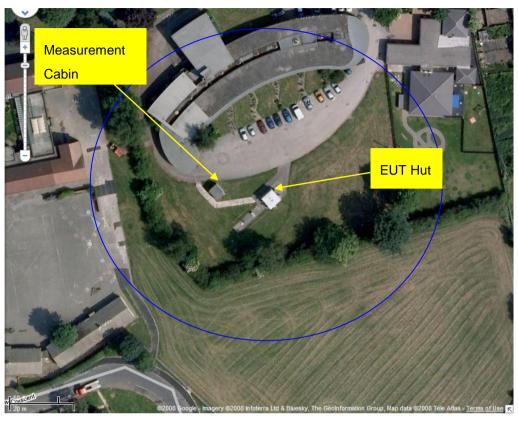
Photograph 5.7.1 Conducted emissions testing.

Photograph 5.7.2 Radiated emissions testing 30MHz-1GHz (Anechoic chamber)

Photograph 5.7.3 Radiated emissions testing above 1GHz (Anechoic chamber)

Photograph 5.7.4 Radiated emissions testing above 18GHz (Anechoic chamber)


5.8 Appendix 8 Equipment used


Equipment	No.	Cal Type	Used	Equipment	No.	Cal Type	Used
AR FM2000 Field Probe Set	78211	UKAS		R&S SMT06 Signal Generator	78653	UKAS	
Blackstar Function Generator	78200	In-house		Schaffner NSG1025 EFT/B Gen	78136	UKAS	
Chase Van Veen Loop	78217	In-house		Schaffner NSG2025 EFT/B Gen	78006	UKAS	
Chase CBL 6111A Bilog Antenna	78167	UKAS		Schaffner NSG2050 + PNW2055	78178	UKAS	
Chase CBL 6112B Bilog Antenna	78708	UKAS	✓	R&S SMT06 Signal Generator	79124	UKAS	
Chase CBL 6140 X-Wing Antenna	78309	In-house	✓	Lem-Heme Current Probe	78482	NCS	
Chase CFL 9206 Transient Limiter	78101	In-house		Schaffner NSG435 ESD Simulator	78008	UKAS	
Chase CFL 9206 Transient Limiter	78087	In-house	✓	Schaffner INA 172 surge CDN	78462	In-house	
Chase HLA6120 Loop Antenna	78128	NPL		Schaffner NSG650 + CDN113	78478	UKAS	
Chase MDS21 Absorbing Clamp	78195	UKAS		Schaffner NSG2050 + PNW2056	78458	UKAS	
Fischer FCC-801-M1-16 CDN	78240	UKAS		Schaffner voltage probe CVP2200	78596	UKAS	
Fischer FCC-801-M2-25 CDN	78241	UKAS		Schaffner current probe SMZ11	78569	UKAS	
Fischer FCC-801-M2-16 CDN	78400	UKAS		Schaffner current probe	79020	UKAS	
Fischer FCC-801-M3-16 CDN	78044	UKAS		Schaffner 40 ohm load	78570	In-house	
Fischer FCC-801-M3-25 CDN	78242	UKAS		Schaffner Chase CBL6111C	78707	UKAS	
Fischer FCC-801-M4-25 CDN	78045	UKAS		Schaffner Chase CBL6112B	78708	Manufac	
Emco 3115 Horn Antenna	78347	UKAS	✓	Schaffner INA 175 surge CDN	78461	In-house	
3116 40GHz Horn Antenna	78951	UKAS	✓	Solar 9108-IN Current Probe	78545	UKAS	
Fluke 45 Digital Mutimeter	78655	UKAS		California Inst PACS-1 analyser	79135	UKAS	
Fluke 85 Digital Mutimeter	78375	UKAS		California Inst 5000 iX Power supply	79136	UKAS	✓
Gould 475 Digital Oscilloscope	78057	UKAS		Fischer FCC-801-M3-25 CDN	79008	UKAS	
HP LF spectrum analyser	79129	UKAS		Fischer FCC-801 M1-16 CDN	79001	UKAS	
HP 8449B Pre-amplifier	C0221	UKAS	✓	EM Test UCS 500	79059	UKAS	
Anritsu MS2667C Analyser	78490	UKAS	✓	CDN 118	78460	NCS	
2.4GHz notch filter	79178	UKAS	✓	Schaffner clamp	79045	In-house	
ISO-TECH 9053 LCR meter	78487	NCS		Keytek AC line qualifier	78350	UKAS	
Keytek EMC Pro	78348	UKAS		Spitzenberger & Spies	78131	NCS	
Keytek MZ-15/EC ESD Simulator	78133	UKAS		Arb Waveform Generator	79116	In-house	
LEM HEME clamp	78483	NCS		6dB attenuator	79073	In-house	
Intek Function Generator	78673	UKAS		HP Dynamic Signal Analyzer	79121	In-house	
Rolfe Heine NNB 32A LISN	78205	UKAS	✓	Magnetic immunity loop (multi)	78722	In-house	
R&S ESH3-Z5 LISN	78119	UKAS		Wandel & Golterman EFA-2	78551	Manufac	
R&S ESHS 10 Receiver	78035	UKAS	✓	Schaffner EFT/B clamp	79184	In-house	
R&S ESHS10 Receiver	79182	UKAS		Wandel & Golterman EMC 20	79005	Manufac	
R&S ESVS 30 Receiver	79183	UKAS		AR50S/G4A Amplifier	79095	NCS	
R&S ESVS 10 Receiver	78036	UKAS		AR FM2000 Field Probe Set	78108	UKAS	
R&S ESVS 30 Receiver	78107	UKAS	✓	650V Transformer	78123	In-House	
Schaffner Profline	78374	UKAS		HCP	79099	In-house	
Variac	78192	In-house		VCP	79102	In-house	
MV 2616	79149	In-house		EFT 503	79132	UKAS	
Schaffner Discontinuous Analyser	79215	UKAS		Fischer clamp	78043	In-house	
Variac	78688	In-house		Thermometer and K-Type	79242	UKAS	✓
				Thermocouple			

NCS-Not on calibration schedule

5.9 Appendix 9 Open Area Test Site Description

The Open Area Test Site (OATS) is constructed of welded expanded galvanised steel "Expamet" with major aperture size of approximately 28mm. The ground plane was approximately 20mx5m fitted with a 2m diameter flush mounted turntable, covered with a fibreglass enclosure approximately 4.3m x 4.3m x 3.5m high. This enclosure is fitted with double doors at both the front and rear, and has an apex height of approximately 3.5m. The site was fitted with a Rohde and Schwarz antenna mast, which was bolted to the ground plane at a 3m measurement position. No other objects were located within the CISPR ellipse. A "portacabin" type building (approximately 3.9mx3.3m was located to one side of the site, approximately 8.6m from the edge of the ground plane and containing the measuring equipment.

Open Area Test Site Dimensions

Open area test site, via Google, showing all structures within the estimated 5 times the distance between the measuring set and the EUT.

5.10 Appendix 10 Calibration data

Yes No.	Equipment description	Calibration Date	Calibration Frequency
79182	9kHz-30MHz R&S ESHS 10 Receiver	27/12/2013	12 Months
78205	Rolfe Heine 32A LISN	26/07/2013	24 Months
78087	CFL9206 Transient limiter	09/12/2013	12 Months
78107	30MHz-1000MHz R&S ESVS 30 Receiver	27/12/2013	12 Months
78310	Chase X-Wing Bilog antenna- Used for initial pre-compliance chamber measurements	09/01/2014	12 Months
78708	CBL6112B Green Bilog antenna – used for OATS tests	17/12/2013	12 Months
78347	EMCO 3115 horn antenna	02/01/2014	24 Months
78951	EMCO 3116 40GHz horn antenna	14/02/2013	24 Months
78490	Anritsu MS2667C Spectrum analyser	27/12/2013	12 Months
C0221	HP 8449B Pre-amplifier	26/11/2012	24 Months
79178	Microtronics BRM13134 2.4GHz Notch filter	23/12/2013	24 Months
79242	Digital Thermometer and K-Type Thermocouple	01/10/2013	12 Months

5.11 Appendix 11 Test Report History

Issue	Modification details
1	Original issue of the test report