

RADIO TEST REPORT

Report No: STS1604007F01

Issued for

Southern Telecom Inc.

14C 53rd Street, Brooklyn, NY 11232

Product Name:	Mobile Phone
Brand Name:	POLAROID
Model Name:	A2
Series Model:	A2WH,A2BK
FCC ID:	2ABV4A2WH
Test Standard:	FCC Part 22H and 24E

Any reproduction of this document must be done in full. No single part of this document may be reproduce permission from STS, All Test Data Presented in this report is only applicable to presented Test sample. Ro

TEST RESULT CERTIFICATION

Applicant's name:	Southern Telecom Inc.
Address:	14C 53rd Street, Brooklyn, NY 11232
Manufacture's Name	IMG TECHNOLOGY CO.,LTD
Address:	1108, Tower B,Tian'an High-Tech Plaza Phase 1,Tian'an Cyber Park ,Futian District ,Shenzhen
Product name:	Mobile Phone
Brand name:	POLAROID
Model and/or type reference :	A2
Standards	FCC Part 22H and 24E
Test procedure	ANSI/TIA 603-D (2010)

This device described above has been tested by STS and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of STS, this document may be altered or revised by STS, personal only, and shall be noted in the revision of the document.

Date of Test

Date of performance of tests 01 Apr. 2016 ~10 Apr. 2016

Date of Issue 11 Apr. 2016

Test Result Pass

Testing Engineer :	Burning
	(Jin Ming)
Technical Manager :	APPROVAL S
	(Vita Li)
Authorized Signatory :	Thomas Land
	(Bovey Yang)

Shenzhen STS Test Services Co., Ltd.

Shenzhen STS Test Services Co., Ltd.

30

32

TABLE OF CONTENTSF	Page
SUMMARY OF TEST RESULTS	5
1 INTRODUCTION	6
1.1 TEST FACTORY	6
1.2 MEASUREMENT UNCERTAINTY	6
2 PRODUCT INFORMATION	7
3 TEST CONFIGURATION OF EQUIPMENT UNDER TEST	8
4 MEASUREMENT INSTRUMENTS	9
5 TEST ITEMS	10
5.1 CONDUCTED OUTPUT POWER	10
5.2 PEAK TO AVERAGE RATIO	11
5.3 TRANSMITTER RADIATED POWER (EIRP/ERP)	12
5.4 OCCUPIED BANDWIDTH	13
5.5 FREQUENCY STABILITY	14
5.6 SPURIOUS EMISSIONS AT ANTENNA TERMINALS	15
5.7 BAND EDGE	16
5.8 FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT	17
APPENDIX ATESTRESULT	19
A1CONDUCTED OUTPUT POWER	19
A2 PEAK-TO-AVERAGE RADIO	19
A3 TRANSMITTER RADIATED POWER (EIRP/ERP)	20
A4 OCCUPIED BANDWIDTH(99% OCCUPIED BANDWIDTH/26DB BANDWIDTH)	21
A5 FREQUENCY STABILITY	24
A6 SPURIOUS EMISSIONS AT ANTENNA TERMINALS	25
A7 BAND EDGE	28

A8 FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT

APPENDIX BPHOTOS OF TEST SETUP

3 of 32

Report No.: STS1604007F01

Revision History

Rev.	Issue Date	Report NO.	Effect Page	Contents
00	11 Apr. 2016	STS1604007F01	ALL	Initial Issue

Shenzhen STS Test Services Co., Ltd.

SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

The radiated emission testing was performed according to the procedures of ANSI/TIA-603-D:

2010,KDB 971168 D01 v02r02 and KDB 648474 D03 v01r04

FCC Rules	Test Description	Test Limit	Test Result	Reference
2.1049	Conducted OutputPower	Reporting Only	PASS	
2.0146 24.232	Peak-to-AverageRatio	< 13 dB	PASS	
2.1046 22.913 24.232	Effective Radiated Pow- er/Equivalent Isotropic Radiated Power	< 7 Watts max. ERP(Part 22) < 2 Watts max. EIRP(Part 24)	PASS	
2.1049 22.917 24.238	Occupied Bandwidth	Reporting Only	PASS	
2.1055 22.355 24.235	Frequency Stability	< 2.5 ppm (Part 22) Emission must remain in band (Part 24)	PASS	
2.1051 22.917 24.238	Spurious Emission at Antenna Terminals	< 43+10log10(P[Watts])	PASS	
2.1053 22.917 24.238	Field Strength of Spurious Radiation	< 43+10log10(P[Watts])	PASS	
2.1051 22.917 24.238	Band Edge	< 43+10log10(P[Watts])	PASS	

1 INTRODUCTION 1.1 TEST FACTORY Shenzhen STS Test Services Co., Ltd. Add. : 1/F., Building B, Zhuoke Science Park, No.190,Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong,China CNAS Registration No.: L7649; FCC Registration No.: 842334; IC Registration No.: 12108A-1

1.2 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement data shown herein meets or exceeds the UCISPR measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

No.	Item	Uncertainty
1	RF power, conducted	±0.70dB
2	Spurious emissions,conducted	±1.19dB
5	All emissions,radiated(<1G) 30MHz-200MHz	±2.83dB
6	All emissions,radiated(<1G) 200MHz-1000MHz	±2.94dB
7	All emissions,radiated(>1G)	±3.03dB
8	Temperature	±0.5°C
9	Humidity	±2%

Report No.: STS1604007F01

2 PRODUCT INFORMATION

Product Designation:	Mobile Phone		
Hardware version:	6173_MB_V1.1		
Software version:	N/A		
FCC ID:	ABV4A2WH		
	GSM:		
Tx Frequency:	850: 824.2 MHz ~ 848.8 MHz		
	1900: 1850.2 MHz ~ 1909.8MHz		
	GSM/GPRS:		
Rx Frequency	850: 869.2 MHz ~ 893.8 MHz		
	1900: 1930.2 MHz ~ 1989.8 MHz		
Max RF Output Power:	GSM850:32.53dBm,PCS1900:28.80dBm		
Type of Emission:	GSM(850):319KGXW: GSM(1900):321KGXW		
SIM Card	SIM 1 and SIM 2 is a chipset unit and tested as single chipset,SIM 1 is used to tested		
Antenna:	PIFA Antenna		
Antenna gain:	GSM 850:0.8dBi ,PCS 1900:1dBi		
Power Supply:	DC 3.7V by battery		
Battery parameter:	Capacitance: 600mAh, Rated Voltage: 3.7V		
GPRS Class	Multi-Class12		
Extreme Vol. Limits:	DC3.3 V to 4.2 V (Nominal DC3.7V)		
Extreme Temp. Tolerance	-20℃ to +45℃		
** Note: The High Voltage	4.2 V and Low Voltage 3.3V was declared by manufacturer, The		
EUT couldn't be operate no	ormally with higher or lower voltage.		

Report No.: STS1604007F01

3 TEST CONFIGURATION OF EQUIPMENT UNDER TEST

Antenna port conducted and radiated test items were performed according to KDB 971168 D01 Power Meas. License Digital Systems v02r02 with maximum output power.

Radiated measurements were performed with rotating EUT in different three orthogonal test planes to find the maximum emission.

Radiated emissions were investigated as following frequency range:

1. 30 MHz to 10th harmonic for GSM850

2. 30 MHz to 10th harmonic for GSM1900 All modes and data rates and positions were investigated.

Test modes are chosen to be reported as the worst case configuration below:

	TEST MODES		
BAND	RADIATED TCS	CONDUCTED TCS	
GSM 850	GSM LINK EDGE CLASS 8 LINK EDGE CLASS 8 INK		
GSM 1900	GSM LINK EDGE CLASS 8 LINK	GSM LINK EDGE CLASS 8 LINK	

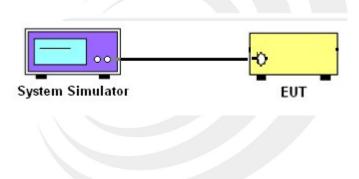
Report No.: STS1604007F01

4 MEASUREMENT INSTRUMENTS

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibration	Calibrated Until
Spectrum Analyzer	Agilent	E4407B	MY50140340	2015.10.25	2016.10.24
Signal Analyzer	Agilent	N9020A	MY49100060	2015.11.18	2016.11.17
Test Receiver	R&S	ESCI	101427	2015.10.25	2016.10.24
Communication Tester	Agilent	8960	MY48360751	2015.11.20	2016.11.19
Communication Tester	R&S	CMU200	112012	2015.10.25	2016.10.24
Test Receiver	R&S	ESCI	102086	2015.10.25	2016.10.24
Bilog Antenna	TESEQ	CBL6111D	34678	2015.11.25	2016.11.24
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-1343	2016.03.06	2017.03.05
Horn Antenna	Schwarzbeck	BBHA 9170	9170-0741	2016.03.06	2017.03.05
MXA SIGNAL Analyzer	Agilent	N9020A	MY49100060	2015.10.25	2016.10.24
Bilog Antenna	Sunol Sciences	JB3	A110714	2015.09.03	2016.09.02
Horn-Antenna	Schwarzbeck	BBHA9120D	9120D-1266	2016.03.06	2017.03.05
Horn Antenna	Schwarzbeck	BBHA 9170	9170-0741	2016.03.06	2017.03.05
Double Ridge Horn An- tenna	COM-POWER CORPORATION	AH-840	AHA-840	2016.03.06	2017.03.05
Low frequency cable	N/A	R01	N/A	N/A	N/A
High frequency cable	SCHWARZBECK	AK9515H	SN-96286/96287	N/A	N/A

Equipment with a calibration date of "N/A" shown in this list was not used to make direct calibrated measurements.

5 TEST ITEMS 5.1 CONDUCTED OUTPUT POWER


Test overview

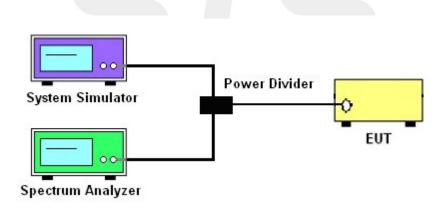
A system simulator was used to establish communication with the EUT. Its parameters were set to enforce EUT transmitting at the maximum power. The measured power in the radio frequency on the transmitter output terminals shall be reported.

Test procedures

- 1. The transmitter output port was connected to the system simulator.
- 2. Set eut at maximum power through the system simulator.
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Measure and record the power level from the system simulator.

Test setup

5.2 PEAK TO AVERAGE RATIO


TEST OVERVIEW

According to §24.232(d), power measurements for transmissions by stations authorized under this section may be made either in accordance with a commission-approved average power technique or in compliance with paragraph (e) of this section. In both instances, equipment employed must be authorized in accordance with the provisions of §24.51. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 db.

TEST PROCEDURES

- 1. The testing follows fcckdb 971168 v02r02 section
- 2. The eut was connected to the and peak and av system simulator& spectrum analysis reads
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Set the test probe and measure average power of the spectrum analysis

TEST SETUP

Shenzhen STS Test Services Co., Ltd.

5.3 TRANSMITTER RADIATED POWER (EIRP/ERP) TEST OVERVIEW

Effective Radiated Power (ERP) and Equivalent Isotropic Radiated Power (EIRP) measurements are performed using the substitution method described in ANSI/TIA-603-D-2010 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using vertically polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically polarized broadband horn antennas. All measurements are performed as RMS average measurements while the EUT is operating at maximum power, and at the appropriate frequencies.

TEST PROCEDURE

1. The testing follows FCC KDB 971168 D01,

Section 5.2.2 (for GSM/GPRS) and ANSI / TIA-603-D-2010 Section 2.2.17.

2. The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

3. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

4. The frequency range up to tenth harmonic of the fundamental frequency was investigated.

5. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a nonradiating cable. The absolute levels of the spurious emissions were measured by the substitution.

6. Effective Isotropic Radiated Power (EIRP) was measured by substitution method according to TIA/EIA-603-D. The EUT was replaced by the substitution antenna at same location, and then a known power from S.G. was applied into the dipole antenna through a Tx cable, and then recorded the maximum Analyzer reading through raised and lowered the test antenna. The correction factor (in dB) = S.G. - Tx Cable loss + Substitution antenna gain - Analyzer reading. Then the EUT's EIRP/ERP was calculated with the correction factor,

ERP/EIRP = P.SG + GT - LC

ERP/EIRP = effective or equivalent radiated power, respectively (expressed in the same units as PMe as, typically dBW or dBm);

P.SG = measured transmitter output power or PSD, in dBm or dBW;

GT = gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP);

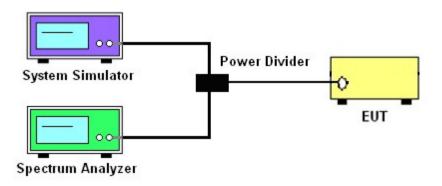
LC = signal attenuation in the connecting cable between the transmitter and antenna, in dB.

5.4 OCCUPIED BANDWIDTH

TEST OVERVIEW

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured.

The 26 dB emission bandwidth is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated 26 dB below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth equal to approximately 1.0% of the emission bandwidth.


All modes of operation were investigated and the worst case configuration results are reported in this section.

TEST PROCEDURE

1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.

- 2. RBW = 1 5% of the expected OBW
- 3. VBW ≥ 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within
- 1-5% of the 99% occupied bandwidth observed in Step 7

TEST SETUP

5.5 FREQUENCY STABILITY Test Overview

Frequency stability testing is performed in accordance with the guidelines of ANSI/TIA-603-D-2010. The frequency stability of the transmitter is measured by:

14 of 32

a.) Temperature: The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.

b.) Primary Supply Voltage: The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

For Part 22, the frequency stability of the transmitter shall be maintained within $\pm 0.00025\%$ (± 2.5 ppm) of the center frequency. For Part 24 the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

Test Procedure

Temperature Variation

1. The testing follows fcckdb 971168 D01 section 9.0

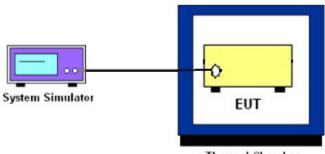
2. The EUT was set up in the thermal chamber and connected with the system simulator.

3. With power OFF, the temperature was decreased to -30°C and the EUT was stabilized before testing.

Power was applied and the maximum change in frequency was recorded within one minute.

4. With power OFF, the temperature was raised in 10°C steps up to 50°C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.

Voltage Variation


1. The testing follows FCC KDB 971168 D01 Section 9.0.

2. The EUT was placed in a temperature chamber at 25±5° C and connected with the system simulator.


3. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value measured at the input to the EUT.

4. The variation in frequency was measured for the worst case.

TEST SETUP

Thermal Chamber

5.6 SPURIOUS EMISSIONS AT ANTENNA TERMINALS <u>Test Overview</u>

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least 43 + 10 log (P) dB.

It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10th harmonic.

Test procedure

1. The testing follows FCC KDB 971168 D01 v02r02 Section 6.0.

2. The EUT was connected to the spectrum analyzer and system simulator via a power divider.

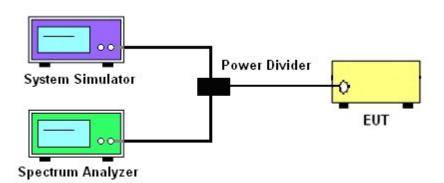
3. The RF output of EUT was connected to the spectrum analyzer by an RF cable and

attenuator. The path loss was compensated to the results for each measurement.

4. The middle channel for the highest RF power within the transmitting frequency was measured.

5. The conducted spurious emission for the whole frequency range was taken.

6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.


7. The limit line is derived from 43 + 10log(P) dB below the transmitter power P(Watts)

= P(W) - [43 + 10log(P)] (dB)

= [30 + 10log(P)] (dBm) - [43 + 10log(P)] (dB)

= -13dBm.

Test Setup

Shenzhen STS Test Services Co., Ltd.

5.7 BAND EDGE

<u>OVERVIEW</u>

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

The minimum permissible attenuation level of any spurious emission is 43 + log10(P[Watts]), where P is the transmitter power in Watts.

TEST PROCEDURE

1. Start and stop frequency were set such that the band edge would be placed in the center of the Plot.

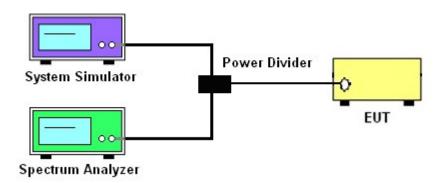
2. The EUT was connected to the spectrum analyzer and system simulator via a power divider.

3. The RF output of EUT was connected to the spectrum analyzer by an RF cable and attenuator.

The path loss was compensated to the results for each measurement.

4. The band edges of low and high channels for the highest RF powers were measured.

5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.


6.The limit line is derived from 43 + 10log(P) dB below the transmitter power P(Watts)

= P(W) - [43 + 10log(P)] (dB)

= [30 + 10log(P)] (dBm) - [43 + 10log(P)] (dB)

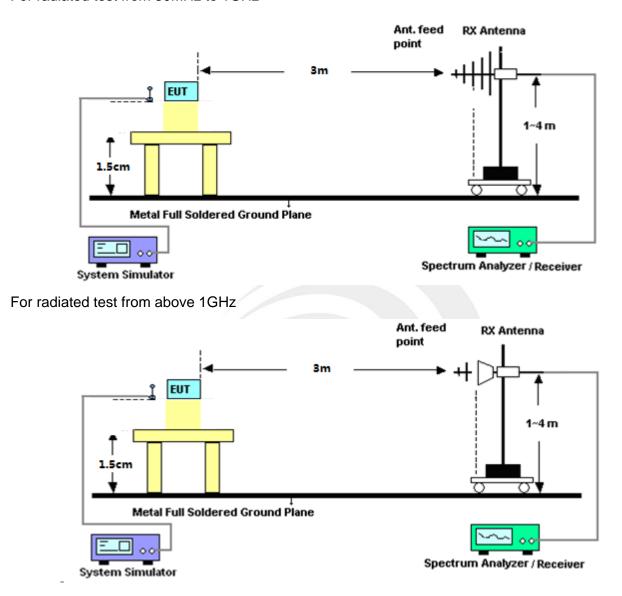
= -13dBm.

TEST SETUP

5.8 FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT Test overview

Radiated spurious emissions measurements are performed using the substitution method described inANSI/TIA-603-D-2010 with the EUT transmitting into an integral antenna. Measurements on signalsoperating below 1GHz are performed using horizontally and vertically polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally polarized horn antennas. All measurements are performed as peak measurements while the EUT isoperating at maximum power and at the appropriate frequencies.

It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10th harmonic.


Test procedure

1. The testing follows FCC KDB 971168 D01 Section 5.8 and ANSI/TIA-603-D-2010 – Section 2.2.12

- 2. RBW = 100kHz for emissions below 1GHz and 1MHz for emissions above 1GHz
- 3. VBW \ge 3 x RBW
- 4. Span = 1.5 times the OBW
- 5.No. of sweep points > 2 x span/RBW
- 6. Detector = Peak
- 7. Trace mode = max hold
- 8. The trace was allowed to stabilize

For radiated test from 30MHz to 1GHz

18 of 32

Report No.: STS1604007F01

Report No.: STS1604007F01

APPENDIX ATestResult A1CONDUCTED OUTPUT POWER

GSM 850:

Mode	Frequency (MHz)	AVG Power
GSM850	824.2	32.53
	836.6	32.47
	848.8	32.40

PCS 1900:

Mode	Frequency (MHz)	AVG Power
GSM1900	1850.2	28.72
	1880.0	28.62
	1909.8	28.80

A2 PEAK-TO-AVERAGE RADIO

PCS 1900:

Mode	Frequency (MHz)	PEAK Power	AVG Power	PAR
	1850.2	29.10	28.72	0.38
PCS1900	1880.0	29.05	28.62	0.43
	1909.8	29.12	28.80	0.32

Report No.: STS1604007F01

A3 TRANSMITTER RADIATED POWER (EIRP/ERP)

		Radiate	d Power	(ERP) fo	or GSM 850 MH	Z			
			Result						
Mode	Frequency	S G.Level	Cable	Gain	Max.Pk	Polarization	Conclusion		
		(dBm)	loss	(dBd)	E.R.P(dBm)	Of Max. ERP			
	824.2	28.73	0.44	0	30.44	Horizontal	Pass		
	824.2	30.82	0.44	0	32.53	Vertical	Pass		
0014050	836.6	28.51	0.45	0	30.21	Horizontal	Pass		
GSM850	836.6	30.77	0.45	0	32.47	Vertical	Pass		
	848.8	28.52	0.46	0	30.21	Horizontal	Pass		
	848.8	30.71	0.46	0	32.40	Vertical	Pass		
(1)Dipole A	ntenna Gain:0	dBd=2.15dB	i						

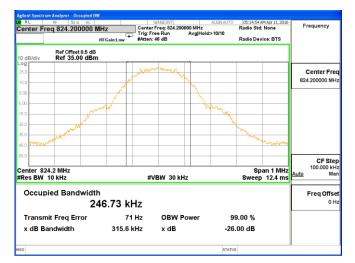
	Radiated Power (EIRP) for PCS 1900 MHZ											
				R	esult							
Mode	Frequency	S G.Level	Cable	Gain	Max. Pk	Polarization	Conclusion					
		(dBm)	loss	(dBi)	E.I.R.P.(dBm)	Of Max.EIRP.						
	1850.2	19.20	2.41	10.06	26.85	Horizontal	Pass					
	1850.2	21.07	2.41	10.06	28.72	Vertical	Pass					
PCS1900	1880.0	18.56	2.42	10.06	26.20	Horizontal	Pass					
FC31900	1880.0	20.98	2.42	10.06	28.62	Vertical	Pass					
	1909.8	18.51	2.43	10.06	26.14	Horizontal	Pass					
	1909.8	21.17	2.43	10.06	28.80	Vertical	Pass					

Shenzhen STS Test Services Co., Ltd.

Report No.: STS1604007F01

A4 OCCUPIED BANDWIDTH(99% OCCUPIED BANDWIDTH/26DB BANDWIDTH)

	Bandwidth for GSM 850 band										
Mada		Occupied Bandwidth	Emission Bandwidth								
Mode	Frequency(MHz)	(99%)(kHz)	(-26dBc)(kHz)								
Low Channel	824.2	246.73	315.6								
Middle Channel	836.6	243.53	308.9								
High Channel	848.8	246.67	318.6								

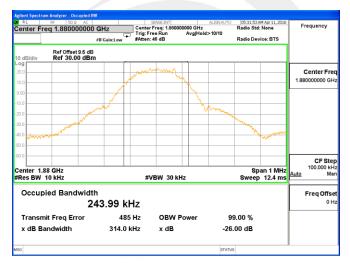

	Occupied Bandwidth for GSM1900 band										
Mode	Frequency(MHz)	Occupied Bandwidth	Emission Bandwidth								
Mode	Frequency(MHZ)	(99%)(kHz)	(-26dBc)(kHz)								
Low Channel	1850.2	248.53	317.8								
Middle Channel	1880.0	243.99	314.0								
High Channel	1909.8	248.23	320.8								

Shenzhen STS Test Services Co., Ltd.

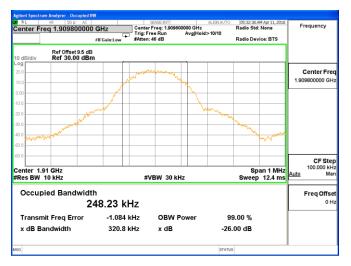
GSM 850 CH 128

GSM 850 CH 190

GSM 850 CH 251



Report No.: STS1604007F01


PCS 1900 CH 512

PCS 1900 CH 661

PCS 1900 CH 810

Shenzhen STS Test Services Co., Ltd.

Report No.: STS1604007F01

A5 FREQUENCY STABILITY

Normal Voltage = 3.7V. ;Battery End Point (BEP) = 3.3 V.;Maximum Voltage = 4.2 V

		GSM 850Middle	Channel		
Temperature (°C)	Voltage (Volt)	Freq. Dev. (Hz)	Freq. Dev. (ppm)	Limit	Result
50		13.46	0.016		
40		26.44	0.032		
30		23.58	0.028		
20		27.55	0.033		
10	Normal Voltage	18.16	0.022		
0		4.49	0.005	2.5ppm	PASS
-10		17.34	0.021		
-20		2.47	0.003		
-30	/	6.14	0.007		
25	Maximum Voltage	9.84	0.012		
25	BEP	1.61	0.002		

	GSM 1900Middle Channel											
Temperature (°C)	Voltage (Volt)	Freq. Dev. (Hz)	Freq. Dev. (ppm)	Limit	Result							
50		9.13	0.005									
40		11.27	0.006									
30		10.35	0.006									
20		22.30	0.012									
10	Normal Voltage	4.13	0.002	Within Au-								
0		10.05	0.005	thorized	PASS							
-10		15.50	0.008	Band								
-20		20.71	0.011									
-30		24.19	0.013									
25	Maximum Voltage	11.85	0.006									
25	BEP	12.54	0.007									

A6 SPURIOUS EMISSIONS AT ANTENNA TERMINALS GSM 850 BAND

Lowest Channel

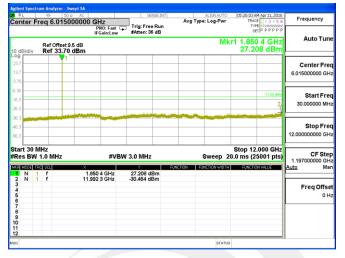
	M Apr 11, 2016	05-19-02 A	ALIGNAUTO		SENSE:INT	55		- Swept SΛ 50 Ω AC	um An RE	pectre	entS RL
Trace/Det		TRAC	: Log-Pwr	Avg Typ			GHz	5000000		r Fr	
Select Trac	TPPPPP	DE				#Atten: 3	PNO: Fast C IFGain:Low				
	.3 MHz 53 dBm	kr1 824 31.0	м					t 8.5 dB 70 dBm		liv	dB/e
									 1		7
Clear Wri									_		7
						-					0-
	-13.00 dBm										
Trace Avera		2									3
		Y	-	-		-					3
Max Ho											3
									 -		3
	.000 GHz	Stop 9								30 M	
Min Ho	0001 pts)				-	W 3.0 MHz	#VB		1.0		
	IN VALUE	FUNCTIC	ICTION WIDTH	CTION	dBm	31.063 d	824.3 MHz	×	f sci	1	N
View/Blan View					dBm	-31.141 d	417 7 GHz	7.4	ſ	1	N
M d 1 d											
			STATUS						-		

Middle Channel

Trace/Det	M Apr 11, 2016	TRAC	ALIGNAUTO Type: Log-Pwr	Avg	SENSE: JNT	GHz	50 Ω AC			R Cen
Select Trac	TPPPPP	DE			#Atten: 36 dB	PNO: Fast C IFGain:Low				
	6.9 MHz 70 dBm		м				et 8.5 dB .00 dBm	Ref Offse Ref 34.	IB/div	
								1	1	.og 24.0
Clear W				_						4.0
				_						.00
	-13.00 dBm			_		_				.00
Trace Avera	-13.00 020									6.0
			02						-	6.0
					Manufacture and the second					5.0
Max H									1	6.0
				-						6.0
Min H	.000 GHz 0001 pts)		Sweep 16		V 3.0 MHz	#VB	:	MHz 1.0 MHz	rt 30 M es BW	
	IN VALUE	FUNCTIO	FUNCTION WIDTH	FUNCTION	30.870 dBm	336.9 MHz	×	1	MODE T	1
View/Blar Vie					-32.027 dBm	450 3 GHz	6.4	f	N 1	234567
M										7 B 9 D

Highest Channel

_	M Apr 11, 2016	05:23:12/	ALIGNAUTO		INSE: INT	SE		50 9 AC	RF S	
Frequency	ET P P P P P P	TRA TY D	: Log-Pwr	Avg Ty		Trig: Fre #Atten: 3	GHz PNO: Fast IFGain:Low	5000000	eq 4.51	er Fi
Auto T	9.0 MHz 97 dBm		м						Ref Offse Ref 34.0	3/div
Center F									1	
4.515000000								_		
Start F 30.000000	-13.00 dBm			-					_	
30.000000										
Stop F						and the second second				
9.000000000										
CF S	0.000 GHz 20001 pts)		Sweep 10		2	V 3.0 MHz	#VB		IHz 1.0 MHz	1 30 N 8 BW
Auto	ON VALUE	FUNCTI	NCTION WIDTH	NCTION F	iBm	¥ 30.697 d	49.0 MHz		f	RODE TE
Freq Of					IBm	-31.693 d	89 2 GHz	5.8	f	N 1


Shenzhen STS Test Services Co., Ltd.

Report No.: STS1604007F01

GSM1900 BAND(30M-12G)

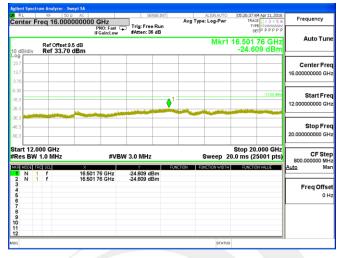
Lowest Channel

Middle Channel

RF	50 Q AC		SENSE: IN		ALIGNAUTO		M Apr 11, 2016	-
req 6.0	01500000	PNO: Fast C	Trig: Free Run	Avg Typ	e: Log-Pwr	TVP	F MULLIARA	Frequency
			and the second		Mk			Auto Tu
	V1							Center Fr 6.015000000 G
							-13.00 dBm	Start Fr 30.000000 M
								Stop Fr 12.000000000 G
1.0 MH			W 3.0 MHz			0.0 ms (2	5001 pts)	CF St 1.197000000 G
HC SCL		1.880 1 GHz	26.791 dBm -30.675 dBm	FUNCTION	NCTION WIDTH	FUNCTIO	N VALUE	<u>Auto</u> N
								Freq Off 0
	Ref Of Ref 3	Ref Office19.5 dB Ref 34.00 dBm	IFGein:Lew Ref Offeet 9.6 dB 1 1 1 1 1 1 1 1 1 1 1 1 1	PR0:Fast Trig: Free Run In Gaint.com Trig: Free Run Atten: 36 dB Ref 34.00 dBm 0 0 0 VII 1 0 0 0 VIII 1 0 0 0 0 VIII 1 0	Under Coll Discrete and the second seco	Philo: Fast Trigs Free Run BritainLaw Mk Ref 34.00 dBm Mk Image: State of the st	No. Coll of Col	No. Color Protect Fact

Highest Channel

L	RF 50 Ω AC		SENSE: INT	ALIGNAUT	05:34:18 AM Apr 11, 2016	-
iter Fred	6.0150000			Avg Type: Log-Pw	TYPE MUNICIPAL PPPP	Frequency
B/div R	ef Offset 9.5 dB ef 35.50 dBn	1		N	/kr1 1.909 8 GHz 26.052 dBm	Auto Tu
5	•1					Center Fr
5						6.015000000 G
					-13.00 dBm	Start Fr
5				<u>^2</u>	-13.00 dbm	30.000000 M
			descended solution	Mar I and		
5						Stop Fr 12.000000000 G
rt 30 MH:					Stop 12.000 GHz	
es BW 1.0			V 3.0 MHz		20.0 ms (25001 pts)	1.197000000 G
MODE TRC S	f	1.909 8 GHz 7.070 3 GHz	26.052 dBm -30.897 dBm	FUNCTION FUNCTION WID	TH FUNCTION VALUE	Auto N
N		7.070 3 GHz	-50.697 dBm			Freq Offs
						0


Shenzhen STS Test Services Co., Ltd.

Report No.: STS1604007F01

GSM1900 BAND(12G-20G)

Lowest Channel

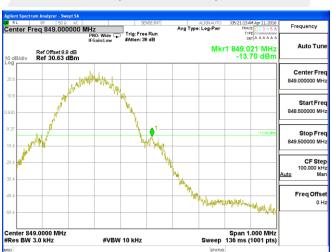
Middle Channel

RF	50 Ω AC		SENSE:INT		NAUTO 05:31:14	AM Apr 11, 2016	F
Freq 1	6.00000000		➡ Trig: Free Run #Atten: 36 dB	Avg Type: Log	T	VPF MULARARAR	Frequency
				N	/kr1 19.007 -25.2	′ 68 GHz 265 dBm	Auto Tu
							Center Fr 16.00000000 G
						1-13.00 dBn	Start Fi 12.000000000 0
							Stop F 20.000000000
W 1.0 N		#VB			ep 20.0 ms (25001 pts)	CF S 800.000000
TRC SCU 1 f 1 f	19.0		-25.265 dBm -25.265 dBm	FUNCTION FUNCTION	N WIDTH FUNCT	ION VALUE	Auto
							Freq Off C
	Freq 1	Freq 16.0000000 Ref Offeet 9.5 dB, Ref 34.00 dBm 2.000 GHz V 1.0 MHz IIII Elegian IIII 1	Freq 16.00000000 GHz PRof Fast Cash Ref Offset 9.5 dB Ref 34.00 dBm 2000 GHz W 1.0 MHz #VB	Freq 16.00000000 GHZ PROTECT Trig: Free Run Ji Gaint.low Ref Offset 9.5 dB Ref 34.00 dBm Image: State Sta	Freq 16.00000000 GHZ PROCESSIC.Gar Colling: Free Run IFGaincl.ew Avg Type: Log PROCESSIC.Gar Colling: Free Run Anten: 36 dB Avg Type: Log Ref 076set 9.5 dB Ref 34.00 dBm Ref 34.00 dBm Ref 34.00 dBm Ref 34.00 dBm Ref 34.00 dBm 2.000 GHz No 0 MHz #VBW 3.0 MHz Sweet Sweet Sweet 1 1.0 MHz ± 25.256 dBm Ref 34.00 dBm Ref 34.00 dBm Ref 34.00 dBm	Freq 16.00000000 GHZ PIO: Fact FGainLow Trig: Free Run #Atten: 38 dB Avg Type: Log-Pwr Trig: Trig: Free Run #Atten: 38 dB Ref 076set 9.5 dB Ref 34.00 dBm Mkr1 19.007 -25.2 2.000 GHz V 1.0 MHz #VBW 3.0 MHz Stop 2 2.000 GHz V 1.0 MHz #VBW 3.0 MHz Stop 2 Stop 2 1 1.00076 GHz -25.2 GBm	Freq 16.000000000 CHZ PICO Fact Avg Type: Log-Pwr The first for a fir

Highest Channel


RL RF 50 :	8 AC	SENSE:INT	ALIGNAUTO	05:34:51 AM Apr 11, 2016	
nter Freq 16.000			Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE DET P P P P P P	Frequency
Ref Offset 9 dB/div Ref 35.50			Mkr1	16.354 56 GHz -24.713 dBm	Auto Tur
5 .5					Center Fre
50					16.00000000 G
5				-13.00 dBn	Start Fr
5					12.000000000 G
5					Stop Fre
.5					20.00000000 G
art 12.000 GHz es BW 1.0 MHz	#VB	N 3.0 MHz	Sweep 2	Stop 20.000 GHz 0.0 ms (25001 pts)	CF Ste 800.000000 M
N 1 F	× 16.354 56 GHz	-24.713 dBm	INCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> M
	16.354 56 GHz	-24.713 dBm			Freq Offs
					0

Shenzhen STS Test Services Co., Ltd.


A7 BAND EDGE

GSM 850

Lowest Band Edge

Note:Offset=Cable loss(8.5)+10log(3.2/3)=8.5+0.3=8.8 dB

Highest Band Edge

Note:Offset=Cable loss(8.5)+10log(3.2/3)=8.5+0.3=8.8 dB

GSM 1900

Lowest Band Edge

Note:Offset=Cable loss(9.5)+10log(3.2/3)=9.5+0.3=9.8 dB

Highest Band Edge

Note:Offset=Cable loss(9.5)+10log(3.2/3)=9.5+0.3=9.8 dB

Shenzhen STS Test Services Co., Ltd.

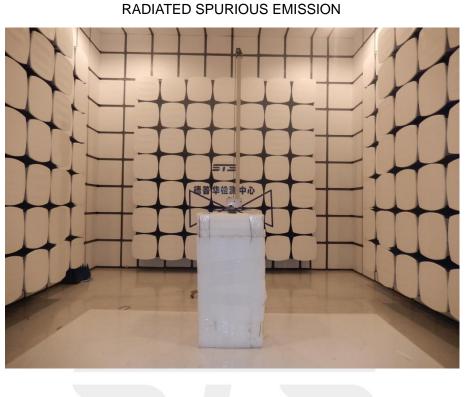
A8 FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT GSM 850: (30-9000)MHz

	The	e Worst Test R	Results Channe	I 128/824.2 MHz				
Frequency(MHz)	Power(dBm)	ARpl	P _{Mea} (dBm)	Limit (dBm)	Margin(dBm)	Polarity		
1648.463	-35.52	-4.65	-40.17	-13	-27.17	Horizontal		
2472.683	-37.03	-2.21	-39.24	-13	-26.24	Horizontal		
3296.838	-31.17	0.21	-30.96	-13	-17.96	Horizontal		
1648.457	-38.52	-4.65	-43.17	-13	-30.17	Vertical		
2472.658	-41.84	-2.21	-44.05	-13	-31.05	Vertical		
3296.865	-42.75	0.21	-42.54	-13	-29.54	Vertical		
The Worst Test Results Channel 190/836.6 MHz								
Frequency(MHz)	Power(dBm)	ARpl	P _{Mea} (dBm)	Limit (dBm)	Margin(dBm)	Polarity		
1673.275	-36.54	-4.65	-41.19	-13	-28.19	Horizontal		
2509.845	-43.04	-2.21	-45.25	-13	-32.25	Horizontal		
3346.422	-38.16	0.21	-37.95	-13	-24.95	Horizontal		
1673.257	-37.53	-4.65	-42.18	-13	-29.18	Vertical		
2509.857	-31.85	-2.21	-34.06	-13	-21.06	Vertical		
3346.452	-36.78	0.21	-36.57	-13	-23.57	Vertical		
The Worst Test Results Channel 251/848.8 MHz								
Frequency(MHz)	Power(dBm)	ARpl	P _{Mea} (dBm)	Limit (dBm)	Margin(dBm)	Polarity		
1697.645	-35.53	-4.65	-40.18	-13	-27.18	Horizontal		
2546.462	-44.05	-2.21	-46.26	-13	-33.26	Horizontal		
3395.272	-42.19	0.21	-41.98	-13	-28.98	Horizontal		
1697.632	-35.53	-4.65	-40.18	-13	-27.18	Vertical		
2546.452	-41.84	-2.21	-44.05	-13	-31.05	Vertical		
3395.217	-37.78	0.21	-37.57	-13	-24.57	Vertical		

Note: (1)Below 30MHz no Spurious found is the worst condition.

(2)Above 3.5GHz amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has.

PCS 1900: (30-20000)MHz


	The	Worst Test Res	ults for Channe	el 512/1850.2MH	Iz			
Frequency(MHz)	Power(dBm)	ARpl	P _{Mea} (dBm)	Limit (dBm)	Margin(dBm)	Polarity		
3700.424	-33.55	0.33	-33.22	-13	-20.22	Horizontal		
5550.672	-36.05	4.01	-32.04	-13	-19.04	Horizontal		
7400.897	-42.17	10.7	-31.47	-13	-18.47	Horizontal		
3700.432	-34.53	0.33	-34.2	-13	-21.2	Vertical		
5550.653	-35.83	4.01	-31.82	-13	-18.82	Vertical		
7400.842	-41.78	10.7	-31.08	-13	-18.08	Vertical		
The Worst Test Results for Channel 661/1880.0MHz								
Frequency(MHz)	Power(dBm)	ARpl	P _{Mea} (dBm)	Limit (dBm)	Margin(dBm)	Polarity		
3760.167	-36.51	0.33	-36.18	-13	-23.18	Horizontal		
5640.245	-37.06	4.01	-33.05	-13	-20.05	Horizontal		
7520.223	-32.2	10.7	-21.5	-13	-8.5	Horizontal		
3760.175	-38.53	0.33	-38.2	-13	-25.2	Vertical		
5640.242	-41.81	4.01	-37.8	-13	-24.8	Vertical		
7520.243	-42.77	10.7	-32.07	-13	-19.07	Vertical		
The Worst Test Results for Channel 810/1909.8MHz								
Frequency(MHz)	Power(dBm)	ARpl	P _{Mea} (dBm)	Limit (dBm)	Margin(dBm)	Polarity		
3819.632	-36.51	0.33	-36.18	-13	-23.18	Horizontal		
5729.443	-37.05	4.01	-33.04	-13	-20.04	Horizontal		
7639.275	-32.15	10.7	-21.45	-13	-8.45	Horizontal		
3819.641	-38.56	0.33	-38.23	-13	-25.23	Vertical		
5729.484	-41.83	4.01	-37.82	-13	-24.82	Vertical		
7639.232	-42.75	10.7	-32.05	-13	-19.05	Vertical		

Note: (1)Below 30MHz no Spurious found is the worst condition.

(2)Above 8GHz amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has.

APPENDIX BPHOTOS OF TEST SETUP

Shenzhen STS Test Services Co., Ltd.