

FCC RADIO TEST REPORT

FCC ID	: 2BNGI-ANS86
Equipment	: Tusk Frequnce Dash Hub
Brand Name	: Tusk
Model Name	: 2138500001
Applicant	: Rocky Mountain ATV/MC 1551 American Way, Payson, UT 84651
Manufacturer	: Rocky Mountain ATV/MC 1551 American Way, Payson, UT 84651
Standard	: FCC Part 15 Subpart C §15.247

The product was received on Dec. 23, 2024 and testing was performed from Jan. 08, 2024 to Apr. 03, 2025. We, Sporton International (USA) Inc., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval from Sporton International (USA) Inc., the test report shall not be reproduced except in full.

Ni Kao

Approved by: Neil Kao

Sporton International (USA) Inc.

1175 Montague Expressway, Milpitas, CA 95035

Table of Contents

His	tory o	f this test report	3				
Sur	nmary	v of Test Result	4				
1	Gene	ral Description	5				
	1.1 Product Feature of Equipment Under Test5						
	1.2	Modification of EUT	5				
	1.3	Testing Location	5				
	1.4	Applicable Standards	5				
2	Test	Configuration of Equipment Under Test	6				
	2.1	Carrier Frequency Channel	6				
	2.2	Test Mode	7				
	2.3	Connection Diagram of Test System	8				
	2.4	Support Unit used in test configuration and system	8				
	2.5	EUT Operation Test Setup	8				
	2.6	Measurement Results Explanation Example	9				
3	Test	Result	.10				
	3.1	Number of Channel Measurement	.10				
	3.2	Hopping Channel Separation Measurement	.11				
	3.3	Dwell Time Measurement	.12				
	3.4	20dB and 99% Bandwidth Measurement	.13				
	3.5	Output Power Measurement	.14				
	3.6	Conducted Band Edges Measurement	.15				
	3.7	Conducted Spurious Emission Measurement	.16				
	3.8	Radiated Band Edges and Spurious Emission Measurement	.17				
	3.9	Antenna Requirements	.21				
4	List o	of Measuring Equipment	.22				
5	Meas	urement Uncertainty	.23				
Арј	pendix	A. Conducted Test Results					
Арј	pendix	B. Radiated Spurious Emission Test Data					

Appendix C. Duty Cycle Plots

Appendix D. Setup Photographs

History of this test report

Report No.	Version	Description	Issue Date
FR241204002-01A	01	Initial issue of report	Mar. 28, 2025
FR241204002-01A	Revise Appendix A. R241204002-01A 02 This report is an updated version, replacing the report issued on Mar. 28, 2025		Apr. 10, 2025

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(1)	Number of Channels	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	Pass	-
3.4	2.1049	99% Occupied Bandwidth	Pass	-
3.5	15.247(b)(1) 15.247(b)(4)	Peak Output Power	Pass	-
3.6	15.247(d)	Conducted Band Edges	Pass	-
3.7	15.247(d)	Conducted Spurious Emission	Pass	-
3.8	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	Pass	-
-	15.207	AC Conducted Emission	Not Required	See Note
3.9	15.203	Antenna Requirement	Pass	-

Note: The power source method of the EUT is to use power supply (DC power source), and there is no other AC power port, after assessing, AC Conduction Emission test is not required.

Conformity Assessment Condition:

- The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.
- 2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty".

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

1 General Description

1.1 Product Feature of Equipment Under Test

	Product Feature			
General Specs				
Bluetooth				
Antenna Type				
Bluetooth: Monopole Antenna				
	Antenna information			

 2400 MHz ~ 2483.5 MHz
 Peak Gain (dBi)
 -1.72

 Pemark: The EUT's information above is declared by manufacturer. Please refer to Disclaimer in report

Remark: The EUT's information above is declared by manufacturer. Please refer to Disclaimer in report summary.

1.2 Modification of EUT

No modifications made to the EUT during the testing.

1.3 Testing Location

Test Site Sporton International (USA) Inc.				
Test Site Location	1175 Montague Expressway, Milpitas, CA 95035 TEL : 408 9043300			
Tost Sito No	Sporton Site No.			
Test Sile No.	TH01-CA, 03CH01-CA			

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC Designation No.: US1250

1.4 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 15.247 Meas Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2020

Remark: All the test items were validated and recorded in accordance with the standards without any modification during the testing.

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

2.2 Test Mode

a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and only the worst plane, and the worst mode of radiated spurious emissions is Bluetooth 1Mbps mode, and recorded in this report.

The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Summary table of Test Cases						
Test Item Data Rate / Modulation							
	Bluetooth BR 1Mbps GFSK	Bluetooth EDR 2Mbps π /4-DQPSK					
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz					
Test Cases	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz					
	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz					
Remark:	Remark:						

 For Radiated Test Cases, the worst mode data rate 1Mbps was reported only since the highest RF output power in the preliminary tests. The conducted spurious emissions and conducted band edge measurement for other data rates were not worse than 1Mbps, and no other significantly frequencies found in conducted spurious emission.

2. The detailed Radiated test modes are shown in Appendix B.

TEL : 408 9043300	Page Number	: 7 of 23
Report Template No.: BU5-FR15CBT Version 2.4	Issue Date	: Apr. 10, 2025
	Report Version	: 02

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

ltem	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Notebook	ASUS	ASUS EXPERTBOOK B1402CVA_B14 08CVA	PD9AX211NG	N/A	AC I/P: Unshielded, 1.2m DC O/P: Shielded, 1.8m

2.5 EUT Operation Test Setup

The RF test items, utility "Tera Term Version 4.95" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

3.1.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10 clause 7.8.3.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300 kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup

Spectrum Analyzer

3.1.5 Test Result of Number of Hopping Frequency

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.2.3 Test Procedures

- 1. The testing follows ANSI C63.10 clause 7.8.2.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300 kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.2.4 Test Setup

Spectrum Analyzer

3.2.5 Test Result of Hopping Channel Separation

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

3.3.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10 clause 7.8.4.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup

3.3.5 Test Result of Dwell Time

3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only

3.4.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Use the following spectrum analyzer settings for 20 dB Bandwidth measurement.
 Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
 RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel;
 RBW ≥ 1-5% of the 99% bandwidth; VBW ≥ 3 * RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- 6. Measure and record the results in the test report.

3.4.4 Test Setup

Spectrum Analyzer

3.4.5 Test Result of 20dB Bandwidth

Please refer to Appendix A.

3.4.6 Test Result of 99% Occupied Bandwidth

3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts. If directional gain of transmitting antennas is greater than 6 dBi, the power shall be reduced by the

same level in dB comparing to gain minus 6 dBi.

3.5.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10 clause 7.8.5.
- 2. The RF output of EUT is connected to the power meter by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

Please refer to Appendix A.

3.5.6 Test Result of Average Output Power (Reporting Only)

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

3.6.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10 clause 7.8.6.
- 2. Set the maximum power setting and enable the EUT to transmit continuously.
- 3. Set RBW = 100 kHz, VBW = 300 kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2 and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup

3.6.5 Test Result of Conducted Band Edges

Please refer to Appendix A.

3.6.6 Test Result of Conducted Hopping Mode Band Edges

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

3.7.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.7.3 Test Procedure

- 1. The testing follows ANSI C63.10 clause 7.8.8.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Set RBW = 100 kHz, VBW = 300 kHz, scan up through 10th harmonic. All harmonics / spurious must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.7.4 Test Setup

Spectrum Analyzer

3.7.5 Test Result of Conducted Spurious Emission

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics / spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance		
(MHz)	(microvolts/meter)	(meters)		
0.009 - 0.490	2400/F(kHz)	300		
0.490 – 1.705	24000/F(kHz)	30		
1.705 – 30.0	30	30		
30 – 88	100	3		
88 – 216	150	3		
216 - 960	200	3		
Above 960	500	3		

3.8.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.8.3 Test Procedures

- 1. The EUT is placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
- 2. The EUT is set 3 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT is arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set the maximum power setting and enable the EUT to transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz, RBW = 1 MHz for f>1 GHz ; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - $\begin{array}{ll} (3) & \mbox{For average measurement: use duty cycle correction factor method per 15.35(c).} \\ & \mbox{Duty cycle = On time/100 milliseconds} \\ & \mbox{On time = } N_1^*L_1 + N_2^*L_2 + ... + N_{n-1}^*LN_{n-1} + N_n^*L_n \\ & \mbox{Where } N_1 \mbox{ is number of type 1 pulses, } L_1 \mbox{ is length of type 1 pulses, etc.} \end{array}$

Average Emission Level = Peak Emission Level + 20*log (Duty cycle)

- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6 dB margin against QP limit line, the position is marked as "-".
- 8. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".

Note: The average levels are calculated from the peak level corrected with duty cycle correction factor (-42.38dB for 1Mbps and -42.16dB for 2Mbps) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.

3.8.4 Test Setup

For radiated test below 30MHz

Spectrum Analyzer / Receiver

TEL : 408 9043300 Report Template No.: BU5-FR15CBT Version 2.4

For radiated test above 18GHz

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which starts from 9 kHz to 30 MHz, is pre-scanned and the result which is 20 dB lower than the limit line is not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result comes out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B.

3.8.7 Duty Cycle

Please refer to Appendix C.

3.8.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

3.9 Antenna Requirements

3.9.1 Standard Applicable

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of § 15.211, 15.213, 15.217, 15.219, 15.221, or § 15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

3.9.2 Antenna Anti-Replacement Construction

Antenna permanently attached.

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Bilog Antenna	TESEQ	6111D	54683	30MHz~1GHz	Nov. 15, 2024	Jan. 08, 2024~ Feb. 26, 2024	Nov. 14, 2025	Radiation (03CH01-CA)
Loop Antenna	R&S	HFH2-Z2E	100840	9kHz~30MHz	May 02, 2024	Jan. 08, 2024~ Feb. 26, 2024	May 01, 2025	Radiation (03CH01-CA)
Horn Antenna	SCHWARZBE CK	BBHA 9120D	02113	1GHz~18GHz	Apr. 26, 2024	Jan. 08, 2024~ Feb. 26, 2024	Apr. 25, 2025	Radiation (03CH01-CA)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA9170	00841	18GHz~40GHz	Aug. 07, 2024	Jan. 08, 2024~ Feb. 26, 2024	Aug. 06, 2025	Radiation (03CH01-CA)
Amplifier	SONOMA	310N	372241	9kHz~1GHz	Apr. 24, 2024	Jan. 08, 2024~ Feb. 26, 2024	Apr. 23, 2025	Radiation (03CH01-CA)
Filter	Wainwright	WHKX12-2700 -3000-18000-6 0ST	SN9	3GHz High Pass Filter	Jun. 04, 2024	Jan. 08, 2024~ Feb. 26, 2024	Jun. 03, 2025	Radiation (03CH01-CA)
Filter	Wainwright	WLK12-1200-1 272-11000-40 SS	SN1	1.2GHz Low Pass Filter	Jun. 04, 2024	Jan. 08, 2024~ Feb. 26, 2024	Jun. 03, 2025	Radiation (03CH01-CA)
Preamplifier	Keysight	83017A	MY53270321	1GHz~26.5GHz	Apr. 25, 2024	Jan. 08, 2024~ Feb. 26, 2024	Apr. 24, 2025	Radiation (03CH01-CA)
Preamplifier	E-instrument	ERA-100M-18 G-56-01-A70	EC1900252	1GHz~18GHz	Apr. 25, 2024	Jan. 08, 2024~ Feb. 26, 2024	Apr. 24, 2025	Radiation (03CH01-CA)
Preamplifier	EMEC	EMC18G40G	060726	18G-40G	Apr. 04, 2024	Jan. 08, 2024~ Feb. 26, 2024	Apr. 03, 2025	Radiation (03CH01-CA)
RF Cable	HUBER+SUH NER	SUCOFLEX 102	8015932/2, 8015762/2, 804938/2	N/A	Mar. 05, 2024	Jan. 08, 2024~ Feb. 26, 2024	Mar. 04, 2025	Radiation (03CH01-CA)
Hygrometer	TESEO	608-H1	45142559	N/A	Aug. 14, 2024	Jan. 08, 2024~ Feb. 26, 2024	Aug. 13, 2025	Radiation (03CH01-CA)
Controller	Chaintek	EM-1000	060881	Control Turn Table & Antenna Mast	N/A	Jan. 08, 2024~ Feb. 26, 2024	N/A	Radiation (03CH01-CA)
Antenna Mast	ChainTek	MBS-520-1	N/A	1m~4m	N/A	Jan. 08, 2024~ Feb. 26, 2024	N/A	Radiation (03CH01-CA)
Turn Table	ChainTek	T-200-S-1	N/A	0~360 Degree	N/A	Jan. 08, 2024~ Feb. 26, 2024	N/A	Radiation (03CH01-CA)
Test Software	Audix E3	E3 230621 Sporton US,V9	PK-002093	N/A	N/A	Jan. 08, 2024~ Feb. 26, 2024	N/A	Radiation (03CH01-CA)
Hygrometer	Testo	608-H1	45141354	N/A	Aug. 14, 2024	Apr. 03, 2025	Aug. 13, 2025	Conducted (TH01-CA)
Power Meter	Anritsu	ML2495A	1804004	N/A	Apr. 25, 2024	Apr. 03, 2025	Apr. 24, 2025	Conducted (TH01-CA)
Spectrum analyzer	Rhodes & Schwarz	FSV40	101545	10Hz~40GHz	Apr. 25, 2024	Apr. 03, 2025	Apr. 24, 2025	Conducted (TH01-CA
Switch Box	EM Electronics	EMSW26	1090304	N/A	Oct. 04, 2024	Apr. 03, 2025	Oct. 03, 2025	Conducted (TH01-CA)

5 Measurement Uncertainty

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	4 7 dB
of 95% (U = 2Uc(y))	4.7 dB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	E E dP
of 95% (U = 2Uc(y))	5.5 UB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	4.5 dB
of 95% (U = 2Uc(y))	4.5 UB

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Venkata Kondepudi	Temperature:	18.9~20.5	°C
Test Date:	2025/4/3	Relative Humidity:	43.2~45.2	%

			20dB	and 9	9% Occup	<u>TEST RES</u> bied Bandwid	<u>SULTS DATA</u> Ith and Hopping	Channel Separa	ation
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	20db BW (MHz)	99% Bandwidth (MHz)	Hopping Channel Separation Measurement (MHz)	Hopping Channel Separation Measurement Limit (MHz)	Pass/Fail
DH	1Mbps	1	0	2402	0.929	0.818	0.990	0.6192	Pass
DH	1Mbps	1	39	2441	0.925	0.812	0.994	0.6166	Pass
DH	1Mbps	1	78	2480	0.929	0.811	1.003	0.6192	Pass
2DH	2Mbps	1	0	2402	1.297	1.170	1.003	0.8644	Pass
2DH	2Mbps	1	39	2441	1.298	1.171	0.990	0.8654	Pass
2DH	2Mbps	1	78	2480	1.286	1.171	1.020	0.8576	Pass

			<u>TEST I</u> L	RESULTS Dwell Time	<u>DATA</u>		
Mod.	Hopping Channel Number Rate	Hops Over Occupancy Time (hops)	Package Transfer Time (msec)	Dwell Time (sec)	Limits (sec)	Pass/Fail	
2DH5	79	106.670	2.90	0.31	0.4	Pass	
2DH5 (AFH)	20	53.330	2.90	0.15	0.4	Pass	

TEST RESULT Peak Power						
DH	CH.	NTX	Peak Power (dBm)	Power Limit (dBm)	Test Result	
	0	1	10.85	30.00	Pass	
DH1	39	1	11.25	30.00	Pass	
	78	1	11.30	30.00	Pass	
	0	1	13.24	20.97	Pass	
2DH1	39	1	13.59	20.97	Pass	
1	78	1	13.58	20.97	Pass	

				<u>TES</u> <u>Ave</u> (ST RESULTS DATA erage Power Table Reporting Only)
DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)	
	0	1	9.97	5.23	
DH1	39	1	10.03	5.23	
	78	1	10.34	5.23	
	0	1	9.75	5.11	
2DH1	39	1	10.41	5.11	
	78	1	10.22	5.11	

	TEST RESULTS DATA Number of Hopping Frequency					
	Number of Hopping (Channel)	Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail		
	79	20	> 15	Pass		
-					-	

Number of Hopping Frequency

Hopping Channel Separation

<1Mbps>

annel Separatio	n Plot on Chan	nel 00 - 01	Channel	ooparation		
			Spectrum			
21.20 dBm Offset 11.20 dB - RB	W 300 kHz	(-)	Ref Level 21.20 dBm	Offset 11.20 dB 👄 RBW	300 kHz	
20 dB 👄 SWT 5 ms 👄 VB	W 300 kHz Mode Sweep		Att 20 dB	SWT 5 ms 🖷 VBW	300 kHz Mode Sweep	
	M1[1]	10.53 dBm	APK Max		M1[1]	10.91
M1	D2[1] D2	2.40198770 GHz		M1	D2[1] D2	2.44099640
		1.00289 MHz	10 dBm			989.87
			0 dBm			
			-10 dBm			
			-20 dBm			
			-20 0011			
			-30 dBm			
			-40 dBm			
			-50 dBm			
			-60 dBm			
			70 d8m			
			-/0 0811			
	691 pts	Span 3.0 MHz	CF 2.4415 GHz		691 pts	Span 3.0
	Measuring	4,44			Measuring	4,64
annel Separatio	n Plot on Chan	nel 77 - 78	Date: 3.APR.2025 14:21:	54		
annel Separatio	n Plot on Chan	nel 77 - 78	Date: 3.APB.2025 14:21:	54		
annel Separatio	Im Plot on Chan IW 300 kHz IW 300 kHz IW 300 kHz	nel 77 - 78	Date: 3.AFR.2025 14:21	54		
annel Separatio	IN Plot on Chan	nel 77 - 78	Date: 3.AFR.2025 14:21:	54		
2025 14:19:02 annel Separatio 21.20 dBm Offset 11.20 dB = RB 20 dB BWT 5 ms • VB	W 300 kHz W 300 kHz Mode Sweep	nel 77 - 78 ♥ 10.95 dbm 2.47898340 GHZ	Date: 3.AFR.2025 14:21:	54		
annel Separatio	With 300 kHz Mode Sweep With 300 kHz Mode Sweep	nel 77 - 78	Date: 3.AFB.2025 14:21	54		
14:19:02	MW 300 kHz WW 300 kHz Mode Sweep M1[1] D211 D2 C	nel 77 - 78 () 10.95 dBm 2.47898340 GHz 0.01 db 1.02026 MHz	Date: 3.AFR.2025 14:21	54		
14:19:02 nnel Separatio 1.20 dBm Offset 11.20 dB @ RB 20 dB @ SWT S ms @ VB	M 300 KHz W 300 KHz Mode Sweep M1[1] D2[1] 02 02[1] 02 02[1] 02	nel 77 - 78 ^{10.95 dBm} 2.47998340 GHz 0.01 dB 1.02026 MHz	Date: 3.AFR.2025 14:21	54		
14:19:02	Milli D211 02 Attack Milli D211 02 Attack	nel 77 - 78	Date: 3.AFR.2025 14:21	54		
25 14119102	M 300 Htz W 300 Htz Mode Sweep M1[1] 02413 02 2	nel 77 - 78 .10.95 dBm 2.47899340 GHz 0.01 dB 1.02026 MHz 1.02026 MHz	Date: 3.AFR.2025 14:21:	54		
25 14119102	M 300 kHz M 300 kHz Mode Sweep M1[1] D2[1] 2 02 02 02 02 02 02 02 02 02 0	nel 77 - 78 () 10.95 dBm 2.47998340 GHz 0.01 dB 1.02026 MHz 1.02026 MHz	Date: 3.AFR.2025 14:21	54		
25 14119102	W 300 kHz W 300 kHz Mode Sweep	nel 77 - 78	Date: 3.AFR.2025 14:21	54		
14:19:02	Market Sweep	nel 77 - 78	Date: 3.AFR.2025 14:21	54		
14119:02	MILIJ D2JJ D2 A	nel 77 - 78 .10.95 dBm 2.47099340 GHz 0.01 dB 1.02026 MHz	Date: 3.AFR.2025 14:21	54		
14119:02	M 300 kHz M 300 kHz Mode Sweep M1[1] 0213 2 2 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1	nel 77 - 78 .10.95 dBm 2.47898340 CHz 0.01 dB 1.02026 MHz	Date: 3.AFR.2025 14:21	54		
225 14:19:02	M 200 kHz W 300 kHz Mode Sweep M1[1] D2411 02	nel 77 - 78	Date: 3.AFR.2025 14:21	54		
14:19:02	M 200 Htz M 200 Htz Mode Sweep M1[1] D21] 02 A	nel 77 - 78	Date: 3.AFR.2025 14:21	54		
14119:02	MILII DATI 02 MILII DATI 02 MILII	nel 77 - 78	Date: 3.AFR.2025 14:21	54		
25 14119102	M SOO HE W 300 HE Mode Sweep MI[1] D2(1) A D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2	nel 77 - 78	Date: 3.AFB.2025 14:21:	54		
14:19:02	M 300 Htz M 300 Htz Mode Sweep M1[1] 02411 02 02411 02 0411 02 041 0	nel 77 - 78	Date: 3.AFR.2025 14:21:	54		
20 dB © SWT Sms VE	PIN Plot on Chan	nel 77 - 78	Date: 3.AFB.2025 14:21	54		
2025 14:19:02	M Plot on Chan	nel 77 - 78	Date: 3.AFR.2025 14:21:	54		

20dB Bandwidth

<1Mbps>

99% Occupied Bandwidth

<1Mbps>

Band Edges

<1Mbps>

Low Band Edge Plot on Channel 00	High Band Edge Plot on Channel 78
Low Band Edge Plot on Channel 00 Spectrum Image: Colspan="2">Image: Colspan="2" Image: Colspan="	High Band Edge Plot on Channel 78 Spectrum Image: Colspan="2">Image: Colspan="2" Image: Colspa="2" Image: Colspan="2" Image: Colspan="2" Image: Cols
Start 2.39 GHz 691 pts Stop 2.405 GHz Date: 3.AFR.2025 14:16:56	Start 2.4775 GHz 691 pts Stop 2.4945 GHz Date: 3.AFR.2025 14:23:37

Hopping Mode Band Edges

<1Mbps>

Spectrum With Ref Lavel 21.20 dBm Offset 11.20 dB = RBW 100 kHz Att 20 db = SWT S ms = VBW 300 kHz Mode Sweep Image: State St	Spectrum Image: Constraint of the second secon
Date: J.APR.2025 14:16:05	Date: 3.APR.2025 14:08:45

Conducted Spurious Emission

<1Mbps>

Appendix B. Radiated Spurious Emission Test Data

Test Engineer :	Bill Chang Fred Teang Josep Fan	Temperature :	20.1~23.6°C	
	Dir Chang, Fred Iseng, Jesser an	Relative Humidity :	39.6~53.2%	

Note symbol

-L	Low channel location
-R	High channel location

B1. Radiated Spurious Emission Test Modes

Mode	Band (MHz)	Antenna	Modulation	Channel	Frequency	Data Rate	RU	Remark
Mode 1	2400-2483.5	1	Bluetooth BR_GFSK	00	2402	1Mbps	-	-
Mode 2	2400-2483.5	1	Bluetooth BR_GFSK	39	2441	1Mbps	-	-
Mode 3	2400-2483.5	1	Bluetooth BR_GFSK	78	2480	1Mbps	-	-
Mode 4	2400-2483.5	1	Bluetooth BR_GFSK	0	2402	2Mbps	-	-
Mode 5	2400-2483.5	1	Bluetooth BR_GFSK	39	2441	2Mbps	-	-
Mode 6	2400-2483.5	1	Bluetooth BR_GFSK	78	2480	2Mbps	-	-
Mode 7	2400-2483.5	1	Bluetooth BR_GFSK	00	2402	1Mbps	-	LF
Mode 8	2400-2483.5	1	Bluetooth BR_GFSK	00	2402	1Mbps	-	SHF

B2. Summary of each worse mode

Mode	Modulation	Ch.	Freq. (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pol.	Peak Avg.	Result	RU	Remark
4	Bluetooth BR_GFSK	00	2381.85	48.72	74.00	-25.28	V	Peak	Pass	-	Band Edge
	Bluetooth BR_GFSK	00	3203.00	65.01	74.00	-8.99	V	Peak	Pass	-	Harmonic
0	Bluetooth BR_GFSK	39	2499.35	49.21	74.00	-24.79	V	Peak	Pass	-	Band Edge
2	Bluetooth BR_GFSK	39	3255.00	63.78	74.00	-10.22	V	Peak	Pass	-	Harmonic
2	Bluetooth BR_GFSK	78	2483.84	51.86	74.00	-22.14	V	Peak	Pass	-	Band Edge
3	Bluetooth BR_GFSK	78	3306.00	62.49	74.00	-11.51	V	Peak	Pass	-	Harmonic
4	Bluetooth BR_GFSK	0	2362.07	48.85	74.00	-25.15	Н	Peak	Pass	-	Band Edge
4	Bluetooth BR_GFSK	0	3203.00	64.66	74.00	-9.34	Н	Peak	Pass	-	Harmonic
Б	Bluetooth BR_GFSK	39	2493.63	49.53	74.00	-24.47	Н	Peak	Pass	-	Band Edge
5	Bluetooth BR_GFSK	39	3255.00	63.07	74.00	-10.93	V	Peak	Pass	-	Harmonic
6	Bluetooth BR_GFSK	78	2483.72	52.43	74.00	-21.57	Н	Peak	Pass	-	Band Edge
	Bluetooth BR_GFSK	78	3306.00	60.46	74.00	-13.54	Н	Peak	Pass	-	Harmonic
7	LF	00	56.19	27.28	40.00	-12.72	V	Peak	Pass	-	LF
8	SHF	00	-	-	-	-	-	-	-	-	SHF

Appendix C. Duty Cycle Plots

<1Mbps>

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = 2 * 0.38 / 100 = 0.76 %
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -42.38 dB
- 3. DH5 has the highest duty cycle worst case and is reported.

Duty Cycle Correction Factor Consideration for AFH mode:

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the on time period to have DH5 packet completing one hopping sequence is

0.38 ms x 20 channels = 7.6 ms

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100 ms / 7.6 ms] = 2 hopsThus, the maximum possible ON time:

0.38 ms x 2 = 0.76 ms

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

$$20 \times log(0.76 \text{ ms}/100 \text{ ms}) = -42.38 \text{ dB}$$

<2Mbps>

2DH5 on time (One Pulse) Plot on C	hannel 78	on time (Count Pulses) Plot on Channel 78				
Experiment Analyzer 1 Invest 2:se 0 RL Atten 30 dB PMO End (Con Con Page Ref Int(s)) Mode 2:se 0 Program 1 Spectrum Mode Page Ref Int(s) Atten 30 dB PMO End (Con Con Page Ref Int(s)) Mode Page Ref Int(s) Mode Page Page Ref Int(s) Mode Page Ref Int(s) Mode Page Page Ref Int(s) Mode Page Page Page Ref Int(s) Mode Page Page Page Ref Int(s) Mode Page Page Ref Int(s) Mode Page Page Page Page Page Page Page Page Page Page Page Page Page Page	Marker Enter Select Marker Marker 3 Select Marker 3 Marker Mode Seach Nomal Pic Seach Nomal Pic Seach O bella (A) Properties Fixed Marker - Otter Marker Marker -	Excellant Market Mar	settings Peak Search Pick Search Pick Search Properties Marker Function Marker			
Center J 2 40000000 0492 Proteo BW 1.0 Meg Space Pr SMachine Balo • • Seep 10.0 ms (160) 1pt SMachine Balo • • • Function Function Mode Trace Scale X 90 p pr () 90 p pr () 90 p pr () Protection Function Fu	Counter	Perk Saach Marrier Dela Marrier Dela Marrier Rel M Center 2 48000000 GHz Span 0 Hz Span 0 Hz Soach Ord Ord	Counter			

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = 2 * 0.39 / 100 = 0.78 %
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -42.16 dB
- 3. 2DH5 has the highest duty cycle worst case and is reported.

Duty Cycle Correction Factor Consideration for AFH mode:

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the on time period to have DH5 packet completing one hopping sequence is

0.39 ms x 20 channels = 7.8 ms

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100 ms / 7.8 ms] = 2 hops Thus, the maximum possible ON time:

0.39 ms x 2 = 0.78 ms

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

 $20 \times log(0.78 \text{ ms}/100 \text{ ms}) = -42.16 \text{ dB}$