

Frequency (MHz)	Level (dBuv/m)	Limit (dBuv/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

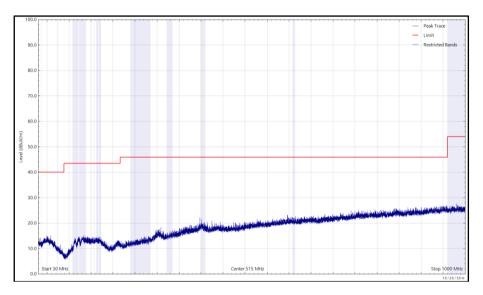


Figure 371 - U-NII-3 - 5825 MHz (CH165), 802.11a, Core 1, 30 MHz to 1 GHz, Horizontal (Peak)

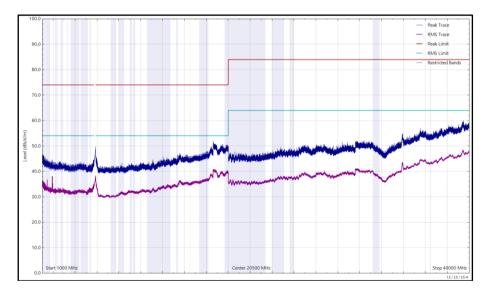


Figure 372 - U-NII-3 - 5825 MHz (CH165), 802.11a, Core 1, 1 GHz to 40 GHz, Horizontal

Figure 373 - U-NII-3 - 5825 MHz (CH165), 802.11a, Core 1, 30 MHz to 1 GHz, Vertical (Peak)

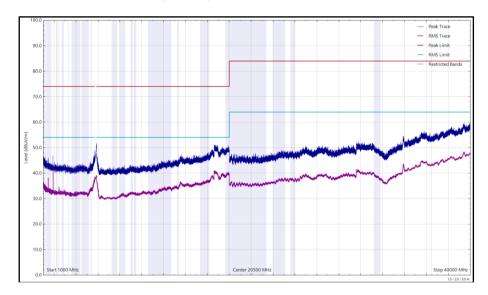


Figure 374 - U-NII-3 - 5825 MHz (CH165), 802.11a, Core 1, 1 GHz to 40 GHz, Vertical

Fre	equency (MHz)	Level (dBuv/m)	Limit (dBuv/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*								

Table 721 - U-NII-1 - 5180 MHz (CH36), VHT20, CDD, Core 0 + Core 1,30 MHz to 40 GHz

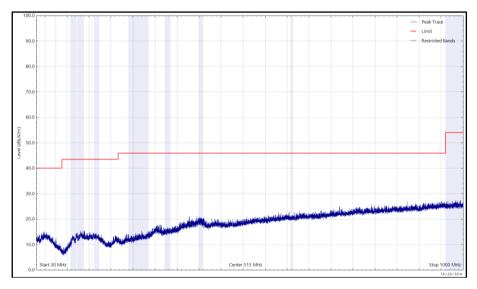


Figure 375 - U-NII-1 - 5180 MHz (CH36), VHT20, CDD, Core 0 + Core 1,30 MHz to 1 GHz, Horizontal (Peak)

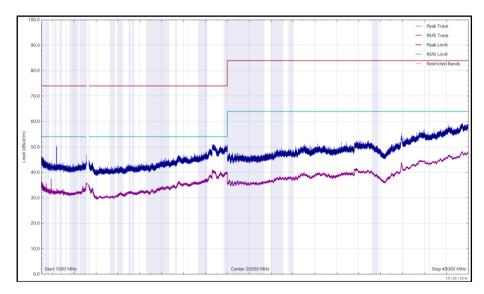


Figure 376 - U-NII-1 - 5180 MHz (CH36), VHT20, CDD, Core 0 + Core 1, 1 GHz to 40 GHz, Horizontal

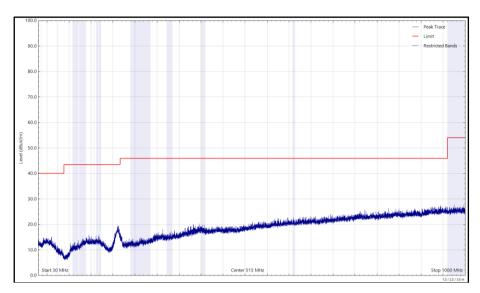


Figure 377 - U-NII-1 - 5180 MHz (CH36), VHT20, CDD, Core 0 + Core 1,30 MHz to 1 GHz, Vertical (Peak)

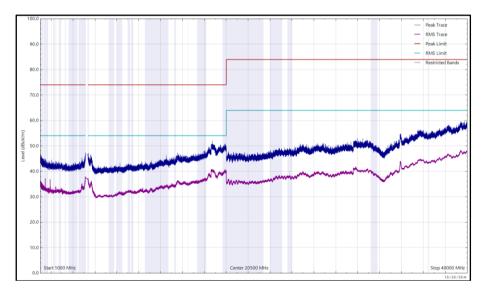


Figure 378 - U-NII-1 - 5180 MHz (CH36), VHT20, CDD, Core 0 + Core 1,1 GHz to 40 GHz, Vertical

Frequency (MHz)	Level (dBuv/m)	Limit (dBuv/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 722 - U-NII-2A - 5320 MHz (CH64), VHT20, CDD, Core 0 + Core 1,1 GHz to 40 GHz

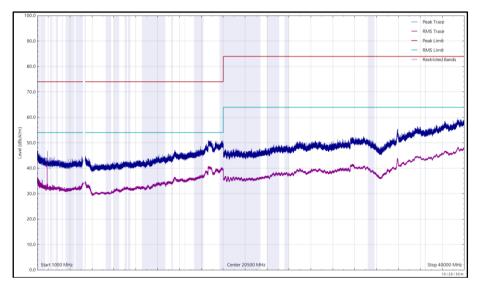


Figure 379 - U-NII-2A - 5320 MHz (CH64), VHT20, CDD, Core 0 + Core 1,1 GHz to 40 GHz, Horizontal

Figure 380 - U-NII-2A - 5320 MHz (CH64), VHT20, CDD, Core 0 + Core 1,1 GHz to 40 GHz, Vertical

Frequency (MHz)	Level (dBuv/m)	Limit (dBuv/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 723 - U-NII-2C - 5500 MHz (CH100), VHT20, CDD, Core 0 + Core 1,1 GHz to 40 GHz

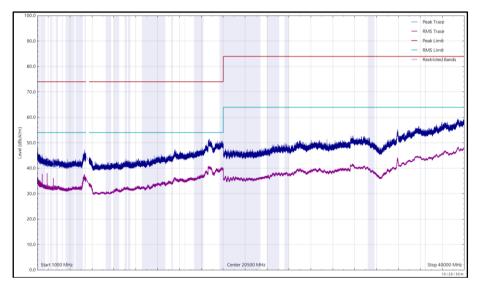


Figure 381 - U-NII-2C - 5500 MHz (CH100), VHT20, CDD, Core 0 + Core 1,1 GHz to 40 GHz, Horizontal

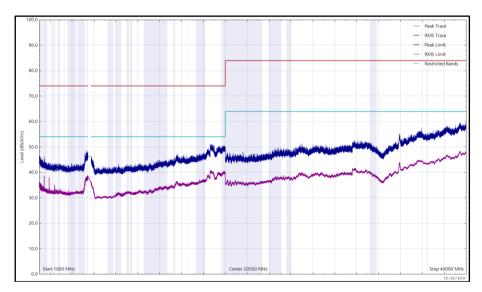


Figure 382 - U-NII-2C - 5500 MHz (CH100), VHT20, CDD, Core 0 + Core 1,1 GHz to 40 GHz, Vertical

	Frequency (MHz)	Level (dBuv/m)	Limit (dBuv/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
1	*							

Table 724 - U-NII-2C - 5700 MHz (CH140), VHT20, CDD, Core 0 + Core 1,1 GHz to 40 GHz

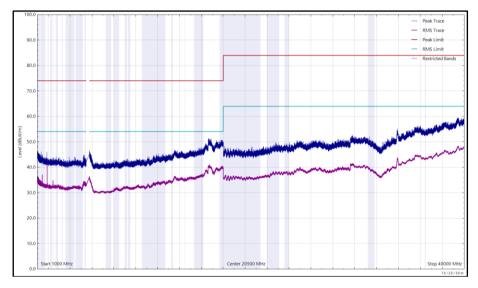


Figure 383 - U-NII-2C - 5700 MHz (CH140), VHT20, CDD, Core 0 + Core 1,1 GHz to 40 GHz, Horizontal

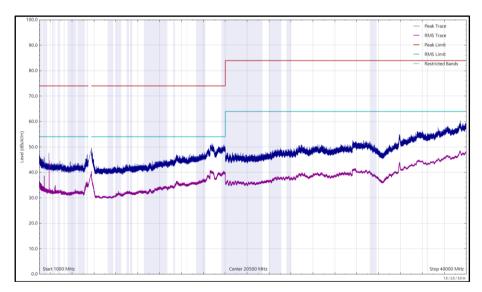


Figure 384 - U-NII-2C - 5700 MHz (CH140), VHT20, CDD, Core 0 + Core 1,1 GHz to 40 GHz, Vertical

Frequency (MHz)	Level (dBuv/m)	Limit (dBuv/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 725 - U-NII-3 - 5745 MHz (CH149), VHT20, CDD, Core 0 + Core 1,1 GHz to 40 GHz

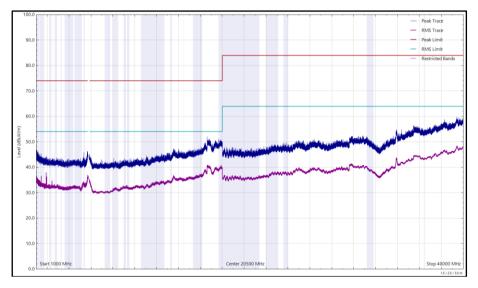


Figure 385 - U-NII-3 - 5745 MHz (CH149), VHT20, CDD, Core 0 + Core 1,1 GHz to 40 GHz, Horizontal

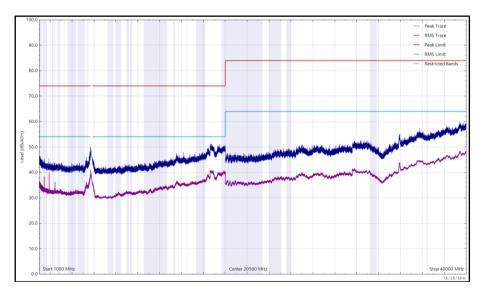


Figure 386 - U-NII-3 - 5745 MHz (CH149), VHT20, CDD, Core 0 + Core 1,1 GHz to 40 GHz, Vertical

Frequency (MHz)	Level (dBuv/m)	Limit (dBuv/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 726 - U-NII-3 - 5825 MHz (CH165), VHT20, CDD, Core 0 + Core 1,30 MHz to 40 GHz

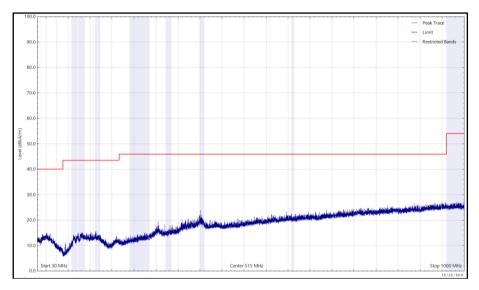


Figure 387 - U-NII-3 - 5825 MHz (CH165), VHT20, CDD, Core 0 + Core 1,30 MHz to 1 GHz, Horizontal (Peak)

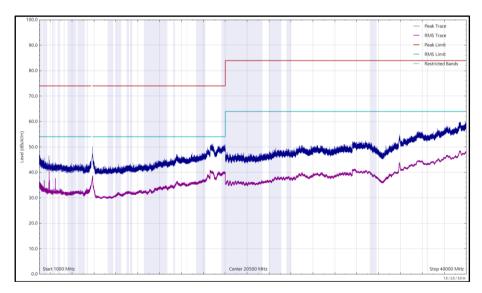


Figure 388 - U-NII-3 - 5825 MHz (CH165), VHT20, CDD, Core 0 + Core 1,1 GHz to 40 GHz, Horizontal

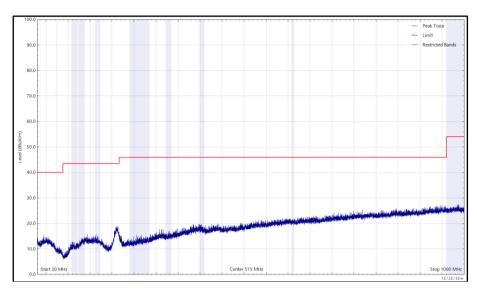


Figure 389 - U-NII-3 - 5825 MHz (CH165), VHT20, CDD, Core 0 + Core 1,30 MHz to 1 GHz, Vertical (Peak)

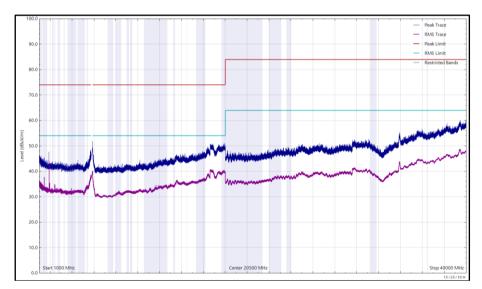


Figure 390 - U-NII-3 - 5825 MHz (CH165), VHT20, CDD, Core 0 + Core 1,1 GHz to 40 GHz, Vertical

Frequency (MHz)	Level (dBuv/m)	Limit (dBuv/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 727 - U-NII-1 - 5180 MHz (CH36), HE20, RU26-0, CDD, Core 0 + Core 1,30 MHz to 40 GHz

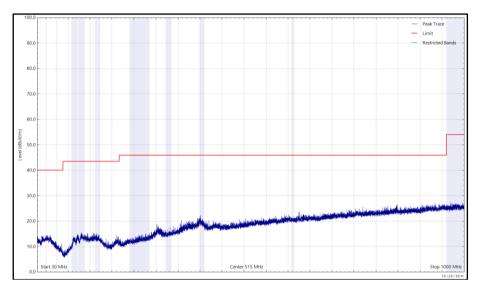


Figure 391 - U-NII-1 - 5180 MHz (CH36), HE20, RU26-0, CDD, Core 0 + Core 1,30 MHz to 1 GHz, Horizontal (Peak)

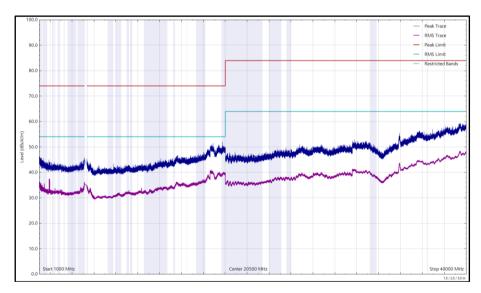


Figure 392 - U-NII-1 - 5180 MHz (CH36), HE20, RU26-0, CDD, Core 0 + Core 1,1 GHz to 40 GHz, Horizontal

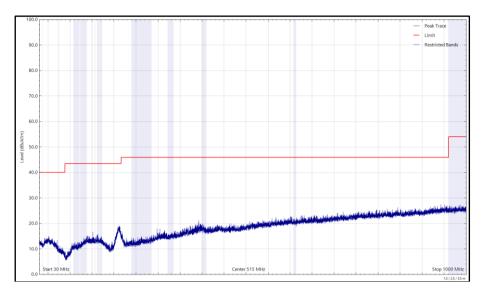


Figure 393 - U-NII-1 - 5180 MHz (CH36), HE20, RU26-0, CDD, Core 0 + Core 1,30 MHz to 1 GHz, Vertical (Peak)

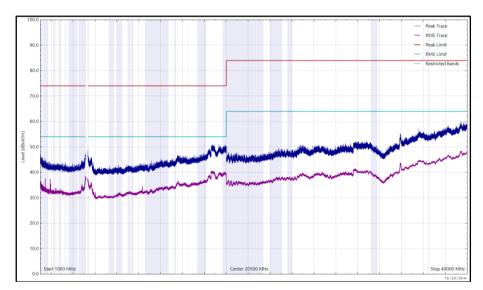


Figure 394 - U-NII-1 - 5180 MHz (CH36), HE20, RU26-0, CDD, Core 0 + Core 1,1 GHz to 40 GHz, Vertical

Frequency (MHz)	Level (dBuv/m)	Limit (dBuv/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 728 - U-NII-3 - 5825 MHz (CH165), HE20, RU26-0, CDD, Core 0 + Core 1,30 MHz to 40 GHz

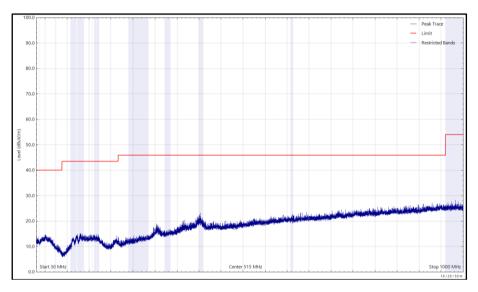


Figure 395 - U-NII-3 - 5825 MHz (CH165), HE20, RU26-0, CDD, Core 0 + Core 1,30 MHz to 1 GHz, Horizontal (Peak)

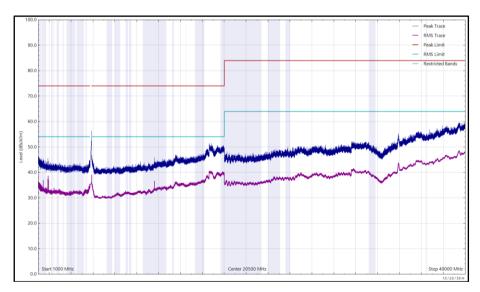


Figure 396 - U-NII-3 - 5825 MHz (CH165), HE20, RU26-0, CDD, Core 0 + Core 1,1 GHz to 40 GHz, Horizontal

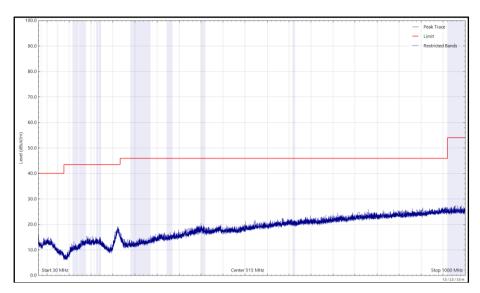


Figure 397 - U-NII-3 - 5825 MHz (CH165), HE20, RU26-0, CDD, Core 0 + Core 1,30 MHz to 1 GHz, Vertical (Peak)

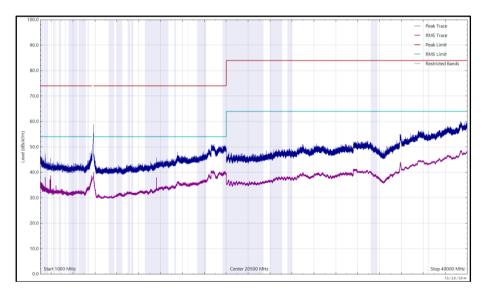


Figure 398 - U-NII-3 - 5825 MHz (CH165), HE20, RU26-0, CDD, Core 0 + Core 1,1 GHz to 40 GHz, Vertical

Frequency (MHz)	Level (dBuv/m)	Limit (dBuv/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 729 - U-NII-2A - 5320 MHz (CH64), HE20, RU52-37, CDD, Core 0 + Core 1,1 GHz to 40 GHz

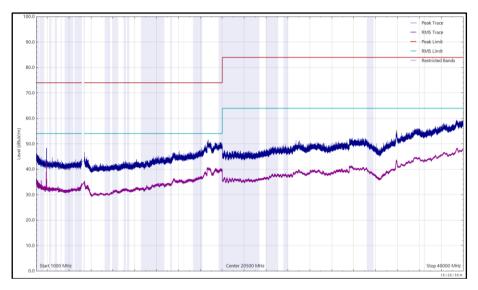


Figure 399 - U-NII-2A - 5320 MHz (CH64), HE20, RU52-37, CDD, Core 0 + Core 1, 1 GHz to 40 GHz, Horizontal

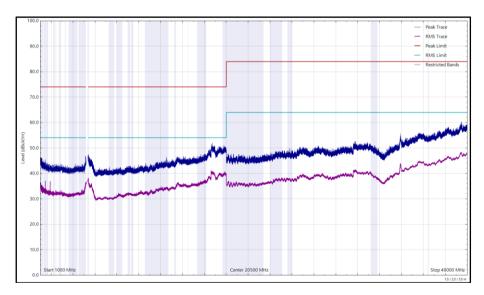


Figure 400 - U-NII-2A - 5320 MHz (CH64), HE20, RU52-37, CDD, Core 0 + Core 1, 1 GHz to 40 GHz, Vertical

Frequency (MHz)	Level (dBuv/m)	Limit (dBuv/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 730 - U-NII-2C - 5500 MHz (CH100), HE20, RU52-37, CDD, Core 0 + Core 1, 1 GHz to 40 GHz

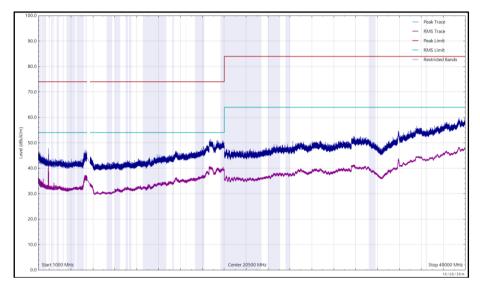


Figure 401 - U-NII-2C - 5500 MHz (CH100), HE20, RU52-37, CDD, Core 0 + Core 1, 1 GHz to 40 GHz, Horizontal

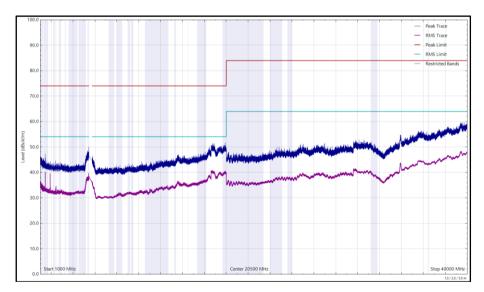


Figure 402 - U-NII-2C - 5500 MHz (CH100), HE20, RU52-37, CDD, Core 0 + Core 1, 1 GHz to 40 GHz, Vertical

Frequency (MHz)	Level (dBuv/m)	Limit (dBuv/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 731 - U-NII-2C - 5700 MHz (CH140), HE20, RU52-37, CDD, Core 0 + Core 1, 1 GHz to 40 GHz

Figure 403 - U-NII-2C - 5700 MHz (CH140), HE20, RU52-37, CDD, Core 0 + Core 1, 1 GHz to 40 GHz, Horizontal

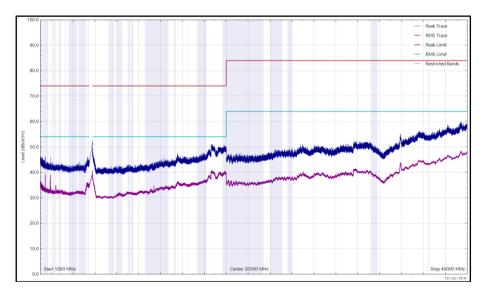


Figure 404 - U-NII-2C - 5700 MHz (CH140), HE20, RU52-37, CDD, Core 0 + Core 1, 1 GHz to 40 GHz, Vertical

Frequency (MHz)	Level (dBuv/m)	Limit (dBuv/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 732 - U-NII-3 - 5745 MHz (CH149), HE20, RU26-0, CDD, Core 0 + Core 1,1 GHz to 40 GHz

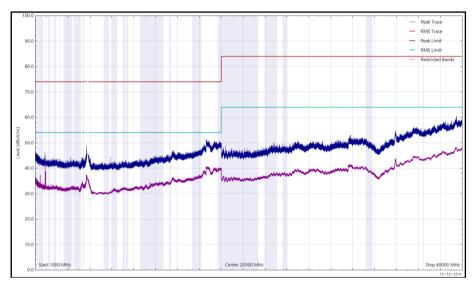


Figure 405 - U-NII-3 - 5745 MHz (CH149), HE20, RU26-0, CDD, Core 0 + Core 1,1 GHz to 40 GHz, Horizontal

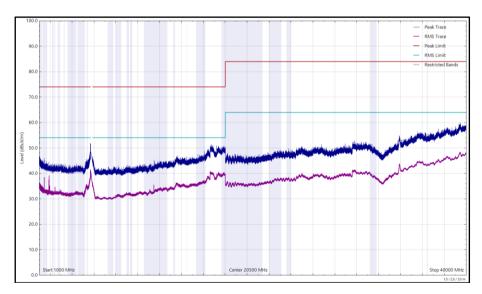


Figure 406 - U-NII-3 - 5745 MHz (CH149), HE20, RU26-0, CDD, Core 0 + Core 1,1 GHz to 40 GHz, Vertical

FCC 47 CFR Part 15, Limit Clause 15.407(b)(1)(2)(3)(4)

Emissions not falling within the restricted bands listed in FCC 47 CFR Part 15.209:

For transmitters operating in the 5.15-5.25 GHz band: ≤-27 dBm/MHz outside 5150-5350 MHz.

For transmitters operating in the 5.25-5.35 GHz band: ≤-27 dBm/MHz outside 5150-5350 MHz.

For transmitters operating in the 5.47-5.725 GHz band: ≤-27 dBm/MHz outside 5470-5725 MHz

For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

Emissions within the restricted bands listed in FCC 47 CFR Part 15.209:

Frequency (MHz)	Field Strength (µV/m)at 3m	Field Strength Limit (dB μ V/m) at 3m
30 to 88	100	40.00
88 to 216	150	43.52
216 to 960	200	46.02
Above 960	500	53.98

Table 733 - Radiated Emissions Limit Table (FCC)

ISED RSS-247, Limit Clause 6.2.1.2, 6.2.2.2, 6.2.3.2 and 6.2.4.2 and ISED RSS-GEN, Limit Clause 8.9

Emissions not falling within the restricted bands listed in ISED RSS-GEN, Clause 8.10:

For transmitters with operating frequencies in the band 5150-5250 MHz, all emissions outside the band 5150-5350 MHz shall not exceed -27 dBm/MHz e.i.r.p. Any unwanted emissions that fall into the band 5250-5350 MHz shall be attenuated below the channel power by at least 26 dB.

For transmitters with operating frequencies in the bands 5250-5350 MHz and 5470-5725 MHz, all emissions outside the band 5250-5350 MHz and 5470-5725 MHz shall not exceed -27 dBm/MHz e.i.r.p.

Devices operating in the band 5725-5850 MHz shall have e.i.r.p. of unwanted emissions comply with the following:

a) 27 dBm/MHz at frequencies from the band edges decreasing linearly to 15.6 dBm/MHz at 5 MHz above or below the band edges;

b) 15.6 dBm/MHz at 5 MHz above or below the band edges decreasing linearly to 10 dBm/MHz at 25 MHz above or below the band edges;

c) 10 dBm/MHz at 25 MHz above or below the band edges decreasing linearly to -27 dBm/MHz at 75 MHz above or below the band edges; and

d) -27 dBm/MHz at frequencies more than 75 MHz above or below the band edges.

Emissions falling within the restricted bands listed in ISED RSS-GEN, Clause 8.10:

Frequency (MHz)	Field Strength (µV/m)at 3m	Field Strength Limit (dBµV/m) at 3m
30 to 88	100	40.00
88 to 216	150	43.52
216 to 960	200	46.02
Above 960	500	53.98

Table 734 - Radiated Emissions Limit Table (ISED)

2.6.8 Test Location and Test Equipment Used

This test was carried out in RF Chamber 11.

	1			1	1
Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Expires
Pre-Amplifier (8 GHz to 18 GHz)	Phase One	PS04-0086	1533	12	21-Feb-2023
Programmable Power Supply	Iso-tech	IPS 2010	2437	-	O/P Mon
True RMS Multimeter	Fluke	179	4006	12	29-Mar-2023
Quad Power Supply	Rohde & Schwarz	HMP4040	4955	-	O/P Mon
Band Reject Filter - 5.795 GHz	Wainwright	WRCJV10-5725- 5755-5835-5865- 50SS	5071	12	11-Oct-2023
Band Reject Filter - 5.22 GHz	Wainwright	WRCJV12-5120- 5150-5290-5320- 50SS	5072	12	07-Nov-2022
Band Reject Filter - 5.28 GHz	Wainwright	WRCJV12-5180- 5210-5350-5380- 50SS	5074	12	11-Oct-2023
Band Reject Filter - 5.775 GHz	Wainwright	WRCJV10-5700- 5735-5815-5850- 50SS	5076	12	07-Nov-2023
Band Reject Filter - 5.690 GHz	Wainwright	WRCJV8-5635- 5670-5710-5745- 50SS	5080	12	07-Nov-2023
EMI Test Receiver	Rohde & Schwarz	ESW44	5084	12	17-May-2023
Cable (18 GHz)	Rosenberger	LU7-071-1000	5103	12	17-Nov-2022
Emissions Software	TUV SUD	EmX V3.1.5	5125	-	Software
Mast	Maturo	TAM 4.0-P	5158	-	TU
Mast and Turntable Controller	Maturo	Maturo NCD	5159	-	TU
Turntable	Maturo	TT 15WF	5160	-	TU
Antenna (DRG 1- 10.5GHz)	Schwarzbeck	BBHA9120B	5215	12	28-May-2023
DRG Horn Antenna (7.5- 18GHz)	Schwarzbeck	HWRD750	5216	12	29-May-2023
Antenna (DRG, 15 GHz to 40 GHz)	Schwarzbeck	BBHA 9170	5217	12	25-Jan-2023
3 GHz High pass filter	Wainwright	WHKX12-2580- 3000-18000-80SS	5220	12	23-Mar-2023
Preamplifier (30dB 1GHz to 18GHz)	Schwarzbeck	BBV 9718 C	5261	12	08-Apr-2023
Thermo-Hygro-Barometer	PCE Instruments	OCE-THB-40	5470	12	07-Apr-2023
2m SMA Cable	Junkosha	MWX221- 02000AMSAMS/A	5518	12	12-Apr-2023
8m N Type Cable	Junkosha	MWX221- 08000NMSNMS/B	5522	12	24-Mar-2023

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Expires
7 GHz High pass Filter	Wainwright	WHKX12-5850- 6800-18000-80SS	5550	12	19-May-2023
Band Reject Filter - 5.57 GHz	Wainwright	WRCJV10-5440- 5490-5650-5700- 50SS	5556	12	11-Oct-2023
Cable (K Type 2m)	Junkosha	MWX241- 02000KMSKMS/B	5936	12	14-May-2023
TRILOG Super Broadband Test Antenna	Schwarzbeck	VULB 9168	5942	24	03-Feb-2024

Table 735

TU - Traceability Unscheduled O/P Mon – Output Monitored using calibrated equipment

2.7 Channel Move Time, Channel Closing Transmission Time and Non-Occupancy Period

2.7.1 Specification Reference

FCC 47 CFR Part 15E, Clause 15.407 (h)(2)(iii)(iv) ISED RSS-247 Clause, 6.3.2(c)(d)(e)

2.7.2 Equipment Under Test and Modification State

A2816, S/N: QXG1F2530J - Modification State 0

2.7.3 Date of Test

03-November-2022 to 08-November-2022

2.7.4 Test Method

This test was performed in accordance with FCC KDB 905462 D02, clause 7.8.3.

The EUT was configured to run iPerf, transmitting UDP to the client laptop. The channel loading was set to >17% by adjusting the bandwidth specified in the iPerf UDP transfer.

Radar Pulse Type 0 was then transmitted, and the Spectrum monitored. The transmissions from the UUT were observed for a period of 12 seconds after the final injected Radar Pulse.

It was checked that all transmissions stopped within the 10 second period defined from the point of the end of the final Radar pulse + 10 seconds. In addition, the aggregate on time during the first 200ms and the following 9.8 seconds of the Channel Move Time was computed by the Aeroflex DFS Software.

The markers on the trace data correspond to the following time periods:

Red - End Of Radar Burst, (T0) Purple - End Of 200ms Period, (T0 + 200 ms) Orange - End Of Channel Move Time, (T0 + 10 seconds)

To verify the non-occupancy period, the PXI digitiser was replaced with a Spectrum Analyser. The external trigger from the Aeroflex DFS test system was used to trigger a 30-minute sweep from the moment the radar burst sequence was injected. It was verified that no transmissions occurred on the test channel during this time period.

2.7.5 Environmental Conditions

Ambient Temperature	22.6 - 23.1 °C
Relative Humidity	43.3 - 46.2 %

2.7.6 Test Results

5 GHz WLAN - 802.11ac VHT160

The equipment was set up as shown in the diagram below. The EUT was configured to run iPerf, transmitting UDP to the client laptop. The channel loading was set to >17% by adjusting the bandwidth specified in the iPerf UDP transfer. To calibrate the level of the radar at the input to the companion device, the companion device was replaced by the spectrum analyser and the output of the PXI RF generator adjusted to give -62 dBm.

Radar Type	Pulse Width (µs)	PRI (µs)	Number of Pulses
0	1	1428	18

Table 736 - Radar Pulse Type 0 Characteristics

Manufacturer	Model	Serial Number	FCC ID
ASUS	GT-AXE11000	M8Ig0X400285XVN	MSQ-RTAXJF00

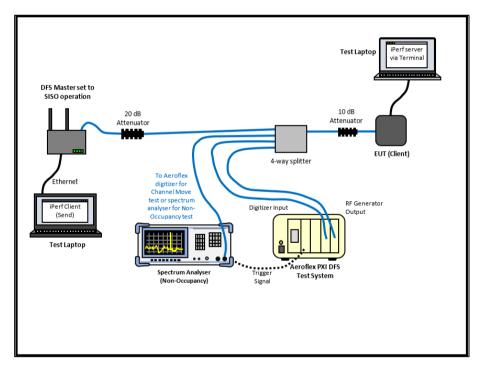


Figure 407 - Test Equipment Setup Diagram for Client without Radar Detection with Injection at the Master

Figure 408 - Verification of Radar Type 0

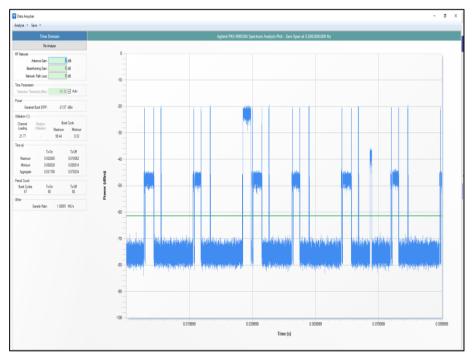


Figure 409 - Channel Loading

The channel loading was 17.12%

Maximum Transmit Power	Value (Notes 1 and 2)	
≥ 200 milliwatt	-64 dBm	
< 200 milliwatt -62 dBm		
Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.		

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Table 738 - DFS Detection Thresholds for Master Devices and Client Devices with Radar Detection

Test Parameter	Result
Test Channel	CH114 (5570 MHz), Control CH100 (5500 MHz)
Channel Move Time	0.901 s
Channel Closing Time (Aggregate Time During 200 ms)	28.004 ms
Channel Closing Time (Aggregate Time During 200 ms to 10 s)	4.562 ms
Channel Closing Time (Aggregate Time During 10 s)	32.566 ms
Transmission Observed During Non-Occupancy Period	No

Table 739 - In-Service Monitoring Test Results

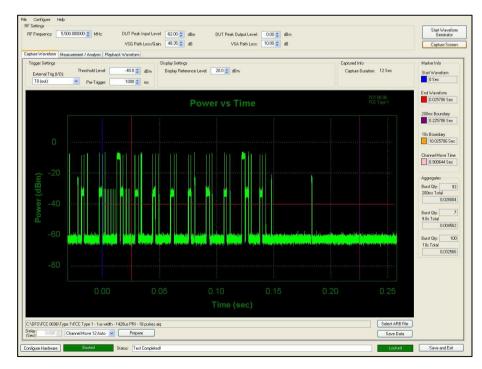


Figure 410 - First 200 ms of Channel Shutdown Period

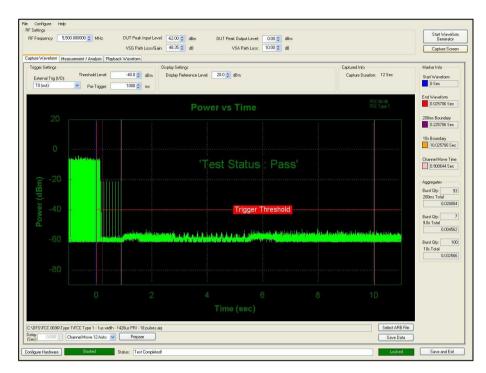


Figure 411 - First 12 s of Channel Shutdown Period

Figure 412 - 30 minute Non-Occupancy Period

FCC 47 CFR Part 15, Limit Clause 15.407 (h)(2)(iii)

Channel Move Time	<10 seconds
Channel Closing Time (Aggregate Time During 200ms)	<200 ms
Channel Closing Time (Aggregate Time During +200ms to 10s)	<60 ms

Table 740 - Channel Move Time and Channel Closing Transmission Time Limit

FCC 47 CFR Part 15, Limit Clause 15.407 (h)(2)(iv)

Non-occupancy Period	> 30 minutes
----------------------	--------------

Table 741 - Non-Occupancy Limit

ISED RSS-247, Limit Clause 6.3.2

Devices shall comply with the following requirements, however, the requirement for in-service monitoring does not apply to slave devices without radar detection.

In-service monitoring: an LE-LAN device shall be able to monitor the operating channel to check that a co-channel radar has not moved or started operation within range of the LE-LAN device. During inservice monitoring, the LE-LAN radar detection function continuously searches for radar signals between normal LE-LAN transmissions.

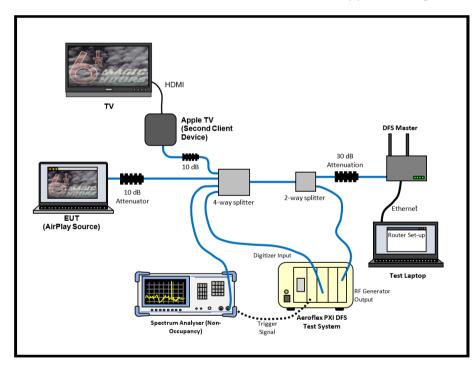
Channel availability check time: the device shall check whether there is a radar system already operating on the channel before it initiates a transmission on a channel and when it moves to a channel. The device may start using the channel if no radar signal with a power level greater than the interference threshold value specified in Section 6.3.1 above is detected within 60 seconds. This requirement only applies in the master operational mode.

Channel move time: after a radar signal is detected, the device shall cease all transmissions on the operating channel within 10 seconds.

Channel closing transmission time: is comprised of 200 ms starting at the beginning of the channel move time plus any additional intermittent control signals required to facilitate a channel move (an aggregate of 60 ms) over the remaining 10-second period of the channel move time.

Non-occupancy period: a channel that has been flagged as containing a radar signal, either by a channel availability check or in-service monitoring, is subject to a 30-minute non-occupancy period where the channel cannot be used by the LE-LAN device. The non-occupancy period starts from the time that the radar signal is detected

5 GHz WLAN - Client to Client - 802.11ac VHT160


The equipment was set up as shown in the diagram below. A computer was connected via an Ethernet cable to the Master device and the FCC defined audio/video file was streamed from the Client device using a Media Player. To calibrate the level of the radar at the input to the companion device, the companion device was replaced by the spectrum analyser and the output of the PXI RF generator adjusted to give -62 dBm.

Radar Type	Pulse Width (µs)	PRI (µs)	Number of Pulses
0	1	1428	18

Table 742 - Radar Pulse Type 0 Characteristics

Manufacturer	Model	Serial Number	FCC ID
ASUS	GT-AXE11000	M8IG0X400285XVN	MSQ-RTAXJF00

Table 743 - Details of Master Device used to support testing

Figure 413 - Test Equipment Setup Diagram for Client without Radar Detection with Injection at the Master

Figure 414 - Verification of Radar Type 0

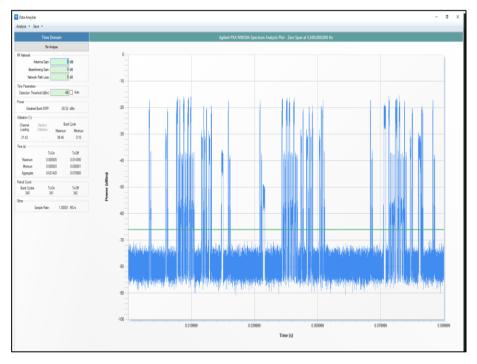


Figure 415 - Channel Loading

The channel loading was 21.42%

Maximum Transmit Power	Value (Notes 1 and 2)	
≥ 200 milliwatt	-64 dBm	
< 200 milliwatt -62 dBm		
Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.		

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Table 744 - DFS Detection Thresholds for Master Devices and Client Devices with Radar Detection

Test Parameter	Result
Test Channel	CH114 (5570 MHz), Control CH100 (5500 MHz)
Channel Move Time	0.867 s
Channel Closing Time (Aggregate Time During 200 ms)	18.383 ms
Channel Closing Time (Aggregate Time During 200 ms to 10 s)	6.001 ms
Channel Closing Time (Aggregate Time During 10 s)	24.384 ms
Transmission Observed During Non-Occupancy Period	No

Table 745 - In-Service Monitoring Test Results

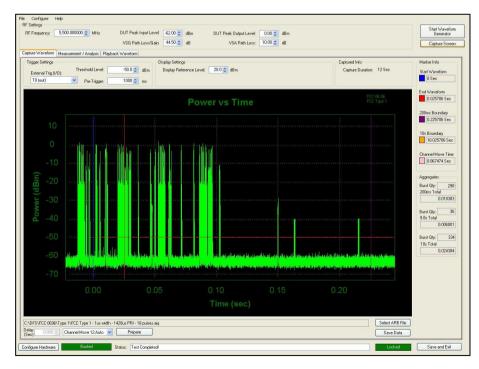


Figure 416 - First 200 ms of Channel Shutdown Period

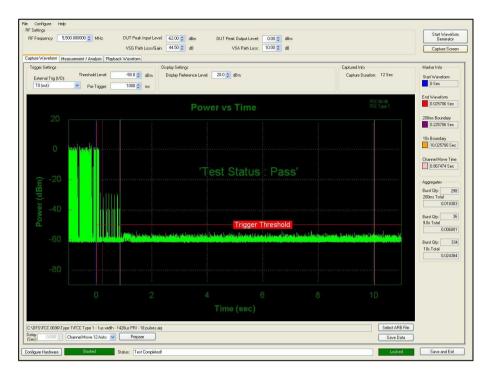


Figure 417 - First 12 s of Channel Shutdown Period

Figure 418 - 30 minute Non-Occupancy Period

FCC 47 CFR Part 15, Limit Clause 15.407 (h)(2)(iii)

Channel Move Time	<10 seconds
Channel Closing Time (Aggregate Time During 200ms)	<200 ms
Channel Closing Time (Aggregate Time During +200ms to 10s)	<60 ms

Table 746 - Channel Move Time and Channel Closing Transmission Time Limit

FCC 47 CFR Part 15, Limit Clause 15.407 (h)(2)(iv)

Non-occupancy Period	> 30 minutes
----------------------	--------------

Table 747 - Non-Occupancy Limit

ISED RSS-247, Limit Clause 6.3.2

Devices shall comply with the following requirements, however, the requirement for in-service monitoring does not apply to slave devices without radar detection.

In-service monitoring: an LE-LAN device shall be able to monitor the operating channel to check that a co-channel radar has not moved or started operation within range of the LE-LAN device. During inservice monitoring, the LE-LAN radar detection function continuously searches for radar signals between normal LE-LAN transmissions.

Channel availability check time: the device shall check whether there is a radar system already operating on the channel before it initiates a transmission on a channel and when it moves to a channel. The device may start using the channel if no radar signal with a power level greater than the interference threshold value specified in Section 6.3.1 above is detected within 60 seconds. This requirement only applies in the master operational mode.

Channel move time: after a radar signal is detected, the device shall cease all transmissions on the operating channel within 10 seconds.

Channel closing transmission time: is comprised of 200 ms starting at the beginning of the channel move time plus any additional intermittent control signals required to facilitate a channel move (an aggregate of 60 ms) over the remaining 10-second period of the channel move time.

Non-occupancy period: a channel that has been flagged as containing a radar signal, either by a channel availability check or in-service monitoring, is subject to a 30-minute non-occupancy period where the channel cannot be used by the LE-LAN device. The non-occupancy period starts from the time that the radar signal is detected.

2.7.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 1.

Instrument	Manufacturer	Type No.	TE No.	Calibration Period (months)	Calibration Expiry Date
Hygrometer	Rotronic	I-1000	3068	12	21-Sep-2023
Hygrometer	Rotronic	I-1000	3220	12	05-Nov-2022*
PXI RF Digitizer	Aeroflex	3035	4012	24	12-Nov-2022
PXI RF Synthesizer	Aeroflex	3010	4013	24	12-Nov-2022
PXI RF Synthesizer	Aeroflex	3011	4014	24	12-Nov-2022
PXI Digital RF Signal Generator	Aeroflex	3025	4015	24	12-Nov-2022
Frequency Standard	Spectracom	SecureSync 1200- 0408-0601	4393	6	01-Feb-2023
EXA	Keysight Technologies	N9010B	4969	24	07-Feb-2024
Cable (40 GHz)	Rosenberger	LU1-001-2000	5020	12	27-Jan-2023
Cable (18 GHz)	Rosenberger	LU7-071-1000	5100	12	23-Oct-2023
Power Splitter, 4 way	Mini-Circuits	ZN4PD1-63-S+	5236	-	O/P Mon
Cable 2.92m	Junkosha	MWX241- 01000KMS	5412	12	24-Jul-2023
3.5 mm 1m Cable	Junkosha	MWX221- 01000DMS	5419	12	24-Jul-2023
3.5 mm 1m Cable	Junkosha	MWX221- 01000DMS	5420	12	23-Oct-2023
Attenuator 5W 20dB DC- 18GHz	Aaren	AT40A-4041-D18- 20	5498	12	16-May-2023
Attenuator 2W 10dB DC- 10GHz	Telegartner	J01156A0031	5575	-	O/P Mon
2-Way Power Divider (2 to 8 8GHz)	Aaren	AT30A-TE0208-2- AF	5684	12	20-Dec-2022
WiFi 6E Tri-Band Gaming Router	Asus	GT-AXE110000	5926	-	TU
Coaxial Fixed Attenuator DC-18GHz 5W 10dB	RF-Lambda	RFS5G18B10SMP	6175	12	17-Jul-2023
Coaxial Fixed Attenuator DC-18GHz 5W 10dB	RF-Lambda	RFS5G18B10SMP	6176	12	17-Jul-2023
Coaxial Fixed Attenuator DC-18GHz 5W 10dB	RF-Lambda	RFS5G18B10SMP	6177	12	17-Jul-2023
Coaxial Fixed Attenuator DC-18GHz 5W 10dB	RF-Lambda	RFS5G18B10SMP	6181	12	17-Jul-2023

Table 748

TU - Traceability Unscheduled

O/P Mon – Output Monitored using calibrated equipment

*Equipment was only employed during its valid calibration period.

3 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

Test Name	Measurement Uncertainty
Restricted Band Edges	± 6.3 dB
Emission Bandwidth	± 2.042 MHz
Maximum Conducted Output Power	± 1.38 dB
Maximum Conducted Power Spectral Density	± 1.49 dB
Authorised Band Edges	± 6.3 dB
Spurious Radiated Emissions	30 MHz to 1 GHz: ± 5.2 dB 1 GHz to 40 GHz: ± 6.3 dB
Channel Move Time, Channel Closing Transmission Time and Non-Occupancy Period	Time: ± 0.47 % Power: ± 1.29 dB

Table 749

Measurement Uncertainty Decision Rule - Accuracy Method

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115:2021, Clause 4.4.3 (Procedure 2). The measurement results are directly compared with the test limit to determine conformance with the requirements of the standard.

Risk: The uncertainty of measurement about the measured result is negligible with regard to the final pass/fail decision. The measurement result can be directly compared with the test limit to determine conformance with the requirement (compare IEC Guide 115). The level of risk to falsely accept and falsely reject items is further described in ILAC-G8.