

0659

FCC Radio Test Report

FCC ID: 2ALZB-D14MED

: BTL-FCCP-2-2011T053 Report No.

Equipment : Gateway

Model Name SYS-D14-MED-XXXX-1XX0-CX (X=0-9 ,A-Z ,a-z or blank)

Brand Name : SECO SECO S.p.A Applicant

: Via Achille Grandi 20, 52100 AREZZO Italy Address

Radio Function : Bluetooth LE 4.0 and 5.1

FCC Rule Part(s) : FCC Part15, Subpart C (15.247)

Measurement Procedure(s)

: ANSI C63.10-2013

Date of Receipt : 2020/11/18

Date of Test : 2020/11/18 ~ 2020/12/16 **Issued Date** : 2021/2/1

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by

Peter Chen, Engineei

Approved by

Scott Hsu, Manager

BTL Inc.

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan

Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com

Project No.: 2011T053 Page 1 of 43 Report Version: R00

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Project No.: 2011T053 Page 2 of 43 Report Version: R00

CONTENTS REPORT ISSUED HISTORY 4 SUMMARY OF TEST RESULTS 5 1.1 **TEST FACILITY** 6 MEASUREMENT UNCERTAINTY 1.2 6 1.3 TEST ENVIRONMENT CONDITIONS 6 2 **GENERAL INFORMATION** 7 **DESCRIPTION OF EUT** 7 2.1 2.2 **TEST MODES** 9 2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 10 SUPPORT UNITS 2.4 10 3 AC POWER LINE CONDUCTED EMISSIONS TEST 11 3.1 LIMIT 11 3.2 **TEST PROCEDURE** 11 3.3 **DEVIATION FROM TEST STANDARD** 11 **TEST SETUP** 3.4 12 3.5 **TEST RESULT** 12 RADIATED EMISSIONS TEST 4 13 4.1 LIMIT 13 4.2 **TEST PROCEDURE** 14 **DEVIATION FROM TEST STANDARD** 4.3 14 4.4 **TEST SETUP** 15 4.5 **EUT OPERATING CONDITIONS** 16 4.6 TEST RESULT - 30 MHZ TO 1 GHZ 16 4.7 TEST RESULT - ABOVE 1 GHZ 16 5 LIST OF MEASURING EQUIPMENTS 17 **EUT TEST PHOTO** 6 18 **EUT PHOTOS** 7 18 APPENDIX A AC POWER LINE CONDUCTED EMISSIONS 19 APPENDIX B RADIATED EMISSIONS - 30 MHZ TO 1 GHZ 24 APPENDIX C **RADIATED EMISSIONS - ABOVE 1 GHZ** 27

REPORT ISSUED HISTORY

Report Version	Description	Issued Date
R00	Original Issue.	2021/2/1

Project No.: 2011T053 Page 4 of 43 Report Version: R00

1 SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

FCC Part 15, Subpart C (15.247)						
Standard(s) Section Description Test Result Judgement Re						
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass			
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX B APPENDIX C	Pass			

NOTE:

- (1) "N/A" denotes test is not applicable in this Test Report.
- (2) The report format version is TP.1.1.1.
- (3) The Equipment under test (EUT) is the Gateway, FCC ID: 2ALZB-D14MED. The test data contained in this report pertains only to the emission due to the EUT's transmitter. For other test data can be refer report No.: 170524-01.TR04 (This FCC ID is change ID based on Intel Corporation, the original application information follow as model: 9260NGW, FCC ID: PD99260NG, approved on 07/24/2017)
- (4) After spot check, this revision does not change original radio parameters.

Project No.: 2011T053 Page 5 of 43 Report Version: R00

1.1 TEST FACILITY

The test facilities used to collect the test data in this repor

No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan The test sites and facilities are covered under FCC RN: 674415 and DN: TW0659.

oxin C05 oxin CB08 oxin CB11 oxin CB15 oxin CB16

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = \mathbf{2}$, providing a level of confidence of approximately 95 %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 \mathbf{U}_{cisor} requirement.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C05	CISPR	150 kHz ~ 30MHz	3.44

B. Radiated emissions test:

Test Site	Measurement Frequency Range	U,(dB)			
	0.03 GHz ~ 0.2 GHz	4.17			
	0.2 GHz ~ 1 GHz	4.72			
CB15	1 GHz ~ 6 GHz	5.21			
CB15	6 GHz ~ 18 GHz	5.51			
	18 GHz ~ 26 GHz	3.69			
	26 GHz ~ 40 GHz	4.23			

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	23 °C, 65 %	AC 120V	Nero Hsieh
Radiated emissions below 1 GHz	Refer to data	AC 120V	Jay Kao
Radiated emissions above 1 GHz	Refer to data	AC 120V	Jay Kao

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment	Gateway					
Model Name	SYS-D14-MED-XXXX-1X	SYS-D14-MED-XXXX-1XX0-CX (X=0-9 ,A-Z ,a-z or blank)				
Brand Name	SECO	·				
	Differ in CPU and market.					
	N	Model Name	CPU			
Model Difference	SYS-D14-MED-XXXX-1	SYS-D14-MED-3216-1W00-C1	E3930, 1.8GHz			
	XX0-CX	SYS-D14-MED-4216-1W00-C1	E3940, 1.8GHz			
		SYS-D14-MED-5326-1W00-C1	E3950, 2.0GHz			
Power Source	DC voltage supplied from	External Power Supply.				
Power Rating	I/P: 100-240V~, 2.0-1.0A, 50-60Hz					
rower Rating	O/P: 18.0Vdc 3.78A 69.0W					
Products Covered	1 * Adapter: EDAC / EM10	D681V				
WIFI+BT Module	Intel / 9260NGW					
Operation Band	2400 MHz ~ 2483.5 MHz					
Operation Frequency	2402 MHz ~ 2480 MHz					
Test Model	SYS-D14-MED-5326-1W00-C1					
Sample Status	Engineering Sample					
EUT Modification(s)	N/A	·				

NOTE:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

(2) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	20	2442
01	2404	21	2444
02	2406	22	2446
03	2408	23	2448
04	2410	24	2450
05	2412	25	2452
06	2414	26	2454
07	2416	27	2456
08	2418	28	2458
09	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

Project No.: 2011T053 Page 7 of 43 Report Version: R00

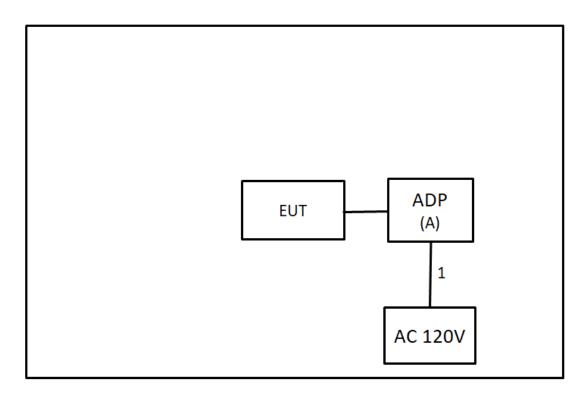
(3) Table for Filed Antenna:

Antenna	Manufacture	Part number	Туре	Connector	Frequency Range (MHz)	Gain (dBi)						
					2400-2500	1						
Main	Pulse Electronics	W/1043	Dipole	RP SMA plug	5150-5350	3						
Iviairi					5470-5725	2.5						
					5725-5850	1						
	Pulse Electronics	Pulse									2400-2500	1
Aux			W1043	Dinala	Dipole RP SMA plug	5150-5350	3					
		W 1043	Dipole	KF SIVIA Plug	5470-5725	2.5						
					5725-5850	1						

2.2 TEST MODES

Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal/Idle	-	-
Transmitter Radiated Emissions (below 1GHz)	BLE 5.1_2 Mbps	39	-
Transmitter Radiated Emissions	BLE 4.0_1 Mbps BLE 5.1_2 Mbps	00/39	Bandedge
(above 1GHz)	BLE 4.0_1 Mbps BLE 5.1_2 Mbps	00/19/39	Harmonic

NOTE:


- (1) The Radiated emissions test was verified based on the worst conducted power and Bandwidth test results reported in the original report.
- (2) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Horizontal) is recorded.
- (3) All X, Y and Z axes are evaluated, but only the worst case (X axis) is recorded.
- (4) For radiated emission (below 1GHz) test, both BLE 4.0 and BLE 5.1 are evaluated, but only the worst case (BLE 5.1) is recorded.
- (5) There were no emissions found below 30 MHz within 20 dB of the limit.

Project No.: 2011T053 Page 9 of 43 Report Version: R00

2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
Α	Adapter	EDAC	EM10681V	N/A	Supplied by test requester

Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	N/A	N/A	1.5m	Power cord	Furnished by test lab.

Project No.: 2011T053 Page 10 of 43 Report Version: R00

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dBμV)		
(MHz)	Quasi-peak	Average	
0.15 - 0.5	66 - 56 *	56 - 46 *	
0.50 - 5.0	56	46	
5.0 - 30.0	60	50	

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
38.22	+	3.45	=	41.67

Measurement Value		Limit Value		Margin Level
41.67	-	60	=	-18.33

The following table is the setting of the receiver.

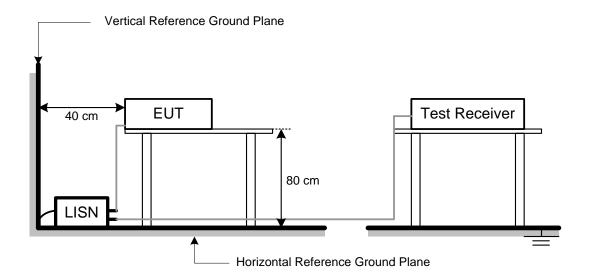
Receiver Parameter	Setting	
Attenuation	10 dB	
Start Frequency	0.15 MHz	
Stop Frequency	30 MHz	
IF Bandwidth	9 KHz	

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).
 - All other support equipment were powered from an additional LISN(s).
 - The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center.
 - The end of the cable will be terminated, using the correct terminating impedance.
 - The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:

- In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.


3.3 DEVIATION FROM TEST STANDARD

No deviation.

Project No.: 2011T053 Page 11 of 43 Report Version: R00

3.4 TEST SETUP

3.5 TEST RESULT

Please refer to the APPENDIX A.

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency	Radiated (dBu	Measurement Distance	
(MHz)	Peak	Average	(meters)
Above 1000	74	54	3

NOTE:

- (1) The limit for radiated test was performed according to FCC Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
19.11	+	2.11	=	21.22

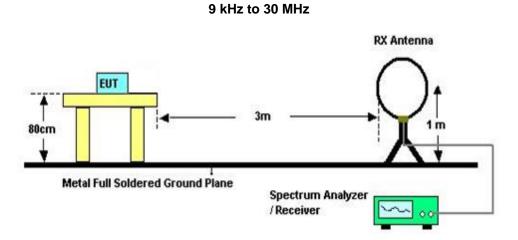
Measurement Value		Limit Value		Margin Level
21.22	-	54	=	-32.78

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1MHz / 3MHz for Peak,
(Emission in restricted band)	1MHz / 1/T for Average

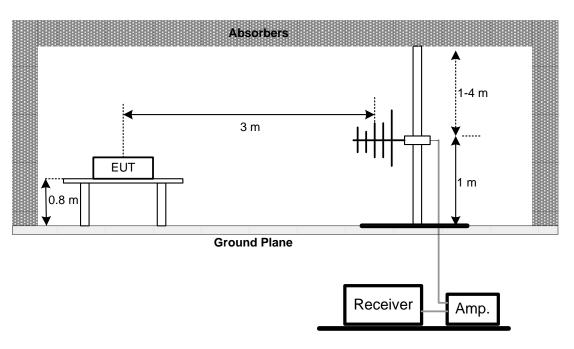
Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

Project No.: 2011T053 Page 13 of 43 Report Version: R00

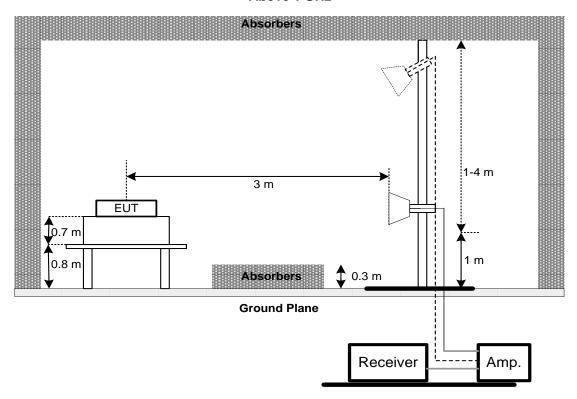
4.2 **TEST PROCEDURE**


- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode

	Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)									
	i. For the actual test configuration, please refer to the related Item – EUT TEST PHOTO.									
	4.3 DEVIATION FROM TEST STANDARD									
	No deviation.									
١										


Project No.: 2011T053 Page 14 of 43 Report Version: R00

4.4 TEST SETUP



30 MHz to 1 GHz

Above 1 GHz

4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULT - 30 MHZ TO 1 GHZ

Please refer to the APPENDIX B.

4.7 TEST RESULT - ABOVE 1 GHZ

Please refer to the APPENDIX C.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5 LIST OF MEASURING EQUIPMENTS

AC Power Line Conducted Emissions						
Item Kind of Equipment		I Manufacturer I IVNA NO I Serial No I		Calibrated Date	Calibrated Until	
1	TWO-LINE V-NETWORK	R&S	ENV216	101050	2020/6/11	2021/6/10
2	Test Cable	EMCI	EMC400-BM-BM- 5000	170501	2020/6/8	2021/6/7
3	EMI Test Receiver	R&S	ESR7	101433	2019/12/13	2020/12/12
4	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A

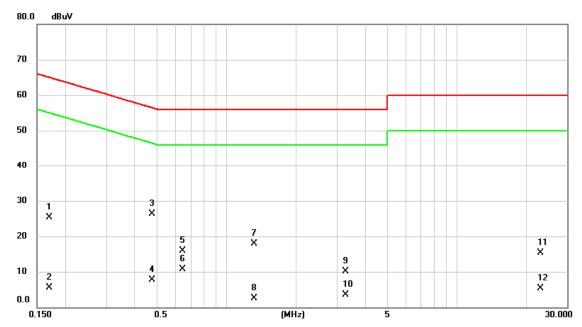
			Radiated Emission	ons		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Preamplifier	EMCI	EMC02325B	980217	2020/4/10	2021/4/9
2	Preamplifier	EMCI	EMC012645B	980267	2020/4/10	2021/4/9
3	Preamplifier	EMCI	EMC184045SE	980512	2020/6/1	2021/5/31
4	Test Cable	EMCI	EMC-SM-SM-100 0	180809	2020/4/10	2021/4/9
5	Test Cable	EMCI	EMC104-SM-SM- 3000	151205	2020/4/10	2021/4/9
6	Test Cable	EMCI	EMC-SM-SM-700 0	180408	2020/4/10	2021/4/9
7	MXE EMI Receiver	Agilent	N9038A	MY554200087	2020/6/10	2021/6/9
8	Signal Analyzer	Agilent	N9010A	MY56480554	2020/8/25	2021/8/24
9	Horn Ant	SCHWARZBECK	BBHA 9120D	9120D-1342	2020/6/12	2021/6/11
10	Horn Ant	Schwarzbeck	BBHA 9170	BBHA 9170340	2020/7/9	2021/7/8
11	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	VULB 9168-352	2020/7/24	2021/7/23
12	5dB Attenuator	EMCI	EMCI-N-6-05	AT-N0625	2020/7/24	2021/7/23
13	3 Measurement EZ Software		EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

Project No.: 2011T053 Page 17 of 43 Report Version: R00

6	EUT TEST PHOTO					
Ple	ease refer to document Appendix No.: TP-2011T053-FCCP-1 (APPENDIX-TEST PHOTOS).					
7	EUT PHOTOS					
Ple	ase refer to document Appendix No.: EP-2011T053-1 (APPENDIX-EUT PHOTOS).					

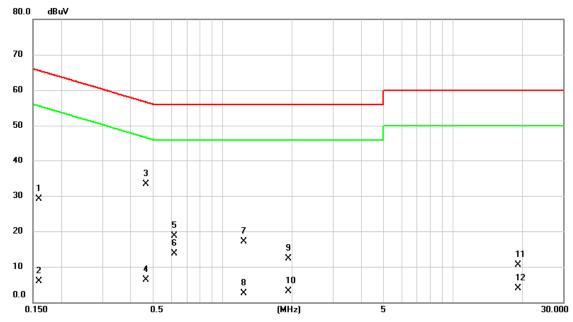
Project No.: 2011T053 Page 18 of 43 Report Version: R00



APPENDIX A	AC POWER LINE CONDUCTED EMISSIONS

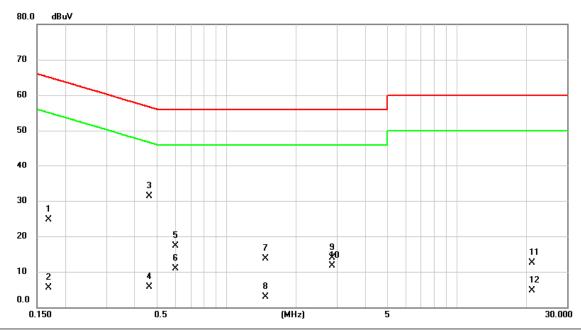
Project No.: 2011T053 Page 19 of 43 Report Version: R00

Test Mode	Normal	Tested Date	2020/11/20
Test Frequency	-	Phase	Line



No. MI	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1	0.1703	15.59	9.68	25.27	64.95	-39.68	QP	
2	0.1703	-4.27	9.68	5.41	54.95	-49.54	AVG	
3 *	0.4762	16.65	9.68	26.33	56.41	-30.08	QP	
4	0.4762	-2.04	9.68	7.64	46.41	-38.77	AVG	
5	0.6472	6.14	9.68	15.82	56.00	-40.18	QP	
6	0.6472	1.02	9.68	10.70	46.00	-35.30	AVG	
7	1.3133	8.21	9.70	17.91	56.00	-38.09	QP	
8	1.3133	-7.23	9.70	2.47	46.00	-43.53	AVG	
9	3.2663	0.35	9.77	10.12	56.00	-45.88	QP	
10	3.2663	-6.31	9.77	3.46	46.00	-42.54	AVG	
11	23.0033	5.43	9.95	15.38	60.00	-44.62	QP	
12	23.0033	-4.62	9.95	5.33	50.00	-44.67	AVG	

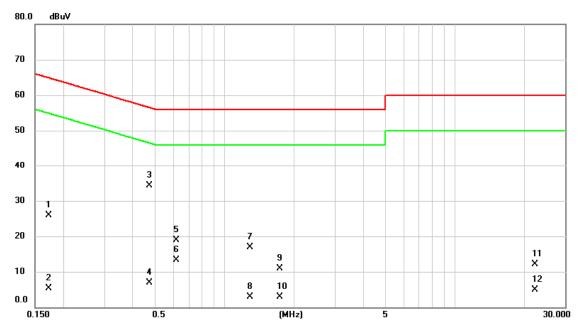
- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.


Ш				
	Test Mode	Normal	Tested Date	2020/11/20
	Test Frequency	-	Phase	Neutral

No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1	0.1590	19.51	9.68	29.19	65.52	-36.33	QP	
2	0.1590	-3.86	9.68	5.82	55.52	-49.70	AVG	
3 *	0.4672	23.55	9.68	33.23	56.56	-23.33	QP	
4	0.4672	-3.29	9.68	6.39	46.56	-40.17	AVG	
5	0.6202	9.08	9.68	18.76	56.00	-37.24	QP	
6	0.6202	4.03	9.68	13.71	46.00	-32.29	AVG	
7	1.2368	7.45	9.70	17.15	56.00	-38.85	QP	
8	1.2368	-7.22	9.70	2.48	46.00	-43.52	AVG	
9	1.9320	2.53	9.74	12.27	56.00	-43.73	QP	
10	1.9320	-6.59	9.74	3.15	46.00	-42.85	AVG	
11	19.2188	0.51	9.96	10.47	60.00	-49.53	QP	
12	19.2188	-5.96	9.96	4.00	50.00	-46.00	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

Test Mode	Idle	Tested Date	2020/11/20
Test Frequency	-	Phase	Line



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1		0.1680	14.95	9.68	24.63	65.06	-40.43	QP	
2		0.1680	-4.18	9.68	5.50	55.06	-49.56	AVG	
3	*	0.4627	21.54	9.68	31.22	56.64	-25.42	QP	
4		0.4627	-3.96	9.68	5.72	46.64	-40.92	AVG	
5		0.6022	7.55	9.68	17.23	56.00	-38.77	QP	
6		0.6022	1.31	9.68	10.99	46.00	-35.01	AVG	
7		1.4708	4.02	9.71	13.73	56.00	-42.27	QP	
8		1.4708	-6.88	9.71	2.83	46.00	-43.17	AVG	
9		2.8568	4.17	9.76	13.93	56.00	-42.07	QP	
10		2.8568	1.95	9.76	11.71	46.00	-34.29	AVG	
11		21.0750	2.47	9.96	12.43	60.00	-47.57	QP	
12		21.0750	-5.24	9.96	4.72	50.00	-45.28	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

Test Mode	Idle	Tested Date	2020/11/20
Test Frequency	-	Phase	Neutral

No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1	0.1725	16.24	9.68	25.92	64.84	-38.92	QP	
2	0.1725	-4.31	9.68	5.37	54.84	-49.47	AVG	
3 *	0.4717	24.55	9.68	34.23	56.48	-22.25	QP	
4	0.4717	-2.87	9.68	6.81	46.48	-39.67	AVG	
5	0.6202	9.29	9.68	18.97	56.00	-37.03	QP	
6	0.6202	3.69	9.68	13.37	46.00	-32.63	AVG	
7	1.2908	7.24	9.70	16.94	56.00	-39.06	QP	
8	1.2908	-6.84	9.70	2.86	46.00	-43.14	AVG	
9	1.7385	1.22	9.73	10.95	56.00	-45.05	QP	
10	1.7385	-6.86	9.73	2.87	46.00	-43.13	AVG	
11	22.1843	2.18	9.95	12.13	60.00	-47.87	QP	
12	22.1843	-5.08	9.95	4.87	50.00	-45.13	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

APPENDIX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ

Project No.: 2011T053 Page 24 of 43 Report Version: R00

	Test Mo			1 (2Mbps)			Test Date			0/12/7	
les	st Frequ			80Hz			Polarizatio	n		rtical	
30.0 dB	Temp			22°C			Hum.		68	5%	
70		Ž	3 X		4 ×	5 X			6 X		
).O											
30.000	127.00	224.00	321.00	418.00	515.	00 61	2.00 70	9.00 806	.00	1000.00	 MH
No.	Mk.	Freq.	Reading	Correct		easure-	Limit	Over			
			Level	Factor		ment					
		MHz	dBuV	dB		BuV/m	dBuV/m	dB	Detector	Comm	ent
1	*	47.1690	38.06	-8.15		29.91	40.00	-10.09	peak		
2		170.5853	37.23	-8.66		28.57	43.50	-14.93	peak		
3		359.1210	37.54	-5.90		31.64	46.00	-14.36	peak		
4		495.0503	36.54	-2.85	3	33.69	46.00	-12.31	peak		
5		586.6183	35.96	-0.94	3	35.02	46.00	-10.98	peak		
6		832.7397	31.28	3.12	-	34.40	46.00	-11.60	peak		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

•	Test Mo	de	BLE 5.	1 (2Mbps)		Test Date		2020	0/12/7	
Te	st Frequ	iency		80Hz		Polarization	n		zontal	
	Temp		2	22°C		Hum.		6	5%	
30.0 dE	BuV/m									٦
70										
50										-
50										
10		1 X	×	3 X	4 × 5 ×			6 X		
30		^								
20										
0										-
).0										
30.000	127.00	224.00	321.00	418.00	515.00 6	12.00 709	9.00 806	5.00	1000.00	_мн
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comme	ent
1		168.8070	42.92	-8.56	34.36	43.50	-9.14	peak		
2		349.9060		-6.14	36.98	46.00	-9.02	peak		
3		440.2776		-3.90	34.63	46.00	-11.37	peak		
4	*	495.0503		-2.85	39.47	46.00	-6.53	peak		
5		585.4220	35.84	-0.96	34.88	46.00	-11.12	peak		
6		825.4646	33.51	3.00	36.51	46.00	-9.49	peak		

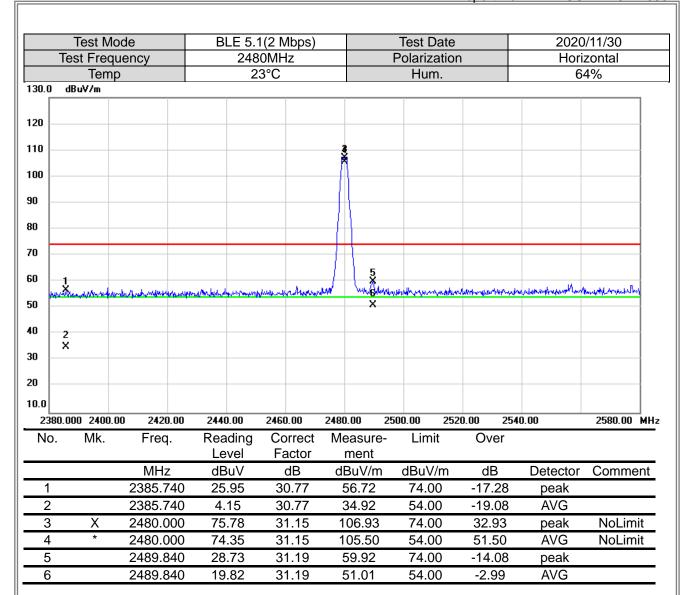
- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

APPENDIX C	RADIATED EMISSIONS - ABOVE 1 GHZ

Project No.: 2011T053 Page 27 of 43 Report Version: R00

T	est Mo	ode	BLE 4.0) (1 Mbps)		Test Date		2020)/11/26
Tes	t Frequ	uency		2MHz		Polarizatio	n		zontal
	Temp)	2	3°C		Hum.		6	4%
130.0 dB	uV/m								
120									
110					<u>.</u>				
100					-				
90									
80									
70									
	Landon Marie	manufacture water	A PROGRAMMENT AND	1 	and handren	Carpengrape and Section	hallyandragaryah Managar	and the second of the second o	5 Min.m/Norm
50				2					
40				x					6 X
20									
10.0									
2302.000		00 2342.00	2362.00	2382.00	2402.00 2	422.00 24	42.00 246	2.00	2502.00 MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2379.713	26.75	30.75	57.50	74.00	-16.50	peak	
2		2379.713	8.12	30.75	38.87	54.00	-15.13	AVG	
3	Χ	2402.000	74.69	30.84	105.53	74.00	31.53	peak	NoLimit
4	*	2402.000	74.11	30.84	104.95	54.00	50.95	AVG	NoLimit
5		2485.247	26.62	31.17	57.79	74.00	-16.21	peak	
6		2485.247	3.88	31.17	35.05	54.00	-18.95	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.


	Test Mo) (1 Mbps)		Test Date			/11/26
le	st Frequ			0MHz		Polarizatio	n		zontal
120.0 41	Temp		2	3°C		Hum.		64	4%
130.0 dE	BuV/m								
20									
110					.				
00									
_									
30									
30									
₇₀ —									
70					111 _				
50 1					5 m	helion, hay no algorithm and a second		and grant and place and pl	
50	Negleunde Municipal Comm	make and a second	anteriological description of the second	and the frequency of the second	6	ad Part popular a distribute and behavior of	Care Productive Manager and Co.	and the Cartes Cather the	and on Darkholmen
.					×				
10 2									
30 ×									
20									
0.0									
2380.00 No.	0 2400.0 Mk.		2440.00	2460.00 Correct		500.00 253 Limit	20.00 254 Over	0.00	2580.00 MI
NO.	IVIK.	Freq.	Reading Level	Factor	Measure- ment	LIIIIII	Ovei		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2387.887	26.21	30.78	56.99	74.00	-17.01	peak	Commont
2		2387.887	3.77	30.78	34.55	54.00	-19.45	AVG	
3	Х	2480.000	75.41	31.15	106.56	74.00	32.56	peak	NoLimit
4	*	2480.000	75.01	31.15	106.16	54.00	52.16	AVG	NoLimit
5		2489.693	28.86	31.18	60.04	74.00	-13.96	peak	
				31.18					

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

7	Test Mo	de		.1(2 Mbps)		Test Date			/11/30	
Tes	t Frequ			02MHz		Polarizatio	n		zontal	
	Temp		2	23°C		Hum.		6	4%	
130.0 dB	uV/m									7
20										
20										1
10					A					-
00					Ř					
30										1
30										4
										4
70					711					1
io				1		simumahkan mandapary			-5	-
50 h-4-,-4	malanta	Harrison Marie Control	فيهم اليميع في وصيفها بالأسل	1 	holped hand	shipsagat tiblishi wasadti (fest-fi	Mary hydroxida y goldd yr yr yr y goldd yr yr yr y y y y y y y y y y y y y y	restanting-waterwater was free-an	patro Ambros 1986.	lac
				2					c	
to				2 X					6 X	-
30										_
20										1
10.0										
	2322.0		2362.00	2382.00				2.00	2502.00	МН
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	- Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comme	ent
1		2388.880	26.52	30.78	57.30	74.00	-16.70	peak	Commi	J110
2		2388.880	9.30	30.78	40.08	54.00	-13.92	AVG		
3	Χ	2402.000	74.16	30.84	105.00	74.00	31.00	peak	NoLim	nit
4	*	2402.000	72.39	30.84	103.23	54.00	49.23	AVG	NoLim	
5		2489.653	26.29	31.18	57.47	74.00	-16.53	peak		
6		2489.653	7.34	31.18	38.52	54.00	-15.48	AVG		_

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

	est Mo			Bl) (1Mb 2MHz	ps)			-	Test D					/11/30 rtical	
162	t Frequ Temp					3°C					Hum		<u> </u>			4%	
20.0 dBu	iV/m	<u>'</u>				3 0					Hun	1.			0.	1 /0	
																	1
10																	
00																	
00																	1
0																	1
o																	
。																	-
"																	1
0																	1
0																	1
o 🗀		*															
•		2 X															
0		^															1
0																	
0																	
.0																	
.u 1000.000	3550 N	0 6100	וחח	8650	nn	11200.	nn	1375	n nn	16	300.00	188	50.00	2140	0.00	26500.00	_ LMH
No.	Mk.	Freq		Rea		Corr			asur		Limi		Ove			20000.00	1-11
				Le		Fac			ment	_		-		_			
		MHz		dB		dE	3		3uV/n		dBuV	/m	dE	3	Detector	Comme	nt
1		4804.0		53.		-10.			3.59		74.0		-30.		peak		
2	*	4804.0	00	43.	19	-10.	03	3	33.16		54.0	0	-20.	84	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			0 (1Mbps)		Test Date			/11/30
le	st Frequ			02MHz 23°C		Polarization Hum.	on		zontal 4%
20.0 dE	Temp)		23 0		Hulli.		04	+ 70
10									
00									
0									
0									
o 💳									
0									
0									
- I		1 X							
0		2							
0		X							
o									
.0									
1000.00	0 3550.0	0 6100.00	8650.00	11200.00	13750.00	16300.00 18	B850.00 21 4	00.00	26500.00 MH
No.	Mk.	Freq.	Reading	Correct	Measure	- Limit	Over		
		MHz	Level dBuV	Factor dB	ment dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.000		-10.03	43.32	74.00	-30.68	peak	Comment
2	*	4804.000		-10.03	33.12	54.00	-20.88	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			0 (1Mbps)		Test Date			/11/30
Te	est Frequ			40MHz		Polarization	n		tical
	Temp] 2	23°C		Hum.		6	4%
20.0 d	BuV/m								
10									
10									
00 -									
10									
" <u> </u>									
'O									
0									
io 🗀		_							
o		1 X							
·		2 X							
0		^							
:0									
o 🗀									
0.0									
	00 3550.0	0 6100.00	0 8650.00	11200.00	13750.00 1	6300.00 188	350.00 214	00.00	26500.00 MH
No.	Mk.	Freq.	Reading		Measure-	Limit	Over		
		N 41 1—	Level	Factor	ment	dD: V//oo	٩D	Detector	Cammant
1		MHz 4880.000	dBuV 53.78	dB -9.77	dBuV/m 44.01	dBuV/m 74.00	dB -29.99	Detector peak	Comment
2	*	4880.000		-9.77 -9.77	33.35	54.00	-29.99	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	est Mo				(1Mbps)			Test Da				/11/30
les	t Frequ			2440 23	MHz			Polariza Hum				zontal 4%
120.0 dB	Temp			23	-0			Hum	•		04	4%
120.0 UB	47111											
110												
00												
00												
80												
70												
50												
50												
ľ		1 X										
10		2										
30		×										
20												
10												
0.0	3550.00	D 6100.00	0 8650.0		11200.00	13750.	00 1	6300.00	18850.00	21.40	00.00	26500.00 MH
No.	Mk.	Freq.	Readi		Correct		sure-	Limit		ver	JU.UU	26300.00 MH
INO.	IVIN.	ттец.	Leve		Factor		ent	LIIIII	O	v C i		
		MHz	dBu\		dB		ıV/m	dBuV/r	m c	lB	Detector	Comment
1		4880.000	53.3	4	-9.77	43	3.57	74.00).43	peak	
2	*	4880.000	43.0	3	-9.77	33	3.26	54.00) -2().74	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			0 (1Mbps)		Test Date			/11/30
les	t Frequ Temp			30MHz 23°C		Polarizatio Hum.	n		rtical 4%
120.0 dB	uV/m		4	.5 C		nuiii.		04	4 70
10									
00									
00									
0									
o									
o <u> </u>									
·									
0									
0		1							
		X X							
		2 X							
0									
0 -									
o 📖									
	0 3550.0	0 6100.00	8650.00	11200.00	13750.00	16300.00 18	850.00 214	00.00	26500.00 MH
No.	Mk.	Freq.	Reading	Correct	Measure	- Limit	Over		
			Level	Factor	ment				
		MHz	dBuV	dB	dBuV/m		dB	Detector	Comment
1		4960.000		-9.49	45.16	74.00	-28.84	peak	
2	*	4960.000	43.96	-9.49	34.47	54.00	-19.53	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			O (1Mbps)		Test Date			/11/30
ies	st Frequ Temp			3°C		Polarization Hum.	on		zontal 4%
20.0 dB	uV/m	,		.5 0		Tiuiti.		0-	1 / 0
10									
00									
o 🗀									
0									
) 									
, 🗀		_							
,		1 X							
		2 X							
0									
0									
o									
.0									
1000.00	0 3550.0	0 6100.00	8650.00	11200.00	13750.00		850.00 214	00.00	26500.00 MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure	- Limit	Over		
		MHz	dBuV	dB	ment dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.000		-9.49	44.27	74.00	-29.73	peak	20111110111
2	*	4960.000		-9.49	34.26	54.00	-19.74	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	est Mo t Frequ			Bl	E 5. ²	1 (2N)2MH					Test D Polariz					/11/30 rtical	
	Temp					3°C					Hun					64%	
120.0 dBu	iV/m																
110																	
00																	
00																	
0 -																	
:0																	
о 🗀																	
0																	
0		1															
o		1 X															
0		2 X															
o																	
1.0																	
1000.000		00 6100	0.00	8650	.00	1120	0.00	1375	50.00	16	300.00	188	50.00	2140	0.00	26500.00 M	
No.	Mk.	Fred	ļ.	Rea Le	ding vel		rrect		easur ment		Lim	it	Ove	er			
		MH	<u> </u>	dB			dΒ		BuV/r		dBuV	/m	dE	3	Detector	Commen	
1		4804.0			.33		0.03		14.30		74.0		-29.		peak		
2	*	4804.0	000	43.	.18	-10	0.03	:	33.15	,	54.0	0	-20.	85	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode			BLE	= 5 1 (2	2Mbps)			_	Test Da	te		2020	/11/30	
	st Frequ			2402N					olarizat				zontal	
	Temp			23°C					Hum.			64%		
120.0 dB	uV/m								1					
110														
100														
30														
30														
70 <u> </u>														
;0														
io														
10		1 ×												
30		2 X												
30														
20														
10														
0.0														
	0 3550.0				200.00	1375				18850.00		00.00	26500.00 MH	
No.	Mk.	Freq.	Read Leve		Correct Factor		easure ment	-	Limit	O\	/er			
		MHz	dBu		dB		BuV/m		dBuV/m	n d	В	Detector	Comment	
1		4804.00			-10.03	43.36			74.00		.64	peak		
2	*	4804.00	0 42.9	3 .	-10.03	3	32.90		54.00	-21	.10	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode				1 (2Mbps)		Test Date			/11/30	
Те	st Frequ			140Hz		Polarization	Vertical			
	Temp		2	23°C		Hum.		64%		
20.0 dE	BuV/m									
10										
10										
00										
00										
80										
"										
70										
io —										
50										
		1 X								
10		2 X								
30		×								
20										
0										
0.0										
	00 3550.0	0 6100.00	8650.00	11200.00	13750.00 1	6300.00 188	350.00 214	00.00	26500.00 MH	
No.	Mk.	Freq.	Reading		Measure-	Limit	Over			
		N 41 1	Level	Factor	ment	ID 1//	ID	D	2 .	
		MHz 4880.000	dBuV 52.15	dB -9.77	dBuV/m 42.38	dBuV/m 74.00	dB -31.62	Detector peak	Comment	
1										

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			1 (2Mbps)		Test Date			/11/30	
Te	st Frequ			140Hz		Polarization	Horizontal			
	Temp)		23°C		Hum.		64%		
120.0 d	BuV/m									
110										
10										
00										
10										
.										
0										
70										
:0										
io 🗀										
		1 X								
10		2								
30		×								
20										
10										
0.0										
	00 3550.0	0 6100.00	8650.00	11200.00	13750.00 1	6300.00 188	350.00 214	00.00	26500.00 MH	
No.	Mk.	Freq.	Reading		Measure-	Limit	Over			
INO.			Level	Factor	ment	JD V//	.ID	Datast	0	
INO.		N / I I	JD 1.4							
1		MHz 4880.000	dBuV 52.74	dB -9.77	dBuV/m 42.97	dBuV/m 74.00	dB -31.03	Detector peak	Comment	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	est Mo			BL		l (2Mbp 80Hz	s)				Test D olariza					/11/30 rtical	
ies	t Frequ Temp					3°C				Р	olariza Hum		<u> </u>			4%	
20.0 dBu						3 C		Huiii.							U	+ /0	
																	1
10																	
00																	
JU																	1
o																	-
0																	
.																	-
0																	1
0																	-
0		-															1
, [X X															
		2 X															
0																	1
o																	-
o 🗀																	
.0																	
1000.000	3550.0	0 6100).00	8650.	00	11200.0	0	13750	1.00	163	00.00	188	50.00	2140	00.00	26500.00	_ IMH
No.	Mk.	Freq		Read		Corre			asure		Limi		Ov				
		<u> </u>	1	Lev		Facto			nent								
		MHz		dΒι		dB			uV/m		dBuV/		dE		Detector	Comme	nt
1		4960.0		54.6		-9.4			5.14		74.0		-28.		peak		
2	*	4960.0	000	44.8	85	-9.4	9	3	5.36		54.0	0	-18.	64	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	est Mo			.1 (2Mbps)		Test Da			/11/30	
les	t Frequ			480Hz		Polariza			zontal	
120.0 dB	Temp 0.0 dBuV/m			23°C		Hum		64%		
120.0 UB	u¥7III									
110										
100										
90										
30										
70										
50										
50										
		1 X								
10		2 X								
30										
20										
10										
0.0 1000 001	3550.00	0 6100.00	8650.00	11200.00	13750.00	16300.00	18850.00 21	400.00	26500.00 MH	
No.	Mk.	Freq.	Reading		Measure					
		- 11-	Level	Factor	ment					
		MHz	dBuV	dB	dBuV/m	ı dBuV/ı	m dB	Detector	Comment	
1		4960.000		-9.49	43.46	74.00	-30.54	peak		
2	*	4960.000	43.66	-9.49	34.17	54.00	-19.83	AVG		

REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

End of Test Report