

CTC Laboratories, Inc.

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel: +86-755- 27521059 Fax: +86-755- 27521011 Http://www.sz-ctc.org.cn

Т	EST REPORT		
Report N o. – – :	CTC20210599E05		
FCC ID:	2AR24-AIBOX30XS		
Applicant — – – ÷	Shenzhen Absen Optoelectronic Co	o.,Ltd	
Address	18-20F Building 3A, Cloud Park, Banti Shenzhen, China	an, Longgang District,	
Manufacturer :	Shenzhen Absen Optoelectronic Co.,L	.td	
Address	18-20F Building 3A, Cloud Park, Banti Shenzhen, China	an, Longgang District,	
Product Name- — —	LED Multimedia Processor		
Trade Mark······:	1		
Model/Type referen ce :	Ai Box3.0 XS		
Listed Model(s) – :	1		
Standard·····:	FCC CFR Title 47 Part 15 Subpart C	Section 15.247	
Date of receipt of test sample:	Feb. 23, 2021		
Date of testing	Apr. 12, 2021 to Apr. 26, 2021		
Date of issue:	Apr. 26, 2021		
Result:	PASS		
Compiled by:		T. Jiang	
(Printed name+signature)	Jim Jiang	Jim Jiang	
Supervised by:		Miller Ma	
(Printed name+signature)	Miller Ma	11/10/12/ 11/12	
Approved by:		l	
(Printed name+signature)	Walter Chen Matter Ches		
Testing Laboratory Name:	CTC Laboratories, Inc.		
Address	1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China		
	completely for legal use with the appro n full, without the written approval of ou		

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CTC within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.

Table of Contents

Page

1.	TEST	SUMMARY	3
-	1.1.	Test Standards	3
-	1.2.	REPORT VERSION	3
-	1.3.	TEST DESCRIPTION	3
-	1.4.	TEST FACILITY	
-	1.5.	Measurement Uncertainty	4
-	1.6.	Environmental Conditions	5
2.	GEN	ERAL INFORMATION	6
2	2.1.	CLIENT INFORMATION	6
2	2.2.	GENERAL DESCRIPTION OF EUT	6
2	2.3.	ACCESSORY EQUIPMENT INFORMATION	
2	2.4.	OPERATION STATE	
2	2.5.	Measurement Instruments List	9
3.	TEST	ITEM AND RESULTS	11
	3.1.	CONDUCTED EMISSION	11
3	3.2.	RADIATED EMISSION	14
3	3.3.	BAND EDGE EMISSIONS (RADIATED)	43
3	3.4.	BAND EDGE AND SPURIOUS EMISSIONS (CONDUCTED)	
3	3.5.	DTS BANDWIDTH	94
3	3.6.	PEAK OUTPUT POWER	
3	3.7.	POWER SPECTRAL DENSITY	
3	3.8.	DUTY CYCLE	
3	3.9.	ANTENNA REQUIREMENT	126

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.247: Operation within the bands of 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz.

RSS 247 Issue 2: Standard Specifications for Frequency Hopping Systems (FHSs) and Digital Transmission Systems (DTSs) Operating in the Bands 902-928MHz, 2400-2483.5MHz and 5725-5850MHz.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

1.2. Report Version

Revised No.	Date of issue	Description
01	Apr. 26, 2021	Original

1.3. Test Description

FCC Part 15 Subpart C (15.247) / RSS 247 Issue 2					
Test Item	Standard Section		Result	Test	
rest item	FCC	IC	Result	Engineer	
Antenna Requirement	15.203	/	Pass	Rod Luo	
Conducted Emission	15.207	RSS-Gen 8.8	Pass	Rod Luo	
Radiated Band Edge and Spurious Emissions	15.205&15.209& 15.247(d)	RSS 247 5.5	Pass	Rod Luo	
Conducted Band Edge and Spurious Emissions	15.247(d)	RSS 247 5.5	Pass	Rod Luo	
6dB Bandwidth	15.247(a)(2)	RSS 247 5.2 (a)	Pass	Rod Luo	
Conducted Max Output Power	15.247(b)(3)	RSS 247 5.4 (d)	Pass	Rod Luo	
Power Spectral Density	15.247(e)	RSS 247 5.2 (b)	Pass	Rod Luo	
Transmitter Radiated Spurious	15.209&15.247(d)	RSS 247 5.5& RSS-Gen 8.9	Pass	Rod Luo	

Note: The measurement uncertainty is not included in the test result.

1.4. Test Facility

CTC Laboratories, Inc.

Add: 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L5365

CTC Laboratories, Inc. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation. Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 4340.01

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

Industry Canada (Registration No.: 9783A, CAB Identifier: CN0029)

CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

FCC (Registration No.: 951311, Designation Number CN1208)

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 951311, Aug. 26, 2017.

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties radio equipment characteristics; Part 2" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the CTC Laboratories, Inc. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Below is the best measurement capability for CTC Laboratories, Inc.

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.42 dB	(1)
Transmitter power Radiated	2.14 dB	(1)
Conducted spurious emissions 9kHz~40GHz	1.60 dB	(1)
Radiated spurious emissions 9kHz~40GHz	2.20 dB	(1)
Conducted Emissions 9kHz~30MHz	3.08 dB	(1)
Radiated Emissions 30~1000MHz	4.51 dB	(1)
Radiated Emissions 1~18GHz	5.84 dB	(1)
Radiated Emissions 18~40GHz	6.12 dB	(1)
Occupied Bandwidth		(1)

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

1.6. Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	21℃~27℃
Relative Humidity:	40%~60%
Air Pressure:	101kPa

ΕŇ

2. GENERAL INFORMATION

2.1. Client Information

Applicant:	Shenzhen Absen Optoelectronic Co.,Ltd
Address:	18-20F Building 3A, Cloud Park, Bantian, Longgang District, Shenzhen, China
Manufacturer:	Shenzhen Absen Optoelectronic Co.,Ltd
Address:	18-20F Building 3A, Cloud Park, Bantian, Longgang District, Shenzhen, China

2.2. General Description of EUT

Product Name:	LED Multimedia Processor			
Trade Mark:	/			
Model/Type reference:	Ai Box3.0 XS			
Listed Model(s):	1			
Model Difference:	1			
Power supply:	100-240V~ 50/60Hz 23W			
RF Module Model:	ZK-7612U			
Hardware version:	V1.0			
Software version:	V1.0			
WIFI 802.11b/ g/ n(HT20)/	WIFI 802.11b/ g/ n(HT20)/ n(HT40)			
Modulation:	802.11b: DSSS(CCK, DQPSK, DBPSK) 802.11g/n: OFDM(BPSK, QPSK, 16QAM, 64QAM)			
Operation frequency:	802.11b/g/n(HT20): 2412MHz~2462MHz 802.11n(HT40): 2422MHz~2452MHz			
Channel number:	802.11b/g/n(HT20): 11 Channels 802.11n(HT40): 7 Channels			
Channel separation:	5MHz			
Antenna 1 or 2 type:	PCB Antenna			
Antenna 1 or 2 gain:	5dBi			

2.3. Accessory Equipment Information

Equipment Information				
Name	Model	S/N	Manufacturer	
Notebook	X220	1	Lenovo	
Cable Information				
Name	Shielded Type	Ferrite Core	Length	
USB Cable	Unshielded	NO	150cm	
AC Cable	Unshielded	NO	120cm	
Test Software Information				
Name	Software version	1	1	
MT7662 QA	V1.0.3.14	1	1	

2.4. Operation State

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing.

Operation Frequency List:

Channel	Frequency (MHz)
01	2412
02	2417
03	2422
04	2427
05	2432
06	2437
07	2442
08	2447
09	2452
10	2457
11	2462

Note: CH 01~CH 11 for 802.11b/g/n(HT20), CH 03~CH 09 for 802.11n(HT40)

Data Rated

Preliminary tests were performed in different data rate, and found which the below bit rate is worst case mode, so only show data which it is a worst case mode.

Mode	Data rate (worst mode)	
802.11b	1Mbps	
802.11g	6Mbps	
802.11n(HT20)	HT-MCS0	
802.11n(HT40)	HT-MCS0	

Test mode

For RF test items: The engineering test program was provided and enabled to make EUT continuous transmit. For AC power line conducted emissions: The EUT was set to connect with the WLAN AP under large package sizes transmission. For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data Recorded in the report.

Measurement Instruments List 2.5.

Tonsce	Tonscend JS0806-2 Test system				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1	Spectrum Analyzer	Rohde & Schwarz	FSU26	100105	Dec. 25, 2021
2	Spectrum Analyzer	Rohde & Schwarz	FUV40-N	101331	Mar. 15, 2022
3	MXG Vector Signal Generator	Agilent	N5182A	MY47420864	Dec. 25, 2021
4	Signal Generator	Agilent	E8257D	MY46521908	Dec. 25, 2021
5	Power Sensor	Agilent	U2021XA	MY5365004	Dec. 25, 2021
6	Power Sensor	Agilent	U2021XA	MY5365006	Dec. 25, 2021
7	Simultaneous Sampling DAQ	Agilent	U2531A	TW54493510	Dec. 25, 2021
8	Climate Chamber	TABAI	PR-4G	A8708055	Dec. 25, 2021
9	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	116410	Dec. 25, 2021
10	Climate Chamber	ESPEC	MT3065	/	Dec. 25, 2021
11	300328 v2.2.2 test system	TONSCEND	v2.6	1	/

Radiate	d Emission and Transmi	tter spurious emissior	IS		
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1	EMI Test Receiver	Rohde & Schwarz	ESCI	100658	Dec. 25, 2021
2	High pass filter	micro-tranics	HPM50111	142	Dec. 25, 2021
3	Log-Bicon Antenna	Schwarzbeck	CBL6141A	4180	Dec. 25, 2021
4	Ultra-Broadband Antenna	ShwarzBeck	BBHA9170	25841	Dec. 25, 2021
5	Loop Antenna	LAPLAC	RF300	9138	Dec. 25, 2021
6	Spectrum Analyzer	Rohde & Schwarz	FSU26	100105	Dec. 25, 2021
7	Horn Antenna	Schwarzbeck	BBHA 9120D	647	Dec. 25, 2021
8	Pre-Amplifier	HP	8447D	1937A03050	Dec. 25, 2021
9	Pre-Amplifier	EMCI	EMC051835	980075	Dec. 25, 2021
10	Antenna Mast	UC	UC3000	N/A	N/A
11	Turn Table	UC	UC3000	N/A	N/A
12	Cable Below 1GHz	Schwarzbeck	AK9515E	33155	Dec. 25, 2021
13	Cable Above 1GHz	Hubersuhner	SUCOFLEX 102	DA1580	Dec. 25, 2021
14	Splitter	Mini-Circuit	ZAPD-4	400059	Dec. 25, 2021
15	RF Connection Cable	HUBER+SUHNER	RE-7-FL	N/A	Dec. 25, 2021
16	RF Connection Cable	Chengdu E-Microwave			Dec. 25, 2021
17	High pass filter	Compliance	BSU-6	34202	Dec. 25, 2021

CTC Laboratories, Inc.

中国国家认证认可监督管理委员会 EN

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn 证认可监督管理委员会 For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn

		Direction systems			
18	Attenuator	Chengdu E-Microwave	EMCAXX-10 RNZ-3		Dec. 25, 2021
19	High and low temperature box	ESPEC	MT3065	12114019	Dec. 25, 2021

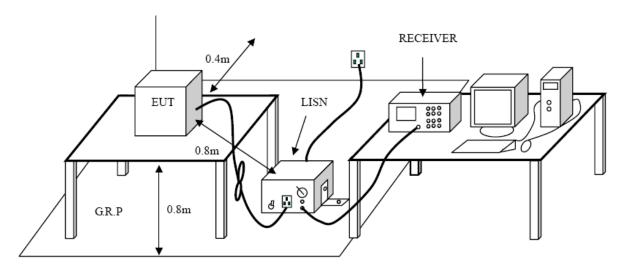
Conduc	ted Emission				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1	LISN	R&S	ENV216	101112	Dec. 25, 2021
2	LISN	R&S	ENV216	101113	Dec. 25, 2021
3	EMI Test Receiver	R&S	ESCI	100658	Dec. 25, 2021

Note:1. The Cal. Interval was one year.

2. The cable loss has calculated in test result which connection between each test instruments.

3. TEST ITEM AND RESULTS

3.1. Conducted Emission


<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.207/ RSS - Gen 8.8:

	Limit (d	BuV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

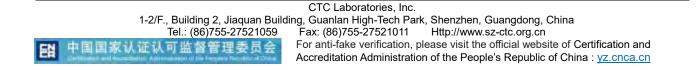
* Decreases with the logarithm of the frequency.

Test Configuration

Test Procedure

1. The EUT was setup according to ANSI C63.10:2013 requirements.

2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.

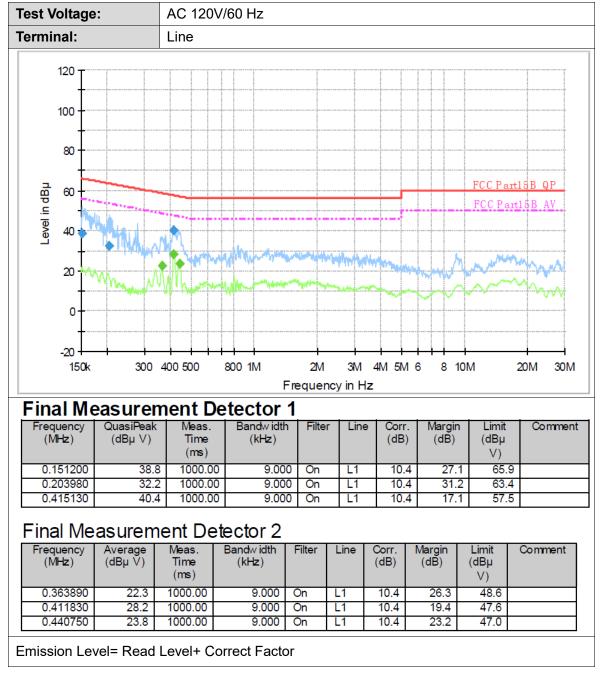

3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)

4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.

5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.

6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.

7. During the above scans, the emissions were maximized by cable manipulation.



Test Mode:

Please refer to the clause 2.4.

Test Results

		asurcin								
	Frequency (MHz)	QuasiPeak (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ ∀)	Comment
Γ	0.151200	40.2	1000.00	9.000	On	Ν	10.7	25.7	65.9	
	0.155490	38.6	1000.00	9.000	On	Ν	10.7	27.1	65.7	
	0.229930	29.2	1000.00	9.000	On	Ν	10.7	33.3	62.5	

Final Measurement Detector 2

	Frequency (MHz)	Average (dBµ ∀)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ ∀)	Comment
Γ	0.362440	22.5	1000.00	9.000	On	Ν	10.7	26.2	48.7	
Γ	0.413480	30.1	1000.00	9.000	On	Ν	10.7	17.5	47.6	
	0.437250	25.6	1000.00	9.000	On	Ν	10.7	21.5	47.1	

Emission Level= Read Level+ Correct Factor

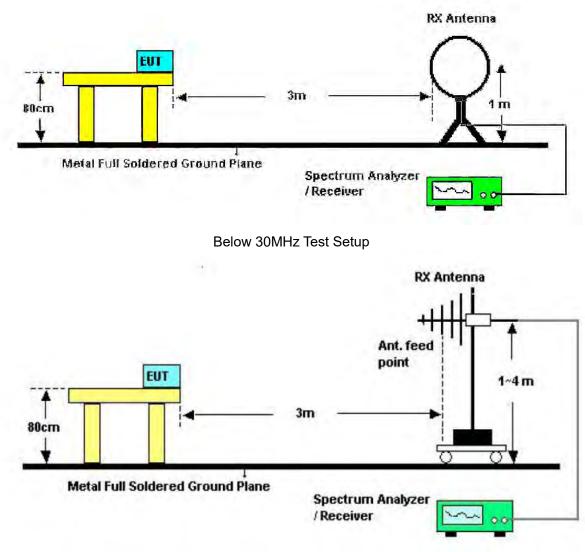
3.2. Radiated Emission

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.209/ RSS – Gen 8.9:

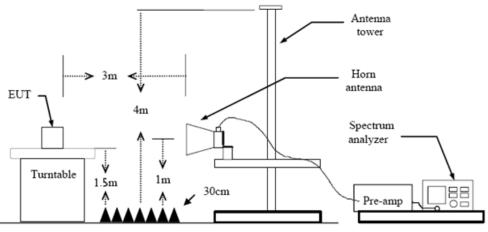
Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

	dB(uV/m) (a	at 3 meters)
Frequency (MHz)	Peak	Average
Above 1000	74	54


Note:

(1) The tighter limit applies at the band edges.

(2) Emission Level (dBuV/m)=20log Emission Level (uV/m).


Test Configuration

Above 1GHz Test Setup

Test Procedure

1. The EUT was setup and tested according to ANSI C63.10:2013

2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.

3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.

4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.

5. Set to the maximum power setting and enable the EUT transmit continuously.

- 6. Use the following spectrum analyzer settings
- (1) Span shall wide enough to fully capture the emission being measured;

(2) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(3) From 1 GHz to 10th harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW≥1/T Peak detector for Average value.

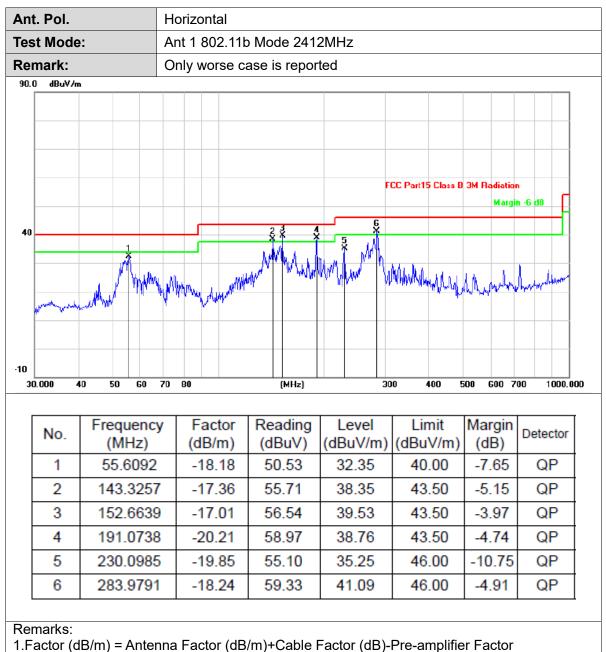
Note 1: For the 1/T& Duty Cycle please refer to clause 3.8 Duty Cycle.

Test Mode

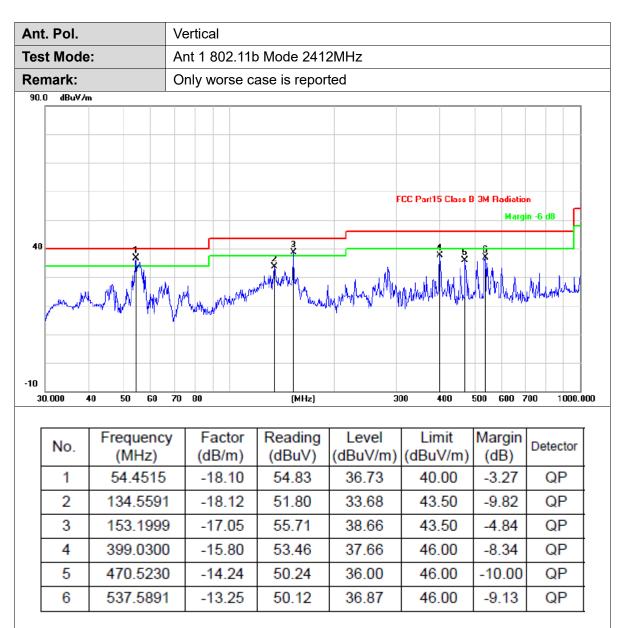
Please refer to the clause 2.4.

<u>Test Result</u>

9 KHz~30 MHz


From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.


Pre-scan all antenna, only show the test data for worse case antenna on the test report.

30MHz-1GHz

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX B Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	4823.856	-2.76	39.79	37.03	54.00	-16.97	AVG
2	4824.250	-2.76	53.04	50.28	74.00	-23.72	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

An	t No.:		Ant 1					
An	t. Pol.		Vertical					
Tes	st Mode	:	TX B Mode 24	412MHz				
Rei	mark:		No report for prescribed lin		n which mor	e than 20 d	B below 1	the
[No.	Frequency		Reading	Level	Limit	Margin	Detector
I	110.	(MHz)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)	20100101
				· · ·	. ,			
	1	4823.699	-2.76	38.41	35.65	54.00	-18.35	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant	t No.:		Ant 1					
Ant	t. Pol.		Horizontal					
Tes	st Mode	:	TX B Mode 2	437MHz				
Rei	mark:		No report for prescribed lin		n which moi	e than 20 d	B below	the
	No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
[No.						-	Detector

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX B Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	4873.890	-2.61	38.26	35.65	54.00	-18.35	AVG
2	4874.420	-2.61	52.47	49.86	74.00	-24.14	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:	Ant 1			
Ant. Pol. Horizontal				
Test Mode:	TX B Mode 2462MHz			
Remark:	No report for the emission which more than 20 dB below the prescribed limit.			

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	4923.857	-2.47	53.02	50.55	74.00	-23.45	peak
2	4924.208	-2.47	38.61	36.14	54.00	-17.86	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:			Ant 1						
An	t. Pol.		/ertical						
Tes	st Mode	:	TX B Mode 2	462MHz					
Re	mark:		No report for prescribed line		n which mor	e than 20 d	B below	the	
				π.					
				<u>m.</u>					

	1	4923.795	-2.47	52.44	49.97	74.00	-24.03	peak
[2	4924.236	-2.47	38.22	35.75	54.00	-18.25	AVG
Rer	marks:							
	marks: actor (d	B/m) = Antenna	Factor (dB/	/m)+Cable F	-actor (dB)-l	Pre-amplifie	er Factor	

Ant No.:	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX G Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	4824.003	-2.76	53.61	50.85	74.00	-23.15	peak
2	4824.025	-2.76	38.99	36.23	54.00	-17.77	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX G Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	4824.136	-2.76	38.22	35.46	54.00	-18.54	AVG
2	4824.215	-2.76	52.41	49.65	74.00	-24.35	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX G Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	4873.757	-2.61	38.64	36.03	54.00	-17.97	AVG
2	4874.077	-2.61	52.71	50.10	74.00	-23.90	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX G Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.
	No report for the emission which more than 20 dB below the

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	4873.784	-2.61	52.28	49.67	74.00	-24.33	peak
2	4874.451	-2.61	38.23	35.62	54.00	-18.38	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX G Mode 2462MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	4923.850	-2.47	53.03	50.56	74.00	-23.44	peak
2	4924.302	-2.47	38.80	36.33	54.00	-17.67	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

1

2

Remarks:

4923.768

4924.352

2.Margin value = Level -Limit value

-2.47

-2.47

Ant. Pol. Vertical Test Mode: TX G Mode 2462MHz Remark: No report for the emission which more than 20 dB below the prescribed limit. No. Frequency (MHz) Factor (dB/m) Reading (dBuV) Level (dBuV/m) Limit (dBuV/m) Margin (dB) Dete	An	t No.:		Ant 1						
Remark: No report for the emission which more than 20 dB below the prescribed limit. No Frequency Frequency Factor Reading Level Limit Margin Determine	Ant. Pol. Vertical									
prescribed limit.	Tes	st Mode	:	TX G Mode 2	462MHz					
			Frequency	Factor	Peading	Level	Limit	Margin		

38.15

52.79

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

35.68

50.32

54.00

74.00

-18.32

-23.68

AVG

peak

	CTC Laboratories, Inc.			
1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China				
Tel.: (86)755-27521059	Fax: (86)755-27521011 Http://www.sz-ctc.org.cn			
中国国家认证认可监督管理委员会	For anti-fake verification, please visit the official website of Certification and			
Cariffordian and Recordance Associations of the Person Records of Orker	Accreditation Administration of the People's Republic of China : yz.cnca.cn			

Ant No.:			Ant 1 + Ant 2					
Ant. Pol. Horizontal								
Test Mode: TX N20 Mode 2412MHz								
Re	mark:		No report for tor to the prescribed limes of the prescribed limes of the prescribed limes of the prescribed limes of the prescribes of the		n which mor	e than 20 d	B below	the
	No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
	1	4824.168	-2.76	39.12	36.36	54.00	-17.64	AVG
	2	4824.452	-2.76	53.64	50.88	74.00	-23.12	peak

Ant No.:	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX N20 Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	4823.685	-2.76	52.53	49.77	74.00	-24.23	peak
2	4824.805	-2.76	38.31	35.55	54.00	-18.45	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:	Ant 1 + Ant 2
Ant. Pol.	Horizontal
Test Mode:	TX N20 Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	4873.698	-2.61	38.64	36.03	54.00	-17.97	AVG
2	4874.454	-2.61	52.73	50.12	74.00	-23.88	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX N20 Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	4873.757	-2.61	38.41	35.80	54.00	-18.20	AVG
2	4874.414	-2.61	52.47	49.86	74.00	-24.14	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:	Ant 1 + Ant 2
Ant. Pol.	Horizontal
Test Mode:	TX N20 Mode 2462MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	4923.857	-2.47	38.33	35.86	54.00	-18.14	AVG
2	4924.020	-2.47	52.99	50.52	74.00	-23.48	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX N20 Mode 2462MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	4923.675	-2.47	51.92	49.45	74.00	-24.55	peak
2	4924.420	-2.47	37.99	35.52	54.00	-18.48	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:			Ant 1 + Ant 2							
An	t. Pol.		Horizontal							
Tes	st Mode	:	TX N40 Mode	e 2422MHz						
Re	mark:		No report for the emission which more than 20 dB below the prescribed limit.							
	No. Frequence (MHz)		/ Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
	1	4844.032		52.45	49.75	74.00	-24.25	peak		
	2	4844.352	-2.70	38.68	35.98	54.00	-18.02	AVG		

1

2

Remarks:

4843.451

4844.342

2.Margin value = Level -Limit value

Ant. Pol.	N			Ant 1 + Ant 2							
	V	Vertical									
Test Mod	le: T	TX N40 Mode 2422MHz									
Remark:		lo report for t rescribed lim		ו which mor	e than 20 dl	B below 1	the				
No. Frequence (MHz)		Factor	Reading	Level	Limit	Margin	Detector				

52.91

38.22

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

50.21

35.52

74.00

54.00

-23.79

-18.48

peak

AVG

-2.70

-2.70

CTC Laboratories, Inc. 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : <u>vz.cnca.cn</u>

Ant No.:	Ant 1 + Ant 2
Ant. Pol.	Horizontal
Test Mode:	TX N40 Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	4873.952	-2.61	38.35	35.74	54.00	-18.26	AVG
2	4874.212	-2.61	52.81	50.20	74.00	-23.80	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:			Ant 1 + Ant 2							
An	t. Pol.		Vertical							
Tes	st Mode):	TX N40 Mode	TX N40 Mode 2437MHz						
Re	mark:		No report for the emission which more than 20 dB below the prescribed limit.							
		_								
	No.	Frequenc (MHz)	y Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
	1	4873.210	0 -2.61	52.53	49.92	74.00	-24.08	peak		
	2	4874.321	1 -2.61	38.17	35.56	54.00	-18.44	AVG		
						-		L		
1.F	•	,	nna Factor (dB	/m)+Cable I	Factor (dB)-	Pre-amplifie	er Factor			
Z.I\	/iargin v	alue = Level	-Limit value							

Ant No.:	Ant 1 + Ant 2
Ant. Pol.	Horizontal
Test Mode:	TX N40 Mode 2452MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

	No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
	1	4904.018	-2.53	38.15	35.62	54.00	-18.38	AVG
[2	4904.210	-2.53	52.74	50.21	74.00	-23.79	peak

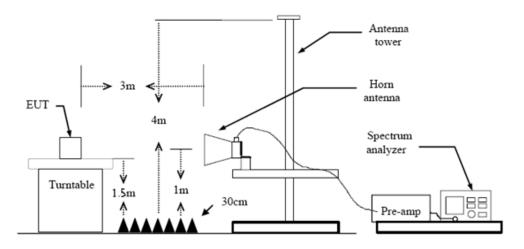
Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

An	t No.:	1	Ant 1 + Ant 2						
An	t. Pol.	,	Vertical						
Tes	st Mode	:	TX N40 Mode	e 2452MHz					
Re	mark:		No report for the emission which more than 20 dB below the prescribed limit.						
	No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
	1	4904.056	-2.53	52.18	49.65	74.00	-24.35	peak	
	2	4904.421	-2.53	37.84	35.31	54.00	-18.69	AVG	

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


3.3. Band Edge Emissions (Radiated)

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d)/ RSS 247 5.5:

Restricted Frequency Band	(dBuV/m)(at 3m)					
(MHz)	Peak	Average				
2310 ~2390	74	54				
2483.5 ~2500	74	54				

Test Configuration

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- 5. The receiver set as follow:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.

Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 3.7 Duty Cycle.

Test Mode

Please refer to the clause 2.4.

Test Results

Pre-scan all antenna, only show the test data for worse case antenna on the test report.

Ant No.:			Ant	t 1					
Ant.	Pol.		Ho	rizontal					
Гest	Mode):	BN	Mode 2412	MHz				
110.0) dBuV∕i	m					1		
60 .							art15 Class C 3M A : Part15 Class C 3 X		
10.0	04.700 2	316.70 2328.7	70 2	2340.70 235	2.70 2364.70	2376.70	2388.70 2400	0.70	2424.70 MH
Γ	No.	Frequence (MHz)	y	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	1	2390.00	0	31.10	21.49	52.59	74.00	-21.41	peak
	2	2390.00	0	31.10	10.79	41.89	54.00	-12.11	AVG

		Ant 1					
nt. Pol.		Vertical					
st Mode	:	B Mode 241	2MHz				
0.0 dBuV/m	n						
50					rrt15 Closs C 3M A Part15 Class C 8I		
.0 2308.800 23	320.80 2332.80	2344.90 23	356.80 2368.80	2390.90	2392.90 2404	.90	2428.80 M
No.	Frequency (MHz)	y Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2390.000) 31.10	19.64	50.74	74.00	-23.26	peak
	2390.000	31.10	10.14	41.24	54.00	-12.76	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

Ant No.:			An	Ant 1							
nt.	Pol.		Ho	orizontal							
est	Mode	:	BI	Mode 246	32 MHz						
110.0	dBuV/π	n					1				
	ſ	n					F	CC Pa	nt15 Closs C 3M /	Above-1G Pea	k
60				1				FCC	Part15 Class C 3	N Above-16 A	v
J		- L	~								
			- mar	*					·····		
0.0	0.00D 24	62.00 2474.		2486.00 2	2498.00 2	2510.00	2522.00		2534.00 254		2570.00 MH
	No.	Frequent	су	Factor		-	Leve		Limit	Margin	Detector
		(MHz)	$ \rightarrow $	(dB/m)	-		•		(dBuV/m)	· · ·	
	1	2483.50	0	31.50	22.7	79	54.29)	74.00	-19.71	peak
	1					_			E4 00	40.05	AVC
	2	2483.50	0	31.50	10.1	15	41.65	5	54.00	-12.35	AVG
	-	2483.50	0	31.50	10.1	15	41.65	5	54.00	-12.35	AVG

nt No.:	:	Ant 1					
nt. Pol	I.	Vertical					
est Mo	de:	B Mode 2	462 MHz				
10.0 dBu	uV/m			i.			
				FCC Pa	nt15 Class C 3M A	bove-1G Pea	<
60							
				FCC	Part15 Class C 3	Above-1G A	v
- M		3					
· ·							
D. 0							
2448.800	0 2460.80 2472.0	80 2484.80	2496.80 2508.8	0 2520.80	2532.80 2544	. 90	2568.80 M
	Frequen	cy Fact			Limit	Margin (dB)	Detector
No.	· (MHz)	(dB/r	n) (dBuV)	(dBuV/m)	(dBuV/m)	(ub)	
No.				(dBuV/m) 53.70	(dBuV/m) 74.00	-20.30	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

	lo.:			A	nt 1										
nt. P	ol.			Н	orizo	ontal									
est N	Node	: :		G	i Mo	de 241	12N	lHz							
10.0	dBuV∕	/m													
											FCC P	art15 C	lass C 3M A	bove-1G Pee	ak
60											FCC	Part1	i Class C 3	Above-1G /	
													<u>ر میں اور اور اور اور اور اور اور اور اور اور</u>		
												*			
0.0															
2303	5.200 2	.517.20		29.20	2341		2353.:	20 23	65.20	231	7.20	2389.2	20 2401		2425.20 MI
N	No.		equei (MHz	-		actor B/m)		Readii (dBu\		1	vel V/m)	1	imit uV/m)	Margin (dB)	Detector
	1	23	390.0	000	3	31.10		21.92	2	53	.02	7	4.00	-20.98	peak
	2	23	390.0	000	3	31.10		10.09	9	41	.19	5	4.00	-12.81	AVG

	An	nt 1					
	Ve	ertical					
):	G	Mode 2412	:MHz				
m							
				FCC Pa	rt15 Class C 3M A	beve-16 Pea	
				Fee	Barthe Class Class	1.11 10.4	
				FLL	A A A A A A A A A A A A A A A A A A A	A ADOVE-TO A	× []
					3		\sim
319.60 233	1.60	2343.60 235	5.60 2367.60	2379.60	2391.60 2403	.60	2427.60 M
	-	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
2390.0	000	31.10	20.67	51.77	74.00	-22.23	peak
2390.0	000	31.10	10.46	41.56	54.00	-12.44	AVG
	Frequer (MHz 2390.0	e: G /m /m /m // / / / / / / / / / / / / / /	e: G Mode 2412	Frequency (MHz) Factor (dB/m) Reading (dBuV)	G Mode 2412MHz Im Im Image: Constraint of the second sec	G Mode 2412MHz Im Im Im Im Image: Comparison of the system of the s	G Mode 2412MHz m FCC Part15 Class C 3M Above-16 Peak FCC Part15 Class C 3M Above-16 Peak FCC Part15 Class C 3M Above-16 A FCC Part14 A FCC Part15 Clas

nt No.:		Ant	1									
nt. Pol.		Hor	izontal									
est Mode):	GN	/lode 2	462	MHz							
10.0 dBuV/	m				1							
~	\sim							FCC Pa	art15 Cla	iss C 3M A	bove-16 Pee	ok
60			1					FCC	Part15	Class C 3I	Above-1G /	w
			×									
			2 X	~~~~								
0.0												
2448.800 2	460.80 2472.0	80 2	484.80	249	6.80 25	08.80	252	D. 90	2532.80	2544	l. 90	2568.80 MI
No.	Frequent (MHz)	cy	Facto (dB/n		Readii (dBu\	-	Le (dBu		1	mit ıV/m)	Margin (dB)	Detector
1	2483.50	0	31.5	0	20.86	6	52	.36	74	1.00	-21.64	peak
2	2483.50	0	31.5	0	10.2	1	41	.71	54	4.00	-12.29	AVG
	-	!										i

		Ant 1							
nt. Pol.		Vertic	al						
est Mode	:	G Mo	de 2462	MHz					
10.0 dBuV/n	n								
	M				FC	C Part15	Closs C 3M A	sbove-1G Pea	k
60			Ļ			FCC Parl	15 Class C 31	A Above-16 A	NV
		i							
0.0	459.60 2471.0		3.60 249	5.60 2507.6	0 2519.60	2531	.60 2543		2567.60 M
				Deedier	1		1	Maraia	
No.	Frequent (MHz)	-	Factor dB/m)	Reading (dBuV)	Level (dBuV/r		Limit BuV/m)	Margin (dB)	Detector
4	2483.50	0	31.50	22.84	54.34		74.00	-19.66	peak
1		00	31.50	10.70	42.20		54.00	-11.80	AVG

	No.:		An	t 1 + Ant 2									
hnt.	Pol.		Ho	rizontal									
est	Mode	:	N(ł	HT20) Mod	de 2412N	/Hz							
110.0	dBuV/n	n											_
								FCC Pa	urt15 Cla	ISS C 3M A	bove-1G Pea	k l	
60								FCC	Part15	Class C 3	Above-16 A	N	
									X				Ħ
									-				Ч
10.0													
230	06.200 23	318.20 2330.	.20	2342.20 23	54.20 230	66.20	2378	3.20	2390.20	2402	2.20	2426.	20 1
	No.	Frequen (MHz)	-	Factor (dB/m)	Readir (dBu\	-	Lev (dBu		1	mit ıV/m)	Margin (dB)	Deteo	tor
		(1911 12)				_						1	
	1	2390.00		31.10	20.53	3	51.	63	74	1.00	-22.37	pea	ak

No.:		Ar	nt 1 + Ant 2	2					
Pol.		Ve	ertical						
Mode	:	N((HT20) Mc	de 2412M	Hz				
dBu∀/m	1					1			
								m	M
						FLL Pa	INTO LIASS U JM A	Dove-lu Pea	
						FCC	Part15 Class C 3	Above-1G A	v []
							Î /		
							-		
15,200 23	17.20 232	9.20	2341.20 2	353.20 2365	20 23	77.20	2389.20 2401	.20	2425.20 M
No.	Freque (MHz	-	Factor (dB/m)	Readin (dBuV	-		Limit (dBuV/m)	Margin (dB)	Detector
			· · ·			0.00	74.00	20.00	
1	2390.0	000	31.10	22.10		3.20	74.00	-20.80	peak
	dBu¥/m	Mode: dBuV/m	Mode: N(dBuV/m	Mode: N(HT20) Mo	Mode: N(HT20) Mode 2412M	Mode: N(HT20) Mode 2412MHz dBuV/m BuV/m BuvV/m BuvV/m BuvVV/m BuvV/m BuvV/m BuvV/m BuvV/m BuvV/m BuvV/m BuvV/m BuvV/	Mode: N(HT20) Mode 2412MHz dBuV/m BuV/m FCC Pa FCC FCC FCC FCC FCC FCC FCC FCC FCC F	Mode: N(HT20) Mode 2412MHz dBuV/m	Mode: N(HT20) Mode 2412MHz dBuV/m

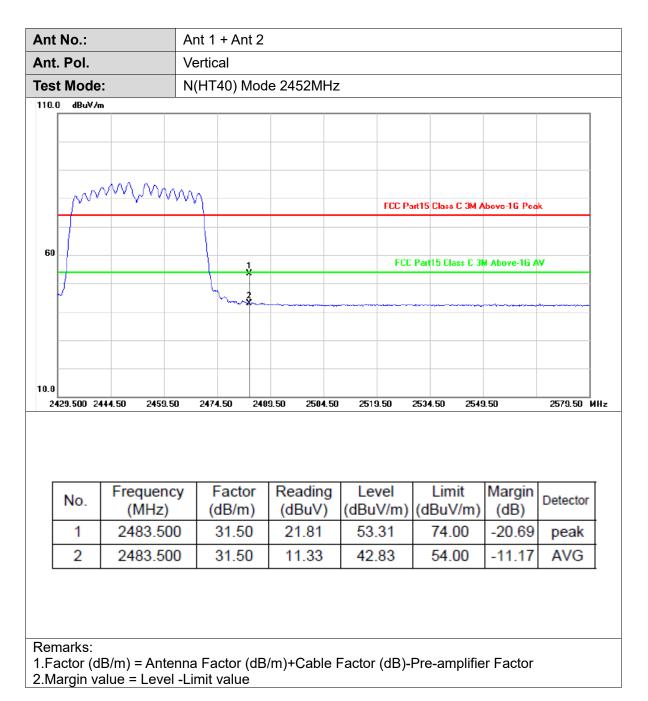
	Hor	izontal					
	N(H	IT20) Mod	e 2462MHz	:			
				1			
~				FCC Pa	nt15 Class C 3M A	bove-1G Pea	k
	1			FCC	Part15 Class C 3N	Above-16 A	v
	>	<					
	~~~~	È					
2.00 2474.0	0 24	486.00 249	8.00 2510.00	2522.00	2534.00 2546	.00	2570.00 M
(MHz)	_	Factor (dB/m)	Reading (dBuV)			Margin (dB)	Detector
							peak
2483.50	0	31.50	10.13	41.63	54.00	-12.37	AVG
	Frequence (MHz) 2483.50	Frequency	Frequency (MHz)         Factor (dB/m)           2483.500         31.50	Frequency (MHz)         Factor (dB/m)         Reading (dBuV)           2483.500         31.50         20.53	Frequency (MHz) Factor (MHz) A496.00 2498.00 2510.00 2522.00 Frequency (MHz) A496.00 2498.00 2510.00 2522.00 Keading (dBuV) (dBuV) (dBuV/m) 2483.500 31.50 20.53 52.03	Frequency (MHz)         Factor (dB/m)         Reading (dBuV)         Level (dBuV/m)         Limit (dBuV/m)           2483.500         31.50         20.53         52.03         74.00	Frequency (MHz)         Factor (dB/m)         Reading (dBuV)         Level (dBuV/m)         Limit (dBuV/m)         Margin (dB)           2483.500         31.50         20.53         52.03         74.00         -21.97



		Ant	1 + Ant 2	2				
nt. Pol.		Vert	ical					
st Mode	):	N(H	T20) Mo	de 2462MH	Z			
0.0 dBuV/	m						1	
	wy				FCC	Part15 Class C 3M /	Above-1G Pee	sk
60		1			FC	C Part15 Class C 3	M Above-1G /	AV
1		$\sim$						
.0 2450.000 2	462.00 2474.0	00 24	496.00 2	498.00 2510.0	0 2522.00	2534.00 254	6.00	2570.00 M
No.	Frequence (MHz)	_	Factor (dB/m)	Reading (dBuV)		Limit (dBuV/m)		Detector
1		_		-	(dBuV/m) 52.58	(dBuV/m) 74.00	(dB) -21.42	peak
	(MHz)	0	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)	peak

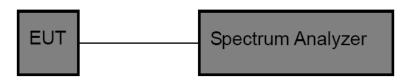


ιιι	No.:			A	nt 1 +	Ant 2								
nt.	. Pol.			H	orizor	ital								
est	t Mode	:		Ν	(HT40	) Moc	le 242	2MHz						
110.	0 dBuV/	m								1				
										FCC P	art15 Ck	os C 3M A	wove-16 Pee	k My
60										FCC	Part15	Class C 3I	M Above-1G A	w
										×				
											and .			L Y
10.0														
22	294.500 2	309.50	2324	1.50	2339.5	) 23	54.50	2369.50	238	4.50	2399.50	2414	4.50	2444.50 MI
ſ	No.	Frec	quen (Hz)	-	1	ctor 3/m)	Rea (dB	· · ·	Le (dBu	vel V/m)	1	mit ıV/m)	Margin (dB)	Detector
	1	239	90.0	00	31	.10	20.	.60	51.	70	74	1.00	-22.30	peak
F				~ ~	~ ~ ~	40	40	0.5	40	05	E	1.00	-11.95	AVG
	2	239	90.0	00	31	.10	10.	.95	42.	.UO	34	1.00	-11.00	~~~




	No.:			Ant	Ant 1 + Ant 2 Vertical											
۸nt.	Pol.			Verti	cal											
<b>Test</b>	t Mode	):		N(H	T40) I	Mode	e 2422	2MHz								
110.0	0 dBuV/	m					1									
										FOR	Dad 15 (	M	////// 16 Pca	my		
										ruur	arron		DOVETO FEA	<u> </u>		
												ſ				
60										FP	C Part1	5 Class C 3	Above-16 A	v \		
										×						
											~~~	v				
10.0 21	293.000 2	200.00	2323.00		38.00	235:	2.00	2368.00	2383	00	2398.	00 2413	00	2443.00		
Г		Free	menci		Fact		Rea	ling		رما		imit	Margin			
	No.		quency (Hz)		Facto (dB/m		Rea (dB	-	Lev (dBu)			Limit BuV/m)	Margin (dB)	Detector		
	No. 1	(N				n)		uV)		V/m)	(dE		-	Detector peak		

ector
eak
VG



3.4. Band edge and Spurious Emissions (Conducted)

Limit

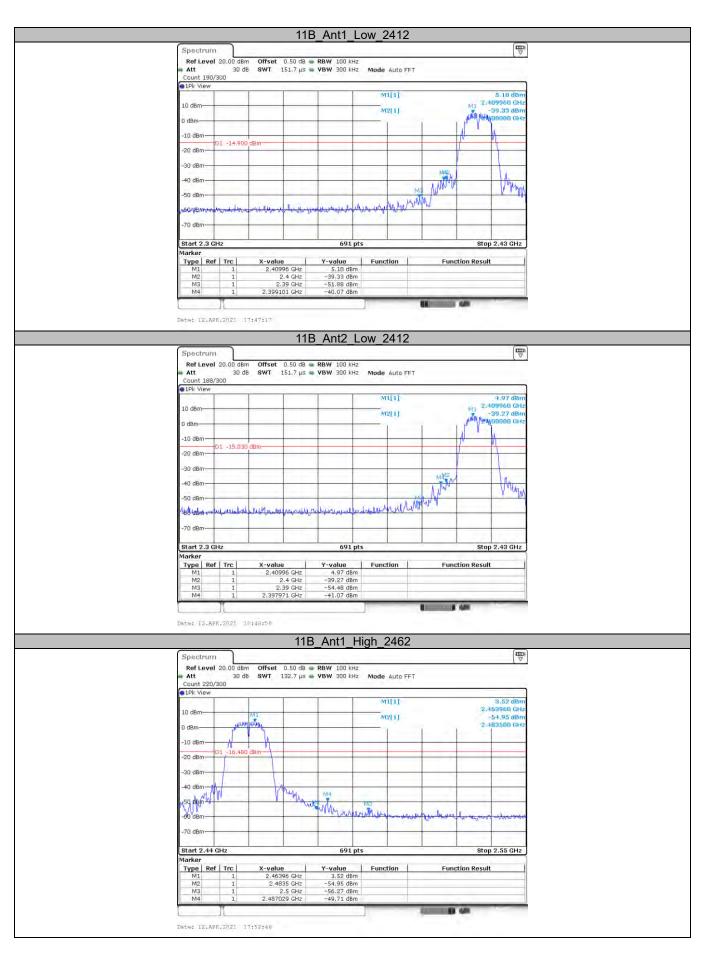
FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

Test Configuration

Test Procedure

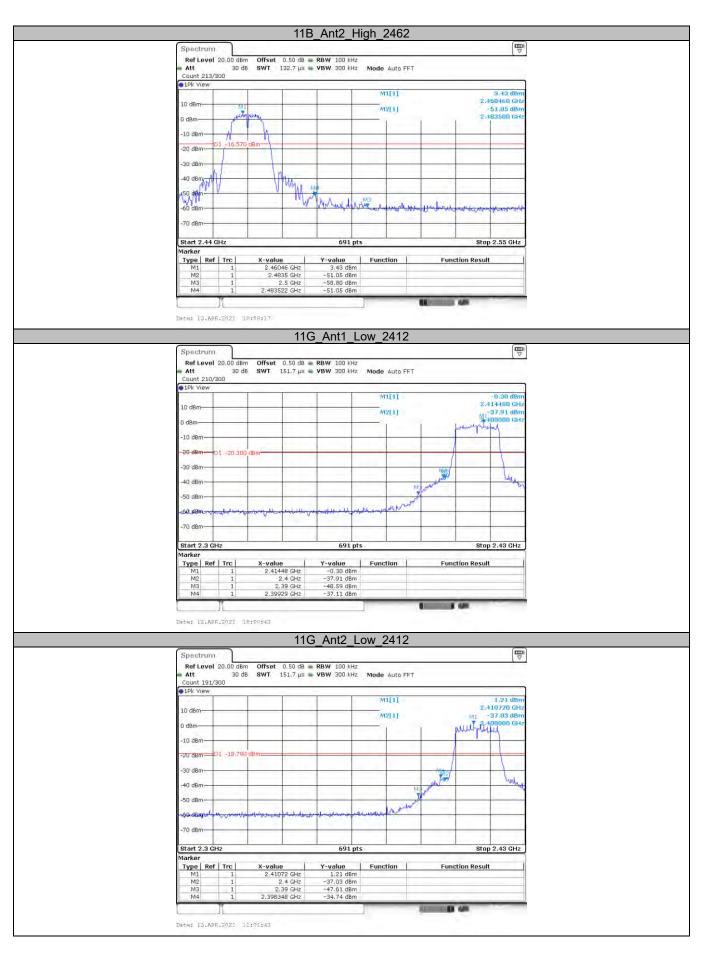
- The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss 1. was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings: 3. RBW = 100 kHz, VBW \geq RBW, scan up through 10th harmonic.
- Sweep = auto, Detector function = peak, Trace = max hold Measure and record the results in the test report. 4.

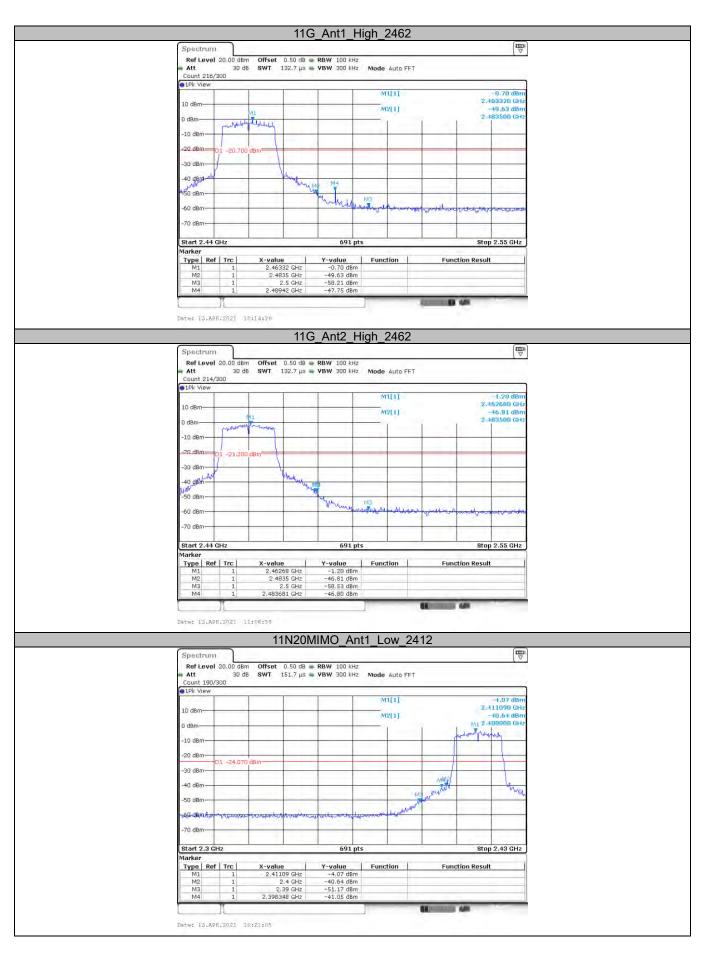
Test Mode


Please refer to the clause 2.4.

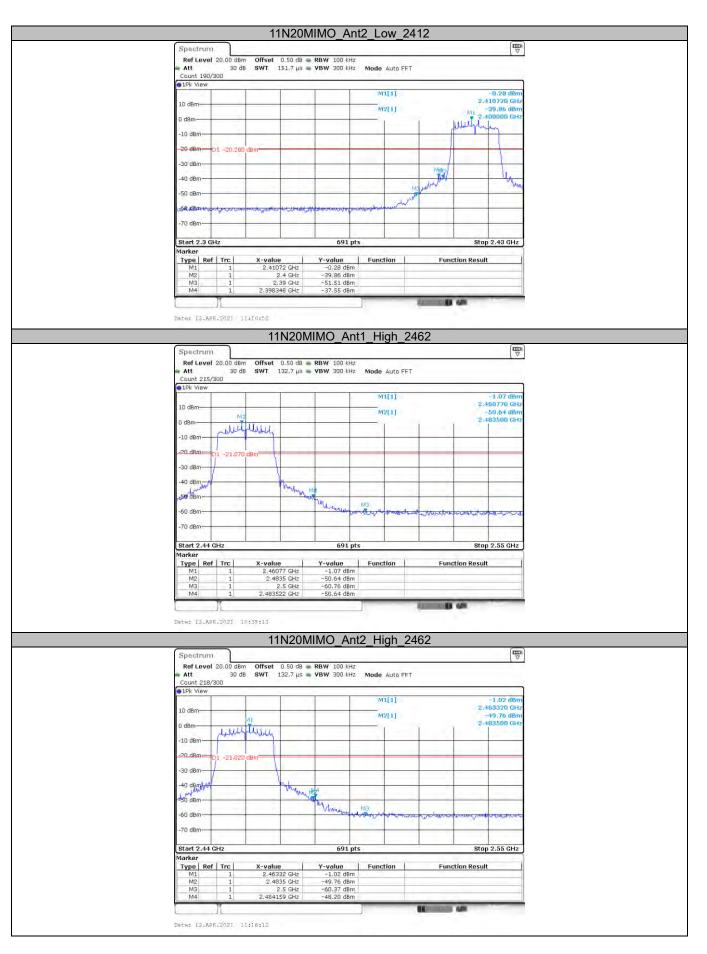
Test Results

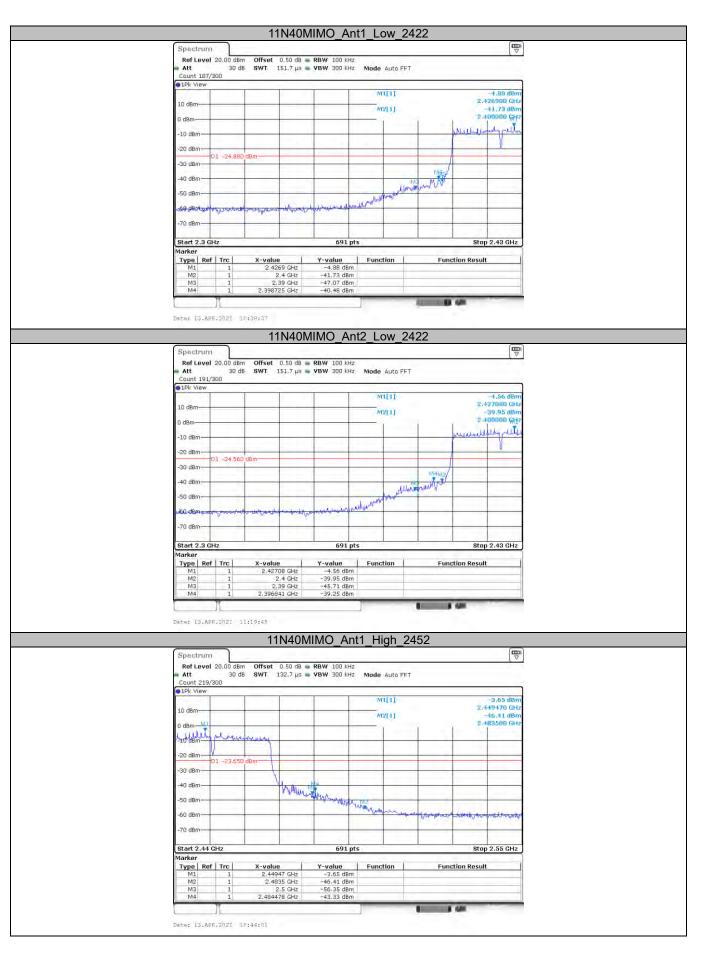
(1)	Band e	dge Co	nducted	Test
-----	--------	--------	---------	------


Test Mode	Antenna	ChName	Frequency (MHz)	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict
	Ant1	Low	2412	5.10	-40.07	<=-14.90	PASS
11B	Ant2	Low	2412	4.97	-41.07	<=-15.03	PASS
	Ant1	High	2462	3.52	-49.71	<=-16.48	PASS
	Ant2	High	2462	3.43	-51.05	<=-16.57	PASS
	Ant1	Low	2412	-0.30	-37.11	<=-20.30	PASS
110	Ant2	Low	2412	1.21	-34.74	<=-18.79	PASS
11G	Ant1	High	2462	-0.70	-47.75	<=-20.70	PASS
	Ant2	High	2462	-1.20	-46.80	<=-21.20	PASS
	Ant1	Low	2412	-4.07	-41.05	<=-24.07	PASS
	Ant2	Low	2412	-0.28	-37.55	<=-20.28	PASS
11N20MIMO	Ant1	High	2462	-1.07	-50.64	<=-21.07	PASS
	Ant2	High	2462	-1.02	-48.20	<=-21.02	PASS
11N40MIMO	Ant1	Low	2422	-4.88	-40.48	<=-24.88	PASS
	Ant2	Low	2422	-4.56	-39.25	<=-24.56	PASS
	Ant1	High	2452	-3.65	-43.33	<=-23.65	PASS
	Ant2	High	2452	-3.40	-43.31	<=-23.40	PASS



Page 63 of 126





Page 65 of 126

Page 66 of 126

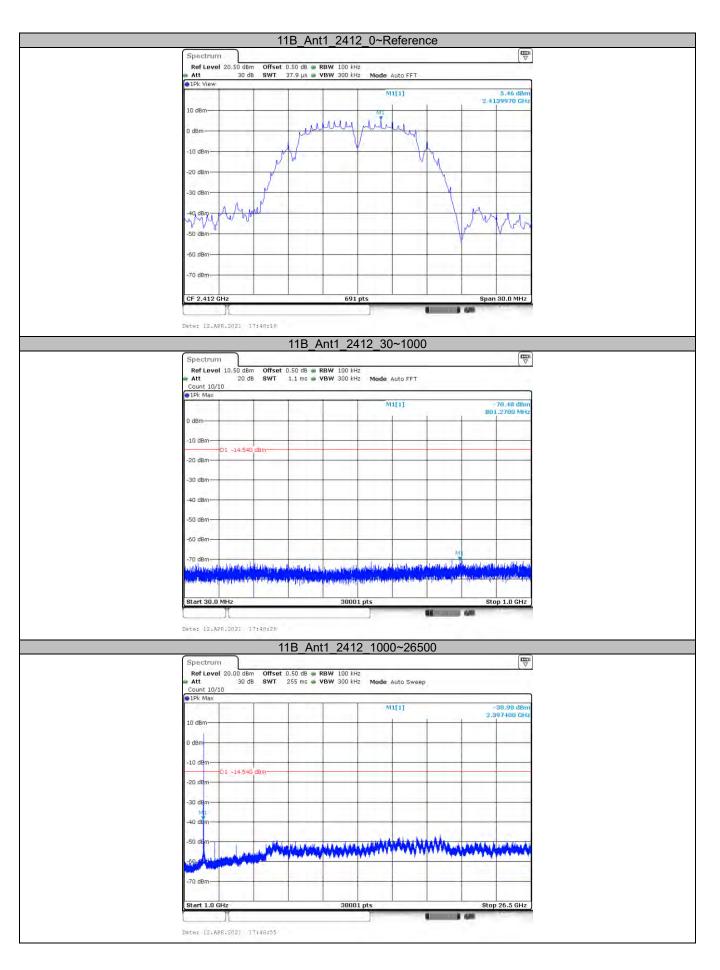
Page 67 of 126

		11N	140M	IMO Ant	2 High	245	52			
Spectre	m									
Ref Let Att Count 2				RBW 100 kHz VBW 300 kHz	Mode Auto	FET				
1Pk Vie										
10 dBm-					M1[1]	_		2.4	-3.40 dBm 16920 GHz 14.22 dBm	
0 dBm	-								33500 GHz	
LTU dem-	by policiple	unity	_			-	-			
-20 dBm-	01 -23.40	a dam								
-30 dBm-	W1 -23,40	U UBIII				-	-	_	-	
-40 dBm-	-	n	Maner	Manut Munum		-				
-50 dBm-	-		10	Marcult Lawer Barry	Marine		-			
-60 dBm-	-				harry	dilula .	and delegant	asp Jahon	-townsond	
-70 dBm-	-	-	_			_		_		
Start 2.4	1.011-		_	691 pts	_	_		Oter	2.55 GHz	
Marker	4 GHZ		_	pat hrs				acup	2.55 GH2	
	Ref Trc	X-value	1	Y-value	Function	1 I	Functi	on Result		
M1	1	2.44692		-3.40 dBm						
M2	1	2.4835		-44.22 dBm						
MB	1		GHz	-52.69 dBm						
M4	1	2.48942	GHz	-43.31 dBm	-					
	N					- 6	0.0	UN		
		11:24:59								

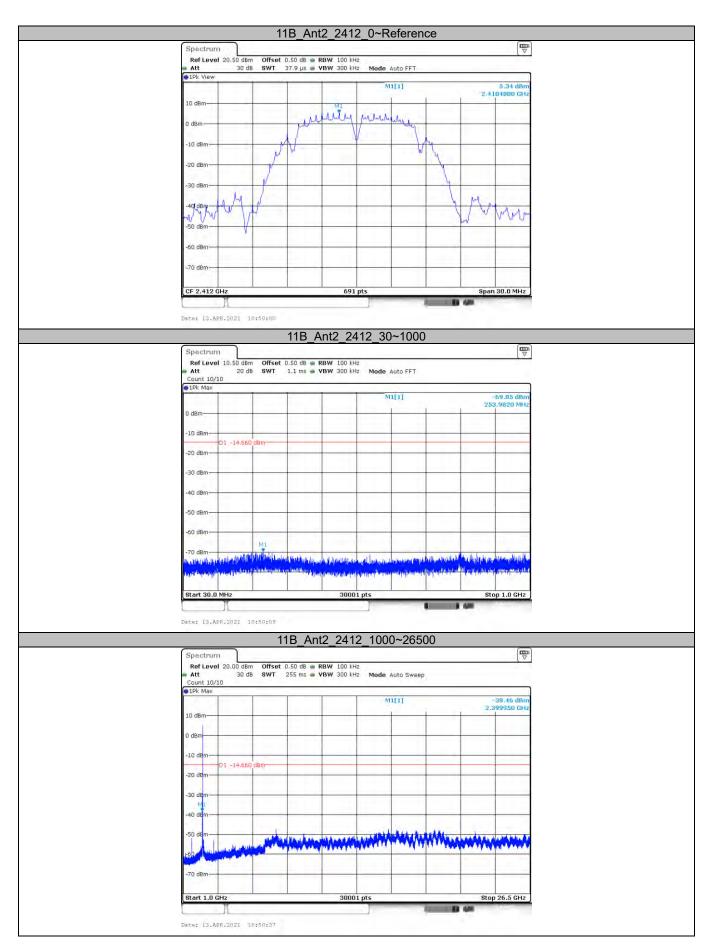
(2) Conducted Spurious Emissions Test

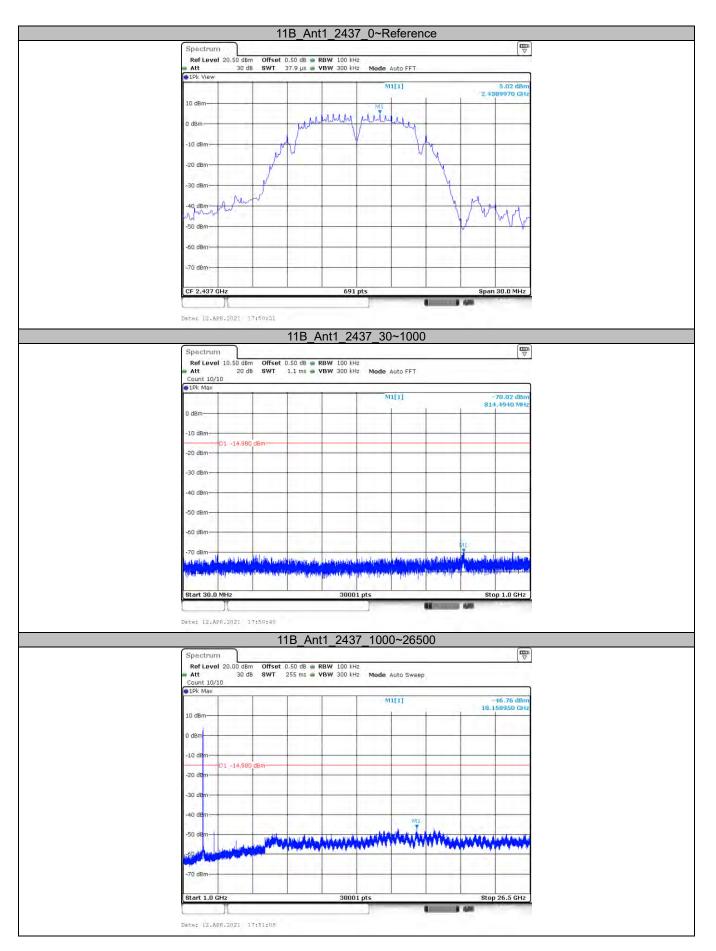
Test Mode	Antenna	Frequency (MHz)	Freq Range [Mhz]	Ref Level [dBm]	Result [dBm]	Limit [dBm]	Verdict
		(Reference	5.46	5.46		PASS
	Ant1	2412	30~1000	30~1000	-70.48	<=-14.54	PASS
			1000~26500	1000~26500	-38.98	<=-14.54	PASS
			Reference	5.34	5.34		PASS
	Ant2	2412	30~1000	30~1000	-69.85	<=-14.66	PASS
			1000~26500	1000~26500	-38.46	<=-14.66	PASS
			Reference	5.02	5.02		PASS
	Ant1	2437	30~1000	30~1000	-70.02	<=-14.98	PASS
			1000~26500	1000~26500	-46.76	<=-14.98	PASS
11B			Reference	5.68	5.68		PASS
	Ant2	2437	30~1000	30~1000	-69.03	<=-14.32	PASS
			1000~26500	1000~26500	-46.93	<=-14.32	PASS
			Reference	5.02	5.02		PASS
	Ant1	2462	30~1000	30~1000	-69.89	<=-14.98	PASS
	2		1000~26500	1000~26500	-46.78	<=-14.98	PASS
			Reference	5.20	5.20		PASS
	Ant2	2462	30~1000	30~1000	-69.39	<=-14.80	PASS
	74112	2102	1000~26500	1000~26500	-47.22	<=-14.80	PASS
	Ant1	2412	Reference	1.27	1.27		PASS
			30~1000	30~1000	-70.50	<=-18.73	PASS
			1000~26500	1000~26500	-37.61	<=-18.73	PASS
			Reference	1.46	1.46		PASS
	Ant2	2412	30~1000	30~1000	-69.23	<=-18.54	PASS
			1000~26500	1000~26500	-36.25	<=-18.54	PASS
			Reference	1.27	1.27		PASS
	Ant1 Ant2	2437 2437	30~1000	30~1000	-70.97	<=-18.73	PASS
			1000~26500	1000~26500	-47.42	<=-18.73	PASS
11G			Reference	1.06	1.06		PASS
			30~1000	30~1000	-68.62	<=-18.94	PASS
			1000~26500	1000~26500	-46.77	<=-18.94	PASS
	Ant1	2462	Reference	0.28	0.28	< <u>10.94</u>	PASS
			30~1000	30~1000	-70.50	 <=-19.72	PASS
			1000~26500	1000~26500	-47.15	<=-19.72	PASS
	Ant2	2462		1.00	1.00		PASS
			Reference 30~1000	30~1000	-69.43	 <=-19.00	PASS
			1000~26500	1000~26500	-47.09	<=-19.00	PASS
			Reference				PASS
	Ant1 Ant2	2412 2412		-0.93 30~1000	-0.93 -70.74	 <=-20.93	
			30~1000				PASS
			1000~26500	1000~26500	-39.26	<=-20.93	PASS PASS
			Reference	-0.92	-0.92		
			30~1000	30~1000	-69.56	<=-20.92	PASS
			1000~26500	1000~26500	-38.79	<=-20.92	PASS
	A 14	2437	Reference	-0.77	-0.77		PASS
	Ant1		30~1000	30~1000	-70.18	<=-20.77	PASS
11N20MIMO		2437	1000~26500	1000~26500	-47.60	<=-20.77	PASS
	Ant2		Reference	-0.37	-0.37		PASS
			30~1000	30~1000	-68.33	<=-20.37	PASS
			1000~26500	1000~26500	-47.50	<=-20.37	PASS
		2462	Reference	-2.78	-2.78		PASS
	Ant1		30~1000	30~1000	-70.64	<=-22.78	PASS
			1000~26500	1000~26500	-46.54	<=-22.78	PASS
	Ant2	2462	Reference	-0.54	-0.54		PASS
	,	LAUL	30~1000	30~1000	-69.67	<=-20.54	PASS

CTC Laboratories, Inc.

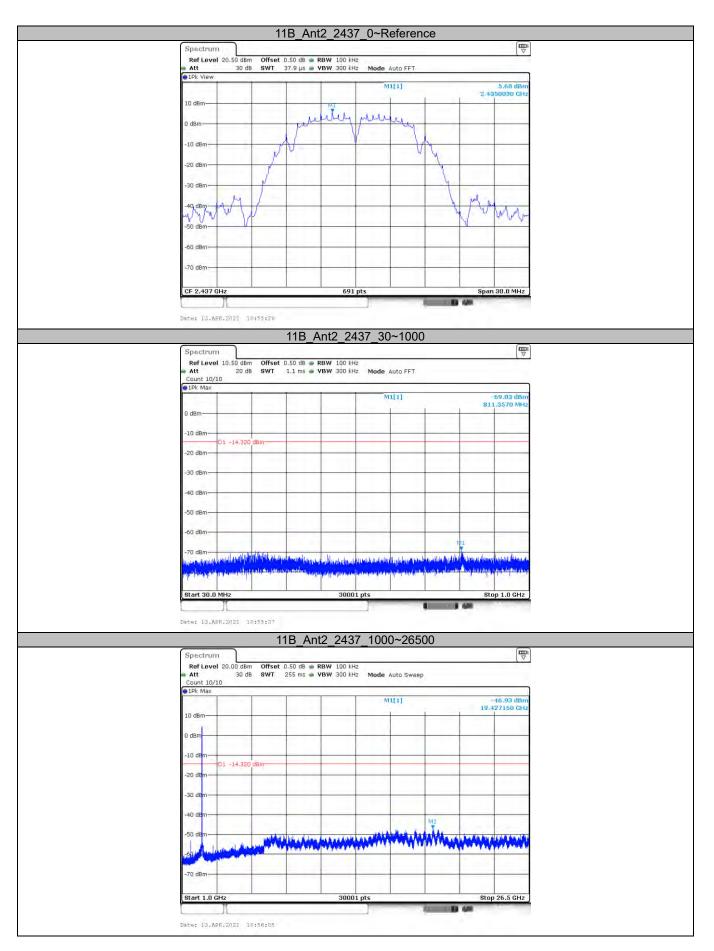

中国国家认证认可监督管理委员会 EN

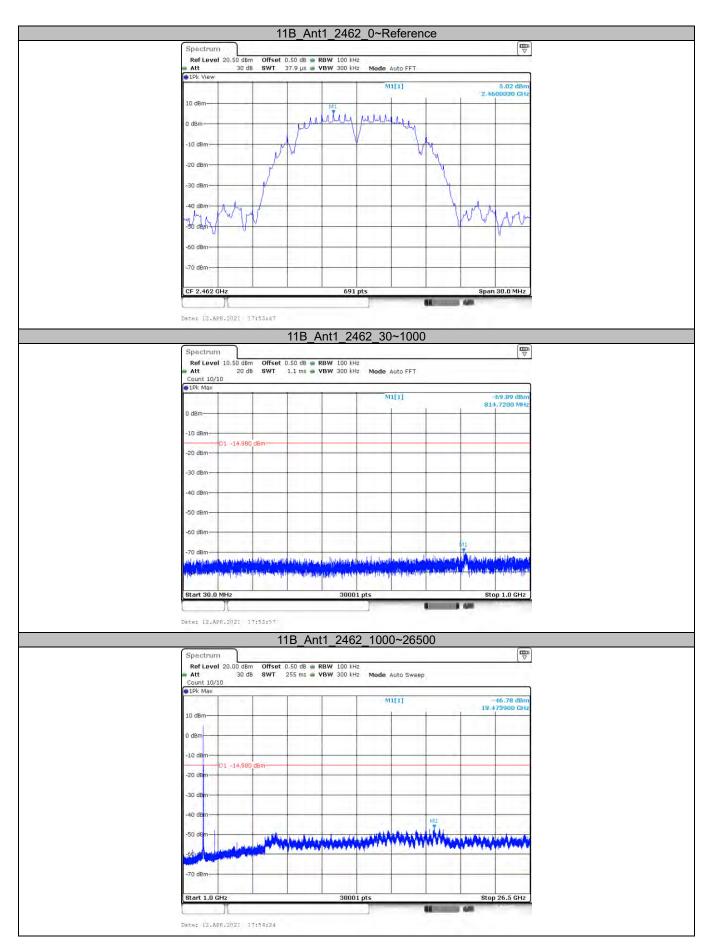
1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn 证认可监督管理委员会 For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn

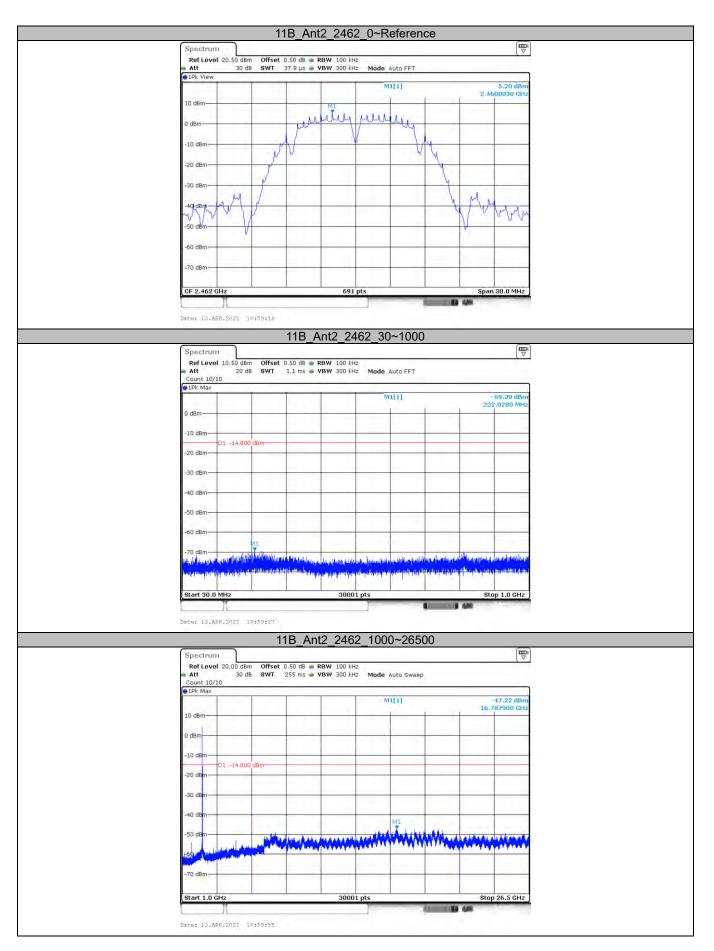

			1000~26500	1000~26500	-45.96	<=-20.54	PASS
			Reference	-3.80	-3.80		PASS
	Ant1	2422	30~1000	30~1000	-70.00	<=-23.80	PASS
			1000~26500	1000~26500	-39.32	<=-23.80	PASS
		2422	Reference	-3.56	-3.56		PASS
	Ant2		30~1000	30~1000	-69.23	<=-23.56	PASS
			1000~26500	1000~26500	-40.71	<=-23.56	PASS
	Ant1	2437	Reference	-3.97	-3.97		PASS
			30~1000	30~1000	-70.98	<=-23.97	PASS
			1000~26500	1000~26500	-47.42	<=-23.97	PASS
11N40MIMO	Ant2	2437	Reference	-3.60	-3.60		PASS
-			30~1000	30~1000	-69.10	<=-23.60	PASS
			1000~26500	1000~26500	-43.35	<=-23.60	PASS
	Ant1	2452	Reference	-3.45	-3.45		PASS
			30~1000	30~1000	-70.46	<=-23.45	PASS
			1000~26500	1000~26500	-46.08	<=-23.45	PASS
		2 2452	Reference	-3.27	-3.27		PASS
	Ant2		30~1000	30~1000	-68.98	<=-23.27	PASS
			1000~26500	1000~26500	-45.33	<=-23.27	PASS



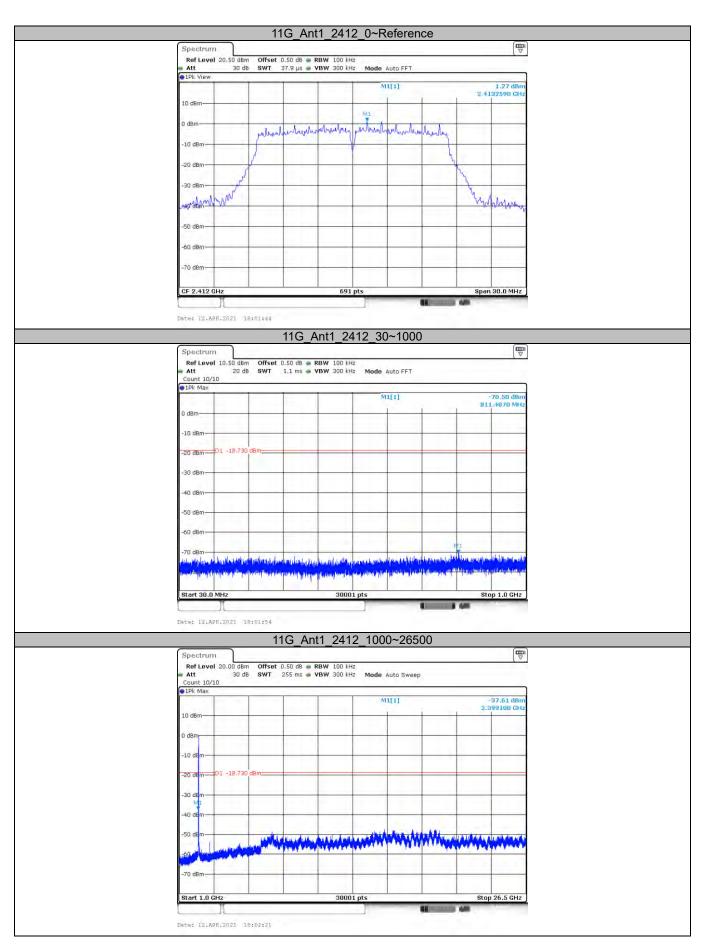
中国国家认证认可监督管理委员会

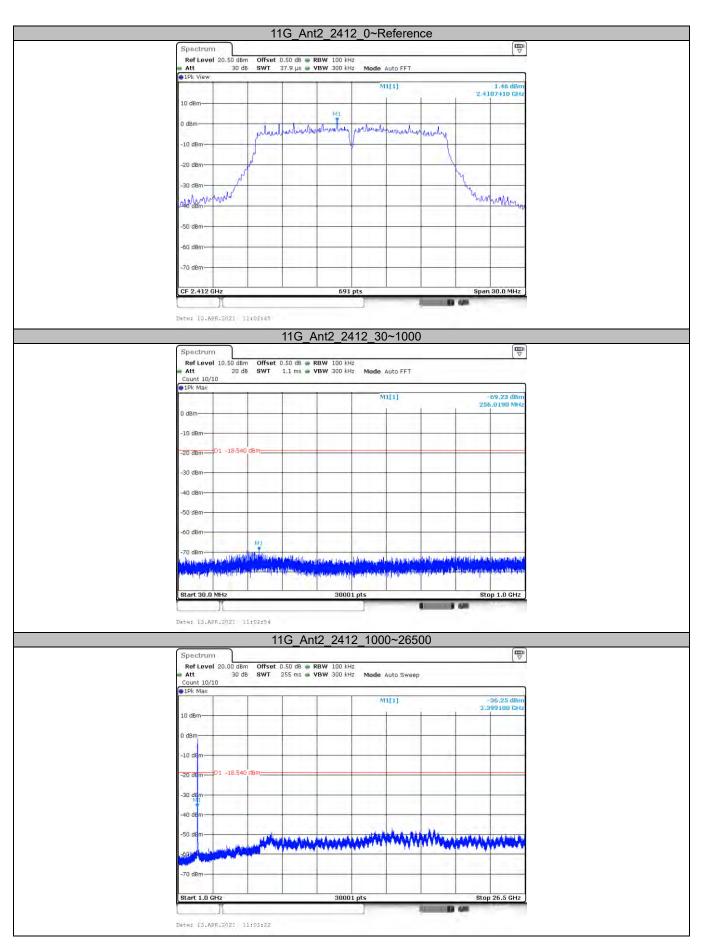


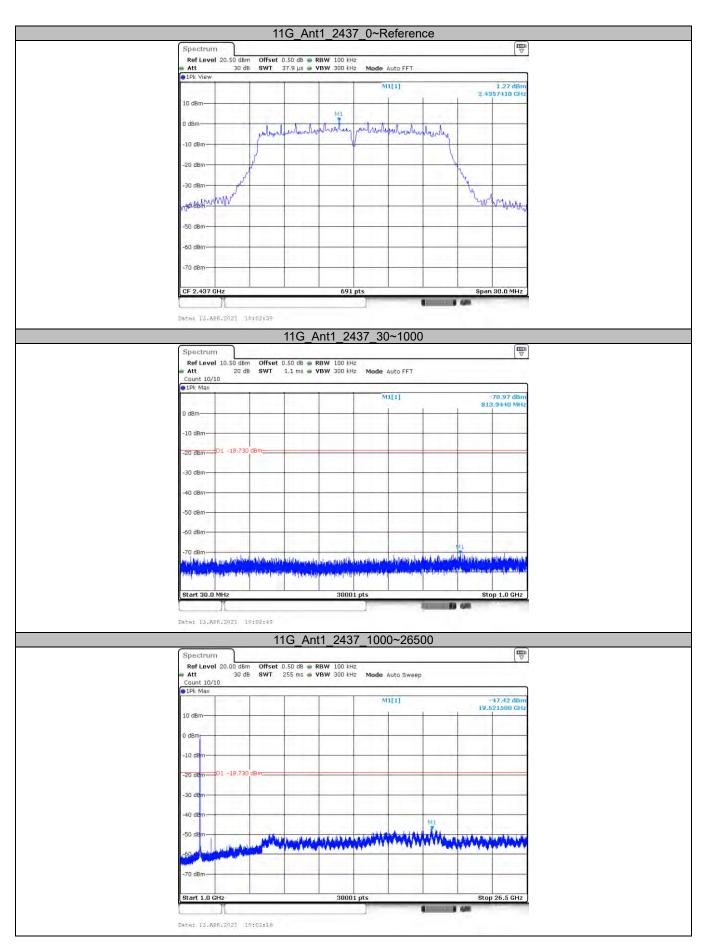


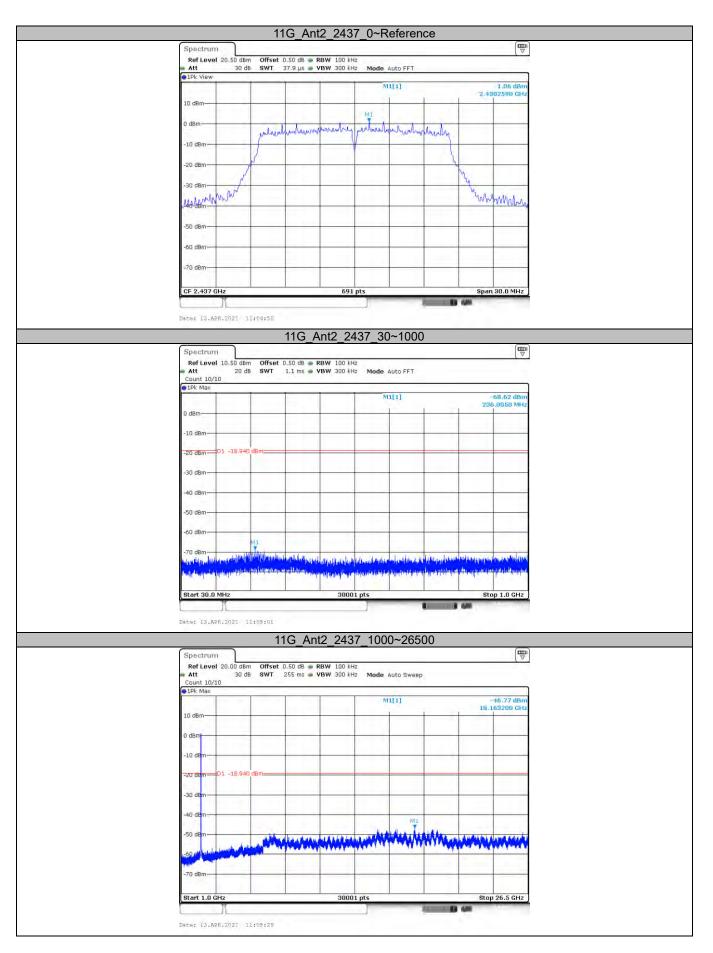


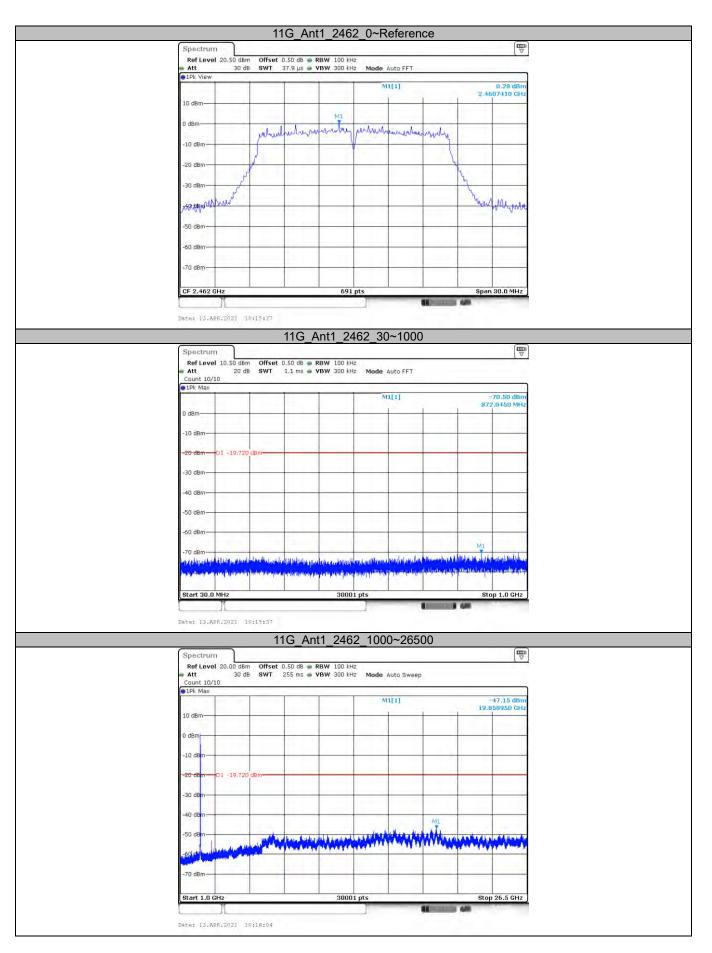
EN

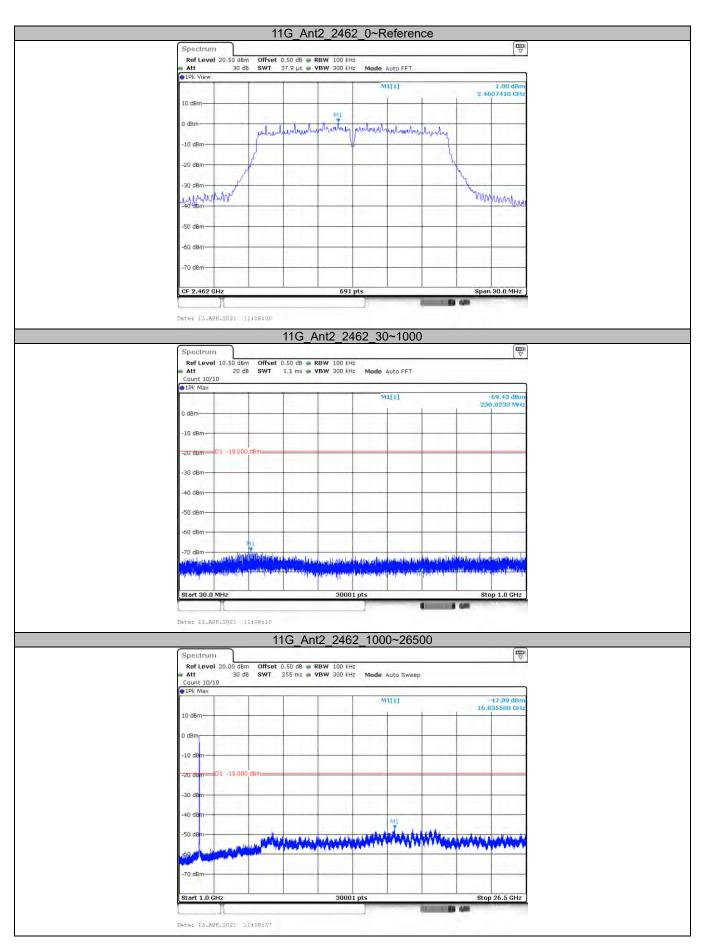


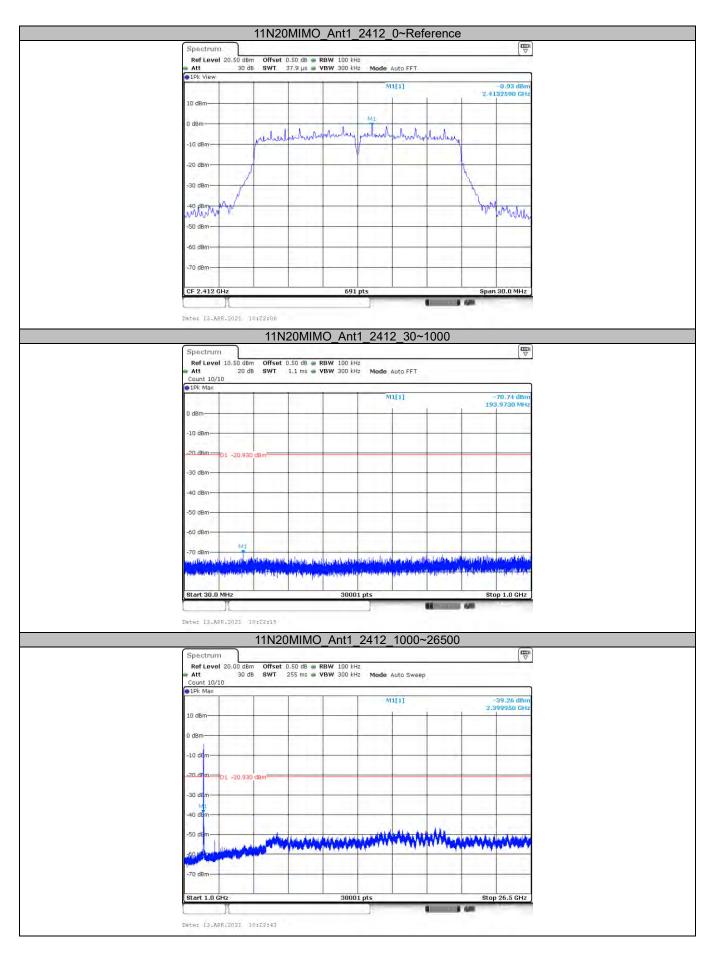


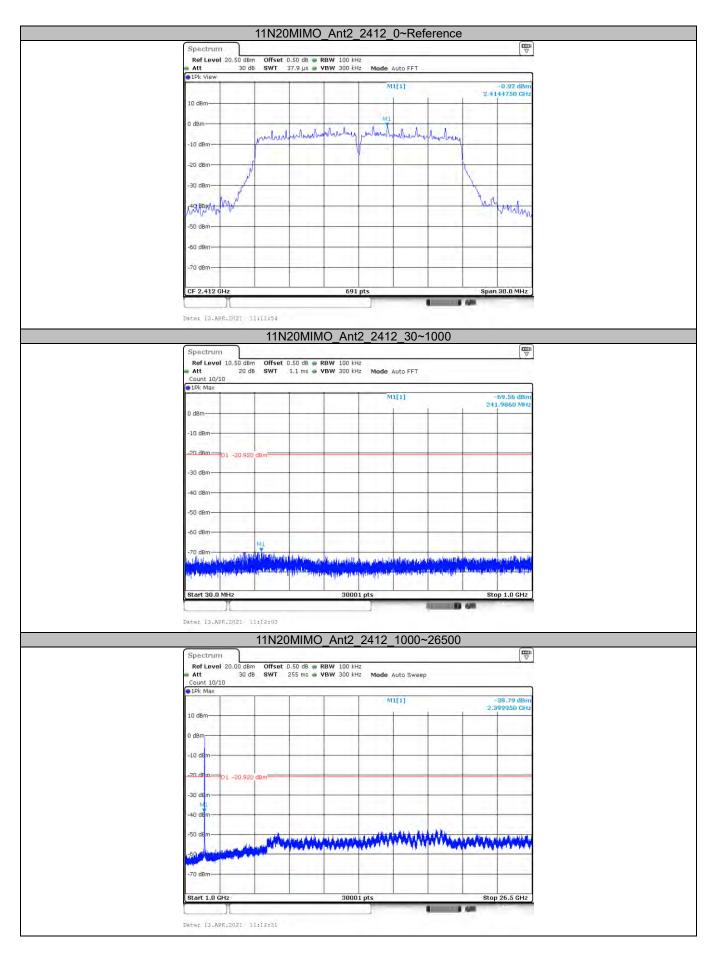


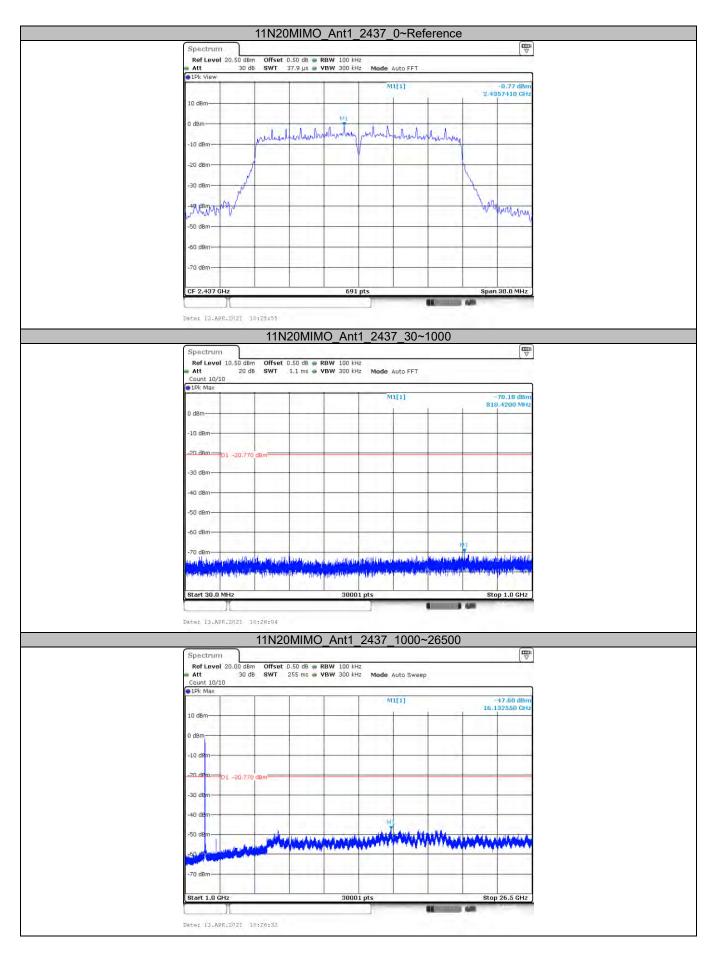




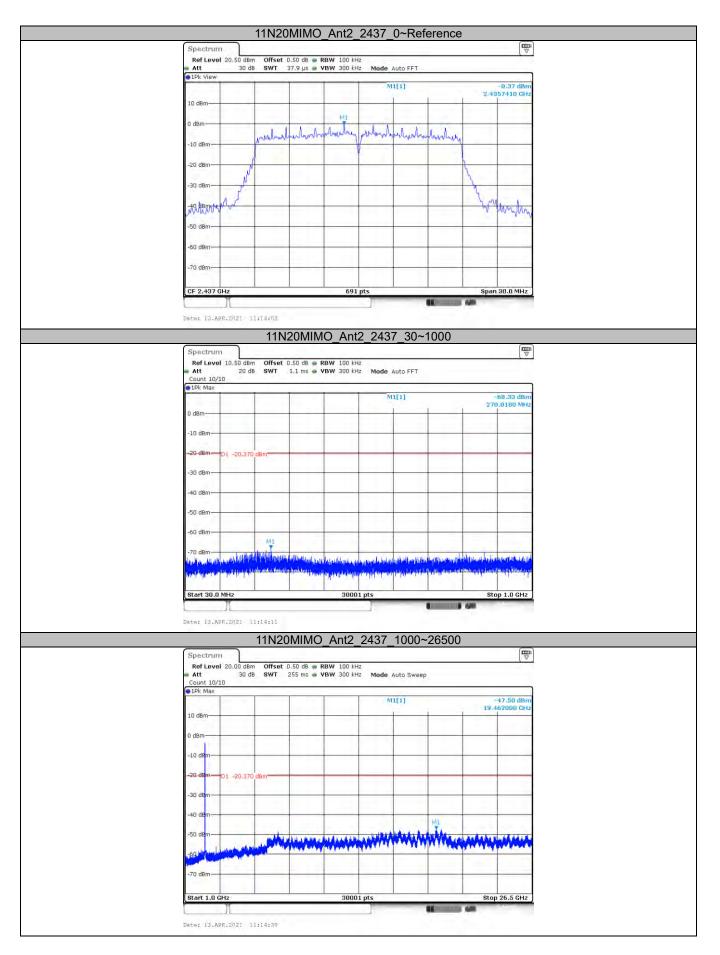


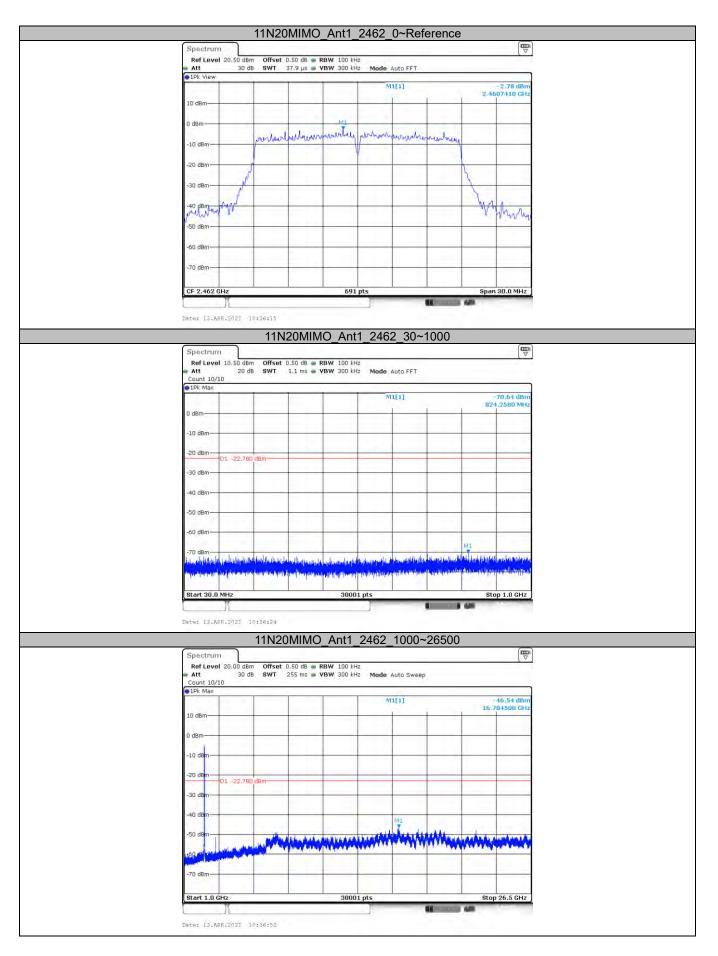


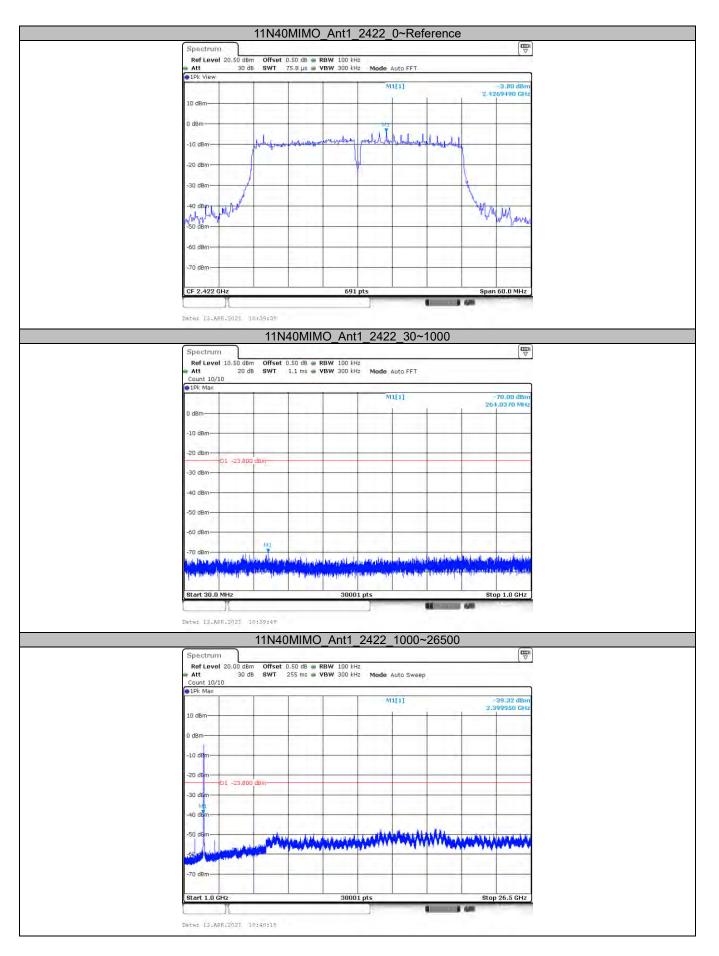


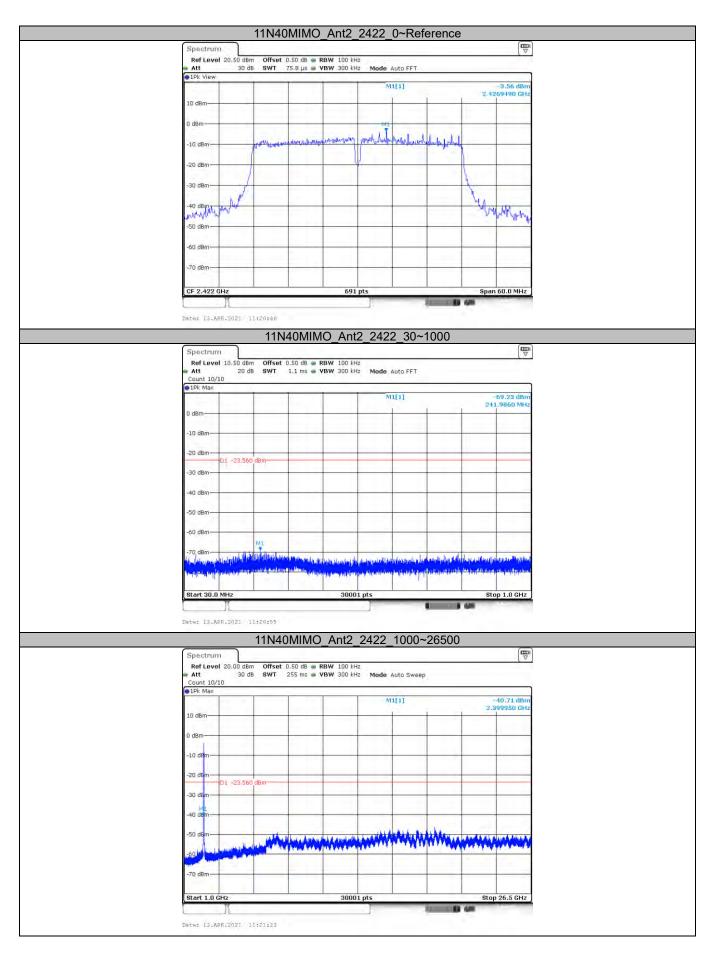


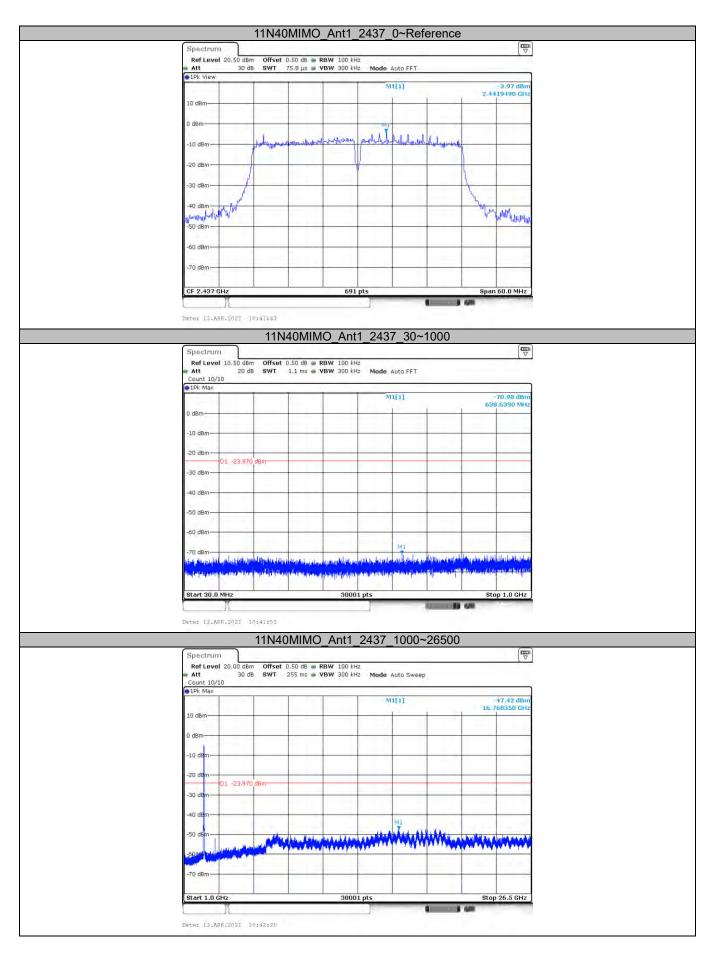
EN

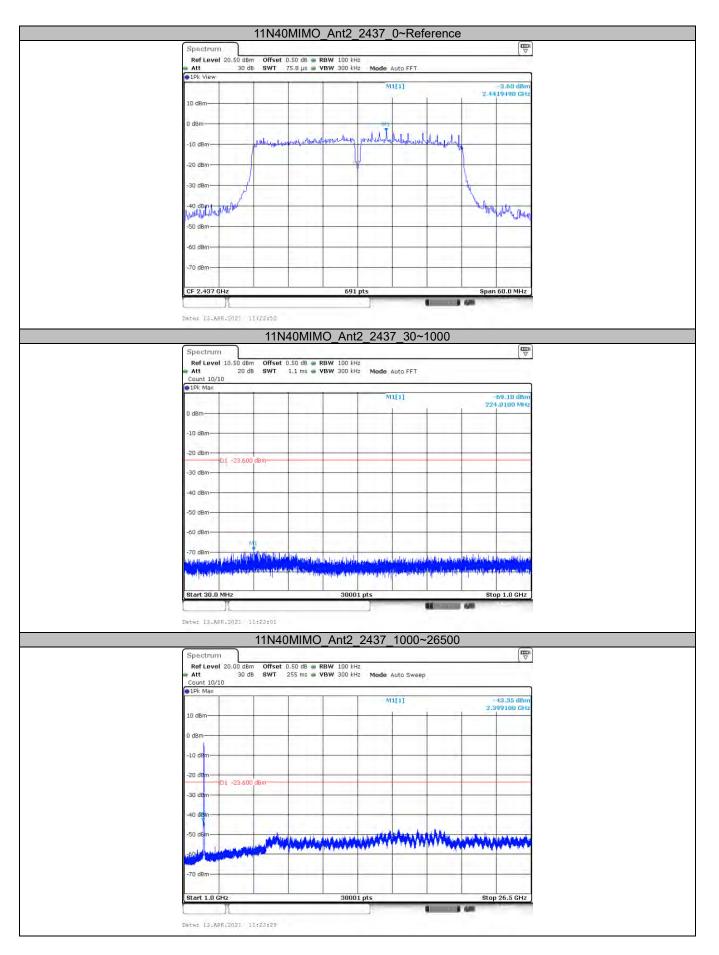


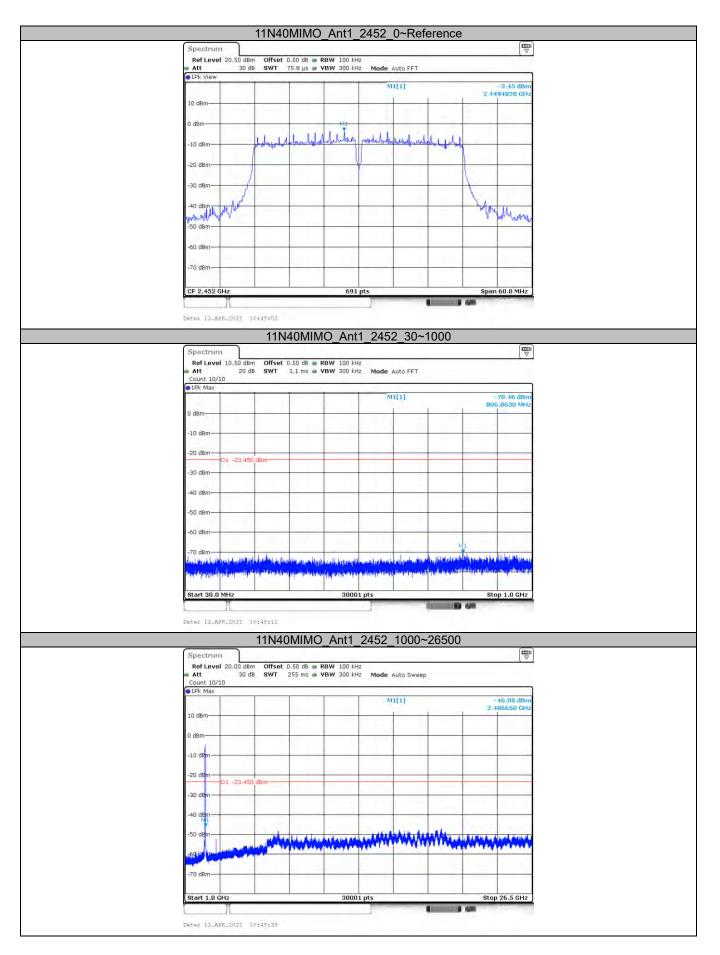




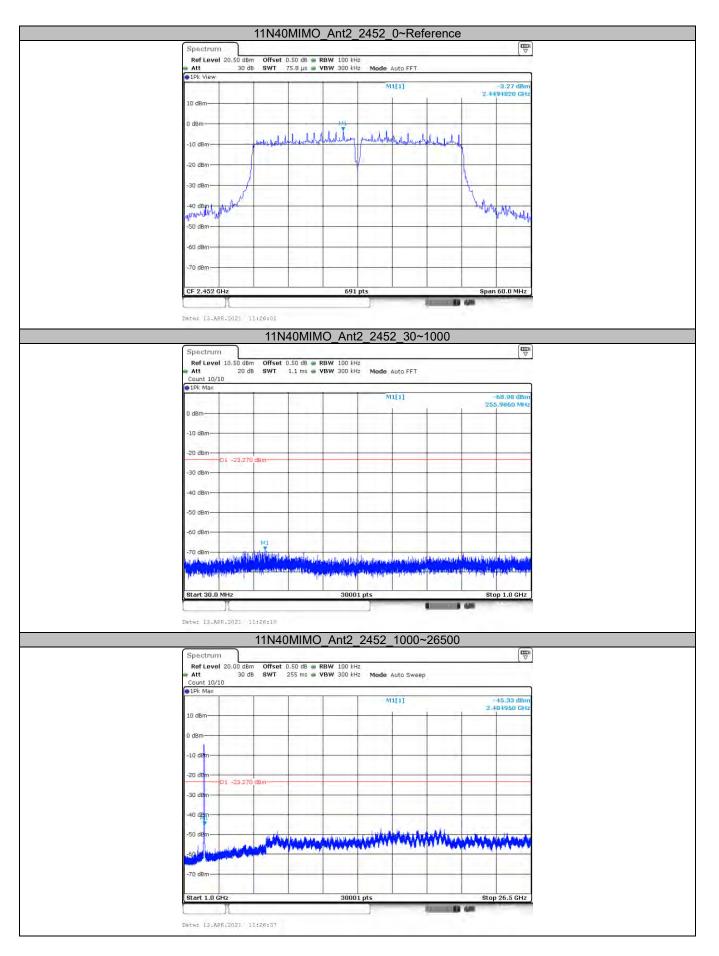


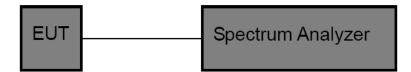






EN




3.5. DTS Bandwidth

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(2)/ RSS-247 5.2 a:

Test Item	Limit	Frequency Range(MHz)
DTS Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5

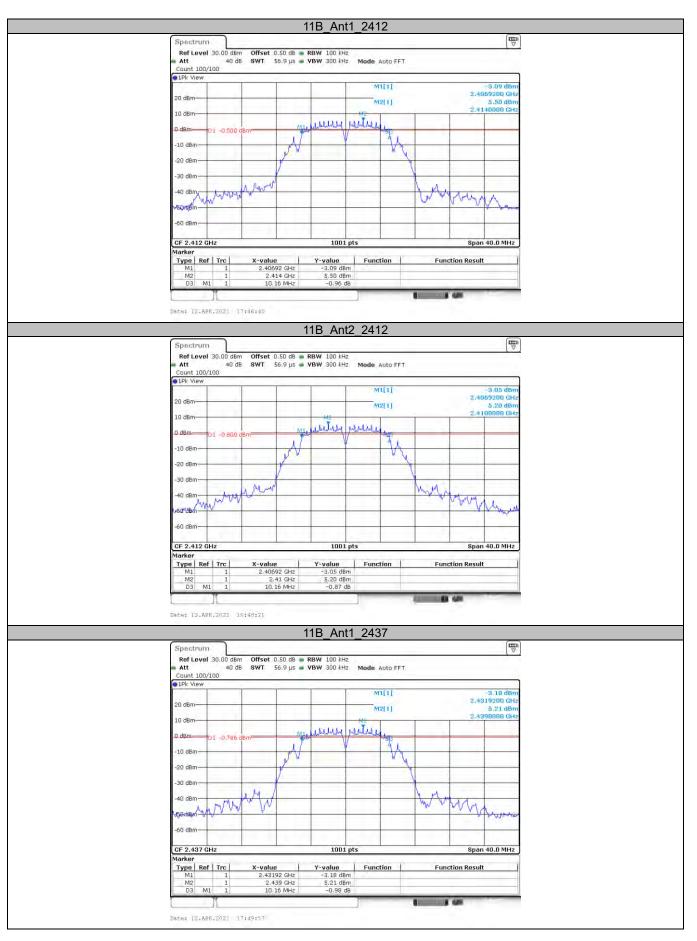
Test Configuration

Test Procedure

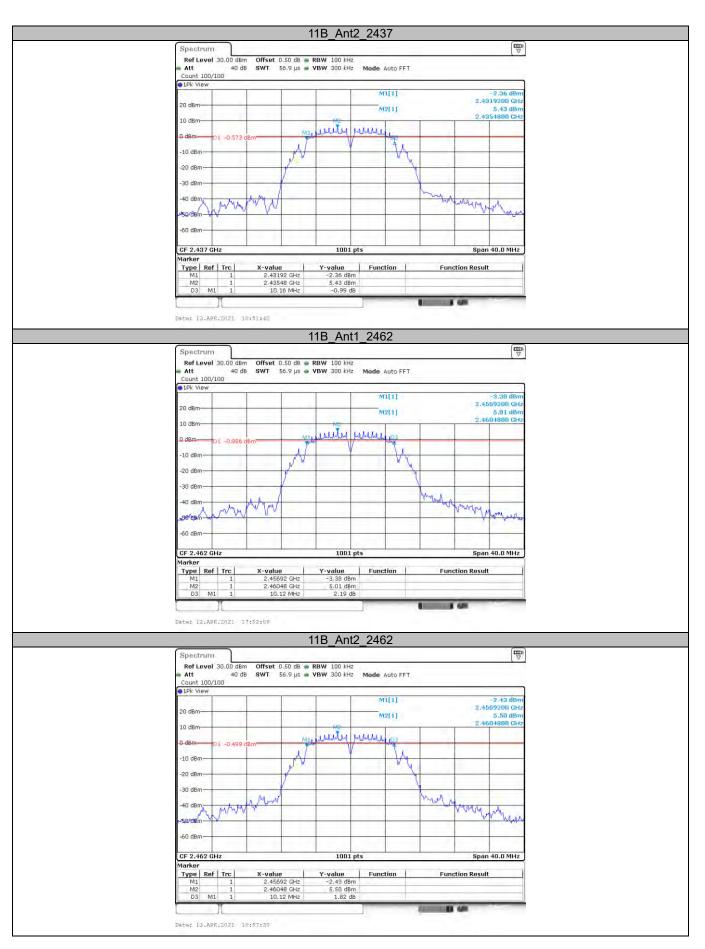
- 5. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 6. DTS Spectrum Setting:
 - (1) Set RBW = 100 kHz.
 - (2) Set the video bandwidth (VBW) \geq 3 RBW.
 - (3) Detector = Peak.
 - (4) Trace mode = Max hold.
 - (5) Sweep = Auto couple.
 - OCB Spectrum Setting:
 - (1) Set RBW = $1\% \sim 5\%$ occupied bandwidth.
 - (2) Set the video bandwidth (VBW) \geq 3 RBW.
 - (3) Detector = Peak.
 - (4) Trace mode = Max hold.
 - (5) Sweep = Auto couple.

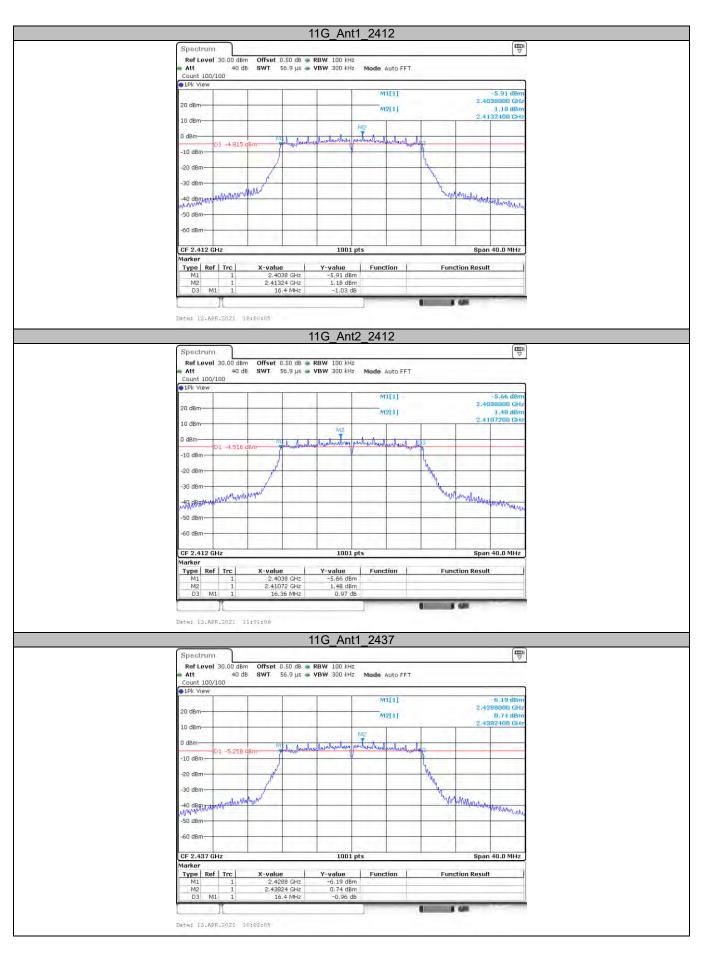
NOTE: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

Test Mode

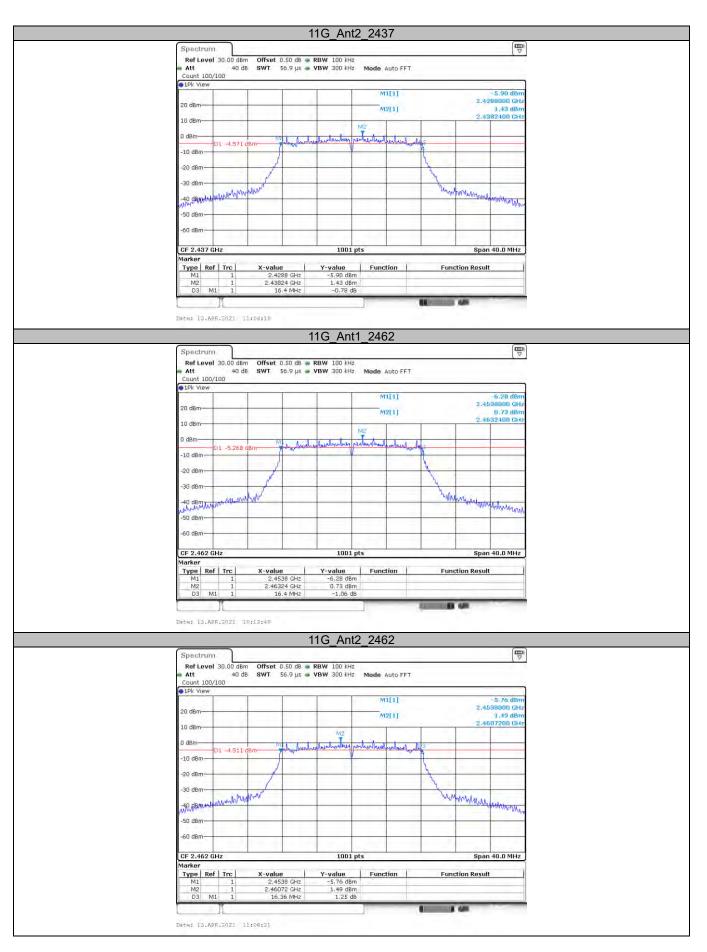

Please refer to the clause 2.4.

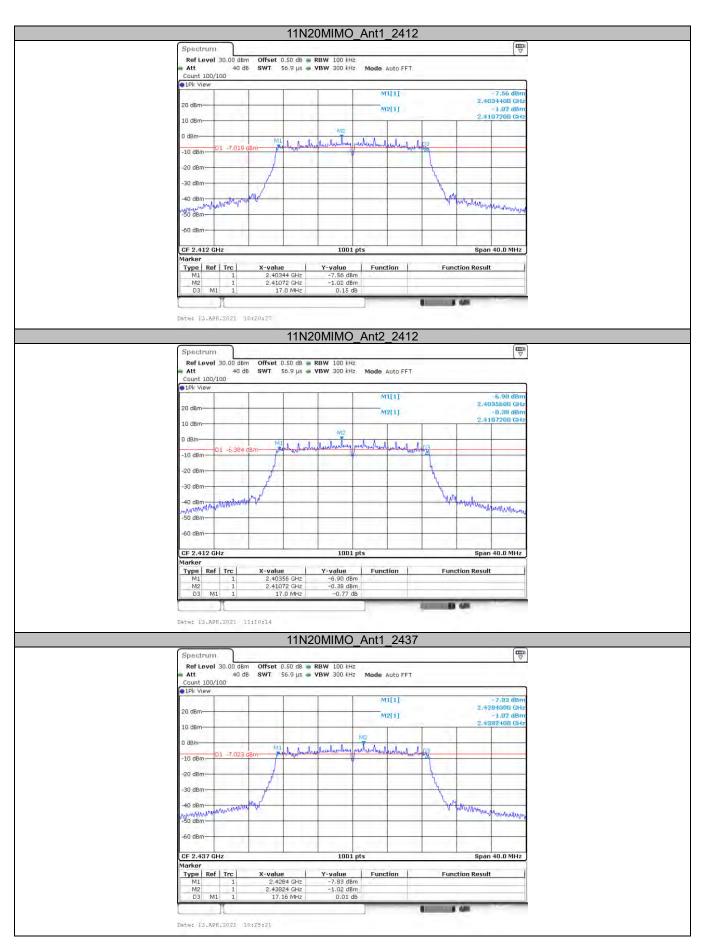
Test Results

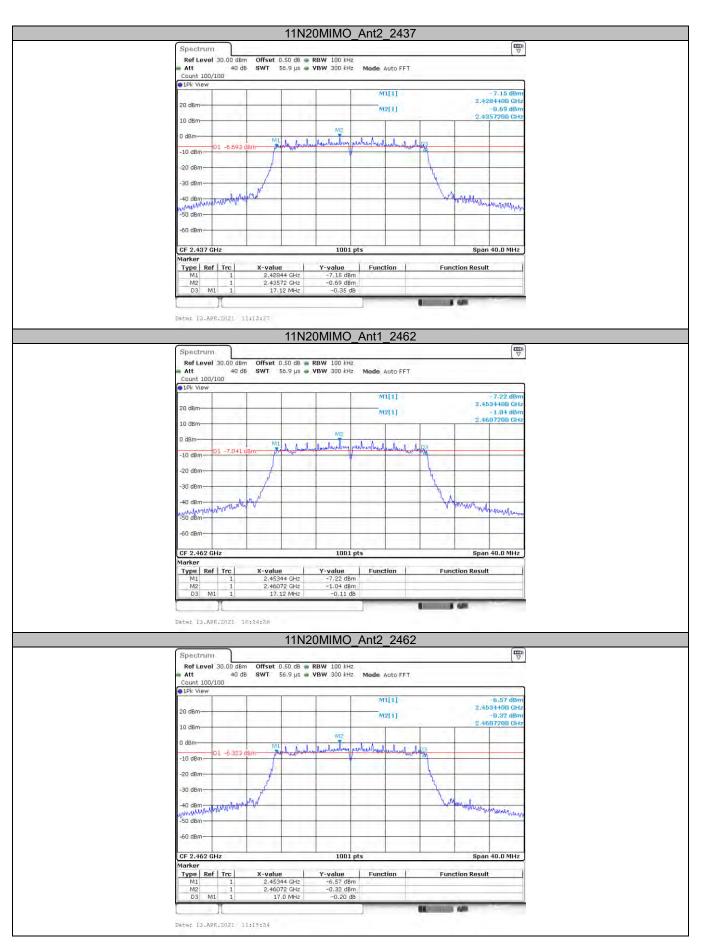

Test Mode	Antenna	Frequency (MHz)	DTS BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
11B	Ant1	2412	10.160	2406.920	2417.080	0.5	PASS
	Ant2	2412	10.160	2406.920	2417.080	0.5	PASS
	Ant1	2437	10.160	2431.920	2442.080	0.5	PASS
	Ant2	2437	10.160	2431.920	2442.080	0.5	PASS
	Ant1	2462	10.120	2456.920	2467.040	0.5	PASS
	Ant2	2462	10.120	2456.920	2467.040	0.5	PASS
	Ant1	2412	16.400	2403.800	2420.200	0.5	PASS
	Ant2	2412	16.360	2403.800	2420.160	0.5	PASS
11G	Ant1	2437	16.400	2428.800	2445.200	0.5	PASS
ПG	Ant2	2437	16.400	2428.800	2445.200	0.5	PASS
	Ant1	2462	16.400	2453.800	2470.200	0.5	PASS
	Ant2	2462	16.360	2453.800	2470.160	0.5	PASS
	Ant1	2412	17.000	2403.440	2420.440	0.5	PASS
	Ant2	2412	17.000	2403.560	2420.560	0.5	PASS
11N20MIMO	Ant1	2437	17.160	2428.400	2445.560	0.5	PASS
	Ant2	2437	17.120	2428.440	2445.560	0.5	PASS
	Ant1	2462	17.120	2453.440	2470.560	0.5	PASS
	Ant2	2462	17.000	2453.440	2470.440	0.5	PASS
11N40MIMO	Ant1	2422	35.360	2404.320	2439.680	0.5	PASS
	Ant2	2422	35.360	2404.320	2439.680	0.5	PASS
	Ant1	2437	35.360	2419.320	2454.680	0.5	PASS
	Ant2	2437	35.360	2419.320	2454.680	0.5	PASS
	Ant1	2452	35.280	2434.320	2469.600	0.5	PASS
	Ant2	2452	35.520	2434.320	2469.840	0.5	PASS

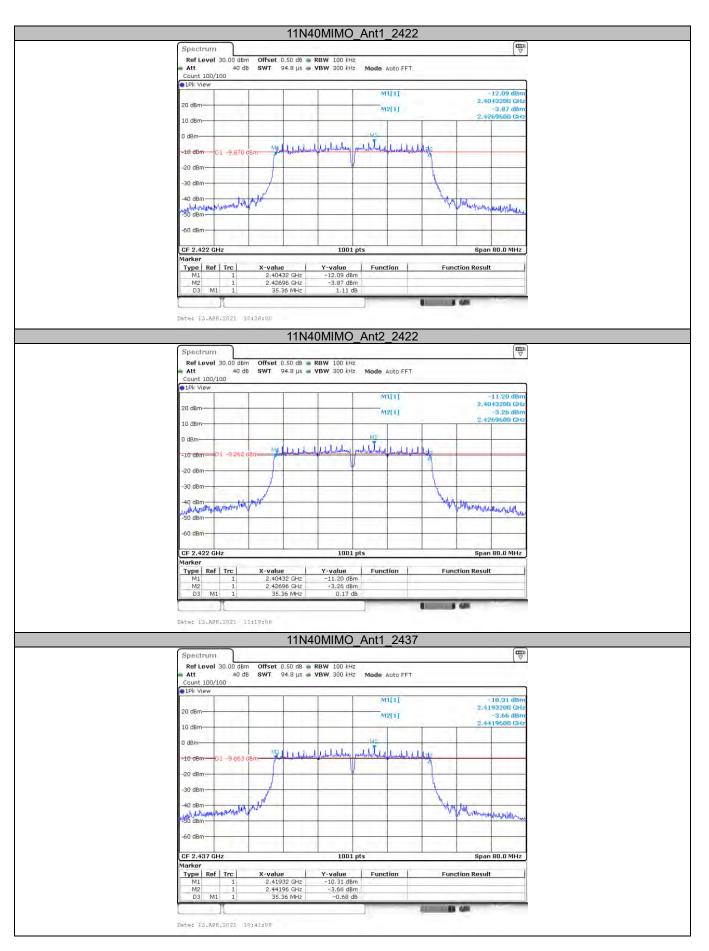


Page 97 of 126

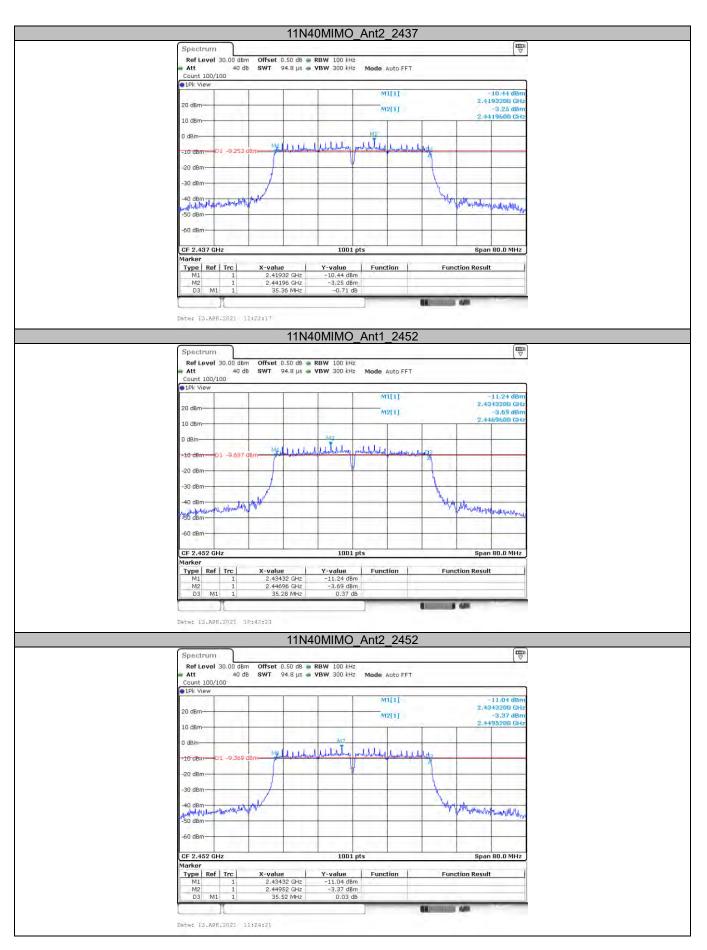

Page 98 of 126


Page 99 of 126


Page 100 of 126



Page 101 of 126


Page 102 of 126

Page 103 of 126

3.6. Peak Output Power

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(3)/ RSS-247 5.4:

Section	Test Item	Limit	Frequency Range(MHz)
CFR 47 FCC 15.247(b)(3)	Maximum conducted output power	1 Watt or 30dBm	2400~2483.5
ISED RSS-247 5.4 d	EIRP	4 Watt or 36dBm	2400~2483.5

Test Configuration

Test Procedure

- 1. The maximum conducted output power may be measured using a broadband Peak RF power meter.
- 2. Peak power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor.
- 3. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter.
- 4. Record the measurement data.

Test Mode

Please refer to the clause 2.4.

Test Result

Test Mode	Antenna	Frequency (MHz)	Result[dBm]	Limit[dBm]	Verdict
11B	Ant1	2412	17.33	<=30	PASS
	Ant2	2412	17.91	<=30	PASS
	Ant1	2437	17.14	<=30	PASS
	Ant2	2437	17.87	<=30	PASS
	Ant1	2462	17.35	<=30	PASS
	Ant2	2462	17.87	<=30	PASS
	Ant1	2412	18.93	<=30	PASS
	Ant2	2412	19.14	<=30	PASS
11G	Ant1	2437	19.01	<=30	PASS
IIG	Ant2	2437	19.18	<=30	PASS
	Ant1	2462	18.57	<=30	PASS
	Ant2	2462	19.18	<=30	PASS
	Ant1	2412	16.67	<=30	PASS
	Ant2	2412	17.26	<=30	PASS
	total	2412	20.00	<=30	PASS
	Ant1	2437	16.81	<=30	PASS
11N20MIMO	Ant2	2437	17.23	<=30	PASS
	total	2437	20.00	<=30	PASS
	Ant1	2462	16.62	<=30	PASS
	Ant2	2462	17.23	<=30	PASS
	total	2462	19.90	<=30	PASS
11N40MIMO	Ant1	2422	16.82	<=30	PASS
	Ant2	2422	17.30	<=30	PASS
	total	2422	20.10	<=30	PASS
	Ant1	2437	16.92	<=30	PASS
	Ant2	2437	17.36	<=30	PASS
	total	2437	20.20	<=30	PASS
	Ant1	2452	17.03	<=30	PASS
	Ant2	2452	17.42	<=30	PASS
	total	2452	20.20	<=30	PASS

Note: Test results increased RF cable loss by 0.5dB.

3.7. Power Spectral Density

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (e)/ RSS-247 5.2 b:

Test Item	Limit	Frequency Range(MHz)	
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5	

Test Configuration

Test Procedure

1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.

2. The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v05r02.

3. Spectrum Setting:

Set analyzer center frequency to DTS channel center frequency.

Set the span to 1.5 times the DTS bandwidth.

Set the RBW to: 3 kHz

Set the VBW to: 10 kHz

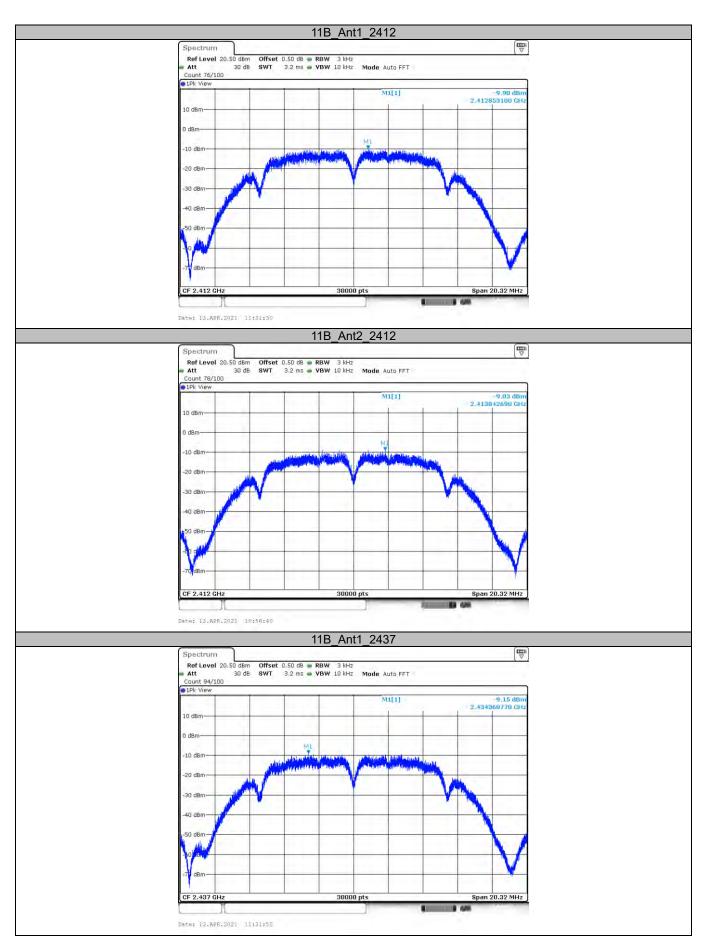
Detector: PK

Sweep time: Auto

Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

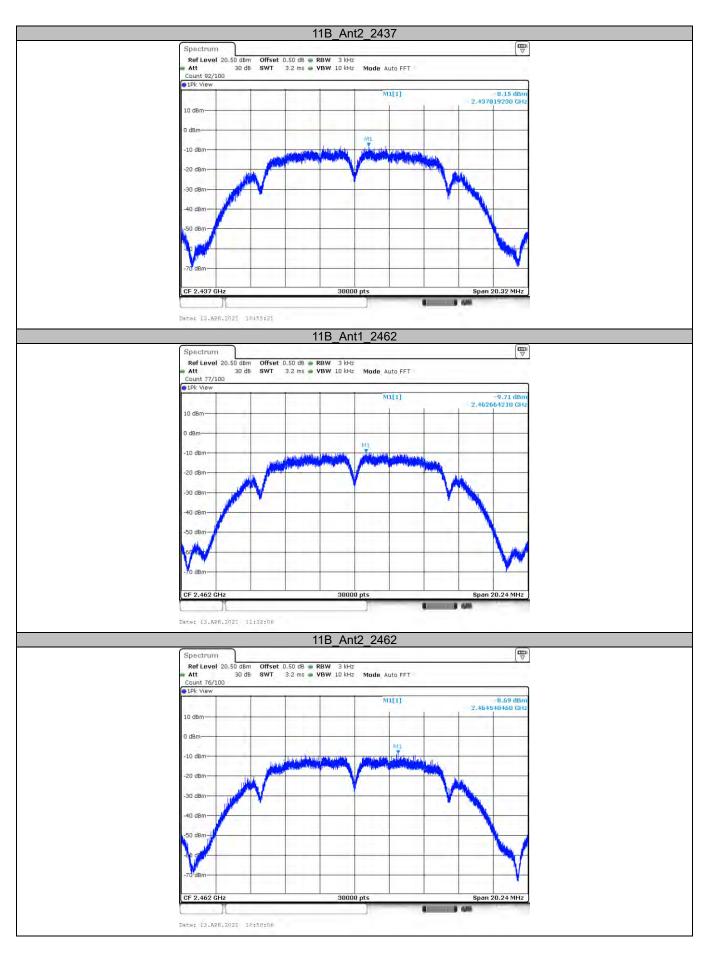
Test Mode

Please refer to the clause 2.4.

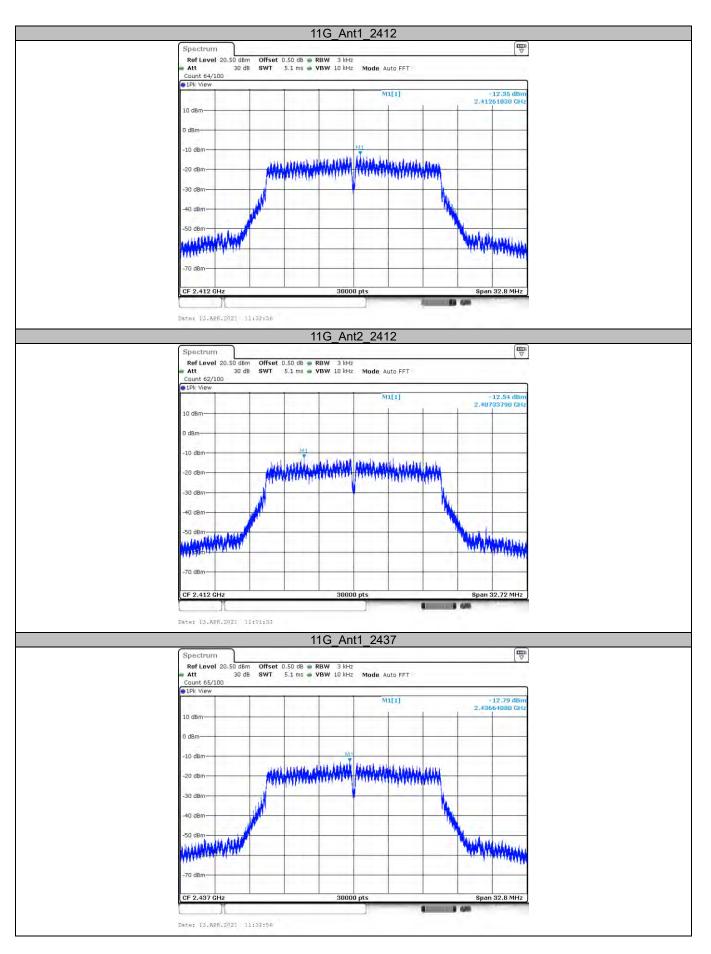


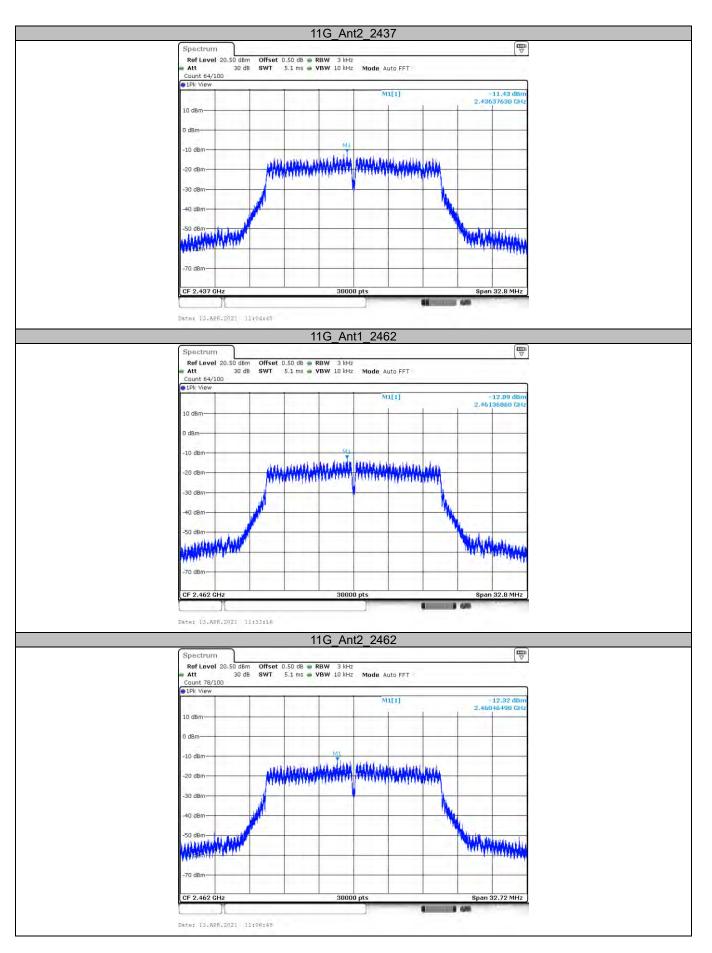
<u>Test Result</u>

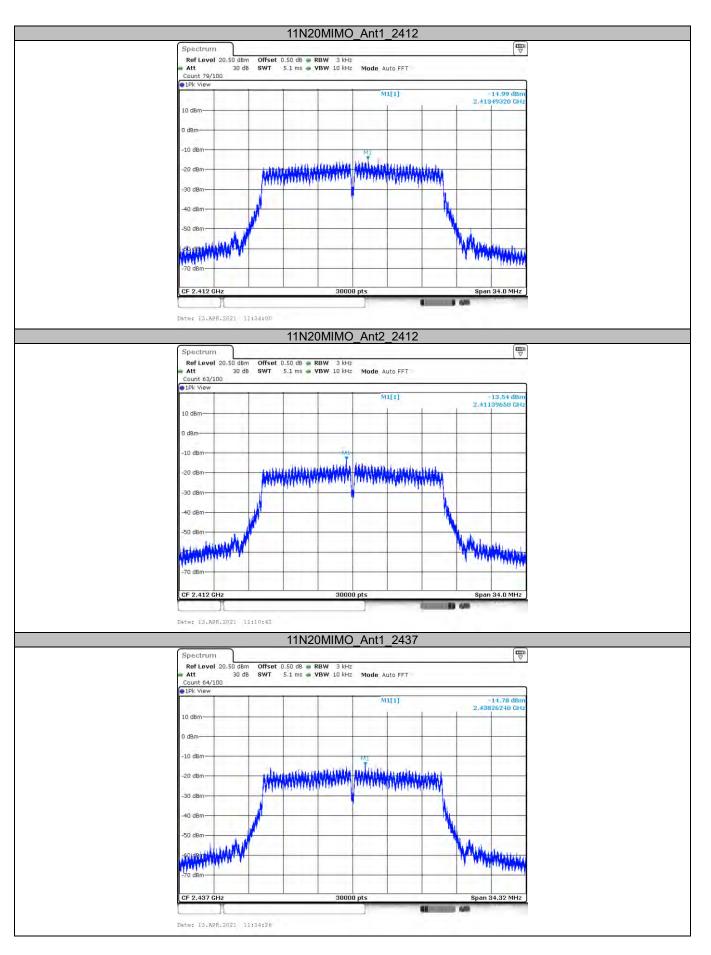
Test Mode	Antenna	Frequency (MHz)	Result[dBm/3-100kHz]	Limit[dBm/3kHz]	Verdict
11B -	Ant1	2412	-9.90	<=8	PASS
	Ant2	2412	-9.03	<=8	PASS
	Ant1	2437	-9.15	<=8	PASS
	Ant2	2437	-8.15	<=8	PASS
	Ant1	2462	-9.71	<=8	PASS
	Ant2	2462	-8.69	<=8	PASS
	Ant1	2412	-12.35	<=8	PASS
	Ant2	2412	-12.54	<=8	PASS
11G	Ant1	2437	-12.79	<=8	PASS
110	Ant2	2437	-11.43	<=8	PASS
	Ant1	2462	-12.89	<=8	PASS
	Ant2	2462	-12.32	<=8	PASS
	Ant1	2412	-14.99	<=8	PASS
	Ant2	2412	-13.54	<=8	PASS
	total	2412	-8.97	<=8	PASS
	Ant1	2437	-14.78	<=8	PASS
11N20MIMO	Ant2	2437	-14.16	<=8	PASS
	total	2437	-8.25	<=8	PASS
	Ant1	2462	-14.92	<=8	PASS
	Ant2	2462	-14.22	<=8	PASS
	total	2462	-8.60	<=8	PASS
	Ant1	2422	-18.11	<=8	PASS
	Ant2	2422	-17.16	<=8	PASS
	total	2422	-11.60	<=8	PASS
11N40MIMO	Ant1	2437	-18.11	<=8	PASS
	Ant2	2437	-18.08	<=8	PASS
	total	2437	-11.49	<=8	PASS
	Ant1	2452	-17.64	<=8	PASS
	Ant2	2452	-18.06	<=8	PASS
	total	2452	-10.58	<=8	PASS



EN

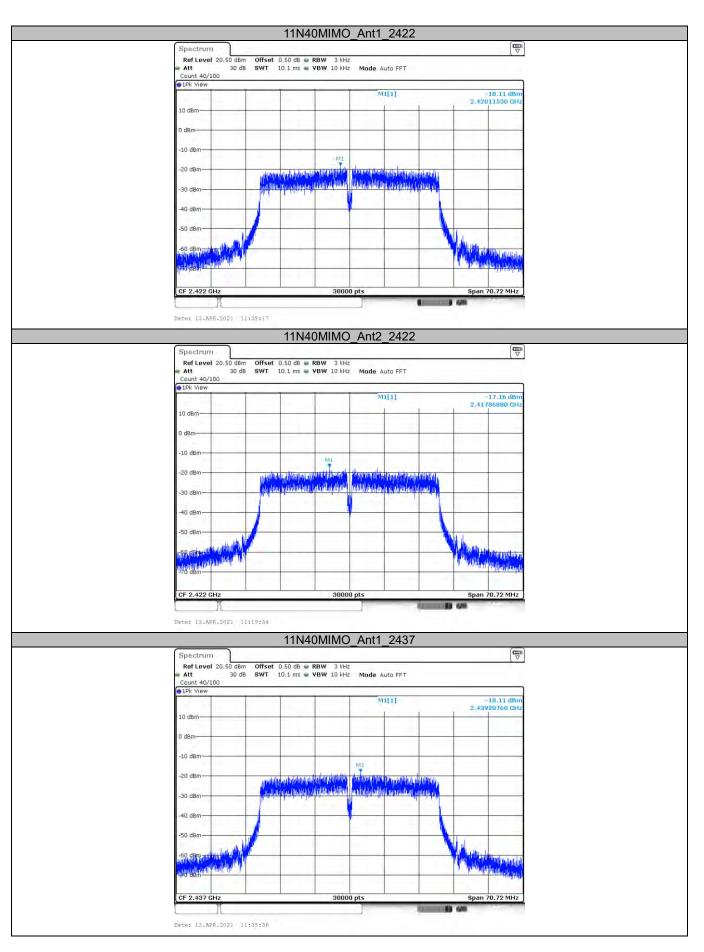



Page 109 of 126

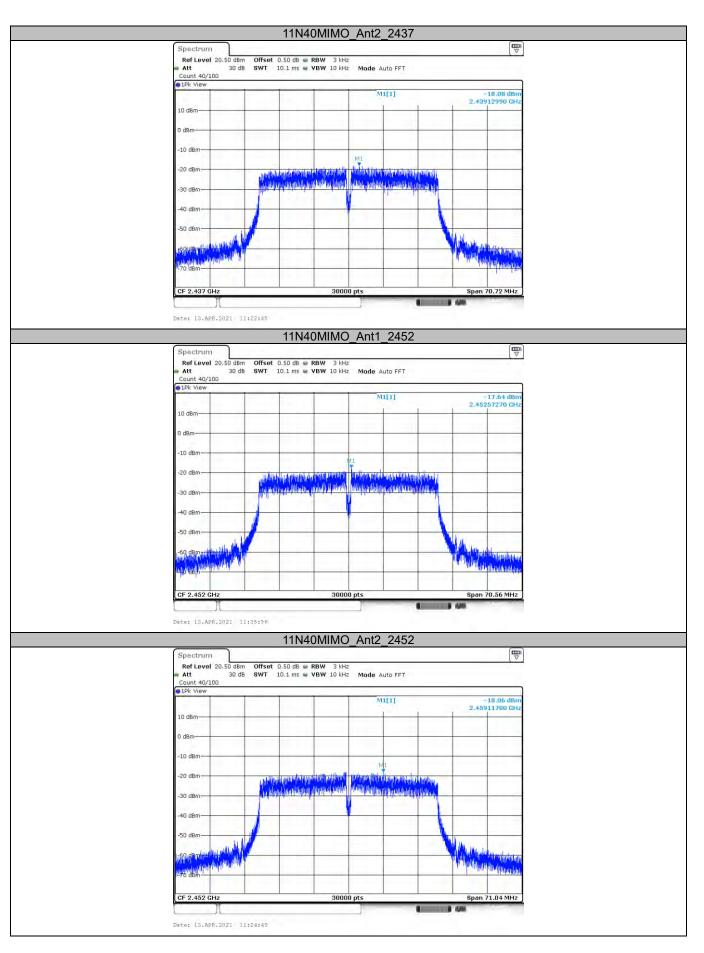




Page 112 of 126



Page 113 of 126



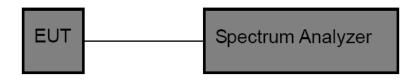
Page 114 of 126

Page 115 of 126

CTC Laboratories, Inc.

EN

Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn



3.8. Duty Cycle

<u>Limit</u>

None, for report purposes only.

Test Configuration

Test Procedure

1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.

2. The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v05r02.

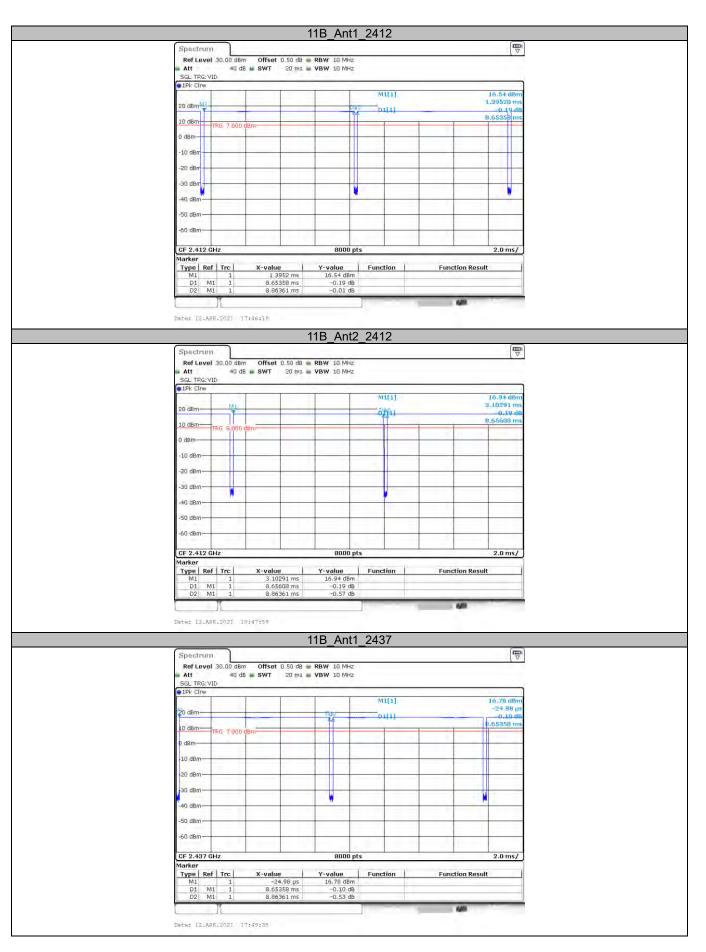
3. Spectrum Setting:

Set analyzer center frequency to DTS channel center frequency. Set the span to 0Hz Set the RBW to 10MHz Set the VBW to 10MHz Detector: peak Sweep time: auto

Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

Test Mode

Please refer to the clause 2.4.



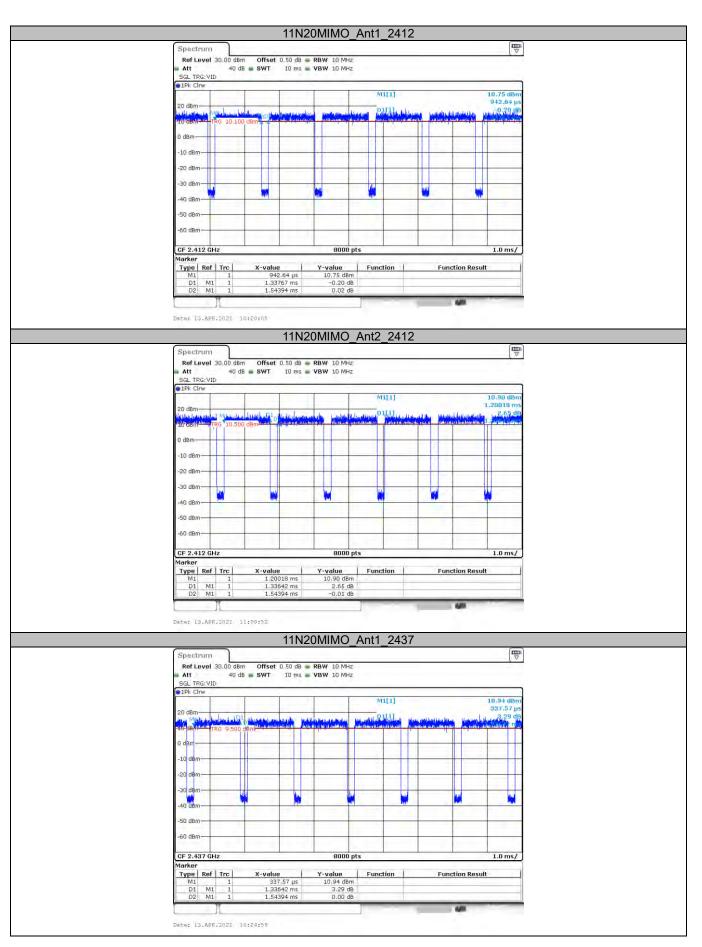
Test Result

Test Mode	Antenna	Frequency (MHz)	Transmission Duration [ms]	Transmission Period [ms]	Duty Cycle [%]	1/T Minimum VBW (kHz)	Final setting For VBW (kHz)
11B	Ant1	2412	8.65	8.86	97.63	0.12	1.00
	Ant2	2412	8.66	8.86	97.66	0.12	1.00
	Ant1	2437	8.65	8.86	97.63	0.12	1.00
	Ant2	2437	8.65	8.86	97.63	0.12	1.00
	Ant1	2462	8.65	8.86	97.63	0.12	1.00
	Ant2	2462	8.65	8.86	97.63	0.12	1.00
11G	Ant1	2412	1.43	1.64	87.39	0.70	1.00
	Ant2	2412	1.43	1.64	87.39	0.70	1.00
	Ant1	2437	1.43	1.64	87.39	0.70	1.00
	Ant2	2437	1.43	1.64	87.39	0.70	1.00
	Ant1	2462	1.43	1.64	87.39	0.70	1.00
	Ant2	2462	1.43	1.64	87.39	0.70	1.00
11N20MIMO	Ant1	2412	1.34	1.54	86.64	0.75	1.00
	Ant2	2412	1.34	1.54	86.56	0.75	1.00
	Ant1	2437	1.34	1.54	86.56	0.75	1.00
	Ant2	2437	1.34	1.54	86.64	0.75	1.00
	Ant1	2462	1.34	1.54	86.56	0.75	1.00
	Ant2	2462	1.34	1.54	86.64	0.75	1.00
11N40MIMO	Ant1	2422	0.66	0.87	76.33	1.52	2.00
	Ant2	2422	0.66	0.87	76.33	1.52	2.00
	Ant1	2437	0.66	0.87	76.33	1.52	2.00
	Ant2	2437	0.66	0.87	76.33	1.52	2.00
	Ant1	2452	0.66	0.87	76.37	1.52	2.00
	Ant2	2452	0.66	0.87	76.33	1.52	2.00

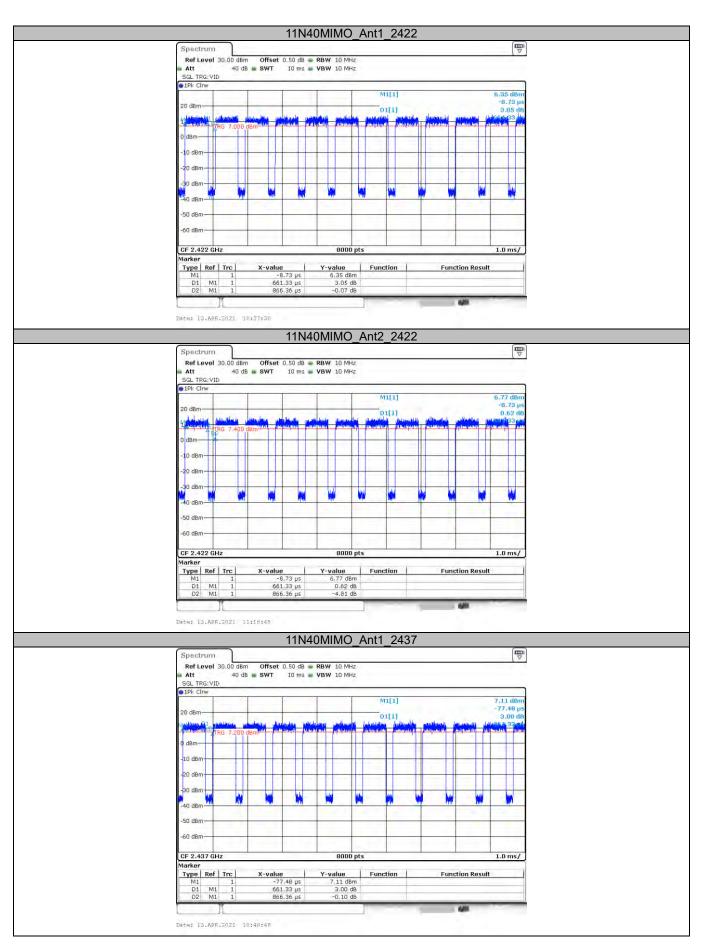
Page 118 of 126

Page 119 of 126

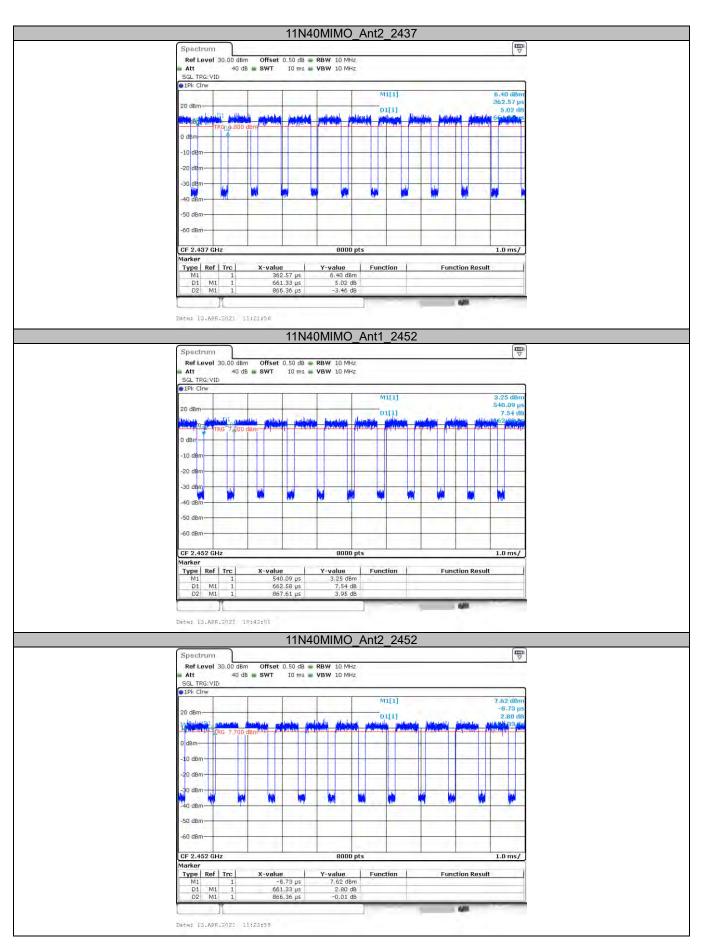
		11B Ant	2 2437						
	Spectrum		2437	(The second seco					
	Spectrum V Ref Level 30,00 dBm Offset 0.50 dB RBW 10 MHz Att 40 dB SWT 20 ms VBW 10 MHz								
	e1Pk Clrw								
	20 d8m	M2	MI[1]	16.73 dBm 5.62073 ms 					
	10 dBm TRG 7 900 dBm			8.65358 ms					
	0 dBm								
	-10 dBm								
	-20 dBm-								
	-30 dBm-								
	-40 dBm								
	-50 dBm								
	-60 dBm-								
	CF 2.437 GHz	8000 1	ots	2.0 ms/					
	Marker Type Ref Trc X-va	lue Y-value	Function Fu	nction Result					
	M1 1 5. D1 M1 1 8.	62073 ms 16,73 dBm 65358 ms -0.03 dB							
		86361 ms -D.45 dB		449					
	Datest 15 and once and an								
	Date: 13.APR.2021 10:51:20		4 0 4 0 5	<u></u>					
		11B_Ant	1_2462	(pre-)					
	Spectrum Ref Level 30.00 dBm Offs	et 0.50 dB 🖷 RBW 10 MHz							
		20 ms - VBW 10 MHz							
	● 1Pk Clrw	T T T	5448-1						
	20 d8m-	MI	Mi[1]	16.58 dBm 5.56072 ms					
	10 dam-		01[1] Dgg 74	-0.18 dB 8.65358 ms					
	0 dBm								
	-10 dBm								
	-20 dBm								
	-30 dBm								
	-40 dBm-	X							
	-50 dBm-								
	-60 dBm								
	CF 2.462 GHz Marker	8000 1	10.000	2.0 ms/					
		56072 ms 16,58 dBm		nction Result					
	mi 1 5.5007z ms 10.66 dem D1 M1 1 6.65388 ms -0.10 db D2 M1 1 8.66361 ms -0.53 db								
	L N		-	440					
	Date: 12.APR.2021 17:51:47								
		11B_Ant	2 2462						
	Spectrum			EE ▽					
	Ref Level 30,00 dBm Offs Att 40 dB SWT	et 0.50 dB - RBW 10 MHz 20 ms - VBW 10 MHz							
	SGL TRG: VID								
			M1[1]	16.87 dBm 7.59597 ms					
	20 d8m	M1	Di[1]	7.59597 ms -0.19 dB 14 8.65350 ms					
	10 dBm TRG 7 900 dBm			0,00308 ms					
	0 dBm								
	-10 dBm								
	-20 dBm								
	-30 dBm								
	-40 dBm-								
	-50 dBm								
	-60 dBm								
	CF 2.462 GHz	8000 1	ots	2.0 ms/					
	Marker Type Ref Trc X-va			nction Result					
	M1 1 7. D1 M1 1 8.	59597 ms 16.87 dBm 65358 ms -D.18 dB	0						
		86361 ms -D.53 dB		449					
	Datest 12 son more an error								
	Date: 13.APR.2021 10:57:17								


Page 121 of 126

Page 122 of 126



Page 123 of 126



Page 124 of 126

Page 125 of 126

3.9. Antenna Requirement

<u>Requirement</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

<u>Test Result</u>

Complies

Directional gain = G_{ANT} = 5dBi

Note: All transmit signals are completely uncorrelated with each other in MIMO transmitting modes (Manufacturer's Declaration).