

RADIO TEST REPORT

S

S

A

Report No: STS2007111W01

Issued for

LYNQ Technologies, Inc.

19 Morris Avenue Building 128, Brooklyn, NY, 11205, USA

Product Name:	Lynq Network Stack Module	
Brand Name:	Lynq	
Model Name:	LNQNSM01	
Series Model:	LNQNSM	
FCC ID:	2ARHMLNQNSM01	
IC:	24896-LYNQNSM01	
Test Standard:	FCC Part 15.247 RSS-247 Issue 2, February 2017 RSS-Gen Issue 5, March 2019	

Any reproduction of this document must be done in full. No single part of this document may be reproduced withou permission from STS, All Test Data Presented in this report is only applicable to presented Test sample.

APPROVAL

Shenzhen STS Test Services Co., Ltd. A 1/F, Building B, Zhuoke Science Park, No.190 Chongqing Road, HepingShequ, Fuyong Sub-District, Bao'an District, Shenzhen, Guang Dong, China TEL: +86-755 3688 6288 FAX: +86-755 3688 6277 E-mail:sts@stsapp.com

TEST RESULT CERTIFICATION

Applicant's Name	LYNQ Technologies, Inc.
Address	19 Morris Avenue Building 128, Brooklyn, NY, 11205, USA
Manufacturer's Name:	Season Group
Address	Unit 3, 5/F Sun Fung Industrial Building, 8 Ma Kok Street, Tsuen Wan, New Territories, Hong Kong
Product Description	
Product Name:	Lynq Network Stack Module
Brand Name	Lynq
Model Name:	LNQNSM01
Series Model	LNQNSM
Test Standards	FCC Part15.247 RSS-247 Issue 2, February 2017 RSS-Gen Issue 5, March 2019
Test Procedure	ANSI C63.10-2013

This device described above has been tested by STS, the test results show that the equipment under test (EUT) is in compliance with the FCC/IC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of STS, this document may be altered or revised by STS, personal only, and shall be noted in the revision of the document.

Date of Test.....

Date of receipt of test item......: 31 July 2020

Date (s) of performance of tests .: 31 July 2020 ~ 26 Aug. 2020

Date of Issue 26 Aug. 2020

Test Result Pass

Testing Engineer

is cher

(Chris Chen)

Technical Manager

(Sean she)

APPROVAL

Authorized Signatory :

(Vita Li)

Shenzhen STS Test Services Co., Ltd.

Page 3 of 53 Report No.: STS2007111W01

Table of Contents	Page
1. SUMMARY OF TEST RESULTS	6
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2. GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF THE EUT	8
2.2 DESCRIPTION OF THE TEST MODES	10
2.3 TEST SOFTWARE AND POWER LEVEL	10
2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	11
2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS	12
2.6 EQUIPMENTS LIST	13
3. EMC EMISSION TEST	14
3.1 CONDUCTED EMISSION MEASUREMENT	14
3.2 RADIATED EMISSION MEASUREMENT	18
4. CONDUCTED SPURIOUS & BAND EDGE EMISSION	29
4.1 LIMIT	29
4.2 TEST PROCEDURE	29
4.3 TEST SETUP	29
4.4 EUT OPERATION CONDITIONS	29
4.5 TEST RESULTS	30
5. NUMBER OF HOPPING CHANNEL	36
5.1 LIMIT	36
5.2 TEST PROCEDURE	36
5.3 TEST SETUP	36
5.4 EUT OPERATION CONDITIONS	36
5.5 TEST RESULTS	37
6. AVERAGE TIME OF OCCUPANCY	38
6.1 LIMIT	38
6.2 TEST PROCEDURE	38
6.3 TEST SETUP	38
6.4 EUT OPERATION CONDITIONS	38
6.5 TEST RESULTS	39
7. HOPPING CHANNEL SEPARATION MEASUREMEN	43
7.1 LIMIT	43

Page 4 of 53 Report No.: STS2007111W01

Table of Contents	Page
7.2 TEST PROCEDURE	43
7.3 TEST SETUP	43
7.4 EUT OPERATION CONDITIONS	43
7.5 TEST RESULTS	44
8. BANDWIDTH TEST	46
8.1 LIMIT	46
8.2 TEST PROCEDURE	46
8.3 TEST SETUP	46
8.4 EUT OPERATION CONDITIONS	46
8.5 TEST RESULTS	47
9. OUTPUT POWER TEST	49
9.1 LIMIT	49
9.2 TEST PROCEDURE	49
9.3 TEST SETUP	49
9.4 EUT OPERATION CONDITIONS	49
9.5 TEST RESULTS	50
10. ANTENNA REQUIREMENT	51
10.1 STANDARD REQUIREMENT	51
10.2 EUT ANTENNA	51
11. FREQUENCY STABILITY	52
11.1 LIMITS OF FREQUENCY STABILITY MEASUREMENT	52
11.2 TEST PROCEDURE	52
11.3 TEST RESULT	52

Page 5 of 53 Report No.: STS2007111W01

Revision History

Rev.	Issue Date	Report NO.	Effect Page	Contents
00	26 Aug. 2020	STS2007111W01	ALL	Initial Issue

Shenzhen STS Test Services Co., Ltd.

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02.

FCC Part 15.247,Subpart C RSS-247 Issue 2				
Standard Section	Test Item	Judgment	Remark	
15.207 RSS-Gen (8.8)	Conducted Emission	PASS		
15.247(a)(1) RSS-247 (5.1)	Hopping Channel Separation	PASS		
15.247(b)(2) RSS-247 (5.1)	Output Power	PASS		
15.209 RSS-247 (5.5)	Radiated Spurious Emission	PASS		
15.247(d) RSS-247 (5.5)	Conducted Spurious & Band Edge Emission	PASS		
15.247(a)(1)(i) RSS-247 (5.1)	Number of Hopping Frequency	PASS		
15.247(f) RSS-247 (5.1)	Dwell Time	PASS		
15.247(a)(1) RSS-247 (5.1) RSS-Gen (6.7)	20dB Bandwidth 99% Bandwidth	PASS		
15.205 RSS-Gen (8.9&8.10)	Restricted bands of operation	PASS		
Part 15.247(d)/part 15.209(a) RSS-247 (5.5)	Band Edge Emission	PASS		
15.203 RSS-Gen (6.8)	Antenna Requirement	PASS		
RSS-Gen (6.11&8.11)	Frequency Stability	PASS		

NOTE:

(1) 'N/A' denotes test is not applicable in this Test Report.

(2) All tests are according to ANSI C63.10-2013.

1.1 TEST FACTORY

SHENZHEN STS TEST SERVICES CO., LTD Add. : A 1/F, Building B, Zhuoke Science Park, No.190 Chongqing Road, HepingShequ, Fuyong Sub-District, Bao'an District, Shenzhen, Guang Dong, China FCC test Firm Registration Number: 625569 IC test Firm Registration Number: 12108A A2LA Certificate No.: 4338.01

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of **k=2**, providing a level of confidence of approximately **95** %.

No.	Item	Uncertainty
1	RF output power, conducted	±0.68dB
2	Unwanted Emissions, conducted	±2.988dB
3	All emissions, radiated 30-1GHz	±6.7dB
4	All emissions, radiated 1G-6GHz	±5.5dB
5	All emissions, radiated>6G	±5.8dB
6	Conducted Emission (9KHz-150KHz)	±4.43dB
7	Conducted Emission (150KHz-30MHz)	±5dB

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name	Lynq Network Stack Module
Trade Name	Lynq
Model Name	LNQNSM01
Series Model	LNQNSM
Model Difference	Only difference in model name.
Channel List	Please refer to the Note 2.
Frequency	902.475-927.525 MHz(125KHz)
Modulation Type	LoRa
Power Rating	DC 3.6V
Hardware version number	r6
Software version number	r6
Connecting I/O Port(s)	Please refer to the Note 1.

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User Manual.

2.

Channel List					
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	902.475	/	/	/	/
2	902.625	75	915.075	/	/
3	902.775	76	915.225	/	/
/	/	77	915.375	/	/
/	/	/	/	147	927.225
/	/	/	/	148	927.375
/	/	/	/	149	927.525

3. Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
1	Lynq	LNQNSM01	PCB	N/A	0	Antenna

Shenzhen STS Test Services Co., Ltd.

2.2 DESCRIPTION OF THE TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Worst Mode	Description	Modulation
Mode 1	TX CH01	LoRa
Mode 2	TX CH75	LoRa
Mode 3	TX CH149	LoRa

Note:

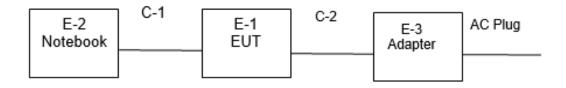
(1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported.

(2) We have be tested for all avaiable U.S. voltage and frequencies(For 120V,50/60Hz and 240V, 50/60Hz) for which the device is capable of operation, and the worst case of 120V/ 60Hz is shown in the report.

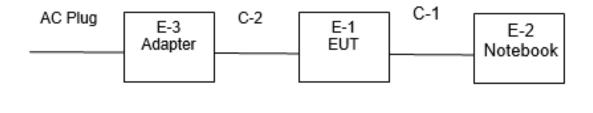
For AC Conducted Emission

Test Case		
AC Conducted Emission	Mode 4 : Keeping EUT TX	

2.3 TEST SOFTWARE AND POWER LEVEL


During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level.

RF Function	Туре	Mode Or Modulation type	Ant Gain(dBi)	Power Class	Software For Testing
LORA	125KHz	902MHz-928MHz	0	30	fcc-fixed



2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiated Spurious Emission Test

Conducted Emission Test

Shenzhen STS Test Services Co., Ltd.

Page 12 of 53 Report No.: STS2007111W01

2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Length	Note
E-3	Adapter	LITEON	PA-1650-86	N/A	N/A
C-2	DC Cable	N/A	N/A	110cm	N/A

Necessary accessories

Support units

Item	Equipment	Mfr/Brand	Model/Type No.	Length	Note
E-2	Notebook	Lenovo	ThinkPad E470	N/A	N/A
C-1	USB Cable	N/A	N/A	120cm	N/A

Note:

(1) For detachable type I/O cable should be specified the length in cm in ^CLength^L column.

2.6 EQUIPMENTS LIST

Radiation Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
Test Receiver	R&S	ESCI	101427	2019.10.09	2020.10.08
Signal Analyzer	Agilent	N9020A	MY51110105	2020.03.05	2021.03.04
Active loop Antenna	ZHINAN	ZN30900C	16035	2018.03.11	2021.03.10
Bilog Antenna	TESEQ	CBL6111D	34678	2017.11.02	2020.11.01
Horn Antenna	SCHWARZBECK	BBHA 9120D(1201)	9120D-1343	2018.10.19	2021.10.18
SHF-EHF Horn Antenna (18G-40GHz)	A-INFO	LB-180400-KF	J211020657	2018.03.11	2021.03.10
Pre-Amplifier(0.1M-3G Hz)	EM	EM330	060665	2019.10.09	2020.10.08
Pre-Amplifier (1G-18GHz)	SKET	LNPA-01018G-45	SK201808090 1	2019.10.12	2020.10.11
Pre-Amplifier (18G-40GHz)	SKET	LNPA-1840-50	SK201810180 1	2019.10.12	2020.10.11
Temperature & Humidity	HH660	Mieo	N/A	2019.10.17	2020.10.16
turn table	EM	SC100_1	60531	N/A	N/A
Antenna mast	EM	SC100	N/A	N/A	N/A
Band Reject filter (902-928MHz)	XINCBOKEJI	XBLBQ-DZA05	902-928MHz	N/A	N/A
Test SW	FARAD	E	Z-EMC(Ver.STS	LAB-03A1 RE)	

Conduction Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
Test Receiver	R&S	ESCI	101427	2019.10.09	2020.10.08
LISN	R&S	ENV216	101242	2019.10.09	2020.10.08
LISN	EMCO	3810/2NM	23625	2019.10.09	2020.10.08
Temperature & Humidity	HH660	Mieo	N/A	2019.10.17	2020.10.16
Test SW	FARAD	EZ-EMC(Ver.STSLAB-03A1 CE)			

RF Connected Test

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
USB RF power sensor	DARE	RPR3006W	15100041SNO03	2019.10.09	2020.10.08
Signal Analyzer	Agilent	N9020A	MY49100060	2019.10.09	2020.10.08
Temperature & Humidity	HH660	Mieo	N/A	2019.10.17	2020.10.16
Test SW	FARAD	LZ-RF /LzRf-3A3			

П

Shenzhen STS Test Services Co., Ltd.

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

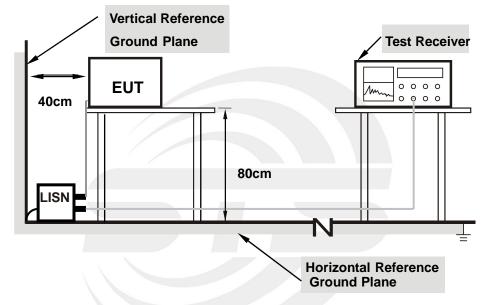
3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

Operating frequency band. In case the emission fall within the restricted band specified on art 207(a)&RSS-Gen limit in the table below has to be followed.

FREQUENCY (MHz)	Conducted Emissionlimit (dBuV)		
FREQUENCT (MIDZ)	Quasi-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of "*" marked band means the limitation decreases linearly with the logarithm of the frequency in the range.


The following table is the setting of the receiver

Receiver Parameters	Setting		
Attenuation	10 dB		
Start Frequency	0.15 MHz		
Stop Frequency	30 MHz		
IF Bandwidth	9 kHz		

3.1.2 TEST PROCEDURE

- a. The EUT was 0.8 meters from the horizontal ground plane and 0.4 meters from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.1.3 TEST SETUP

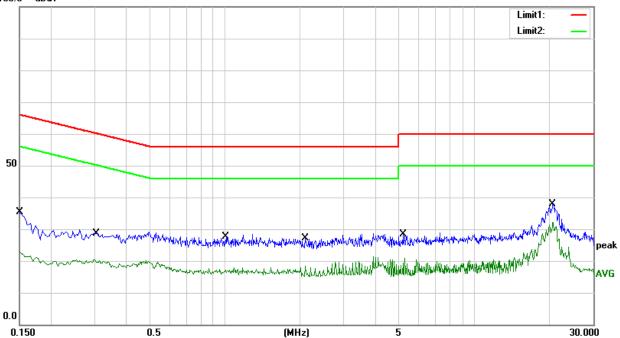
Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm

from other units and other metal planes

3.1.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

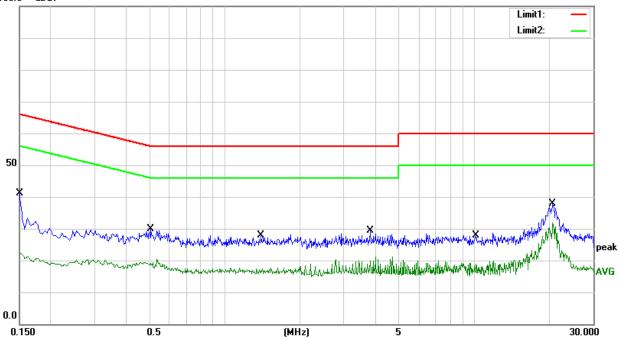

3.1.5 TEST RESULT

Temperature:	27.4(C)	Relative Humidity:	66%RH
Test Voltage:	AC 120V/60Hz	Phase:	L
Test Mode:	Mode 4		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1500	15.20	20.23	35.43	66.00	-30.57	QP
2	0.1500	2.70	20.23	22.93	56.00	-33.07	AVG
3	0.3060	8.00	20.71	28.71	60.08	-31.37	QP
4	0.3060	-0.26	20.71	20.45	50.08	-29.63	AVG
5	1.0140	7.57	20.16	27.73	56.00	-28.27	QP
6	1.0140	-2.40	20.16	17.76	46.00	-28.24	AVG
7	2.1100	7.16	20.05	27.21	56.00	-28.79	QP
8	2.1100	-1.58	20.05	18.47	46.00	-27.53	AVG
9	5.1780	8.37	19.94	28.31	60.00	-31.69	QP
10	5.1780	0.96	19.94	20.90	50.00	-29.10	AVG
11	20.6100	17.20	20.62	37.82	60.00	-22.18	QP
12	20.6100	11.60	20.62	32.22	50.00	-17.78	AVG

Remark:

- 1. All readings are Quasi-Peak and Average values.
- 2. Margin = Result (Result = Reading + Factor)-Limit
- 3. Factor=LISN factor+Cable loss+Limiter (10dB)
- 100.0 dBu¥


Page 17 of 53 Report No.: STS2007111W01

Temperature:	27.4(C)	Relative Humidity:	66%RH
Test Voltage:	AC 120V/60Hz	Phase:	Ν
Test Mode:	Mode 4		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1500	20.90	20.23	41.13	66.00	-24.87	QP
2	0.1500	2.01	20.23	22.24	56.00	-33.76	AVG
3	0.5060	9.30	20.47	29.77	56.00	-26.23	QP
4	0.5060	-1.18	20.47	19.29	46.00	-26.71	AVG
5	1.4020	7.76	20.12	27.88	56.00	-28.12	QP
6	1.4020	-2.69	20.12	17.43	46.00	-28.57	AVG
7	3.8340	9.37	19.96	29.33	56.00	-26.67	QP
8	3.8340	-0.01	19.96	19.95	46.00	-26.05	AVG
9	10.1580	7.75	20.13	27.88	60.00	-32.12	QP
10	10.1580	-1.31	20.13	18.82	50.00	-31.18	AVG
11	20.6100	17.15	20.62	37.77	60.00	-22.23	QP
12	20.6100	11.27	20.62	31.89	50.00	-18.11	AVG

Remark:

- All readings are Quasi-Peak and Average values.
 Margin = Result (Result =Reading + Factor)–Limit
- 3. Factor=LISN factor+Cable loss+Limiter (10dB)
- 100.0 dBuV

A 1/F, Building B, Zh ad, HepingShequ, Fuyong Sub-District, Bao'an District, Shenzhen, Gu Tel: +86-755 3688 6288 www.stsapp.com E-mail: sts@stsapp.com

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a), RSS-Gen Issue 5 and RSS-247 Issue 2, February 2017 (5.5) limit in the table and according to ANSI C63.10-2013 below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (0.009MHz - 1000MHz)

Frequencies	Field Strength	Measurement Distance	
(MHz)	(micorvolts/meter) (meters)		
0.009~0.490	2400/F(KHz)	300	
0.490~1.705	24000/F(KHz)	30	
1.705~30.0	30	30	
30~88	100	3	
88~216	150	3	
216~960	200	3	
Above 960	500	3	

LIMITS OF RADIATED EMISSION MEASUREMENT (1GHz-25 GHz)

FREQUENCY (MHz)	(dBuV/m) (at 3M)		
	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

LIMITS OF RESTRICTED FREQUENCY BANDS

FCC:

00.			
FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (GHz)
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			
13.30-13.41			

Shenzhen STS Test Services Co., Ltd.

Page 19 of 53 Report No.: STS2007111W01

IC:

FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (GHz)
0.090 - 0.110	149.9 - 150.05	9.0 - 9.2
0.495 - 0.505	156.52475 - 156.52525	9.3 - 9.5
2.1735 - 2.1905	156.7 - 156.9	10.6 - 12.7
3.020 - 3.026	162.0125 - 167.17	13.25 - 13.4
4.125 - 4.128	167.72 - 173.2	14.47 - 14.5
4.17725 - 4.17775	240 – 285	15.35 - 16.2
4.20725 - 4.20775	322 - 335.4	17.7 - 21.4
5.677 - 5.683	399.9 - 410	22.01 - 23.12
6.215 - 6.218	608 - 614	23.6 - 24.0
6.26775 - 6.26825	960 - 1427	31.2 - 31.8
6.31175 - 6.31225	1435 - 1626.5	36.43 - 36.5
8.291 - 8.294	1645.5 - 1646.5	Above 38.6
8.362 - 8.366	1660 - 1710	
8.37625 - 8.38675	1718.8 - 1722.2	
8.41425 - 8.41475	2200 - 2300	
12.29 - 12.293	2310 - 2390	
12.51975 - 12.52025	2483.5 - 2500	
12.57675 - 12.57725	2655 - 2900	
13.36 - 13.41	3260 – 3267	
16.42 - 16.423	3332 - 3339	
16.69475 - 16.69525	3345.8 - 3358	
16.80425 - 16.80475	3500 - 4400	
25.5 - 25.67	4500 - 5150	
37.5 - 38.25	5350 - 5460	
73 - 74.6	7250 - 7750	
74.8 - 75.2	8025 – 8500	
108 – 138		

For Radiated Emission

Spectrum Parameter	Setting		
Attenuation	Auto		
Detector	Peak/QP/AV		
Start Frequency	9 KHz/150KHz(Peak/QP/AV)		
Stop Frequency	150KHz/30MHz(Peak/QP/AV)		
	200Hz (From 9kHz to 0.15MHz)/		
RB / VB (emission in restricted	9KHz (From 0.15MHz to 30MHz);		
band)	200Hz (From 9kHz to 0.15MHz)/		
	9KHz (From 0.15MHz to 30MHz)		

Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak/QP
Start Frequency	30 MHz(Peak/QP)
Stop Frequency	1000 MHz (Peak/QP)
RB / VB (emission in restricted band)	120 KHz / 300 KHz

Spectrum Parameter	Setting	
Attenuation	Auto	
Detector	Peak/AV	
Start Frequency	1000 MHz(Peak/AV)	
Stop Frequency	10th carrier hamonic(Peak/AV)	
RB / VB (emission in restricted	1 MHz / 3 MHz(Peak)	
band)	1 MHz/ 3 MHz(AVG)	

For Band Edge

Note: The EUT main frequency is too far away from the restricted band, so the band edge of the radiation method is not tested.

Π

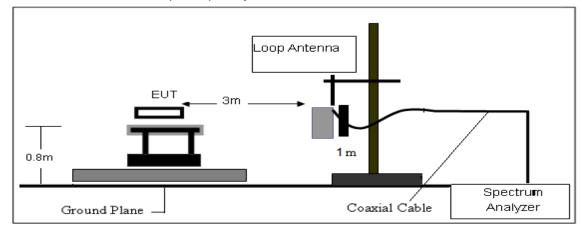
Page 21 of 53 Report No.: STS2007111W01

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

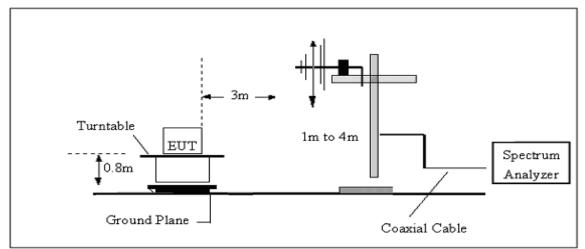
3.2.2 TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz,and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 meters (above 1GHz is 1.5 m) above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m(above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then QuasiPeak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

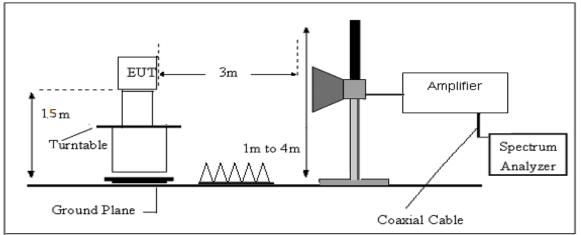
Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.


3.2.3 DEVIATION FROM TEST STANDARD

No deviation.



3.2.4 TESTSETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

3.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

3.2.6 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG Where FS = Field Strength CL = Cable Attenuation Factor (Cable Loss) RA = Reading Amplitude AG = Amplifier Gain AF = Antenna Factor

For example

FS AF RA CL AG Frequency Factor (MHz) (dBµV/m) (dBµV/m) (dB) (dB) (dB) (dB) 300 40 58.1 12.2 1.6 31.9 -18.1

Factor=AF+CL-AG

Shenzhen STS Test Services Co., Ltd.

3.2.7 TEST RESULTS

(9KHz-30MHz)

Temperature:	23.3(C)	Relative Humidity:	60%RH
Test Voltage:	DC 3.6V	Test Mode:	TX Mode

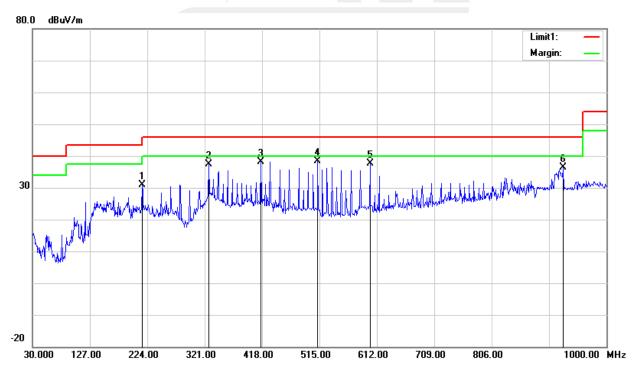
Freq.	Reading	Limit	Margin	State		
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F	Test Result	
					PASS	
					PASS	

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits (dBuv) + distance extrapolation factor.

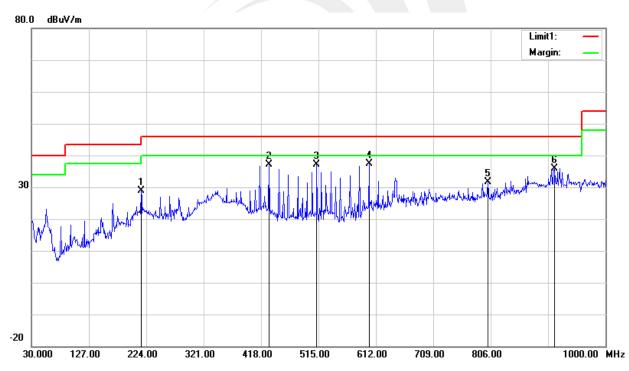

(30MHz-1000MHz)

Temperature:	23.3(C)	Relative Humidity:	60%RH
Test Voltage:	DC 3.6V	Phase:	Horizontal
Test Mode:	Mode 1/2/3(Mode 3 worst case)		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	215.2700	50.93	-20.17	30.76	43.50	-12.74	QP
2	327.7900	51.26	-13.77	37.49	46.00	-8.51	QP
3	416.0600	48.50	-10.28	38.22	46.00	-7.78	QP
4	512.0900	46.39	-7.92	38.47	46.00	-7.53	QP
5	600.3600	43.48	-5.84	37.64	46.00	-8.36	QP
6	927.2500	35.95	0.39	36.34	46.00	-9.66	QP

Remark:

- 1. Margin = Result (Result = Reading + Factor)-Limit
- 2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain



Temperature:	23.3(C)	Relative Humidity:	60%RH				
Test Voltage:	DC 3.6V	Phase:	Vertical				
Test Mode:	Mode 1/2/3(Mode 3 worst cas	Mode 1/2/3(Mode 3 worst case)					

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	215.2700	49.02	-20.17	28.85	43.50	-14.65	QP
2	431.5800	47.16	-10.13	37.03	46.00	-8.97	QP
3	512.0900	44.99	-7.92	37.07	46.00	-8.93	QP
4	600.3600	43.13	-5.84	37.29	46.00	-8.71	QP
5	801.1500	33.56	-2.04	31.52	46.00	-14.48	QP
6	913.6700	36.03	-0.13	35.90	46.00	-10.10	QP

Remark:

- 1. Margin = Result (Result = Reading + Factor)-Limit
- 2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain

Page 27 of 53 Report No.: STS2007111W01

(1GHz~25GHz) Spurious emission Requirements

(TOTIZ	Meter		ernission	Antenna	Orrected	Emission				
Frequency	Reading	Amplifier	Loss	Factor	Factor	Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	-
	Low Channel (902.475 MHz)									
1226.62	62.01	44.70	6.70	28.20	-9.80	52.21	74.00	-21.79	PK	Vertical
1226.62	51.53	44.70	6.70	28.20	-9.80	41.73	54.00	-12.27	AV	Vertical
1226.59	61.31	44.70	6.70	28.20	-9.80	51.51	74.00	-22.49	PK	Horizontal
1226.59	51.31	44.70	6.70	28.20	-9.80	41.51	54.00	-12.49	AV	Horizontal
1805.16	58.26	44.20	9.04	31.60	-3.56	54.70	74.00	-19.30	PK	Vertical
1805.16	50.40	44.20	9.04	31.60	-3.56	46.84	54.00	-7.16	AV	Vertical
1805.16	58.69	44.20	9.04	31.60	-3.56	55.13	74.00	-18.87	PK	Horizontal
1805.16	49.38	44.20	9.04	31.60	-3.56	45.82	54.00	-8.18	AV	Horizontal
2013.81	48.86	44.20	9.86	32.00	-2.34	46.52	74.00	-27.48	PK	Vertical
2013.81	39.04	44.20	9.86	32.00	-2.34	36.70	54.00	-17.30	AV	Vertical
2013.77	48.47	44.20	9.86	32.00	-2.34	46.13	74.00	-27.87	PK	Horizontal
2013.77	38.57	44.20	9.86	32.00	-2.34	36.23	54.00	-17.77	AV	Horizontal
2707.38	54.03	43.50	11.40	35.50	3.40	57.43	74.00	-16.57	PK	Vertical
2707.38	44.15	43.50	11.40	35.50	3.40	47.55	54.00	-6.45	AV	Vertical
2707.39	54.48	43.50	11.40	35.50	3.40	57.88	74.00	-16.12	PK	Horizontal
2707.39	44.19	43.50	11.40	35.50	3.40	47.59	54.00	-6.41	AV	Horizontal
				Middle Cl	hannel (915.0)75 MHz)				
1223.89	62.17	44.70	6.70	28.20	-9.80	52.37	74.00	-21.63	PK	Vertical
1223.89	51.50	44.70	6.70	28.20	-9.80	41.70	54.00	-12.30	AV	Vertical
1223.81	61.28	44.70	6.70	28.20	-9.80	51.48	74.00	-22.52	PK	Horizontal
1223.81	51.25	44.70	6.70	28.20	-9.80	41.45	54.00	-12.55	AV	Horizontal
1830.27	59.46	44.20	9.04	31.60	-3.56	55.90	74.00	-18.10	PK	Vertical
1830.27	50.08	44.20	9.04	31.60	-3.56	46.52	54.00	-7.48	AV	Vertical
1830.27	58.35	44.20	9.04	31.60	-3.56	54.79	74.00	-19.21	РК	Horizontal
1830.27	50.50	44.20	9.04	31.60	-3.56	46.94	54.00	-7.06	AV	Horizontal
2009.26	49.32	44.20	9.86	32.00	-2.34	46.98	74.00	-27.02	PK	Vertical
2009.26	39.63	44.20	9.86	32.00	-2.34	37.29	54.00	-16.71	AV	Vertical
2009.23	47.54	44.20	9.86	32.00	-2.34	45.20	74.00	-28.80	РК	Horizontal
2009.23	39.04	44.20	9.86	32.00	-2.34	36.70	54.00	-17.30	AV	Horizontal
2745.51	53.81	43.50	11.40	35.50	3.40	57.21	74.00	-16.79	PK	Vertical
2745.51	44.09	43.50	11.40	35.50	3.40	47.49	54.00	-6.51	AV	Vertical
2745.51	54.33	43.50	11.40	35.50	3.40	57.73	74.00	-16.27	РК	Horizontal
2745.51	43.57	43.50	11.40	35.50	3.40	46.97	54.00	-7.03	AV	Horizontal

Shenzhen STS Test Services Co., Ltd.

Page 28 of 53 R

Report No.: STS2007111W01

				High Ch	annel (927.5	625 MHz)				
1221.04	61.18	44.70	6.70	28.20	-9.80	51.38	74.00	-22.62	PK	Vertical
1221.04	51.31	44.70	6.70	28.20	-9.80	41.51	54.00	-12.49	AV	Vertical
1220.97	61.12	44.70	6.70	28.20	-9.80	51.32	74.00	-22.68	PK	Horizontal
1220.97	50.54	44.70	6.70	28.20	-9.80	40.74	54.00	-13.26	AV	Horizontal
1855.27	58.83	44.20	9.04	31.60	-3.56	55.27	74.00	-18.73	PK	Vertical
1855.27	49.80	44.20	9.04	31.60	-3.56	46.24	54.00	-7.76	AV	Vertical
1855.20	59.41	44.20	9.04	31.60	-3.56	55.85	74.00	-18.15	PK	Horizontal
1855.20	50.43	44.20	9.04	31.60	-3.56	46.87	54.00	-7.13	AV	Horizontal
2004.55	48.67	44.20	9.86	32.00	-2.34	46.33	74.00	-27.67	PK	Vertical
2004.55	40.08	44.20	9.86	32.00	-2.34	37.74	54.00	-16.26	AV	Vertical
2004.60	47.61	44.20	9.86	32.00	-2.34	45.27	74.00	-28.73	PK	Horizontal
2004.60	39.53	44.20	9.86	32.00	-2.34	37.19	54.00	-16.81	AV	Horizontal
2782.48	53.95	43.50	11.40	35.50	3.40	57.35	74.00	-16.65	PK	Vertical
2782.48	44.30	43.50	11.40	35.50	3.40	47.70	54.00	-6.30	AV	Vertical
2782.45	54.48	43.50	11.40	35.50	3.40	57.88	74.00	-16.12	PK	Horizontal
2782.45	44.30	43.50	11.40	35.50	3.40	47.70	54.00	-6.30	AV	Horizontal

Note:

1) Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Emission Level = Reading + Factor

2) The frequency emission of peak points that did not show above the forms are at least 20dB below the limit, the frequency

emission is mainly from the environment noise.

4. CONDUCTED SPURIOUS & BAND EDGE EMISSION

4.1 LIMIT

According to FCC section 15.247(d)&RSS-247 Issue 2, February 2017 (5.5), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

4.2 TEST PROCEDURE

Spectrum Parameter	Setting
Detector	Peak
Start/Stop Frequency	30 MHz to 10th carrier harmonic
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold
For Band edge	

Fui ballu euge	
Spectrum Parameter	Setting
Detector	Peak
Start/Stan Fraguency	Lower Band Edge: 901.975– 902.975 MHz
Start/Stop Frequency	Upper Band Edge: 927.025 – 928.025 MHz
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold
For Hopping Band edge	
Spectrum Parameter	Setting
Detector	Peak
	Lower Band Edge: 890– 903 MHz

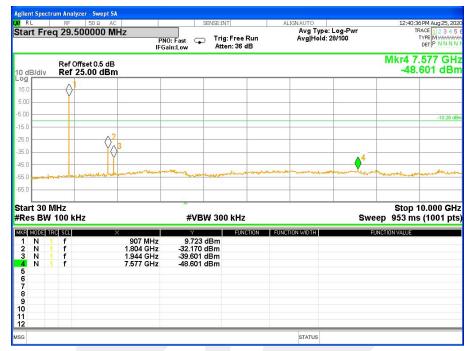
Start/Stop Frequency	Lower Danu Luge. 090- 903 Miliz
Standop rrequency	Upper Band Edge: 926 – 935 MHz
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold

4.3 TEST SETUP

The EUT is connected to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

4.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.


Shenzhen STS Test Services Co., Ltd.

4.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	50%
Test Mode:	LoRa-01/75/149 CH	Test Voltage:	DC 3.6V

01 CH

8:50 PM Aug 25,		ALIGN AUTO	INT	SENSE	50 Ω AC	RF	
TRACE 1 2 3 TYPE MWAA DET P N N I		Avg Type: Log-Pwr Avg Hold: 32/100	ig: Free Run tten: 36 dB	IO: Fast 😱 Tr ain:Low A		30.00	Frec
l61 62 G 9.231 dE	Mkr4 9.4 -4				ffset 0.5 dB 2 5.00 dBm		div
						Y	
-10.03							
					\Diamond^2		
A4				3			
wanter and	where where the states of the	mon degrade any will be a strate me	he was a mar and a mar and a mar and a mar a	inversion and marken by	in an and in the second second	-	1
						ale the	A COLOR
p 10.000 G ms (1001 p	Stop Sweep 953	Sw	00 kHz	#VBW 3	łz	Hz 00 kHz	30 M BW 1
-	FUNCTION VALUE	FUNCTION WIDTH	FUNCTION	Y	×	SCL	DE TRI
				9.994 dBm -33.641 dBm -48.467 dBm -49.231 dBm	917.33 MHz 1.834 57 GHz 3.021 00 GHz 9.461 62 GHz	f f f	1
				-43.201 übili	3.401 02 0112	т	1
				43.231 dBii	3.401 02 3112	Т	1
				49.201 0.011	5.401 02 0112		

Shenzhen STS Test Services Co., Ltd.

Т

149 CH

	RF 50 Ω	AC	SENSE: IN	Т	ALIGN AUTO			02 PM Aug 25, 21
Freq	30.000000	PN	0: Fast 🖵 Trig ain:Low Atte	: Free Run en: 36 dB	Avg Type: Avg Hold:	Log-Pwr 28/100		TYPE M WANN DET P N N N
	Ref Offset 0.5 Ref 25.00 d					N	1kr4 7.56 -49	87 32 GI .859 dB
	¹							
								-9.70
		02						
		V 						
10.00			alwandale 1	and Incolor Market	and a state of the second	-	turns a break of	A. James Marches
g-material d			Contraction of All Street, or and the second s					
t 30 MH s BW 1			#VBW 300) kHz		Swe	ep 953 m	10.000 G s (1001 p
MODE TRC		×	Y	FUNCTION	FUNCTION WIDTH	FL	INCTION VALUE	
N 1	f f	927.30 MHz 1.854 51 GHz	10.291 dBm -35.137 dBm					
N 1	f	2.781 72 GHz 7.567 32 GHz	-47.370 dBm -49.859 dBm					
N 1 N 1 N 1								
N 1								
N 1								
N 1								
N 1								

Shenzhen STS Test Services Co., Ltd.

For Band edge(it's also the reference level for conducted spurious emission)

01 CH

Shenzhen STS Test Services Co., Ltd.

П

75 CH

149 CH

Shenzhen STS Test Services Co., Ltd.

П

Page 34 of 53 Report No.: STS2007111W01

Shenzhen STS Test Services Co., Ltd.

Π

For Hopping Band edge

01:05:39 PM Aug 25, 2020 TRACE 1 2 3 4 5 TYPE M WWWW DET P N N N N K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
K Avg Type: Log-Pwr Avg|Hold:>100/100 Trig: Free Run Atten: 36 dB PNO: Fast IFGain:Low Mkr3 897.241 MHz -56.276 dBm Ref Offset 0.5 dB Ref 25.00 dBm 10 dB/div Log \ominus 15. 5.00 -15.0 -25.0 -35.0 $\langle \rangle$ 45.0 \diamond^3 -55.0 -65.0 Start 890.000 MHz #Res BW 100 kHz Stop 903.000 MHz Sweep 5.67 ms (1001 pts) #VBW 300 kHz MKR MODE TRC SCL FUNCTION VALUE FUNCTION FUNCTION WIDTH 10.249 dBm -48.290 dBm -56.276 dBm 902.519 MHz 902.000 MHz 897.241 MHz 1 N 2 N 3 N 4 5 6 7 8 9 10 11 12 f STATUS 5G

	m Analyzer - Swept SA							
tart Freq	RF 50 Ω AC 926.000000 N	PNO	SENSE:IN D: Wide Trig ain:Low Att	: Free Run en: 36 dB	ALIGN AUTO Avg Typ Avg Hold	e: Log-Pwr :>100/100	T	3PM Aug 25, 20 RACE 1 2 3 4 5 TYPE M WWWW DET P N N N N
	Ref Offset 0.5 dB Ref 25.00 dBm						Mkr3 930 -55.	.365 MH 178 dB
5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00		A A		3-				-8.99.0
tart 926.0 Res BW 1			#VBW 30) kHz		Swe	Stop 93 ep 3.93 m	35.000 MH s (1001 pt
KB MODE TRO 1 N 1 2 N 1 3 N 1 3 N 1 5 6 6 7 8 9 0 1 2	f 9 f 9	27.368 MHz 28.000 MHz 30.365 MHz	¥ 11.006 dBm -33.217 dBm -55.178 dBm	FUNCTION	FUNCTION WIDTH	F	UNCTION VALUE	
3					STATUS			

LoRa

Т

5. NUMBER OF HOPPING CHANNEL

5.1 LIMIT

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequencies and the average time of occupancy on any frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

EUT 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50.

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> Operating FrequencyRange
RB	47KHz
VB	150KHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW= 47KHz, VBW=150KHz, Sweep time = Auto.

5.3 TEST SETUP

5.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Temperature:	25 ℃	Relative Humidity:	60%
Test Mode:	Hopping Mode -LoRa Mode	Test Voltage:	DC 3.6V

Number of Hopping Channel: 149

Hopping channel

RL		RF	50	ŵ AC			SENSE:1	NT		A	L1GN AU						PM AUg2	
tart	Fred	90	2.000	000		PNO: Fast FGain:Low		g:FreeF en:40 d	Run B		Av Av	g Type: g Hold>	Log-Pwr 100/100				DET P N	um
dB/	div	Ref	30.00) dBm	ē									M	kr2		525 I 028 c	
0.0	Δ <mark>1</mark>															_		_
00	V	Y	V	YY	Y	Y	Υ	Y	Y	Y -	Y	YY Y		+	r	Y	Υ	_
0			t															
0						-	_				-			-				
0																		_
.0														_				
	902. BW					,	≠VBW 15	0 kHz			-		SI	weep	S 2.5	top 9 3 ms	28.00 (1001	M 1 p
	DE TR	f f			02.475 MHz 27.525 MHz		7 .756 dBm .028 dBm	FUNC	TION	FUNC	TION WI	отн		FUNC	TION V	ALUE		-
3																		
5 6 7																		
2																		
8 9 0																		

Shenzhen STS Test Services Co., Ltd.

6. AVERAGE TIME OF OCCUPANCY

6.1 LIMIT

	F	CC Part 15.247,Subpart	С	
		RSS-247 Issue 2		
Section	Test Item	Limit	FrequencyRange (MHz)	Result
15.247 (f) RSS-247	Average Time of Occupancy	< 0.4sec	902-928	PASS

6.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyzer.
- b. Set RBW =100KHz/VBW =300KHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is 0.4* channel number.
- e. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- f. Measure the maximum time duration of one single pulse.

6.3 TEST SETUP

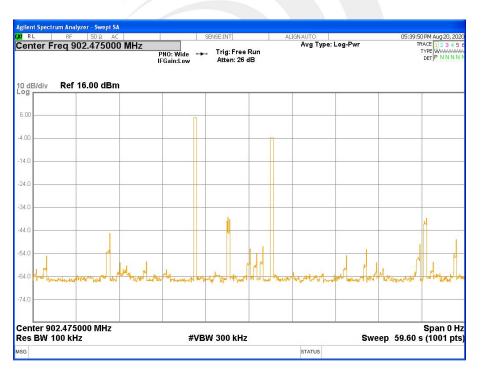
EUT	SPECTRUM
	ANALYZER

6.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

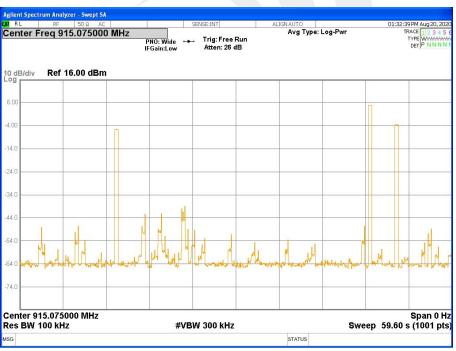
Temperature:	25 ℃	Relative Humidity:	50%
Test Mode:	LoRa	Test Voltage:	DC 3.6V

Channel	Pulse time(ms)	Number of pulses	Dwell Time(s)	Limits(s)
Low	397.400	1	0.397	0.4
Middle	397.400	1	0.397	0.4
High	397.500	1	0.398	0.4



Shenzhen STS Test Services Co., Ltd.

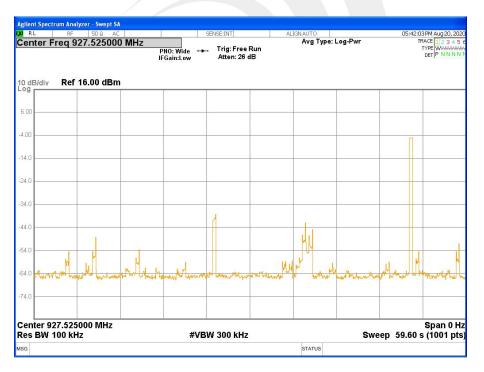
Π



Shenzhen STS Test Services Co., Ltd.

Π





Shenzhen STS Test Services Co., Ltd.

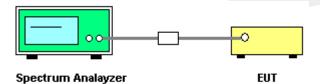
П

Shenzhen STS Test Services Co., Ltd.

П

7. HOPPING CHANNEL SEPARATION MEASUREMEN

7.1 LIMIT


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Spectrum Parameter	Setting
Attenuation	Auto
Span	400KHz
RB	47 KHz
VB	150 KHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

7.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.
- b. Spectrum Setting: RBW= 47KHz, VBW= 150KHz, Sweep time = Auto.

7.3 TEST SETUP

7.4 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

Temperature:	25℃	Relative Humidity:	50%
Test Mode:	CH01 / CH75 / CH149	Test Voltage:	DC 3.6V

Frequency (MHz)	Mark1 Frequency (MHz)	Mark2 Frequency (MHz)	Ch. Separation (MHz)	Limit (MHz)	Result
902.475	902.475	902.625	0.150	0.142	Complies
915.075	915.075	915.225	0.150	0.140	Complies
927.525	927.375	927.525	0.150	0.138	Complies

For LoRa: Ch. Separation Limits: > 20dB bandwidth

CH01

u RL	RF	50 Ω AC	SENSE: IN	IT	ALIGN AUTO		12:16:53 PM Aug 25, 20
Center	Freq 902		Wide Trig	: Free Run en: 32 dB	Avg Type: Avg Hold>	100/100	TRACE 1 2 3 4 TYPE M WWWW DET P N N N
I0 dB/div	Ref 2'	1.00 dBm				Mkr	2 902.625 0 MH 9.729 dB
11.0				<u>}1</u>		2	
1.00			,	·			
3.00							
19.0							
29.0	M	N					
19.0	M						
19.0	~ *						
59.0							
69.0							
69.0							
	02.5000 V 47 kHz	MHz	#VBW 150) kHz		Sweep	Span 500.0 kl 1.00 ms (1001 pt
KR MODE		×	Y	FUNCTION	FUNCTION WIDTH	FUN	CTION VALUE
1 N 2 N	1 f f	902.475 0 MHz 902.625 0 MHz	9.424 dBm 9.729 dBm				
3		001.020 0 100 12	0.120 42.0				
4 5							
6 7							
8							
10							
1							

RL	RF	50 Ω AC	SENSE:INT		ALIGN AUTO	12	2:18:03 PM Aug 25, 20
nter Fr	eq 91	5.150000 MHz	.		Avg Type: Log	g-Pwr	TRACE 1 2 3 4 1 TYPE MWWW
		PI	10:Wide 🖵 Trig: Gain:Low Atter	Free Run n: 32 dB	Avg Hold:>100	100	DET P NNN
							5.225 0 MI
dB/div	Ref 2	1.00 dBm					10.010 dB
.0			⊘ 1		2		
	~						-
	N						T
^o h A							m
0 5							
.0							
.0							
.0							
enter 91 les BW			#VBW 150	kHz		Sweep 1.00	pan 500.0 k ms (1001 p
R MODE TR	C SCL	×	Y	FUNCTION F	UNCTION WIDTH	FUNCTION VAL	Sec. 201
N 1	f	915.075 0 MHz	9.679 dBm				
N 1	f	915.225 0 MHz	10.010 dBm				
1							
3							
3))							
7 3 9 0 1 2							

CH149

RF 50 Ω AC	SENSE:INT	ALIGN AUTO	12:19:27 PM
): Wide 😱 Trig: Free Ru ain:Low Atten: 32 dB	Avg Type: L n Avg Hold:>10	
div Ref 21.00 dBm			Mkr2 927.525 10.33
	{1		2
A to M			
WWW I			
r 927.4000 MHz BW 47 kHz	#VBW 150 kHz		Span 5 Sweep 1.00 ms (1
DE TRC SCL X		IN FUNCTION WIDTH	FUNCTION VALUE
1 f 927.375 0 MHz 1 f 927.525 0 MHz	10.517 dBm 10.331 dBm		

8. BANDWIDTH TEST

8.1 LIMIT

FCC Part15 15.247,Subpart C RSS-247 Issue 2					
Section	Test Item	Limit	FrequencyRange (MHz)	Result	
15.247 (a)(1) RSS-247	Bandwidth	< 250kHz	902-928	PASS	

Spectrum Parameter	Setting
Attenuation	Auto
Span	500KHz
RB	3 kHz
VB	10 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW= 3KHz, VBW=10KHz, Sweep time = Auto.

8.3 TEST SETUP

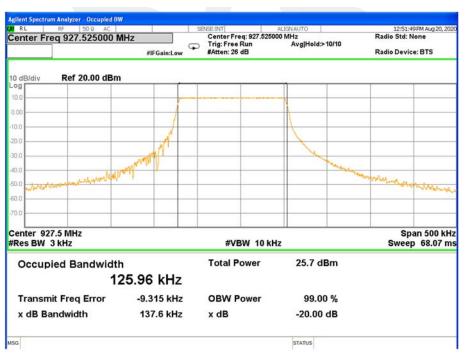
EUT	SPECTRUM
	ANALYZER

8.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Temperature:	25 ℃		Relative Humidity:	50%	
Test Mode:	CH01	/ CH75 / CH149	Test Voltage:	DC 3	.6V
			1		

Fraguanay	20dB Bandwidth	99% Bandwidth	Result
Frequency	(MHz)	(MHz)	Result
902.475 MHz	0.142	0.129	PASS
915.075 MHz	0.140	0.127	PASS
927.525 MHz	0.138	0.126	PASS



RL RF 50 g AC		SENSE:INT	ALIGNAUTO	12:33:44 PM Aug	20,20
enter Freg 902.475000 N	/Hz	Center Freq: 902.4750	00 MHz	Radio Std: None	,
	#IFGain:Low	Trig: Free Run #Atten: 26 dB	Avg Hold>10/10	Radio Device: BTS	
	#IFGain:Low	Pricelli Lo de		Radio Device. D 10	_
dB/div Ref 20.00 dBm					
Pg					
0.0					
00					
	4				
.0	1		N N		
.0	/		1		
10	1		W.		
	and the second		and the second		
0 1 and a stranger				al ware and the second	
10 manufallance				man and a stand of the stand of	Artes
0					
1.0					
enter 902.5 MHz				Span 50	
Res BW 3 kHz		#VBW 10 kH	Iz	Sweep 68.0	
Occupied Bandwidth	า	Total Power	25.3 dBm		
12	29.20 kHz				
Transmit Freq Error	-7.513 kHz	OBW Power	99.00 %		
x dB Bandwidth	142.0 kHz	x dB	-20.00 dB		
56			STATUS		

CH149

9. OUTPUT POWER TEST

9.1 LIMIT

FCC Part 15.247,Subpart C						
	RSS-247 Issue 2					
Section	Test Item	Limit	FrequencyRange (MHz)	Result		
15.247(b)(2) RSS-247	Output Power	1 W	902-928	PASS		
RSS-247	EIRP	4W	902-928	PASS		

9.2 TEST PROCEDURE

This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test:

a) Use the following spectrum analyzer settings:

1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.

2) RBW > 20 dB bandwidth of the emission being measured.

3) VBW ≥ RBW.

4) Sweep: Auto.

5) Detector function: Peak.

6) Trace: Max hold.

b) Allow trace to stabilize.

c) Use the marker-to-peak function to set the marker to the peak of the emission.

d) The indicated level is the peak output power, after any corrections for external attenuators and cables.

e) A plot of the test results and setup description shall be included in the test report.

NOTE—A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.

PKPM1 Peak power meter method:

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DSS bandwidth and shall use a fast-responding diode detector.

9.3 TEST SETUP

EUT	Power sensor	PC

9.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 3.6V		

		Peak Power	Limit
Channel Number	Frequency (MHz)	(dBm)	(dBm)
01	902.475	20.42	30.00
75	915.075	20.72	30.00
149	927.525	21.03	30.00

EIRP Power

Frequency	Peak Power	Antenna Gain	ERP Power	EIRP Power	Limit
(MHz)	(dBm)	(dBi)	(dBm)	(dBm)	(dBm)
902.475	20.42	0.00	20.42	22.57	36.02
915.075	20.72	0.00	20.72	22.87	36.02
927.525	21.03	0.00	21.03	23.18	36.02

Note: EIRP = ERP+2.15dB.

10. ANTENNA REQUIREMENT

10.1 STANDARD REQUIREMENT

15.203&RSS-Gen Issue 5 requirement: For intentional device, according to 15.203&RSS-Gen Issue 5: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

10.2 EUT ANTENNA

The EUT antenna is PCB Antenna. It comply with the standard requirement.

Shenzhen STS Test Services Co., Ltd.

Page 52 of 53 Report No.: STS2007111W01

11. FREQUENCY STABILITY

11.1 LIMITS OF FREQUENCY STABILITY MEASUREMENT

The frequency tolerance of the carrier signal shall be maintained within +/-0.02% of the operating frequency over a temperature variation of -30 degrees to 50 degrees C at normal supply voltage, and for a variation in primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees.

- 11.2 TEST PROCEDURE
- 1. The EUT was placed inside the environmental test chamber and powered by nominal DC voltage.
- 2. Turn the EUT on and couple its output to spectrum analyzer.
- 3. Turn the EUT off and set the chamber to the highest temperature specified.
- 4. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize,turn the EUT on and measure the operating frequency after 2,5,and 10 minutes.
- 5. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature.
- 6. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.

11.3 TEST RESULT

Channel 75 (915.075MHz)

Voltage vs. Frequency Stability

Voltage(V)	Measurement Frequency(MHz)
4.14	915.0758
3.6	915.0751
3.06	915.0755
Max.Deviation(MHz)	0.0008
Max.Deviation(ppm)	0.87

Rated working voltage: DC 3.6V

Temperature vs. Frequency Stability

Temperature(°C)	Measurement Frequency(MHz)
-30	915.0752
-20	915.0747
-10	915.0752
0	915.0745
10	915.0744
20	915.0744
30	915.0744
40	915.0746
50	915.0745
Max.Deviation(MHz)	0.0002
Max.Deviation(ppm)	0.22

APPENDIX-PHOTOS OF TEST SETUP

Note: See test photos in setup photo document for the actual connections between Product and support equipment.

* * * * * END OF THE REPORT * * * *

Shenzhen STS Test Services Co., Ltd.