Qwizdom Inc.

Q5 RF

January 25, 2005

Report No. PROU0011

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2005 Northwest EMC, Inc

Certificate of Test Issue Date: January 25, 2005 Qwizdom Inc Q5 RF

	Emissions		
Specification	Test Method	Pass	Fail
FCC 15.247(a)(2) Occupied Bandwidth:2004	ANSI C63.4:2003	\boxtimes	
FCC 15.247(b)(3) Output Power:2004	ANSI C63.4:2003	\boxtimes	
FCC 15.247(d) Band Edge Compliance:2004	ANSI C63.4:2003	\boxtimes	
FCC 15.247(d) Out of Band Emissions:2004	ANSI C63.4:2003	\square	
FCC 15.247(d) Spurious Radiated Emissions:2004	ANSI C63.4:2003	\boxtimes	
FCC 15.247(e) Power Spectral Density:2004	ANSI C63.4:2003	\boxtimes	
FCC 15.207 AC Power Line Conducted Emissions:2004	ANSI C63.4:2003	\square	

Modifications made to the product See the Modifications section of this report

Test Facility

The measurement facilities used to collect the data is located at:

Northwest EMC, Inc. 22975 NW Evergreen Parkway, Suite 400; Hillsboro, OR 97124 Phone: (503) 844-4066 Fax: 844-3826

The sites have been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada.

Approved By:
Donald Moniton
Don Facteau, IS Manager

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested, the specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision Number	Description	Date	Page Number
00	None		

FCC: Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities, have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP: Northwest EMC, Inc. is recognized under the United States Department of Commerce, National Institute of Standards and Technology, National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 89/336/EEC, ANSI C63.4, MIL-STD 461E, DO-160D and SAE J1113. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

Industry Canada: Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS 212, Issue 1 (Provisional) and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements.

CAB: Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement

TÜV Product Service: Included in TUV Product Service Group's Listing of Recognized Laboratories. It qualifies in connection with the TUV Certification after Recognition of Agent's Testing Program for the product categories and/or standards shown in TUV's current Listing of CARAT Laboratories available from TUV. A certificate was issued to represent that this laboratory continues to meet TUV's CARAT Program requirements. Certificate No. USA0401C

TÜV Rheinland: Authorized to carryout EMC tests by order and under supervision of TÜV Rheinland. This authorization is based on "Conditions for EMC-Subcontractors" of November 1992.

NEMKO: Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Technology International: Assessed in accordance with ISO Guide 25 defining the general international requirements for the competence of calibration and testing laboratories and with ITI assessment criteria LACO196. Based upon that assessment Interference Technology International, Ltd., has granted approval for specifications implementing the EU Directive on EMC (89/336/EEC and amendments). The scope of the approval was provided on a Schedule of Assessment supplied with the certificate and is available upon request.

Australia/New Zealand: The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body. (NVLAP)

VCCI: Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (*Registration Nos. - Hillsboro: C-1071 and R-1025, Irvine: C-2094 and R-1943, Newberg: C-1877 and R-1760, Sultan: R-871, C-1784 and R-1761)*

BSMI: Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement. License No.SL2-IN-E-1017.

GOST: Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

SCOPE For details on the Scopes of our Accreditations, please visit: <u>http://www.nwemc.com/scope.asp</u>

(N) NEMKO

How important is it to understand performance criteria?

It is the responsibility of the test laboratory to observe the results of the tests that are performed and to accurately report those results. As the responsible party (manufacturer, importer, etc) it is your responsibility to take those results, compare them against the specifications and standards, then, if appropriate make a declaration of conformity. As the responsible party it makes sense that you are fully aware of the requirements, how your device performs when tested to those requirements, and what information is being used to declare conformity.

To better assist you in making those conformity decisions, Northwest EMC has adopted a very simple, yet very clear performance assessment procedure. The following criteria is used when performing immunity or susceptibility tests:

Performance Criteria 1:

- □ The EUT exhibited no change in performance when operating as specified by the manufacturer. In this case no changes were observed during the test.
- In most cases this would be equivalent to Performance Criteria A. When operating the equipment in the modes or configurations specified by the responsible party, monitoring the parameters specified, no changes were observed. Basically nothing happened.

Performance Criteria 2:

- The EUT exhibited a change in performance when operating as specified by the manufacturer. In this case the equipment recovered without any operator intervention, once the test signal was removed. The data sheets will detail the exact phenomena observed.
- In most cases this would be equivalent to Performance Criteria B. When operating the equipment in the modes or configurations specified by the responsible party, monitoring the parameters specified, changes were observed. The EUT was able to recover from those changes without any operator intervention, once the test signal was removed.

Performance Criteria 3:

- The EUT exhibited a change in performance when operating as specified by the manufacturer. In this case the equipment required some operator intervention in order to recover. This intervention may be in the form of changing EUT settings, or even resetting the system. The data sheets will detail the exact phenomena observed.
- In most cases this would be equivalent to Performance Criteria C. When operating the equipment in the modes or configurations specified by the responsible party, monitoring the parameters specified, changes were observed. The EUT required some sort of operator intervention to recover. There was no permanent damage and the EUT appeared to function normally after completion test.

Performance Criteria 4:

- The EUT exhibited a change in performance when operating as specified by the manufacturer. In this case the equipment was damaged and would not recover. The data sheets will detail the exact phenomena observed.
- In most cases there is no specific criterion to compare this to, it typically ends the test. When operating the equipment in the modes or configurations specified by the responsible party, monitoring the parameters specified, changes were observed. There was no recovery; the equipment would no longer function as intended.

Each of the standards and specifications has unique performance criteria. In order to make an accurate assessment, one must compare the test results provided with the specific performance criteria. To ensure that a responsible party is compliant with the specifications, one must read and understand those specifications. Provided below is a sample performance criteria, taken from EN 61000-6-1.

EN 61000-6-1 Performance Criteria

Performance Criteria A: The apparatus shall continue to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation and what the user may reasonably expect from the apparatus if used as intended.

Performance Criteria B: The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is allowed. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation and what the user may reasonably expect from the apparatus if used as intended.

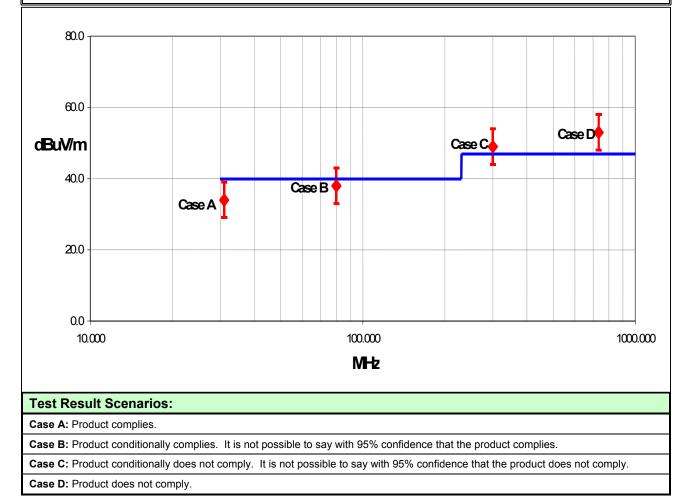
Performance Criteria C: Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of controls.

How should a device perform in order for a declaration of conformity to be made?

As already stated, it is the responsible party that must interpret and understand the results in such a way that a declaration of conformity is made. Having said that, we are often asked to render our opinion as to how a device should perform. Our recommendation simply follows the standards, as can be referenced below. Most of the standards and specifications offer the same performance criterion shown below as their requirements.

Test	Performance Criteria typically specified by the Standard	Equivalent Northwest EMC Performance Criteria	
ESD	Performance Criteria B	Performance Criteria 1 or 2	
Radiated RF	Performance Criteria A	Performance Criteria 1	
EFT/Burst	Performance Criteria B	Performance Criteria 1 or 2	
Surge	Performance Criteria B	Performance Criteria 1 or 2	
Conducted RF	Performance Criteria A	Performance Criteria 1	
Magnetic Field	Performance Criteria A	Performance Criteria 1	
Voltage Dips and Variations	Performance Criteria B & C	Performance Criteria 1, 2, or 3	

What is measurement uncertainty?


When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. The following statement of measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" value. In the case of transient tests (ESD, EFT, Surge, Voltage Dips and Interruptions), the test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements.

The following documents were the basis for determining the uncertainty levels of our measurements:

- "ISO Guide to the Expression of Uncertainty in Measurements", October 1993
- "NIS81: The Treatment of Uncertainty in EMC Measurements", May 1994
- "IEC CISPR 16-3 A1 f1 Ed.1: Radio-interference measurements and statistical techniques", December 2000

How might measurement uncertainty be applied to test results?

If the diamond marks the measured value for the test and the vertical bars bracket the range of + and – measurement uncertainty, then test results can be interpreted from the diagram below.

Radiated Emissions ≤ 1 GHz		Value (dB)				
	Probability Biconical		Log Po	eriodic	D	ipole	
	Distribution	tion Antenna		Antenna		Antenna	
Test Distance		3m	10m	3m	10m	3m	10m
Combined standard	normal	+ 1.86	+ 1.82	+ 2.23	+ 1.29	+ 1.31	+ 1.25
uncertainty <i>u_c(y)</i>		- 1.88	- 1.87	- 1.41	- 1.26	- 1.27	- 1.25
Expanded uncertainty U	normal (k=2)	+ 3.72	+ 3.64	+ 4.46	+ 2.59	+ 2.61	+ 2.49
(level of confidence $\approx 95\%$)		- 3.77	- 3.73	-2.81	- 2.52	- 2.55	- 2.49

Radiated Emissions > 1 GHz	Value (dB)		
	Probability	Without High	With High
	Distribution	Pass Filter	Pass Filter
Combined standard uncertainty <i>u_c(y)</i>	normal	+ 1.29 - 1.25	+ 1.38 - 1.35
Expanded uncertainty U	normal (k=2)	+ 2.57	+ 2.76
(level of confidence $\approx 95\%$)		- 2.51	2.70

Conducted Emissions					
	Probability	Value			
	Distribution	(+/- dB)			
Combined standard uncertainty <i>uc(y)</i>	normal	1.48			
Expanded uncertainty <i>U</i> (level of confidence ≈ 95 %)	normal (k = 2)	2.97			

Radiated Immunity					
	Probability	Value			
	Distribution	(+/- dB)			
Combined standard uncertainty <i>uc(y)</i>	normal	1.05			
Expanded uncertainty <i>U</i>	normal (k = 2)	2.11			
(level of confidence \approx 95 %)	$\operatorname{Horman}(K=Z)$	2.11			

Conducted Immunity					
	Probability	Value			
	Distribution	(+/- dB)			
Combined standard uncertainty <i>uc(y</i>)	normal	1.05			
Expanded uncertainty U (level of confidence ≈ 95 %)	normal (k = 2)	2.10			

Legend

 $u_c(y)$ = square root of the sum of squares of the individual standard uncertainties

U = combined standard uncertainty multiplied by the coverage factor: **k**. This defines an interval about the measured result that will encompass the true value with a confidence level of approximately 95%. If a higher level of confidence is required, then k=3 (CL of 99.7%) can be used. Please note that with a coverage factor of one, uc(y) yields a confidence level of only 68%.

Facilities

California

Orange County Facility Labs OC01 – OC13

41 Tesla Ave. Irvine, CA 92618 (888) 364-2378 FAX (503) 844-3826

Oregon

Evergreen Facility Labs EV01 – EV10

22975 NW Evergreen Pkwy., Suite 400 Hillsboro, OR 97124 (503) 844-4066 FAX (503) 844-3826

Oregon

Trails End Facility Labs TE01 – TE03

30475 NE Trails End Lane Newberg, OR 97132 (503) 844-4066 FAX (503) 537-0735

Washington

Sultan Facility

Labs SU01 – SU07

14128 339th Ave. SE Sultan, WA 98294 (888) 364-2378 FAX (360) 793-2536

Party Requesting the Test	
Company Name:	Product Creation Studio
Address:	5425 Ballard Ave NW
City, State, Zip:	Seattle, WA 98107
Test Requested By:	Scott Thielman
Model:	Q5 RF
First Date of Test:	December 22, 2004
Last Date of Test:	January 9, 2005
Receipt Date of Samples:	December 21, 2004
Equipment Design Stage:	Pre-Production
Equipment Condition:	No visual damage.

Information Provided by the Party Requesting the Test

Clocks/Oscillators:	1 MHz, 6 MHz, 16 MHz, 48 MHz, 65 MHz, 256 MHz, 2.45 GHz
I/O Ports:	none

Functional Description of the EUT (Equipment Under Test):

EUT is a 19 button with shuttle remote for an Audience Response System (ARS).

Client Justification for EUT Selection:

The product is an engineering sample, representative of the final product.

Client Justification for Test Selection:

These test satisfy the requirements for FCC 15.247 Certification.

EUT Information

The Audience Response System (ARS) consists of the elements shown in Figure 1. A computer (laptop or desktop) connects to the network host via a USB connection. The host obtains its power from the USB connection and alternately from a regulated 9VDC wall transformer. The network host communicates to multiple audience remotes via an IEEE 802.15.4 compliant RF link. The teacher remote, Q5 RF, has more buttons and a larger graphical display, while the student remote, Q4 RF, has fewer buttons and smaller LCD. The remotes accept user feedback via the keypad and displays information on an LCD. The Q5 remotes are powered by rechargeable batteries and can be powered and recharged via a 9VDC regulated wall transformer. Two AA alkaline batteries power the Q4 remotes.

Product Description

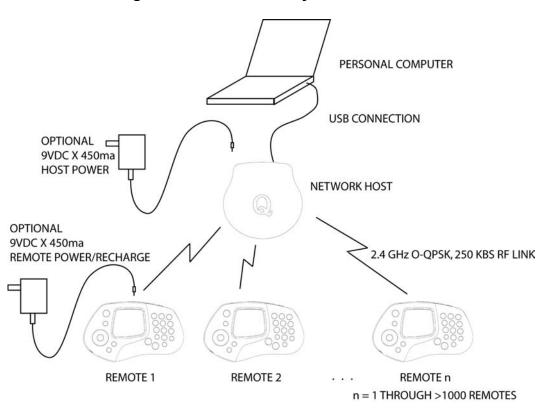


Figure 1 – RF Network System Overview

Modifications

	Equipment modifications					
Item	Test	Date	Modification	Note	Disposition of EUT	
1	Spurious Radiated Emissions	12/22/2004	No EMI suppression devices were added or modified during this test.	Same configuration as delivered.	EUT remained at Northwest EMC.	
2	Out of Band Emissions	12/22/2004	No EMI suppression devices were added or modified during this test.	Same configuration as in previous test.	EUT remained at Northwest EMC.	
3	AC Powerline Conducted Emissions	01/04/2005	No EMI suppression devices were added or modified during this test.	Same configuration as in previous test.	EUT remained at Northwest EMC.	
4	Band Edge Compliance	01/08/2005	No EMI suppression devices were added or modified during this test.	Same configuration as in previous test.	EUT remained at Northwest EMC.	
5	Output Power	01/08/2005	No EMI suppression devices were added or modified during this test.	Same configuration as in previous test.	EUT remained at Northwest EMC.	
6	Occupied Bandwidth	01/08/2005	No EMI suppression devices were added or modified during this test.	Same configuration as in previous test.	EUT remained at Northwest EMC.	
7	Power Spectral Density	01/09/2005	No EMI suppression devices were added or modified during this test.	Same configuration as in previous test.	EUT remained at Northwest EMC.	

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. All of the EUT parameters listed below were investigated. This includes, but may not be limited to, CPU speeds, video resolution settings, operational modes, and input voltages.

Channels in Specified Band Investigated:		
Low		
Mid		
High		

Operating	Modes Investigated:
Typical	

Data Rates Investigated:

Maximum

Output Power Setting(s) Investigated: Maximum

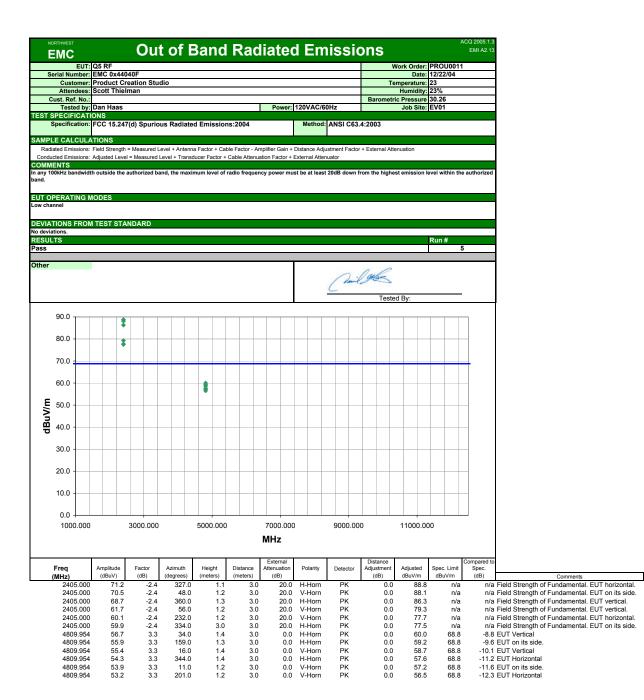
Power Input Settings Investigated:	
120 VAC, 60 Hz	

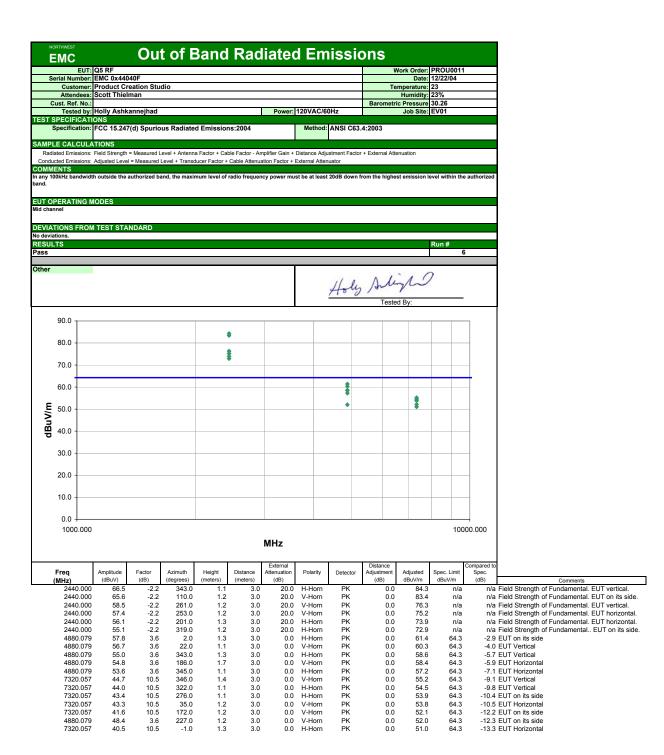
Frequency Range Investigated			
Start Frequency	30 MHz	Stop Frequency	26 GHz

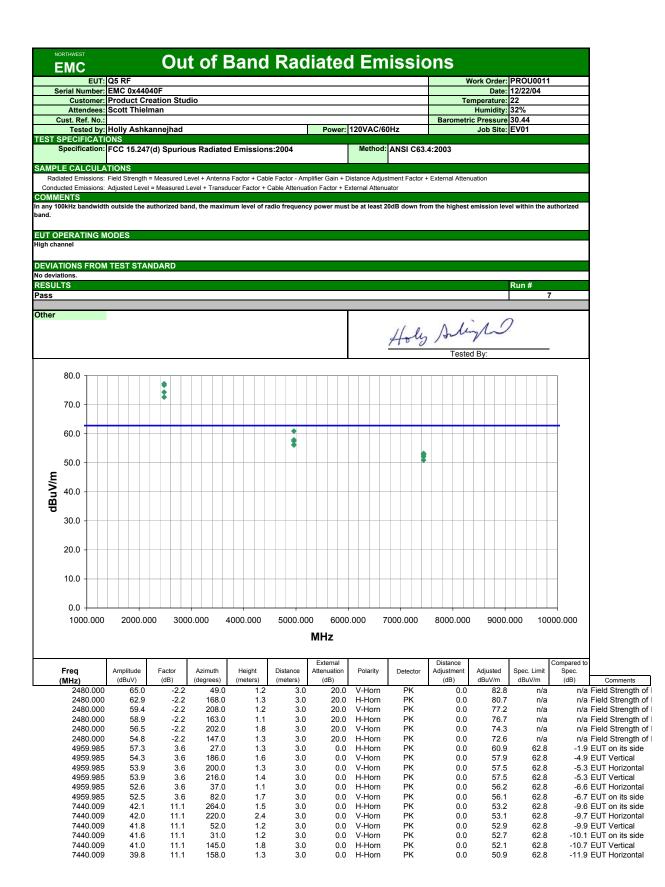
Software\Firmware Applied During Test					
Exercise software Standard Production Software Version Unknown					
Description					
The system was tested using standard operating production software to exercise the functions of the					
device during the testing including channel, mode, and power.					

EUT and Peripherals in Test Setup Boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
EUT- Q5 RF	Quizdom, Inc.	Q5 RF	EMC 0x44040F		
AC Power Adapter - 120V	CUI, Inc.	41-9-500R	N/A		

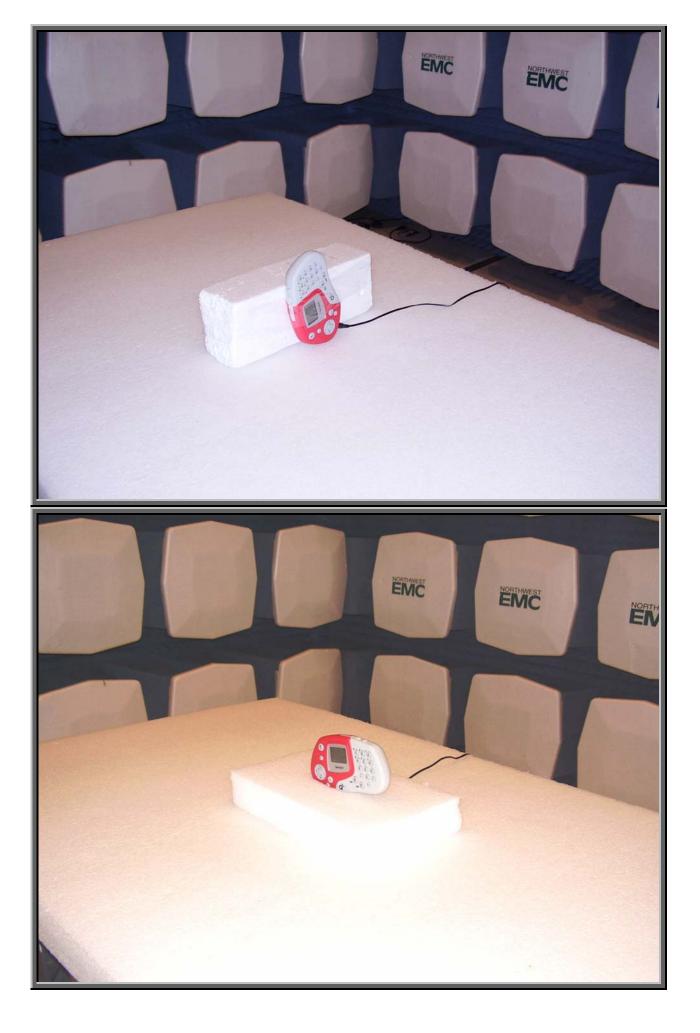
Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Leads (120V Adapter)	No	1.8	PA	AC Power Adapter - 120V	EUT- Q5 RF
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					


Measurement Equipment						
Description	Manufacturer	Model	Identifier	Last Cal	Interval	
Antenna, Horn	EMCO	3160-09	AHG	NCR	NA	
Pre-Amplifier	Miteq	JSD4-18002600-26-8P	APU	10/08/2003	15 mo	
Spectrum Analyzer	Tektronix	2784	AAO	01/02/2005	12 mo	
Antenna, Horn	EMCO	3160-08	AHK	NCR	NA	
Pre-Amplifier	Miteq	AMF-4D-005180-24-10P	APC	10/08/2003	15 mo	
Antenna, Horn	EMCO	3115	AHC	09/07/2004	12 mo	
Pre-Amplifier	Miteq	AMF-4D-005180-24-10P	APJ	01/05/2004	13 mo	
Pre-Amplifier	AR	LN1000A	APS	02/05/2004	13 mo	
Antenna, Biconilog	EMCO	3141	AXE	12/03/2003	24 mo	
High Pass Filter	Micro-Tronics	HPM50111	HFO	04/13/2004	13 mo	
Quasi-Peak Adapter	Hewlett-Packard	85650A	AQF	12/02/2004	13 mo	
Spectrum Analyzer	Hewlett-Packard	8566B	AAL	12/02/2004	13 mo	


Test Description


Requirement: Per 47 CFR 15.247(d), in any 100kHz bandwidth outside the authorized band, the maximum level of radio frequency power must be at least 20dB down from the highest emission level within the authorized band. The measurement is made with the spectrum analyzer's resolution bandwidth set to 100kHz, and the video bandwidth set to greater than or equal to the resolution bandwidth.

Configuration: The EUT was configured for low, mid, and high transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.4:2003). A preamp and suitable attenuation were used for this test in order to provide sufficient measurement sensitivity.


Completed by:
Holy Arlight

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
High
Mid
Low

Operating Modes Investigated: Transmit

Data Rates Investigated: Maximum

Output Power Setting(s) Investigated: Maximum

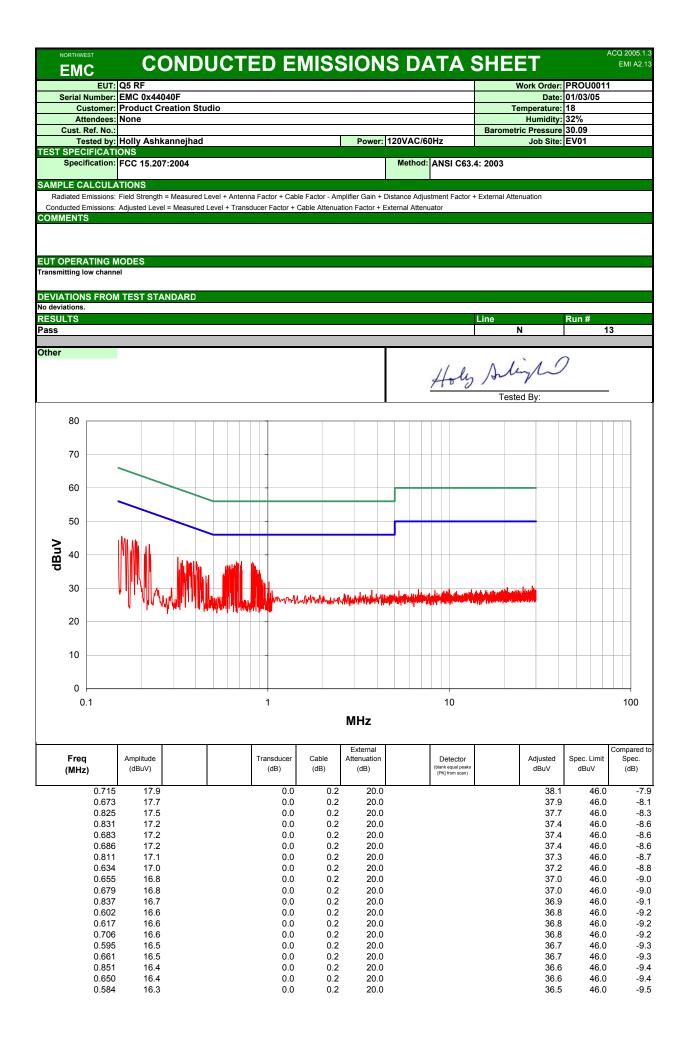
Power Input Settings Investigated:

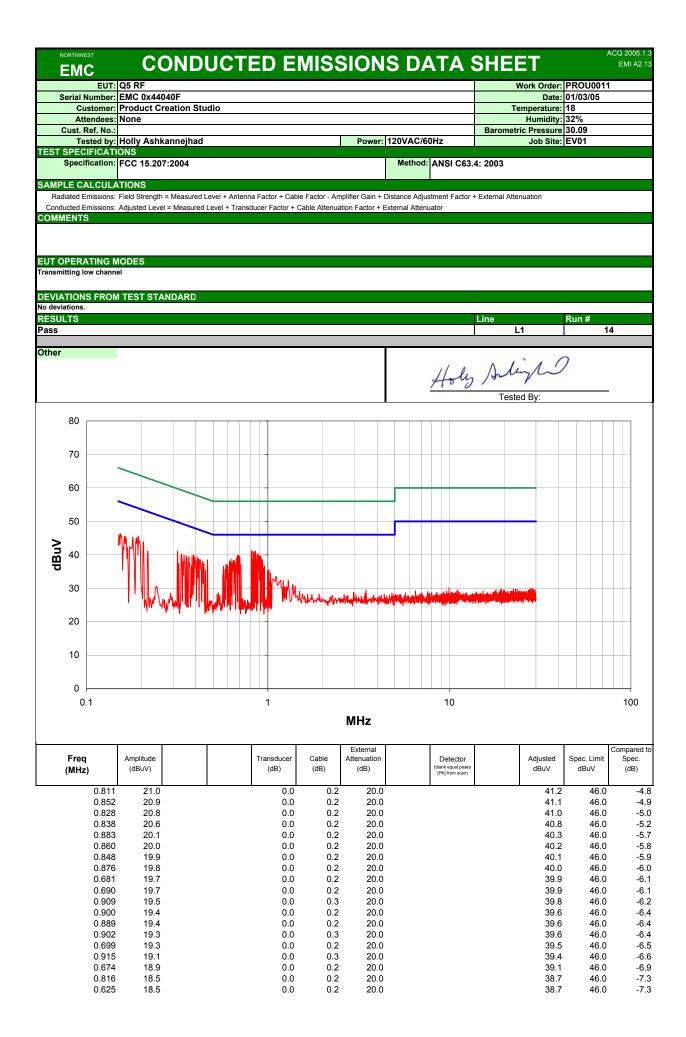
120 VAC, 60Hz

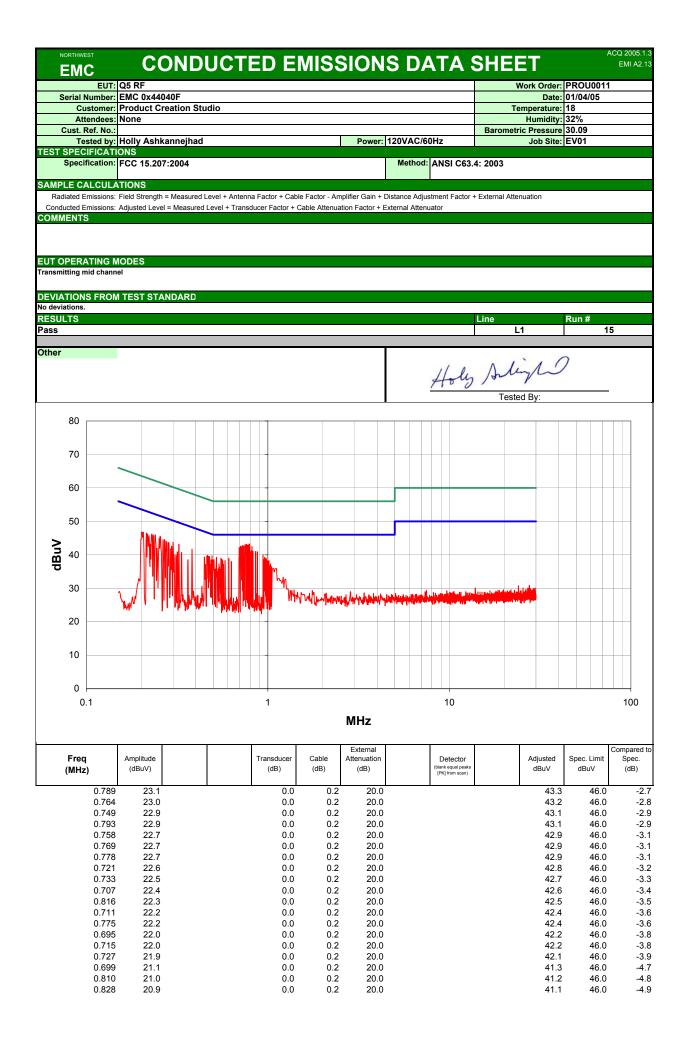
Software\Firmware Applied During Test					
Exercise software TestRFGen1 Version Unknown					
Description					
The system was tested using standard operating production software to exercise the functions of the					
device during the testing ir	ncluding mode, channel, ar	nd power.			

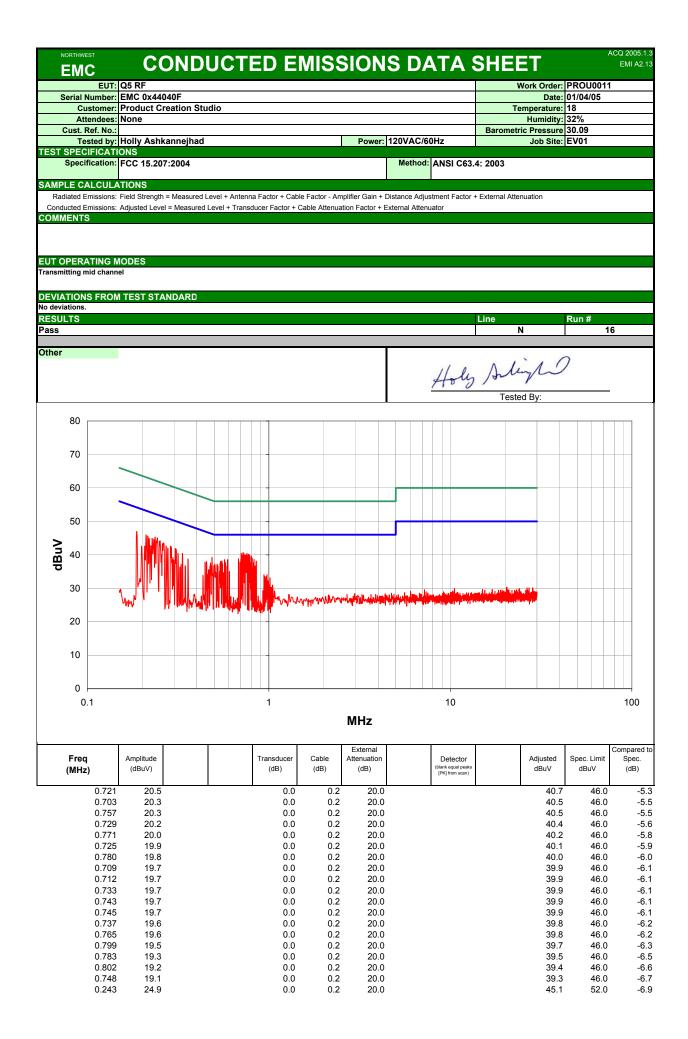
EUT and Peripherals					
Description	Manufacturer	Model/Part Number	Serial Number		
AC Adapter	CUI Inc.	41-9-500R	NA		
EUT- Q5 RF	Quizdom, Inc.	Q5 RF	EMC 0x44040F		

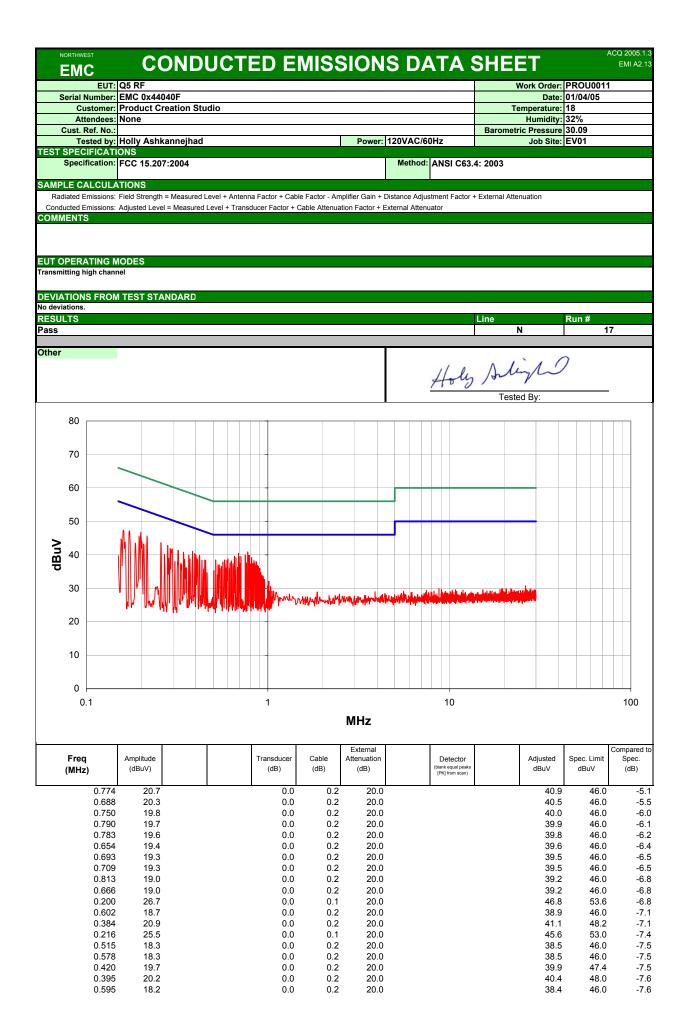
Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Leads	No	1.5	No	Q5RF	AC Adapter

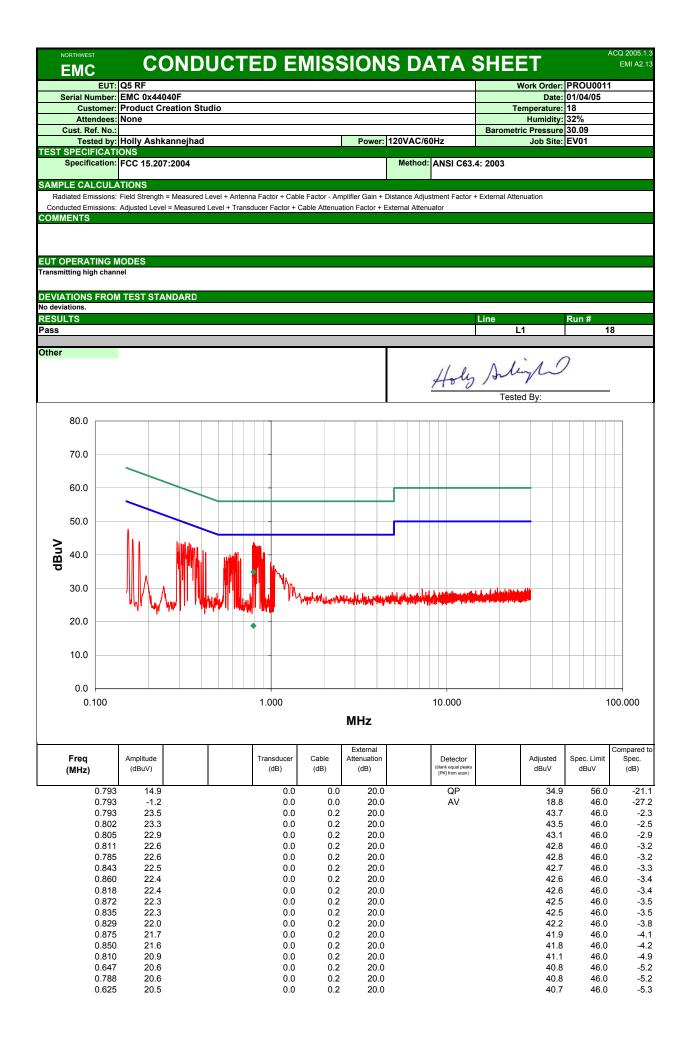

Measurement Equipment					
Description	Manufacturer	Model	Identifier	Last Cal	Interval
High Pass Filter	TTE	H97-100k-50-720B	HFC	12/29/2004	13 mo
Attenuator	Tektronix	011-0059-02	ATH	12/29/2004	13 mo
LISN	Solar	9252-50-R-24-BNC	LIO	04/30/2004	12 mo
Quasi-Peak Adapter	Hewlett-Packard	85650A	AQF	12/02/2004	13 mo
Spectrum Analyzer	Hewlett-Packard	8566B	AAL	12/02/2004	13 mo
Spectrum Analyzer Display	Hewlett Packard	85662A	AALD	12/02/2004	13 mo


Test Description


<u>Requirement:</u> Per 47 15.207(d), if the EUT is connected to the AC power line indirectly, obtaining its power from another device that is connected to the AC power line, then it should be tested to demonstrate compliance with the conducted limits of 15.207.


Configuration: The EUT will be powered from a device that could be connected to the AC power line. Therefore, the measurements were made on the device used to power the EUT. The AC power line conducted emissions were measured with the EUT operating at the lowest, the highest, and a middle channel in the operational band. The EUT was transmitting at its maximum data rate. For each mode, the spectrum was scanned from 150 kHz to 30 MHz. The test setup and procedures were in accordance with ANSI C63.4-2003.


Completed by:
Holy Arlingh



Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. All of the EUT parameters listed below were investigated. This includes, but may not be limited to, CPU speeds, video resolution settings, operational modes, and input voltages.

Channels in Specified Band Investigated:
Low
Mid
High

Operating	Modes	Invest	igated:
Typical			

Data Rates Investigated:

Maximum

Output Power Setting(s) Investigated: Maximum

Power Input Settings Investigated: 120VAC, 60Hz

Software\Firmware Applied During Test							
Exercise software	Standard Production Software	Version	Unknown				
Description							
The system was tested using standard operating production software to exercise the functions of the							
device during the testi	ng including channel, mode, and power.						

EUT and Peripherals in Test Setup Boundary								
Description	Manufacturer	Model/Part Number	Serial Number					
EUT- Q5 RF	Quizdom, Inc.	Q5 RF	EMC 0x44040F					
AC Power Adapter - 120V	CUI, Inc.	41-9-500R	N/A					

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Leads (120V Adapter)	No	1.8	PA	AC Power Adapter - 120V	EUT- Q5 RF
PA = Cable is permane	ntly attach	ed to the device.	Shielding	and/or presence of ferrite may be ເ	unknown.

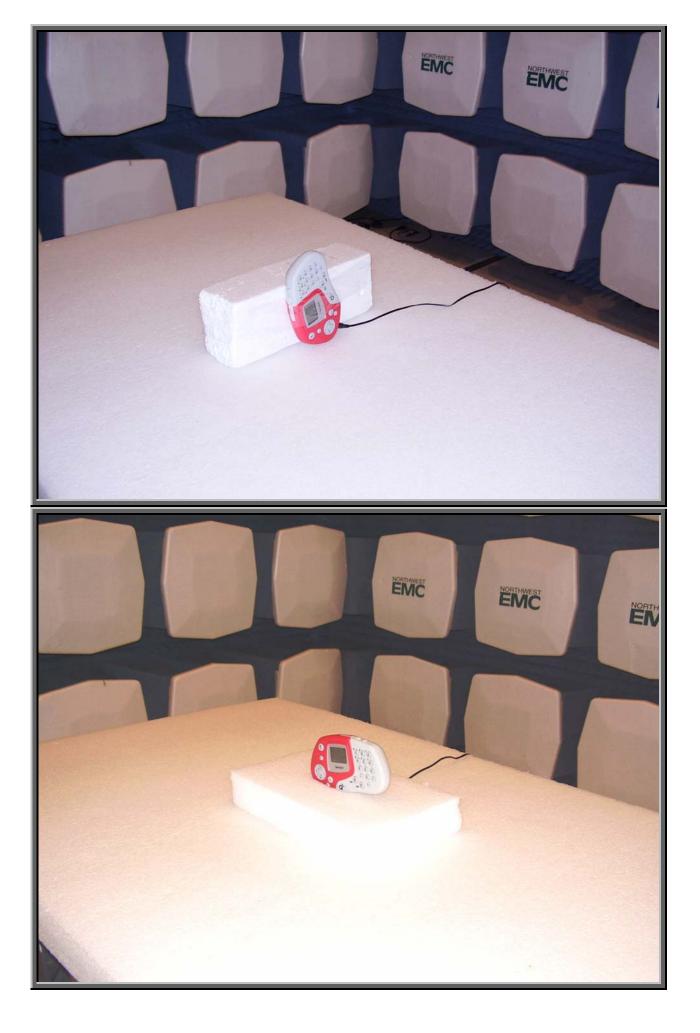
Measurement Equipment							
Description	Manufacturer	Model	Identifier	Last Cal	Interval		
Antenna, Horn	EMCO	3115	AHC	09/07/2004	12 mo		
Spectrum Analyzer	Tektronix	2784	AAO	01/02/2005	12 mo		

Test Description

Requirement: Per 47 CFR 15.247(a)(2), the 6 dB bandwidth of a direct sequence channel must be at least 500kHz. The measurement is made with the spectrum analyzer's resolution bandwidth set to 100kHz, and the video bandwidth set to greater than or equal to the resolution bandwidth.

Configuration: The occupied bandwidth was measured with the EUT set to low, mid, and high transmit frequencies. The EUT was transmitting at its maximum output power and data rate.

The measurement was made at a 3 meter test distance. The field strength was maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.4:2003).


Completed b	by:
Holy	Alingh

EST				Occup	bied Ban	dwidt	<u>۱</u>		Re 01
	EUT: Q5 RF							Work Order:	PROU0011
erial Nur	mber: EMC 0x	44040F							01/08/05
Custo	omer: Produc	t Creation Stud	io					Temperature:	22°C
	dees: None						olly Ashkannejhad	Humidity:	
	f. No.: N/A					Power: 12	OVAC/60Hz	Job Site:	EV01
ECIFIC									
pecifica	ation: 47 CFR	15.247(a)(2)		Year: 2004		Method: F	CC 97-114, ANSI C63.4	Year:	2003
NTS									
ed by PF	G MODES RBS at maxim	um data rate							
ONS FR	OM TEST STA	NDARD							
EMENTS	S								
mum 6c	B bandwidth	is 500KHz							
S					BANDWI				
					1.555MH	2			
JRE									
Test	ted By:	ly siling	N						
PTION O	OF TEST								
			0	ccupied B	andwidth -	Low Cha	nnel		
Γ	Mkr /	1.5551	IHz		Δ	0.00dB			Tek
	Ref Lvl	-50.0dBm			5dB/		Atten 1	OdB	
50.어					m Mary Mary	~~			
				l Marte	Marine and a	Mary Real			
55.O				المسري ا		- And the second	ъ. L		
Ť				ا الكم ا	•		Y.		
				L	•		Ϋ́		
60.0				∦ ∕─────────	•		<u> </u>	+	
			1 5 ^m	Ύ			Jon May		
65.0							/		
+			1				- <u></u>		
							/ I		
70.0					•		<u> </u>		
T		jh					1		
	المهلوب	17 1/1	Nr.				¹	مراسم المسلم	nu l
75.0	· · · · · · · · · · · · · · · · · · ·	¶" · · ·"\;	11					Դեսիթ™ն և	. **"`N _h .
	w ^m	%	N					144-ml	W .
зо. o	S. M.	'	"[س ريل.
#	۰ 				•				
∋s.o_				↓					
ㅋ.머		+	+	╂───┼				+	
95.Q									
.o.									
T									
	Freq	2.405 000	GHz				Span 5.01	IHz	
	-								
1	ResBW 1	OOkHz		Vid	1BW 300kHz		SWI	9 50mS	
-				1					I
			an	_					
ſ	LEVEL		SPAN	Fre	eq 2.405 OC	OGHz			

NORTHWEST				Occu	pied Bandv	vidth			Rev BETA 01/30/01
	EUT: Q5 RF								: PROU0011
	umber: EMC 0x								01/08/05
	tomer: Product	t Creation Stud	io					Temperature:	
Atter Customer Re	ndees: None					ted by: Holly Ash Power: 120VAC/6		Humidity Job Site	
TEST SPECIFIC						Power: 120VAC/6	UHZ	Job Site:	EVU1
	ation: 47 CFR	15.247(a)(2)	v	ear: 2004	N	lethod: FCC 97-11	4. ANSI C63 4	Year	2003
SAMPLE CALC		·•·•					., Altor 000.4	i edi.	
COMMENTS									
EUT OPERATIN	IG MODES								
Modulated by P									
	ROM TEST STA	NDARD							
None REQUIREMENT	·e								
	S idB bandwidth i	is 500KHz							
RESULTS	ab sanawiu(ii)				BANDWIDTH				
Pass					1.55MHz				
SIGNATURE									
		ly Alin	W						
DESCRIPTION	OF TEST		0.		Dout du si ditio - Mi d				
r			00	cupiea i	Bandwidth - Mid	Channel			
	Mkr 🛆	1.550M	Ήz		<u> </u>	5dB			Tek
-50.0	Ref Lvl	-50.0dBm			5dB/		Atten 10	ldB	
					. mm				
-55.0				م. م	My marker & he	w-1			
				الكريب		Window Roth		1 1	
				mlanut		1 × Y			
-60.0				MAN .				+	
				p.		'	1		
-65.0			/****				W-1.		
							l l	1 1	
			ا کمسر		:		h.		
-70.0			+ / - +				<u>, '₩</u>	┥───┤	
-75.Q	wind white be and a second	W. WWW	.				[*] *,	A Lather and working	My MA
-80 0	WANN	۱ ^۱ ۳۸۱	¥ I					MW L	` ¹ 4(Ju.]
00.0	r :					1		1.	
					•				
-85.Q			┼───┼					┼───┼	
-90.0									
								1 1	
					:				
-95.0			↓					↓	
					:				
-100.Q									
100.0		•							
	Freq 3	2.440 000	GHz				Span 5.0M	Hz	
							-		
	ResBW 1	OOkHz		Vi	dBW 300kHz		SWP	50mS	
	<u>г</u>								
	IEVET		SDAM		ton 10dP				
	LEVEL		SPAN	At	ten 10dB				
L									
	KNOB 2		KNOB 1	KE	YPAD	Tektronix	2784		

IC						pieu De	andwid				Re 01/	
	EUT: Q5 F	RF								Work Ord	ler: PROU0011	
Serial N	umber: EMC	0x44040F								Da	ite: 01/08/05	
		luct Creation	Studio					_		Temperatu		
	ndees: Non	Ð						: Holly Ashka		Humid		
stomer Ro SPECIFIC	ef. No.: N/A						Power	r: 120VAC/60H	lz	Job S	ite: EV01	
		FR 15.247(a)	(2)	Voar	: 2004		Mothod	I: FCC 97-114	ANSI C62.4	Xa	ar: 2003	
	ULATIONS	FR 13.247(a)	(2)	Tear	. 2004		Method	1. 1700 37-114	, ANSI C63.4		ai. 2003	
MENTS												
	NG MODES	timum data r	ate									
TIONS F	ROM TEST S	STANDARD										
IREMENT												
	6dB bandwid	Ith is 500KHz	2									
LTS							DWIDTH					
ATURE						1.56						
Te RIPTION	-	foly A	light		-							
RIPTION	OF TEST			Occu	pied B	andwidth	- High Cl	hannel				
	Mkr	Δ 1.5	560MHz			∆ 0.05dB					Tek	
-50.Q		Ref Lvl -50.0dBm				5dB/ At				ten 10dB		
						:						
-55.0												
20.0												
-60.0						Anton provine 1	~ <u>,~</u> +					
					Jer M	~~~ V	~ week	monthing me				
-65.0				W	-44.44			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(
								ľ	WWW.			
				AM		:			' 🍾			
-70.Q				f −					<u> </u>		└─── ┤	
			1	·					Yukwin vy			
-75.0			r4/44/							M		
	1		JF ``	· · ·	· · ·					Nu i		
	MAN	there willing with	/			:				91 ₄₄	الأرامية ويرزيان	
-80.Q	M. JANAAN	hall an all	r			-				Nu Nu	the state of the s	
		all when								ማሌላ	r.,,	
-85.Q												
-90.Q						•						
						•						
-95.0												
						:						
100.0										1		
	F	2 400	000077-					~				
	rred	Freq 2.480 000GHz Span 4.01							pan 4.0M	12		
	ResBW	100kHz			Vi	dBW 300kHz			SWP	50mS		
					• -				5.w1			
]							
	LEVEL		SPAN		Mk	r 2.480	828GHz					
					1							

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. All of the EUT parameters listed below were investigated. This includes, but may not be limited to, CPU speeds, video resolution settings, operational modes, and input voltages.

Channels in Specified Band Investigated:
Low
High

Operating Modes Investigated: Typical

Data Rates Investigated: Maximum

Output Power Setting(s) Investigated: Maximum

Power Input Settings Investigated: 120VAC, 60Hz

 Software/Firmware Applied During Test

 Exercise software
 Standard Production Software
 Version
 Unknown

 Description
 Image: Standard operating production software to exercise the functions of the device during the testing including channel, mode, and power.
 Image: Standard operating production software to exercise the functions of the device during the testing including channel, mode, and power.

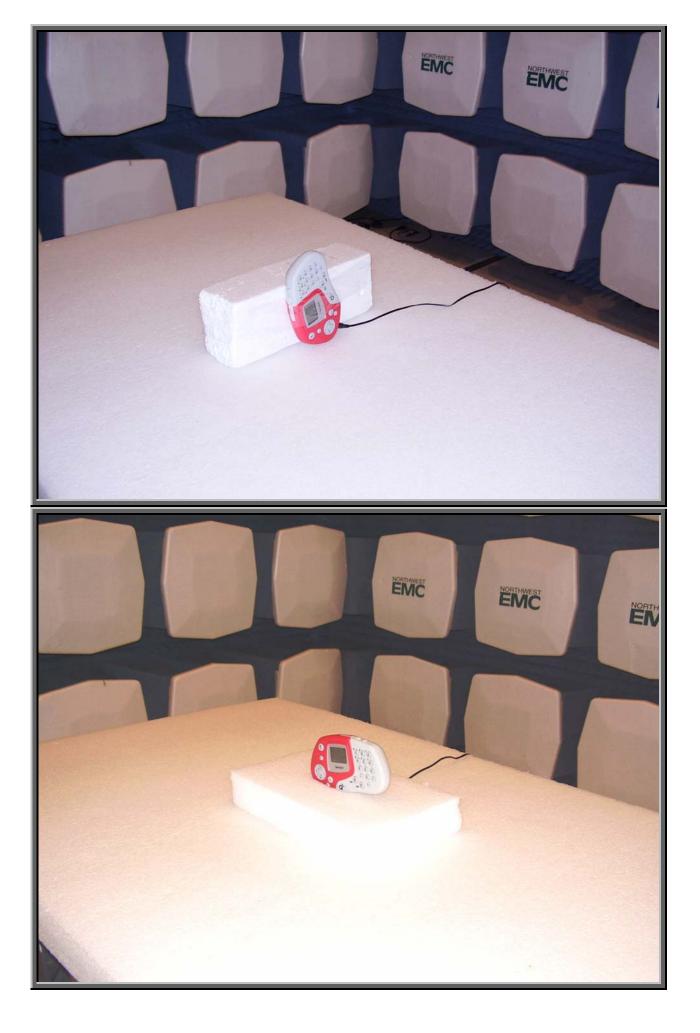
EUT and Peripherals in Test Setup Boundary							
Description Manufacturer Model/Part Number Serial Number							
EUT- Q5 RF	Quizdom, Inc.	Q5 RF	EMC 0x44040F				
AC Power Adapter - 120V	CUI, Inc.	41-9-500R	N/A				

Cables							
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2		
DC Leads (120V Adapter)	No	1.8	PA	AC Power Adapter - 120V	EUT- Q5 RF		
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.							

Measurement Equipment									
Description	Manufacturer	Model	Identifier	Last Cal	Interval				
Antenna, Horn	EMCO	3115	AHC	09/07/2004	12 mo				
Spectrum Analyzer	Tektronix	2784	AAO	01/02/2005	12 mo				

Requirement: Per 47 CFR 15.247(d), in any 100 kHz bandwidth outside the authorized band, the maximum level of radio frequency power must be at least 20dB down from the highest emission level within the authorized band. The measurement is made with the spectrum analyzer's resolution bandwidth set to 100kHz, and the video bandwidth set to greater than or equal to the resolution bandwidth.

Configuration: The peak output power was measured with the EUT set to low, mid, and high transmit frequencies. The EUT was transmitting at its maximum output power and data rate.


The measurement was made at a 3 meter test distance. The spurious RF conducted emissions at the edges of the authorized band were measured with the EUT set to low and high transmit frequencies. The EUT was transmitting at its maximum data rate in a no hop mode. The channels closest to the band edges were selected. The spectrum was scanned across each band edge from at least 5 MHz below the band edge to at least 5 MHz above the band edge.

Completed by: Holy Aligh

EUT: OS BF Work obset Work ob	THWEST			Е	and E	dge Corr	plian	се			Rev 01/30
Costant Trend by:		EUT: Q5 RF								Work Orde	
Materialse Tread by: (bit): Additional (But in the souther String) Mathematical String (But in the String (B	Serial Nu	Imber: EMC 0x	(44040F							Date	e: 01/08/05
Internet No. NA Power 120%CAR004- Job Site; EV01 Specification: CFR 47 Part 15.247(d) Yaar) 2004 Method [97-114, ANSI C63.4 Year) 2003 LEFAGUEATION: France Notes Sector Anotacity Year) 2004 Method [97-114, ANSI C63.4 Year) 2003 LEFAGUEATION: Sector Anotacity Sector Anotacity Year) 2004 Method [97-114, ANSI C63.4 Year) 2003 LEFAGUEATION: Sector Anotacity Sector Anotacity Sector Anotacity Year) 2004 LEFAGUEATION: Sector Anotacity Sector Anotacity Sector Anotacity Sector Anotacity INCREPTS Sector Anotacity Sector Anotacity Sector Anotacity Sector Anotacity NURE Sector Anotacity Sector Anotacity Sector Anotacity Sector Anotacity Sector Anotacity Sector Anotacity Sector Anotacity Sector Anotacity Sector Anotacity Sector Anotacity Sector Anotacity Sector Anotacity Sector Anotacity Sector Anotacity Sector Anotacity Sector Anotacity Sector Anotacity Sector Anotacity	Cust	tomer: Produc	t Creation Stud	oit						Temperature	e: 22°C
SPECIFICATION (CFR 47 Par 15.2.07(r) Year 2004 Method: 197-114, ANSI 053.4 Year 2003 EE CALCULATIONS EEXTS EEXTS EXTS									jhad		
Specification: Description Prescription Vescription EXAMPLE Mathed: 97.114, ANSI C63.4 Vescription							Power: 12	20VAC/60Hz		Job Site	e: EV01
LE CALCULATIONS EXAMPLE A CONSTRUCTION OF THE STREET OF											
IENS PERAINCHADDES Safe Dy PREST ANDRARD PERMITYS Automation data rate TOURS FRONT FEST TOUR True and present PERMITYS			Part 15.247(d)	Y	ear: 2004		Method: 97	7-114, ANSI C6	3.4	Yea	r: 2003
alard by PBS at maximum diar rate TROBE FROM TEST STANDARD IRREMONS Satirum five of the radio frequency power must be at least 20dB down from the highest emission level within the authorized band. IRREMONS THE	IENTS										
REMENTS Attention requires power must be at least 20dB down from the highest emission level within the authorized band. TS Amplitude	ated by P	RBS at maxim									
An unit well of the radio frequency power must be at least 20dB down from the highest emission level within the authorized band. The authorized band. TURE	TIONS P	KOW TEST STA	ANDARD								
All and the radio frequency power must be at least 2008 down from the highest emission level within the authorized band. The Amagination level within the authorized band. THE 30.05dB TENE TEAMB BY. TEAMB	REMENT	s									
LTS Amplitude SURE -30.05dB Tented By:			io frequency p	ower must be at lea	st 20dB down f	rom the highest emis	sion level with	in the authoriz	ed band		
39.05dB TURE JENTION OF 1251 Low Channel TREE A - 30.05dB TREE -45.0 -45.0 -50.0 -50.0 -50.0 -55.0 -55.0 -60.0 -60.0 -65.0 -60.0 -75.0 -60.0 -75.0 -60.0 -75.0 -60.0 -75.0 -60.0 -75.0 -60.0 -75.0 -60.0 -75.0 -60.0 -75.0 -60.0 -75.0 -60.0 -75.0 -60.0 -75.0 -60.0 -75.0 -60.0 -75.0 -60.0 -75.0 -70.0 -75.0 -70.0 -75.0 -70.0 -75.0 -70.0 -75.0 -70.0 -75.0 -70.0 -75.0 -70.0 -75.0 -70.0 -70.0 -70.0 -70.0 -70.0 -70.0 -70.0 -70.0 -70.0 -70.0 -70.0 <											
TURE THE AGA AGA TIME AGA AGA AGA AGA AGA AGA AGA AGA AGA AG											
Human Human 110000F1EST Low Channel -45.0 Hr:	ATURE										
HKr: A -14.46HHz A -30.05dB Kei -45.0 Ref Lv1 - 45.0dBm 5dB/ Atten 10dB - -50.0 -50.0 -50.0 - - - -50.0 -50.0 - - - - - -50.0 - - - - - - - -50.0 - <th></th> <th></th> <th>ly Aly</th> <th>N</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>			ly Aly	N							
Ref Lv1 - 45.0dBm 5dB/ Atten 10dB -50.0	-					Low Channe					
-45.0 -50.0 -50.0 -55.0 -60.0 -60.0 -60.0 -70.0 -70.0 -70.0 -70.0 -70.0 -70.0 -75.0 -70.0 -75.0 -70.0 -70.0 -75.0 -70.0 -7		Mkr /		MHz			-30.05dB				Tek
-55.0 -60.0 -60.0 -65.0 -70.0 -75.0 -75.0 -75.0 -80.0 -90.0 -9	-45.0	Ref Lvl	-45.0dBn	n 		5dB/		Att	en 10	dB	
55.0 -60.0 -60.0 -65.0 -70.0 -75.0 -75.0 -80.0 -90.0 -90.0 -95.0 -						:					
-55.0 -60.0 -60.0 -65.0 -70.0 -75.0 -75.0 -75.0 -80.0 -90.0 -9			1			:					
-55.0 -60.0 -60.0 -65.0 -70.0 -75.0 -75.0 -75.0 -80.0 -80.0 -80.0 -80.0 -80.0 -80.0 -90.0 -95.0 Freq 2.400 00GHz Span 20MHz ResBW 100KHz VidBW 100KHz SWP 50mS LEVEL SPAN Ref Lv1 -45.0dBm	-50.4			+					-X	+ +	
-60.0 -65.0 -70.0 -70.0 -75.0 -75.0 -80.0 -90.0 -9								- I A	M		
-60.0 -65.0 -70.0 -70.0 -70.0 -75.0 -75.0 -80.0 -90.0 -9	-55.0					:		- ['	''λ.		
-65.0 -70.0 -70.0 -75.0 -80.0 -80.0 -80.0 -85.0 -80.0 -90.0 -90.0 -90.0 -90.0 -95.0 Freq 2.400 00GHz Span 20MHz ResBW 100KHz SWP 50mS LEVEL SPAN Ref Lv1 -45.0dBm									۳į		
-65.0 -70.0 -70.0 -75.0 -80.0 -80.0 -80.0 -85.0 -80.0 -90.0 -90.0 -90.0 -90.0 -95.0 Freq 2.400 00GHz Span 20MHz ResBW 100KHz SWP 50mS LEVEL SPAN Ref Lv1 -45.0dBm						:			1	r	
-70.0 -75.0 -80.0 -80.0 -80.0 -80.0 -80.0 -9	-60.O							/			
-70.0 -75.0 -80.0 -80.0 -80.0 -80.0 -80.0 -90.0 -90.0 -90.0 -90.0 -90.0 -95.0 Freq 2.400 00GHz Span 20MHz ResBW 100kHz VidBW 100kHz SWP 50mS LEVEL SPAN Ref Lv1 -45.0dBm						:		Į.		n I	
-70.0 -75.0 -80.0 -80.0 -80.0 -80.0 -90.0 -90.0 -90.0 -90.0 -90.0 -90.0 -91.0 -92.0 -95.0 Freq 2.400 00GHz Span 20MHz ResBW 100kHz VidBW 100kHz SWP 50mS LEVEL SPAN Ref Lv1 -45.0dBm								ſ		n l	
-75.0 -80.0 -80.0 -85.0 -85.0 -90.0 -90.0 -90.0 -95.0 Freq 2.400 00GHz Span 20MHz ResBW 100kHz VidBW 100kHz SWP 50mS LEVEL SPAN Ref Lv1 -45.0dBm	-65.미			+				/		}	
-75.0 -80.0 -80.0 -85.0 -85.0 -90.0 -90.0 -90.0 -95.0 Freq 2.400 00GHz Span 20MHz ResBW 100kHz VidBW 100kHz SWP 50mS LEVEL SPAN Ref Lv1 -45.0dBm						:		f I			
-75.0 -80.0 -80.0 -85.0 -85.0 -90.0 -90.0 -90.0 -95.0 Freq 2.400 00GHz Span 20MHz ResBW 100kHz VidBW 100kHz SWP 50mS LEVEL SPAN Ref Lv1 -45.0dBm	-70.0					:		(]			
-80.0 -80.0 -85.0 -85.0 -90.0 -90.0 -90.0 -95.0 Freq 2.400 00GHz ResBW 100kHz LEVEL SPAN Ref Lv1 -45.0dBm								· · · [] ·		$ \rangle \cdots $	· · · ·
-80.0 -80.0 -85.0 -85.0 -90.0 -90.0 -90.0 -95.0 Freq 2.400 00GHz ResBW 100kHz LEVEL SPAN Ref Lv1 -45.0dBm						:		ALL I			
-80.0 -85.0 -90.0 -90.0 -90.0 -95.0 Freq 2.400 00GHz ResBW 100kHz VidBW 100kHz Span 20MHz SWP 50mS LEVEL SPAN Ref Lv1 -45.0dBm	-75.O			┥───┤		•		1 AM []),/////	
-80.0 -85.0 -90.0 -90.0 -90.0 -95.0 Freq 2.400 00GHz ResBW 100kHz VidBW 100kHz Span 20MHz SWP 50mS LEVEL SPAN Ref Lv1 -45.0dBm			1					(V I		{/ `\	
-85.0 -85.0 -90.0 -90.0 -95.0 Freq 2.400 00GHz Span 20MHz ResBW 100kHz VidBW 100kHz SWP 50mS LEVEL SPAN Ref Lv1 -45.0dBm			1			:		V I			
-90.0 -95.0 -95.0 Freq 2.400 00GHz Span 20MHz ResBW 100kHz VidBW 100kHz SWP 50mS LEVEL SPAN Ref Lv1 -45.0dBm	-00.04	, Y	L .	1. 1			. Mr. C			էափ	
-95.Q Freq 2.400 00GHz Span 20MHz ResBW 100kHz VidBW 100kHz SWP 50mS LEVEL SPAN Ref Lv1 -45.0dBm	-85.Q	Nuullinullille	al upuna human	the strangent when a	had a start and a start and a start and a start	when the function and	WWW IN W				"MANARWANNAN
-95.0 Freq 2.400 00GHz Span 20MHz ResBW 100kHz VidBW 100kHz SWP 50mS											
-95.0 Freq 2.400 00GHz Span 20MHz ResBW 100kHz VidBW 100kHz SWP 50mS	ام مو_					:					
Freq 2.400 00GHz Span 20MHz ResBW 100kHz VidBW 100kHz SWP 50mS LEVEL SPAN Ref Lv1 - 45.0dBm				1 1							
Freq 2.400 00GHz Span 20MHz ResBW 100kHz VidBW 100kHz SWP 50mS LEVEL SPAN Ref Lv1 - 45.0dBm											
ResBW 100kHz VidBW 100kHz SWP 50mS LEVEL SPAN Ref Lv1 - 45.0dBm	-95.Q										
ResBW 100kHz VidBW 100kHz SWP 50mS LEVEL SPAN Ref Lv1 - 45.0dBm											
LEVEL SPAN Ref Lvl -45.0dBm		Freq	2.400 000	Hz				Span	20MH:	z	
LEVEL SPAN Ref Lvl -45.0dBm											
		ResBW 1	OOkHz		Vid	18W 100kHz			SWP	50mS	
	ŀ	Г									———————————————————————————————————————
		LEVEL		SPAN	Ret	f Lvl -45.0dB	n				
KNOB 2 KNOB 1 KEYPAD Tektronix 2784	L										

MC				Band	Edge Co	mpliar	nce			Rev 01/:
	EUT: Q5 RF								Work Ord	er: PROU0011
Serial Nu	mber: EMC 0x	44040F							Dat	te: 01/08/05
		Creation Studi	D						Temperatur	
	ndees: None						Holly Ashka	-		ty: 31%
	f. No.: N/A					Power:	120VAC/60H	Z	Job Sit	te: EV01
SPECIFIC	ation: CFR 47	Part 15 247(d)		Year: 2004		Mothodi	97-114, ANS	C62 4	Vo	ar: 2003
	ULATIONS	Part 15.247(u)		rear. 2004		Method:	97-114, ANS	663.4	Tea	ar. 2003
IENTS										
PERATIN	IG MODES RBS at maximu	um data rate								
ATIONS FF	ROM TEST STA									
IREMENT										
	evel of the radi	o frequency po	wer must be at	least 20dB dow	n from the highest en		thin the auth	orized band.		
ILTS					Amplitu					
					-23.55d	В				
ATURE										
Tes	sted By:	ly Alin	ω							
					High Chanr	nel				
	Mkr 🛆	7.10MH	z		Ĺ	_23.55dB	3			Tek
	Ref Lvl	-45.0dBm			5dB/			Atten 10	dB	
-45.0				1						
					:					
-50.0					:					1
				1						
					:					
-55.0										
					:					
				I.M	:					
-60.0				Werd . C						
			/	4 4						
-65.0			/							
			ļ ,	1 1						
				{	:					
-70.믹			· · · / ·							
			l x	1 1	:					
-75.0				{						
-,				1 1						
			NI E)	: ·					
-80.0					Ι _μ γλι					
	يسبر بيار وأجارين	un him have	U"" V		V Medbendie da	ب برا الاس فليا ا	والمتلاط والعديدة	ներ և հանհերն և	Adda. Mr. By maker yes	أربابة انقرب البارين
	ጜምርትየሆር <mark>ት</mark> ያትለም የ ዲሞር የ	laalahhalada hu	ľ		A the share of the second s	AND	WWW WWW WW	ት የ አካካት እስት	hardelenter Antara, day	. (1.444444444) [.1.1441(47)
-85.0										
-90.0										
					:					
-95.0										
	Freq 2	2.483 50GH	Iz				Sp	an 20MHz	5	
	_ ·									
	ResBW 10	JOkHz		v	idBW 100kHz			SWP	50mS	
ŀ	[
	LEVEL		SPAN	म	req 2.483 5	OGHz				
				r.						
L										
	KINOB 2		KNOB 1	K	EYPAD	Tektr	onix	2784		

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. All of the EUT parameters listed below were investigated. This includes, but may not be limited to, CPU speeds, video resolution settings, operational modes, and input voltages.

Channels in Specified Band Investigated:					
Low					
Mid					
High					

Operating	Modes	Investiga	ted:
Typical			

Data Rates Investigated:

Maximum

Output Power Setting(s) Investigated: Maximum

Power Input Settings Investigated: 120VAC, 60Hz

Software\Firmware Applied During Test								
Exercise software	Standard Production Software	Version	Unknown					
Description								
The system was tested using standard operating production software to exercise the functions of the								
device during the testing including channel, mode, and power.								

EUT and Peripherals							
Description	Manufacturer	Model/Part Number	Serial Number				
AC Adapter	CUI Inc.	41-9-500R	NA				
EUT- Q5 RF	Quizdom, Inc.	Q5 RF	EMC 0x44040F				

Cables								
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2			
DC Leads	No	1.5	No	Q5RF	AC Adapter			

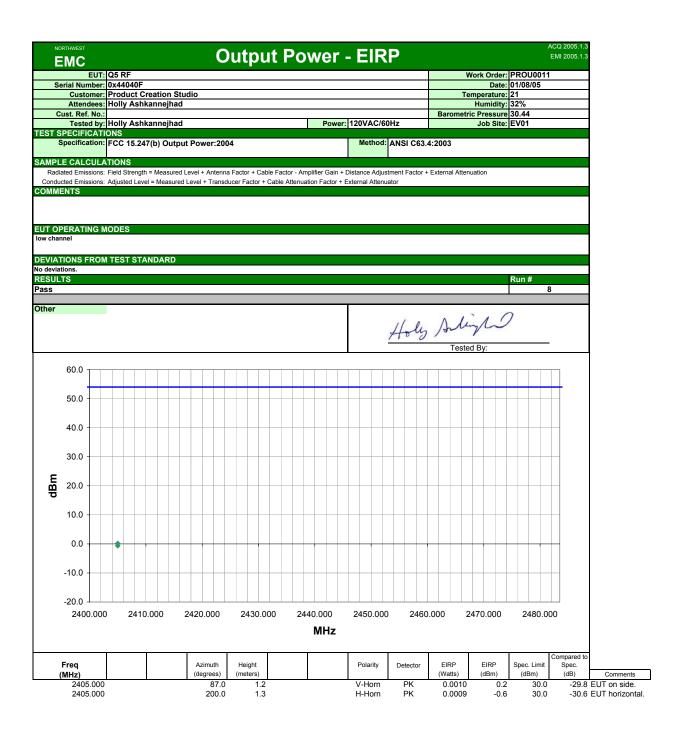
Measurement Equipment									
Description	Manufacturer	Model	Identifier	Last Cal	Interval				
Spectrum Analyzer	Hewlett-Packard	8566B	AAL	12/02/2004	13 mo				
Spectrum Analyzer Display	Hewlett Packard	85662A	AALD	12/02/2004	13 mo				
Antenna, Horn	EMCO	3115	AHC	09/07/2004	12 mo				

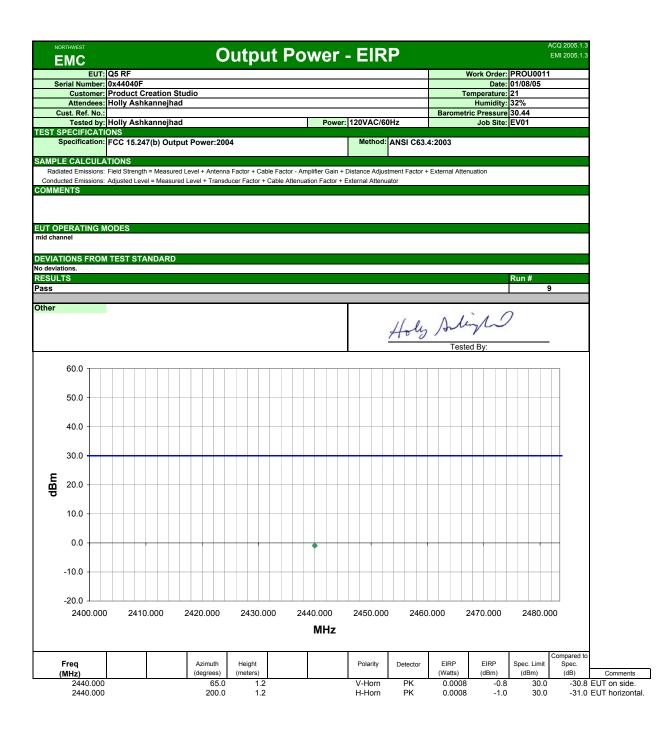
Requirement: Per 47 CFR 15.247(b)(3), the maximum peak output power must not exceed 1 Watt.

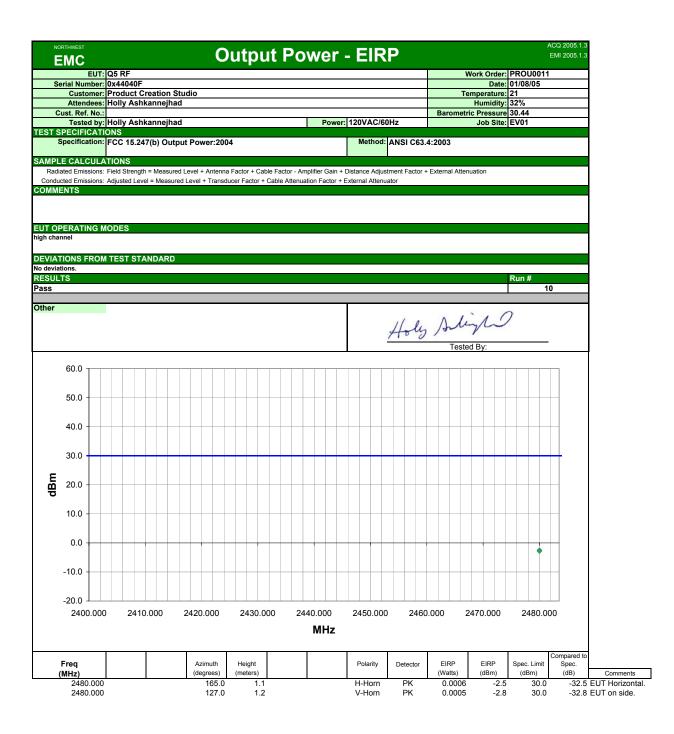
Configuration: The peak output power was measured with the EUT set to low, mid, and high transmit frequencies. The EUT was transmitting at its maximum output power and data rate.

The measurement was made using the alternative test procedure described in FCC 97-114. The maximum field strength of the fundamental was measured at a 3 meter distance. The field strength was maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.4:2003). The resolution and video bandwidths of the spectrum analyzer were set greater than the 6 dB bandwidth of the measured signal: RBW = VBW = 3 MHz.

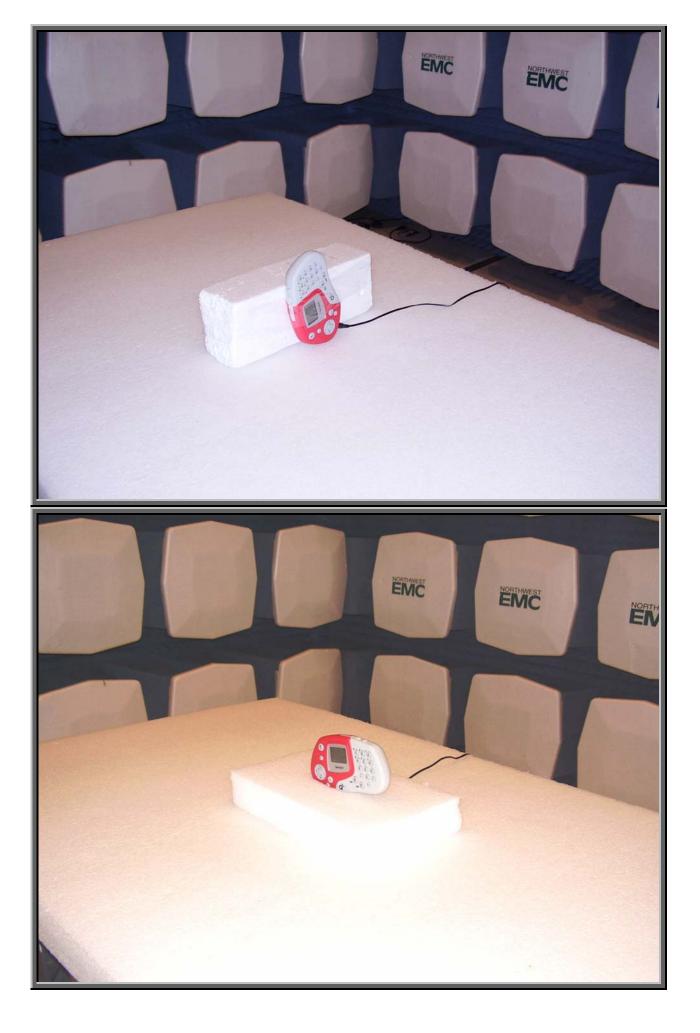
The peak EIRP was calculated using the equation:


$$EIRP = (Ed)^{2} / 30$$


Where:


E is the measured maximum field strength in V/m D is the distance in meters from which the field strength was measured

De Facto EIRP Limit: Per 47 CFR 15.247 (b)(1-3), the EUT meets the de facto EIRP limit of +36dBm.


Completed by:						
Holy	Alight					

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. All of the EUT parameters listed below were investigated. This includes, but may not be limited to, CPU speeds, video resolution settings, operational modes, and input voltages.

Channels in Specified Band Investigated:
Low
Mid
High

Operating	Modes	Investigated:
Typical		

Data Rates Investigated:

Maximum

Output Power Setting(s) Investigated: Maximum

Power Input Settings Investigated: 120VAC, 60Hz

Software\Firmware Applied During Test							
Exercise software	Standard Production Software	Version	Unknown				
Description							
The system was tested using standard operating production software to exercise the functions of the							
device during the testing including channel, mode, and power.							

EUT and Peripherals							
Description Manufacturer Model/Part Number Serial Nur							
AC Adapter	CUI Inc.	41-9-500R	NA				
EUT- Q5 RF	Quizdom, Inc.	Q5 RF	EMC 0x44040F				

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Leads	No	1.5	No	Q5RF	AC Adapter

Measurement Equipment									
Description	Identifier	Last Cal	Interval						
Antenna, Horn	EMCO	3115	AHC	09/07/2004	12 mo				
Spectrum Analyzer	Tektronix	2784	AAO	01/02/2005	12 mo				

Requirement: Per 47 CFR 15.247(e), the peak power spectral density conducted from the antenna port of a direct sequence transmitter must not be greater than +8 dBm in any 3 kHz band during any time interval of continuous transmission.

Configuration: The peak power spectral density measurements were measured with the EUT set to low, mid, and high transmit frequencies. The EUT was transmitting at its maximum data rate.

The measurement was made using the alternative test procedure described in FCC 97-114. The maximum field strength of the fundamental was measured at a 3 meter distance. The field strength was maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.4:2003). Then the analyzer was tuned to the highest point of the maximized fundamental emission and reset per the procedure outline in FCC 97-114.

The emission peak(s) were located and zoomed in on within the passband. The resolution Bandwidth was set to 3kHz, the video bandwidth was set to greater than or equal to the resolution bandwidth. The sweep speed was set equal to the span divided by 3kHz (sweep = (SPAN/3 kHz)). For example, given a span of 1.5 MHz, the sweep should be 1.5MHz/3kHz = 500 seconds. External attenuation was used and added to the reading. The following FCC procedure was used for modifying the power spectral density measurements.

"If the spectrum line spacing cannot be resolved on the available spectrum analyzer, the noise density function on most modern conventional spectrum analyzers will directly measure the noise power density normalized to a 1 Hz noise power bandwidth. Add 34.8 dB for correction to 3kHz."

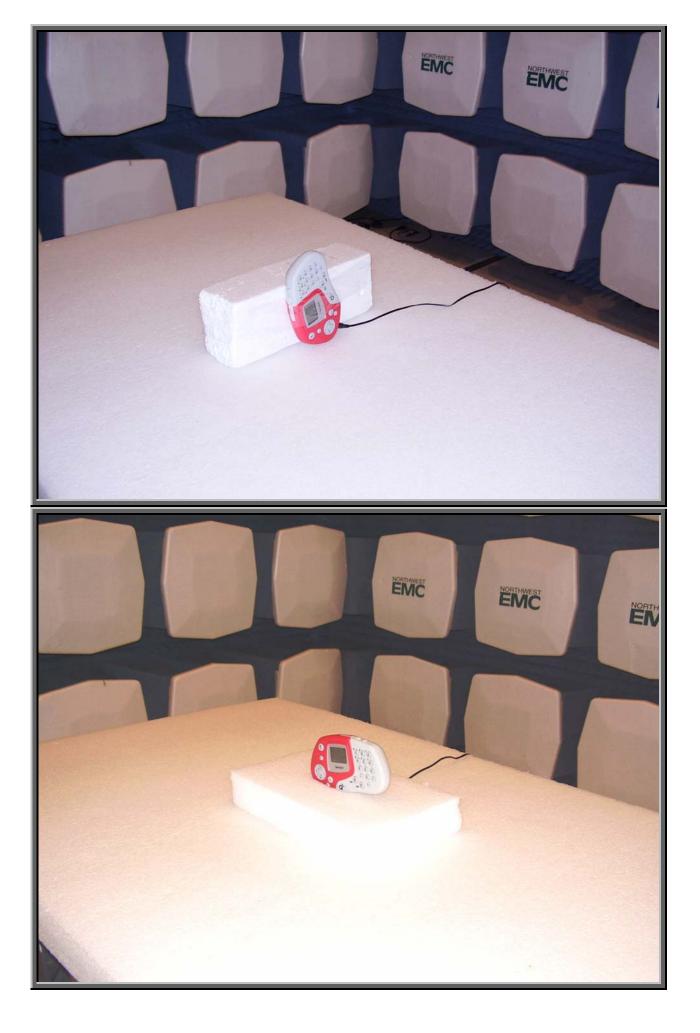
The spectrum analyzer display was internally offset by a correction factor equal to the antenna factor (dB/m) plus the cable loss (dB) plus a field strength (dBm/m) to EIRP (dBm) conversion factor of 11.77dB. The conversion factor of 11.77 dB was derived from the equation:

 $EIRP = (Ed)^{2} / 30$

Where: E is the measured maximum field strength in V/m d is the distance in meters from which the field strength was measured (3 meters) EIRP is in W

The bandwidth correction factor of 34.8 dB was added to the marker noise value (dBm/Hz) on the spectrum analyzer display to convert it to dBm/3kHz for comparison with the limit.

Completed	by:
Holy	Alight


NORTHWEST				Power	Spec	tral De	nsity				w BETA /30/01
	EUT: Q5 RF								Work Orde	er: PROU0011	
Serial Nu	mber: EMC 0								Dat	te: 01/09/05	
Cust	omer: Produ	ct Creation Studi	0						Temperatur	re: 22°C	
Atten	dees: None					Teste	d by: Holly Ash	kannejhad	Humidi	ty: 31%	
Customer Re						Po	ower: 120VAC/6	OHz	Job Sit	te: EV01	
TEST SPECIFIC											
		R Part 15.247(e)		Year: 2004		Met	thod: FCC 97-11	4, ANSI C63.4	Yea	ar: 2003	
SAMPLE CALC				d fan aa' '							
Power Spectral	Density per 3	nalyzer is interna kHz bandwidth = r = 10*log(3kHz/1ł	Power Spectral					EIRP (dBm) co	nversion factor.		
EUT OPERATIN											
Modulated by P											
DEVIATIONS FR	ROM TEST ST	ANDARD									
None											
REQUIREMENT		al danait	te d free			d 0 dDa					
	power spectr	al density condu	cted from a hyb	ria transmitter (3 KHz band.				
RESULTS						AMPLITUDE)	Bm / 21-11-			
Pass SIGNATURE						Power Spectral I	vensity = -13.8 d	om / 3KHz			
		by Soling.	W								
DESCRIPTION	JP TEST		De	wor Sno	atral De-		Channe	1			
l			20	wer Spec	urai Der	nsity - Lov	v Channe	I			
[Mkr 2	2.405 037 9	9GHz *-4	8.6dBm/Hz						Tek	
	D-6 1	1 + 0 0 - 10				10-30/		Nee 04			
-0.2	REI LV.	1*-0.2dBm			1	10dB/	Ι	Atten Odi	⊳ 		
-10.2						•					
-20.2	F					: ×.					
Ţ	No No		4	Λ		N.M.	mon	mar	1 m	Mr. Mr.	
-30.2	V V	- Mar water	When when he we the	Wandard	pm/	<u> </u>		V V	V ^{AV[*]}		
-40.2			- WY								
-50.2						· · · · · · ·					
-60.2						: :					
-70.2						:					
-80.2						•					
-90.2											
-100.2	Freq	2.405 040	OGHz	I	1		ـــــــــــــــــــــــــــــــــــــ	j Span 300kH	I Iz		
	ResBW (v	idBW 10kH	Iz			1005		
Ī	LEVEL		RESBW	M	kr 2.40)5 037 9GH:	z				
L	KNOB 2		KNOB 1	K	EYPAD	Te	≥ktronix	2784			

NORTHWEST EMC	Power S	pectral Dens	sity		Rev BETA 01/30/01			
EUT:	Q5 RF			Work Order:	PROU0011			
Serial Number:	EMC 0x44040F			Date:	01/09/05			
Customer:	Product Creation Studio		Temperature:	22°C				
Attendees:	None	Holly Ashkannejhad	Humidity:	31%				
Customer Ref. No.:	N/A	Power:	120VAC/60Hz	Job Site:	EV01			
TEST SPECIFICATION	IS							
Specification:	47 CFR Part 15.247(e) Year: 2004	Method:	FCC 97-114, ANSI C63	.4 Year:	2003			
SAMPLE CALCULATIO	ONS							
Meter reading on spec	trum analyzer is internally compensated for cable loss, ante	nna factor, and field strength	(dBm/m) to EIRP (dBm)	conversion factor.				
Power Spectral Densit	ty per 3kHz bandwidth = Power Spectral Density per 1 Hz ba	dwidth + Bandwidth Correction	on Factor.					
Bandwidth Correction	Factor = 10*log(3kHz/1Hz)							
COMMENTS								
EUT OPERATING MOD	DES							
Modulated by PRBS a	t maximum data rate							
DEVIATIONS FROM T	EST STANDARD							
None								
REQUIREMENTS								
Maximum peak power	spectral density conducted from a hybrid transmitter does	ot exceed 8 dBm in any 3 kHz	band.					
RESULTS		AMPLITUDE						
Pass		Power Spectral Densit	ty = -14.3 dBm / 3kHz					
SIGNATURE								
Tested By:								
······································								
DESCRIPTION OF TES								
	Power Spectra	l Density - Mid Cl	hannel					

	Mkr 2.439 881 2GHz *-49.1dBm/Hz									
0.0	Ref Lvl	*O.OdBm			10dB/		Atten Odl	3		
-10.0										
-20.0					÷					
-30.0	m An	mr an		h	M	Mun	\wedge	. 4 *	$\Lambda_{r_{r}}$	
-40.0					¥~ :		www	been the mark that the second s	v · v	
-50.0										
-60.0					:					
-70.0										
-80.0										
-90.0										
-100.0										
	Freq 2	2.439 881	5GHz			5	5pan 300kH	Iz		
	ResBW 31	kHz		v	idBW 10kHz		SWP	1005		
	LEVEL		RESBW	м	kr 2.439 881 2GH	z				

NORTHWEST				Power	Spectral De	ensity		Rev BETA 01/30/01
	EUT: Q5	RF					Work Order:	PROU0011
Serial Nu	umber: EM	C 0x44040F					Date:	01/09/05
		duct Creation	Studio				Temperature:	
	ndees: No					ed by: Holly Ashkannejhad		
Customer Re					Р	ower: 120VAC/60Hz	Job Site:	EV01
TEST SPECIFIC		050 Dent 45 04	7(-)	V			Xaam	2002
SAMPLE CALC		CFR Part 15.24	7(e)	Year: 2004	IVIE	ethod: FCC 97-114, ANSI C	tear:	2003
Meter reading o	on spectrui Density p	n analyzer is ir er 3kHz bandw	idth = Power Spec		s, antenna factor, and field stro Hz bandwidth + Bandwidth Co		m) conversion factor.	
EUT OPERATIN Modulated by P		wimum data ra	40					
DEVIATIONS FR			te					
None	ROMITEST	STANDARD						
REQUIREMENT	s							
		ctral density c	onducted from a h	ybrid transmitter	does not exceed 8 dBm in any	/ 3 kHz band.		
RESULTS					AMPLITUDE			
Pass						Density = -15.6 dBm / 3kHz	2	
SIGNATURE								
		Holy A	light					
DESCRIPTION	OF TEST				tual Danaita Ilia			
			P	ower Spec	tral Density - Hig	in Channel		
-								
	10.000	2.479 8		EQ 4-4 Dec / Ha				মিথিমি
	Mkr	2.479 8	SI JGHZ ^	-50.4dBm/Hz	2			
	Def I	1+0 040			10-1P (. 04P	
0.0	REII	.vl*0.0dB	m		10dB/	Atter	1 UQB	
0.0								
-10.0					•			
-20.0	ΛΙ	ma m	N l	ha A		n L	T h	
-30.0	v Vm/		\cdot			the way have	when the market of the second	1 mm
-40.0					· · · · · · · · · · · · · · · · · · ·			
-50.Q								
-60.0								
-00.0								
-70.0								
T					:			
-80.0								
-90.0					:			
					:			
-100.0								
	Freq	2.479	884 OGHz			Span 3	OOkHz	
	ResBl	J 3kHz		v	idBW 10kHz		SWP 100S	
ł		1						
	LEVEI	.	RESBW		kr 2.479 881 3GH	[z		
			112000		2.1/2 OOI 300			
L		_						
	KNOB	2	KNOB 1	K	EYPAD T	ektronix 278	34	

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
Low
Mid
High

Operating Modes Investigated: Transmit

Data Rates Investigated: Maximum

Output Power Setting(s) Investigated: Maximum

Power Input Settings Investigated:

Battery

Frequency Range Investigated				
Start Frequency	30 MHz	Stop Frequency	26 GHz	

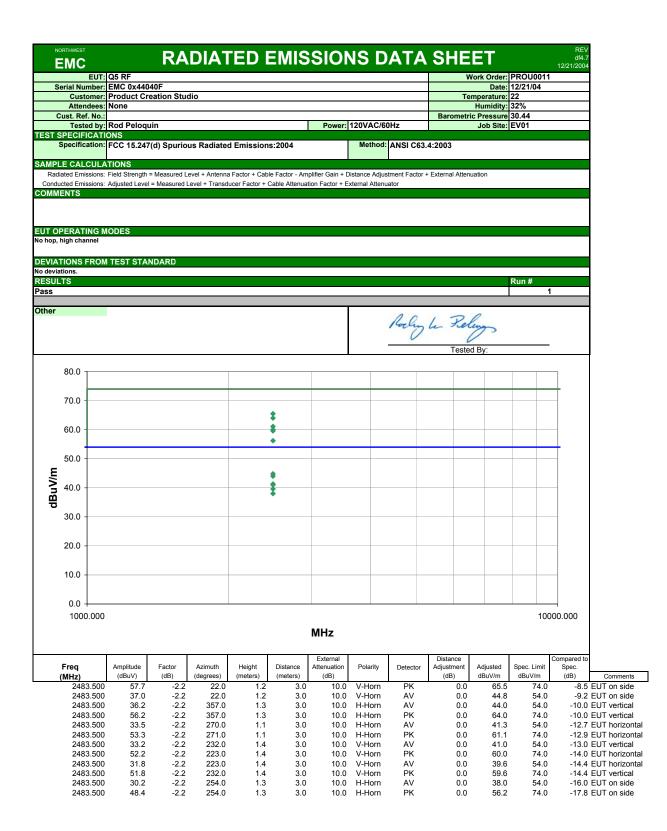
Software\Firmware Applied During Test					
Exercise software	se software Standard Production Software Version Unknown				
Description					
The system was tested using standard operating production software to exercise the functions of the device during the testing including channel, mode, and power.					

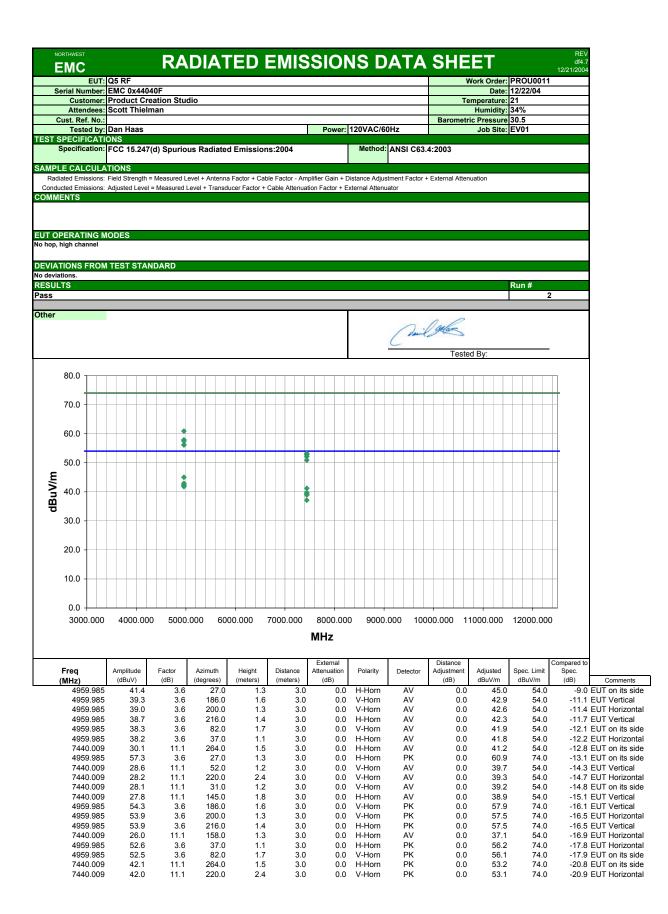
EUT and Peripherals in Test Setup Boundary				
Description	Manufacturer	Model/Part Number	Serial Number	
EUT- Q5 RF	Quizdom, Inc.	Q5 RF	EMC 0x44040F	
AC Power Adapter - 120V	CUI, Inc.	41-9-500R	N/A	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Leads (120V Adapter)	No	1.8	PA	AC Power Adapter - 120V	EUT- Q5 RF
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

Measurement Equipment						
Description	Manufacturer	Model	Identifier	Last Cal	Interval	
Antenna, Horn	EMCO	3160-09	AHG	NCR	NA	
Pre-Amplifier	Miteq	JSD4-18002600-26-8P	APU	10/08/2003	15 mo	
Spectrum Analyzer	Tektronix	2784	AAO	01/02/2005	12 mo	
Antenna, Horn	EMCO	3160-08	AHK	NCR	NA	
Pre-Amplifier	Miteq	AMF-4D-005180-24-10P	APC	10/08/2003	15 mo	
Antenna, Horn	EMCO	3115	AHC	09/07/2004	12 mo	
Pre-Amplifier	Miteq	AMF-4D-005180-24-10P	APJ	01/05/2004	13 mo	
Pre-Amplifier	AR	LN1000A	APS	02/05/2004	13 mo	
Antenna, Biconilog	EMCO	3141	AXE	12/03/2003	24 mo	
High Pass Filter	Micro-Tronics	HPM50111	HFO	04/13/2004	13 mo	
Quasi-Peak Adapter	Hewlett-Packard	85650A	AQF	12/02/2004	13 mo	
Spectrum Analyzer	Hewlett-Packard	8566B	AAL	12/02/2004	13 mo	

Requirement: The field strength of any spurious emissions or modulation products that fall in a restricted band, as defined in 47 CFR 15.205, is measured. The peak level must comply with the limits specified in 47 CFR 15.35(b). The average level (taken with a 10Hz VBW) must comply with the limits specified in 15.209.


Configuration: The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.4:2003). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.


Bandwidths Used for Meas	surements			
Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)	
0.01 – 0.15	1.0	0.2	0.2	
0.15 – 30.0	10.0	9.0	9.0	
30.0 - 1000	100.0	120.0	120.0	
Above 1000	1000.0	N/A	1000.0	
Massuraments were made using the bandwidths and detectors specified. No video filter was used				

Measurements were made using the bandwidths and detectors specified. No video filter was used.

Completed by:

Holy Arlingh

