

KSIGN(Guangdong) Testing Co, Ltd.

First Floor West Side, Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu Village, Shatou Community, Shajing Street, Bao'an District, Shenzhen City, Guangdong Province, P. R. China Tel.: +(86) 755-2985 2678 Fax:+(86) 755-2985 2397 E-mail: info@gdksign.cn Website:www.gdksign.com

EST REPORT

Report No....: KS2003S00020E

FCC ID-----: **2ATQ9-K2**

Applicant..... Dongguan Gorsun Electronics Co., Ltd

Address..... No.140 Chashi Road, Tangjiao Village, Chashan Town, Dongguan,

China

Dongguan Gorsun Electronics Co..Ltd Manufacturer

Address..... No.140 Chashi Road, Tangjiao Village, Chashan Town, Dongguan,

Product Name....: **Wireless Earphones**

Trade Mark....: N/A

Model/Type reference....: K2

Listed Model(s)..... N/A

Standard.....:: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of Receipt..... Mar.11, 2020

Date of Test Date....: Mar.11, 2020-Mar.17, 2020

Date of issue..... Mar. 17, 2020

Test result....:: **Pass**

Compiled by:

(Printed name+signature) Emiya Lin

Supervised by:

(Printed name+signature) Kelly Cheng

Approved by: Cary Luo

(Printed name+signature)

Testing Laboratory Name.....: KSIGN(Guangdong) Testing Co., Ltd.

First Floor West Side, Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu Village, Shatou Community, Shajing Street, Bao'an District, Shenzhen City, Guangdong Province, P. R. China Address....:

muangdong

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by KSIGN. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to KSIGN within 15 days since the date when the report is received. It will not

be taken into consideration beyond this limit. The test report merely correspond to the test sample.

IABLE OF	CONTENTS	Page
1. TEST SUMMARY		3
1.1. Test Standards		3
1.2. REPORT VERSION		3
1.3. TEST DESCRIPTION		
1.4. TEST FACILITY		
1.5. MEASUREMENT UNCERTAINTY		
1.6. Environmental conditions		6
2. GENERAL INFORMATION		
2.1. CLIENT INFORMATION		
2.2. GENERAL DESCRIPTION OF EUT		7
2.3. OPERATION STATE		
2.4. MEASUREMENT INSTRUMENTS LIST		<u>S</u>
2.5. Test Software		g
3. TEST ITEM AND RESULTS		10
3.1. Antenna requirement		
3.2. CONDUCTED EMISSION		11
3.3. PEAK OUTPUT POWER		
3.4. 99% OCCUPIED BANDWIDTH & 20DB BANDWIDTH.		_
3.5. CARRIER FREQUENCIES SEPARATION		
3.6. NUMBER OF HOPPING CHANNEL		
3.7. DWELL TIME		
3.8. BAND EDGE EMISSIONS(RADIATED)		
3.10. RADIATED SPURIOUS EMISSION (CONDUCTED)		
3.11. PSEUDORANDOM FREQUENCY HOPPING SEQUEN		
4. EUT TEST PHOTOS		
5. PHOTOGRAPHS OF EUT CONSTRUCTIONAL	•••••	59

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.247: Operation within the bands of 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

1.2. Report version

Revised No.	Date of issue	Description
01	Mar.17, 2020	Original

1.3. Test Description

FCC Part 15 Subpart C(15.247)			
	Standard Section	Decult	
Test Item	FCC	Result	Test Engineer
Antenna Requirement	15.203	Pass	Emiya Lin
Conducted Emission	15.207	Pass	Emiya Lin
Restricted Bands	15.205	Pass	Emiya Lin
Hopping Channel Separation	15.247(a)(1)	Pass	Emiya Lin
Dwell Time	15.247(a)(1)	Pass	Emiya Lin
Peak Output Power	15.247(b)(1)	Pass	Emiya Lin
Number of Hopping Frequency	15.247(b)(1)	Pass	Emiya Lin
Band Edge Emissions	15.247(d)	Pass	Emiya Lin
Radiated Spurious Emission	15.247(c)&15.209	Pass	Emiya Lin
99% Occupied Bandwidth & 20dB Bandwidth	15.247(a)	Pass	Emiya Lin
Pseudorandom Frequency Hopping Sequence	15.247 (a)(1)	Pass	Emiya Lin

Note: The measurement uncertainty is included in the test result.

1.4. Test Facility

Address of the report laboratory

KSIGN(Guangdong) Testing Co., Ltd.

First Floor West Side, Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu Village, Shatou Community, Shajing Street, Bao'an District, Shenzhen City, Guangdong Province, P. R. China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

A2LA-Lab Cert. No.: 5457.01

KSIGN(Guangdong) Testing Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

IC Registration No.: CN0096

The 3m alternate test site of KSIGN(Guangdong) Testing Co., Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: CN0096

FCC-Registration No.: CN1272

KSIGN(Guangdong) Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the KSIGN(Guangdong) Testing Co., Ltd. system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Below is the best measurement capability for KSIGN(Guangdong) Testing Co., Ltd.

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.42 dB	(1)
Transmitter power Radiated	2.14 dB	(1)
Conducted spurious emissions 9kHz~40GHz	1.60 dB	(1)
Radiated spurious emissions 9kHz~40GHz	2.20 dB	(1)
Conducted Emissions 9kHz~30MHz	3.20 dB	(1)
Radiated Emissions 30~1000MHz	4.70 dB	(1)
Radiated Emissions 1~18GHz	5.00 dB	(1)
Radiated Emissions 18~40GHz	5.54 dB	(1)
Occupied Bandwidth	2.80 dB	(1)

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

1.6. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
Relative Humidity:	30~60 %
Air Pressure:	950~1050mba

2. GENERAL INFORMATION

2.1. Client Information

Applicant:	Dongguan Gorsun Electronics Co.,Ltd
Address:	No.140 Chashi Road, Tangjiao Village, Chashan Town, Dongguan, China
Manufacturer:	Dongguan Gorsun Electronics Co.,Ltd
Address:	No.140 Chashi Road, Tangjiao Village, Chashan Town, Dongguan, China

2.2. General Description of EUT

Product Name:	Wireless Earphones	
Marketing Name:	N/A	
Model/Type reference:	K2	
Listed Model(s):	N/A	
Model Difference:	N/A	
Power Source:	DC 5V output from the USB port	
Power supply(Battery):	DC 3.7V 60mAh from Li-ion Battery	
Hardware version:	K2_V7	
Software version:	N/A	
Bluetooth 5.0		
Modulation:	GFSK(DH5), π /4-DQPSK(2DH5)	
Operation frequency:	2402MHz~2480MHz	
Max Peak Output Power: DH5 : 1.40dBm		
Max 1 cak Output 1 ower.	2DH5: 2.21dBm	
Channel number:	79	
Channel separation:	1MHz	
Antenna type:	PCB Antenna	
Antenna gain:	-0.58dBi	
Note: Left earphone was tested		

2.3. Operation state

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing. BT EDR, 79 channels are provided to the EUT. Channels 00/39/78 were selected for testing. Operation Frequency List:

Report No.: KS2003S00020E

Channel	Frequency (MHz)
00	2402
01	2403
i i	:
38	2440
39	2441
40	2442
i	:
77	2479
78	2480

Note: The display in grey were the channel selected for testing.

Test mode

For RF test items:

The engineering test program was provided and enabled to make EUT continuous transmit

For AC power line conducted emissions:

The EUT was set to connect with the Bluetooth instrument under large package sizes transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

2.4. Measurement Instruments List

Tonscend JS0806-2 Test system					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Until
1	Spectrum Analyzer	R&S	FSV40-N	101798	Apr.25, 2020
2	Vector Signal Generator	Agilent	N5182A	MY50142520	Apr.10, 2020
3	Analog Signal Generator	HP	83752A	3344A00337	Apr.10, 2020
4	Power Sensor	Agilent	E9304A	MY50390009	Apr.10, 2020
5	Power Sensor	Agilent	E9300A	MY41498315	Apr.10, 2020
6	Wideband Radio Communication Tester	R&S	CMU200	115297	Apr.10, 2020
7	Climate Chamber	Angul	AGNH80L	1903042120	Apr.10, 2020
8	Dual Output DC Power Supply	Agilent	E3646A	MY40009992	Apr.10, 2020
9	RF Control Unit	Tonscend	JS0806-2	/	Apr.10, 2020

Transı	Transmitter spurious emissions & Receiver spurious emissions				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1	EMI Test Receiver	R&S	ESR	102525	Apr.10, 2020
2	High Pass Filter	Chengdu E-Microwave	OHF-3-18-S	0E01901038	Apr.15, 2020
3	High Pass Filter	Chengdu E-Microwave	OHF-6.5-18-S	0E01901039	Apr.15, 2020
4	Spectrum Analyzer	HP	8593E	3831U02087	Apr.10, 2020
5	Ultra-Broadband logarithmic period Antenna	Schwarzbeck	VULB 9163	01230	Apr.17, 2020
6	Loop Antenna	Beijin ZHINAN	ZN30900C	18050	Apr.17, 2020
7	Horn Antenna	R&S	Sep-60	69483	Apr.10, 2020
8	Spectrum Analyzer	R&S	FSV40-N	101798	Apr.25, 2020
9	Horn Antenna	Schwarzbeck	BBHA 9120 D	2023	Apr.10, 2020
10	Pre-Amplifier	Schwarzbeck	BBV 9745	9745#129	Apr.10, 2020
11	Pre-Amplifier	EMCI	EMC051835SE	980662	Apr.17, 2020
12	Power Meter	Agilent	E4419B	GB41293710	Apr.10, 2020

Note:

2.5. Test Software

Software name	Model	Version
Conducted emission Measurement Software	EZ-EMC	EMC-Con 3A1.1
Radiated emission Measurement Software	EZ-EMC	FA-03A.2.RE
Bluetooth and WIFI Test System	JS1120-3	2.5.77.0418

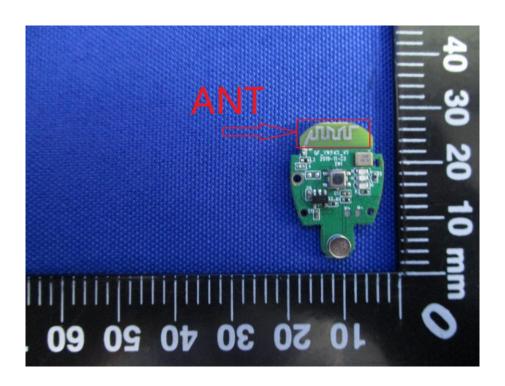
¹⁾The Cal. Interval was one year. 2)The cable loss has calculated in test result which connection between each test instruments.

3. TEST ITEM AND RESULTS

3.1. Antenna requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Test Result

The directional gain of the antenna less than 6dBi, please refer to the EUT internal photographs antenna photo.

3.2. Conducted Emission

Limit

Conducted Emission Test Limit

Fraguency	Maximum RF Line Voltage (dBμV)		
Frequency	Quasi-peak Level Average Leve		
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	

Report No.: KS2003S00020E

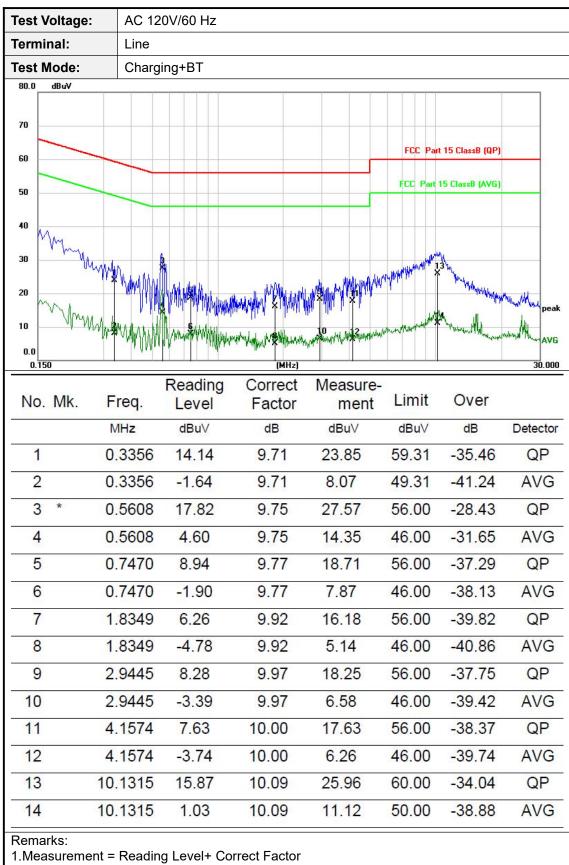
Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

Test Configuration

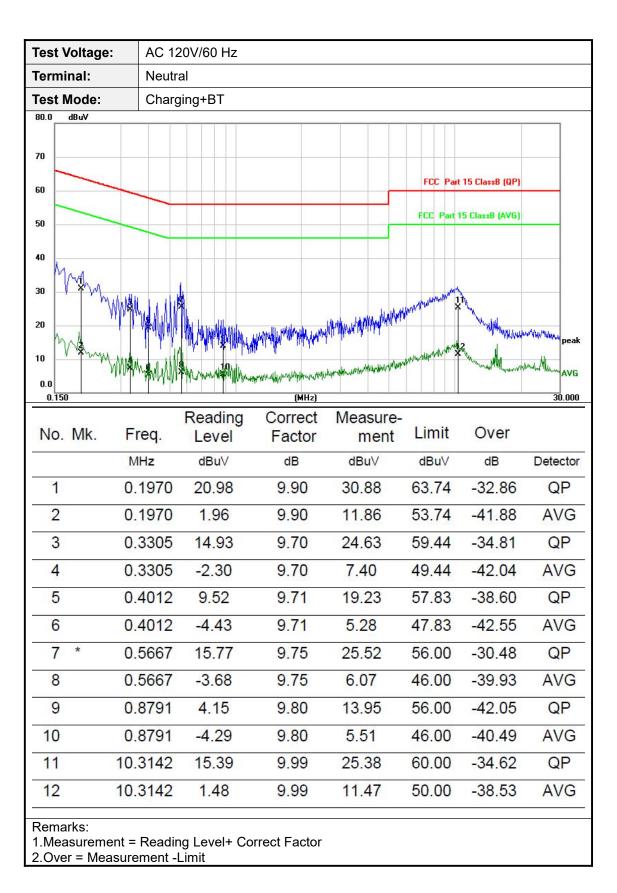
Test Procedure

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50ohm /50uH coupling impedance for the measuring equipment.
 - The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 7. During the above scans, the emissions were maximized by cable manipulation.

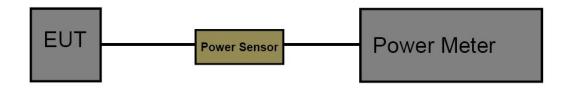

Test Mode:

Please refer to the clause

Test Results


Pre-scan DH5, 2DH5 modulation, and found the 2DH5 modulation 2402MHz which it is worse case, so only show the test data for worse case.

^{2.}Over = Measurement -Limit


3.3. Peak Output Power

<u>Limit</u>

Test Item	Limit	Frequency Range(MHz)
Peak Output Power	Hopping Channels>75 Power<1W(30dBm) Other <125mW(21dBm)	2400~2483.5

Report No.: KS2003S00020E

Test Configuration

Test Procedure

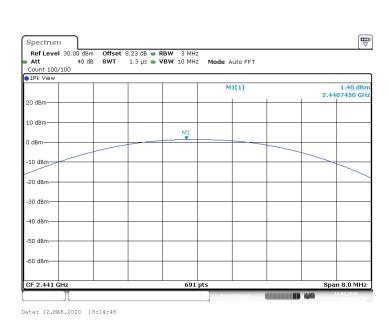
- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. Spectrum Setting:

Peak Detector: RBW=1 MHz, VBW=3 MHz for bandwidth less than 1MHz. RBW=3 MHz, VBW=10 MHz for bandwidth more than 1MHz.

Test Mode

Please refer to the clause 2.3

Test Result



Test Mode:	DH5			
Channel frequen	cy (MHz)	Test Result (dBm)	Limit (dBm)	
2402		1.03		
2441		1.40	30	
2480 1.01				
2402 MHz				

2441 MHz

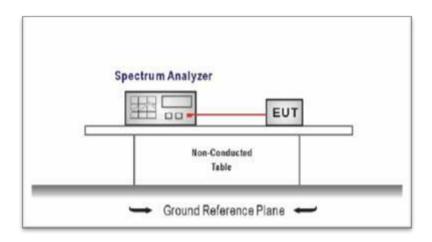
Date: 12.MAR.2020 18:14:34



Test Mode:	2DH5		
Channel frequence	cy (MHz)	Test Result (dBm)	Limit (dBm)
2402		1.93	
2441		2.21	30
2480		1.79	

Date: 12.MAR.2020 18:15:13

2441 MHz


3.4. 99% Occupied Bandwidth & 20dB Bandwidth

Limit

Test Item	Limit	Frequency Range(MHz)
Bandwidth	<=1 MHz (20dB bandwidth)	2400~2483.5

Report No.: KS2003S00020E

Test Configuration

Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. Spectrum Setting:

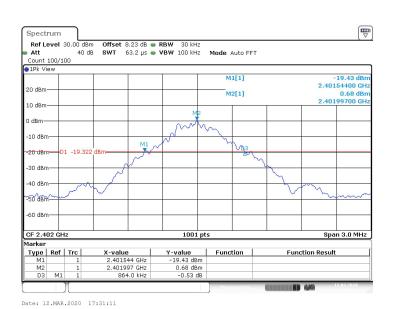
20dB Bandwidth

- (1) Set RBW = 30 kHz.
- (2) Set the video bandwidth (VBW) ≥ 3 RBW.
- (3) Detector = Peak.
- (4) Trace mode = Max hold.
- (5) Sweep = Auto couple.

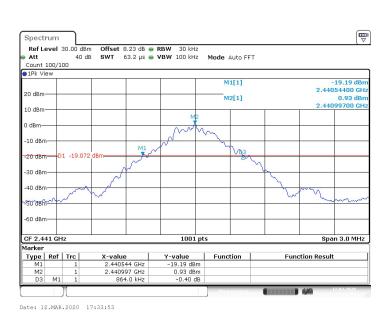
99% Occupied Bandwidth

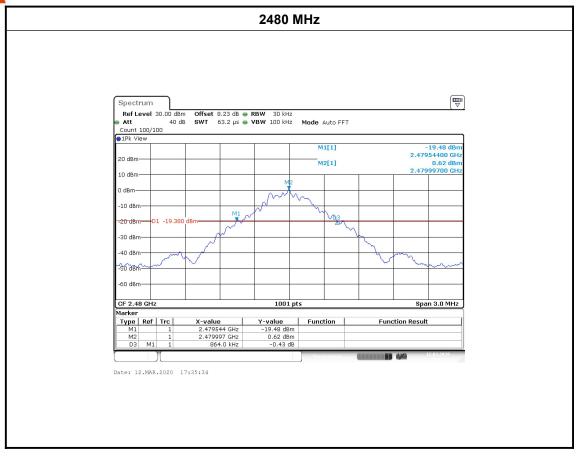
- (1) Set RBW = 20 kHz.
- (2) Set the video bandwidth (VBW) =100 kHz.
- (3) Detector = Peak.
- (4) Trace mode = Max hold.
- (5) Sweep = Auto couple.

NOTE: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

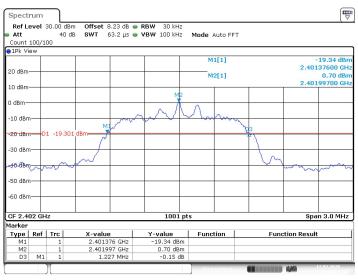

Test Mode

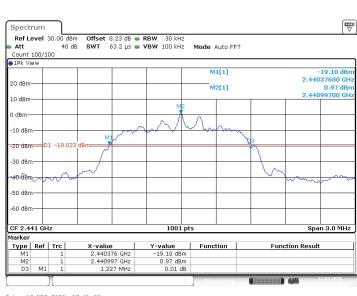
Please refer to the clause 2.3.


Test Results

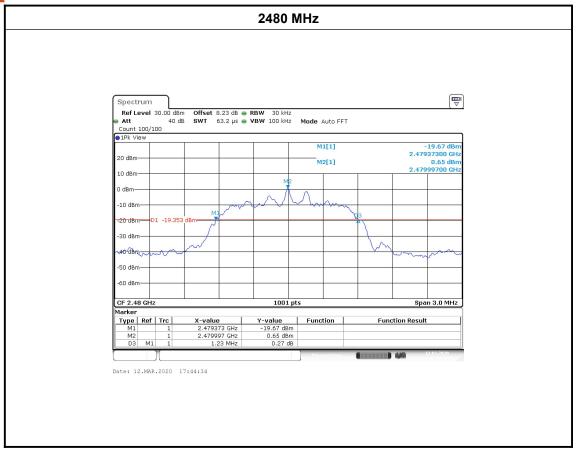

Test Mode:	DH	DH5				
Channel frequer (MHz)	ісу	20dB Bandwidth [MHz]	FL[MHz]	FH[MHz]	Verdict	
2402		0.864	2401.544	2402.408	PASS	
2441		0.864	2440.544	2441.408	PASS	
2480		0.864	2479.544	2480.408	PASS	

2441 MHz



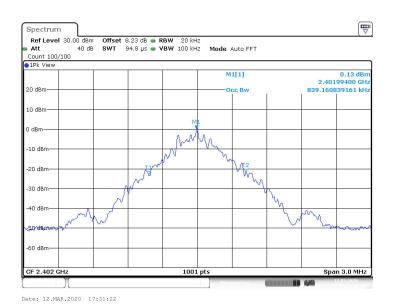


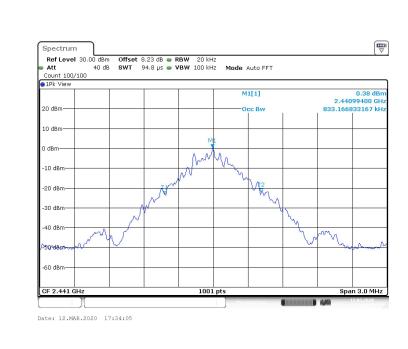
Test Mode:	2DI	2DH5				
Channel frequen (MHz)	су	20dB Bandwidth [MHz]	FL[MHz]	FH[MHz]	Verdict	
2402		1.227	2401.376	2402.603	PASS	
2441		1.227	2440.376	2441.603	PASS	
2480		1.230	2479.373	2480.603	PASS	

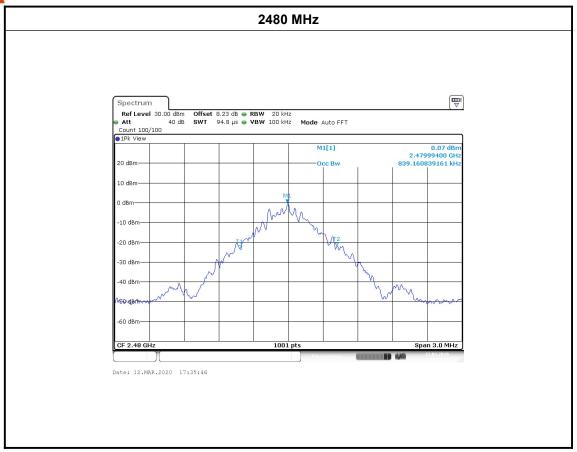

Date: 12.MAR.2020 17:38:22

2441 MHz

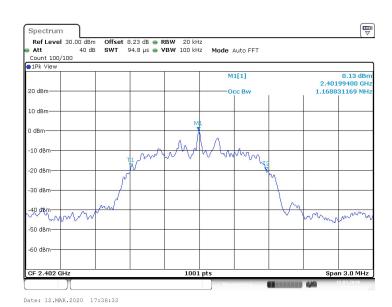
Date: 12.MAR.2020 17:41:02

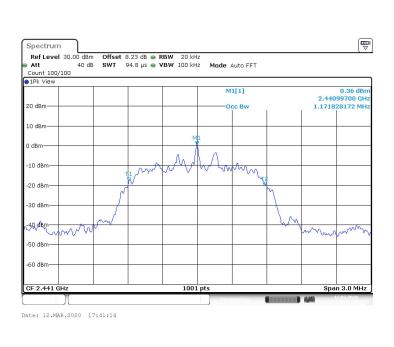


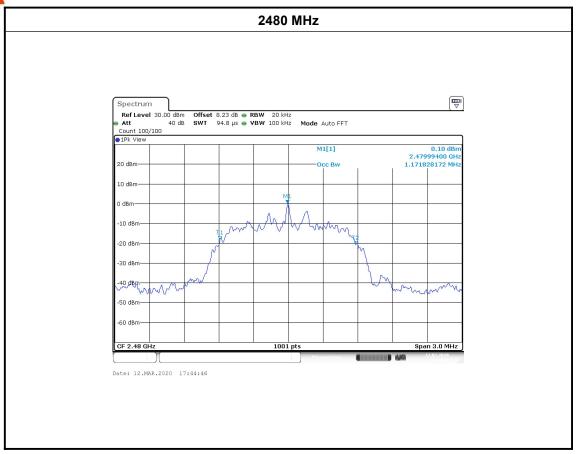



Test Mode:	DH	DH5				
Channel frequen (MHz)	су	99% OCB [MHz]	FL[MHz]	FH[MHz]	Verdict	
2402		0.839	2401.577	2402.417	PASS	
2441		0.833	2440.580	2441.414	PASS	
2480		0.839	2479.577	2480.417	PASS	
			2400 1411			

2441 MHz

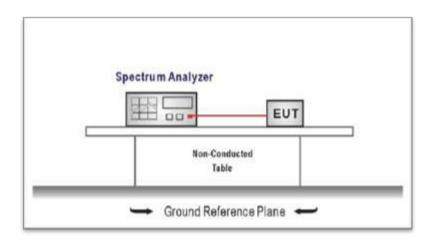





Test Mode:	2DI	2DH5				
Channel frequer (MHz)	ісу	99% OCB [MHz]	FL[MHz]	FH[MHz]	Verdict	
2402		1.169	2401.410	2402.578	PASS	
2441		1.172	2440.410	2441.581	PASS	
2480		1.172	2479.410	2480.581	PASS	
2480		1.172	2479.410	2400.581	PASS	

2441 MHz

3.5. Carrier Frequencies Separation


LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):

frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25kHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

Test Item	Limit	Frequency Range(MHz)
Channel Separation	>25KHz or >two-thirds of the 20 dB bandwidth Which is greater	2400~2483.5

Test Configuration

Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. Spectrum Setting:
 - (1) Set RBW = 100 kHz.
 - (2) Set the video bandwidth (VBW) ≥ 3 RBW.
 - (3) Detector = Peak.
 - (4) Trace mode = Max hold.
 - (5) Sweep = Auto couple.

NOTE: The EUT was set to continuously transmitting in each mode and low, middle and high channel for the test, and found the middle channel which is the worse case, so only show the test date for worse case.

Test Mode

Please refer to the clause 2.3.

Test Results

Test Mode: DH5 Hopping Mode Test Mode Result[MHz] Limit[MHz] Verdict DH5 >=0.576 **PASS DH5 Hopping Mode** Spectrum Ref Level 30.00 dBm Offset 8.23 dB • RBW 100 kHz
Att 40 dB SWT 18.9 µs • VBW 300 kHz
Count 100/100

1Pk View Mode Auto FFT 0.98 dBr 2.44099855 GH 0.03 d 1.00000 MH D2[1] 10 dBm -20 dBm -30 dBm -50 dBm -60 dBm

Stop 2.4425 GHz

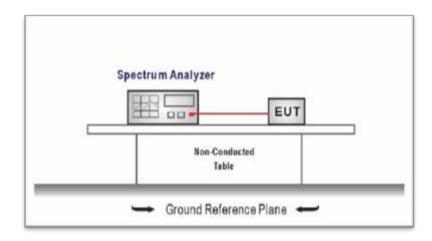
Test Mode: 2DH5 Hopping Mode **Test Mode** Result[MHz] Limit[MHz] Verdict 2DH5 >=0.818 **PASS 2DH5 Hopping Mode** Spectrum Ref Level 30.00 dBm

Att 40 dB

Count 100/100 **Offset** 8.23 dB **● RBW** 100 kHz **SWT** 18.9 μs **● VBW** 300 kHz Mode Auto FFT M1[1] 1.04 dBn 2.44115797 GH 0.04 di 1.00000 MH -10 dBm--30 dBm--40 dBm -50 dBm

Start 2.4405 GHz

Date: 12.MAR.2020 18:05:59


3.6. Number of Hopping Channel

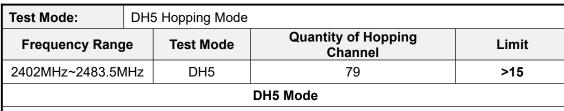
<u>Limit</u>

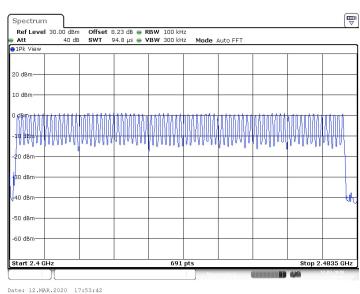
Section	Test Item	Limit
15.247	Number of Hopping Channel	>15

Report No.: KS2003S00020E

Test Configuration

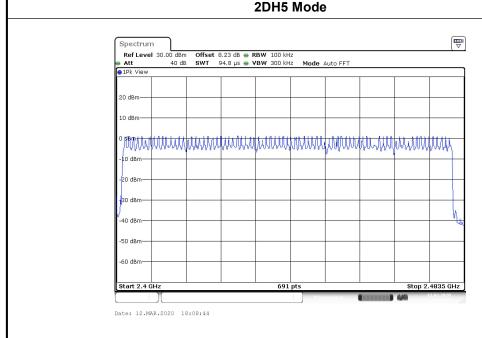
Test Procedure


- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. Spectrum Setting:
 - (1) Peak Detector: RBW=100 kHz, VBW≥RBW, Sweep time= Auto.


Test Mode

Please refer to the clause 2.3.

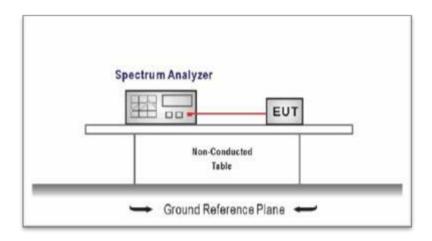
Test Result



Test Mode: 2DH5 Hopping Mode

Frequency Range Test Mode Quantity of Hopping Channel

2402MHz~2483.5MHz 2DH5 79 >15


3.7. Dwell Time

<u>Limit</u>

Section	Test Item	Limit
15.247(a)(1)	Average Time of Occupancy	0.4 sec

Report No.: KS2003S00020E

Test Configuration

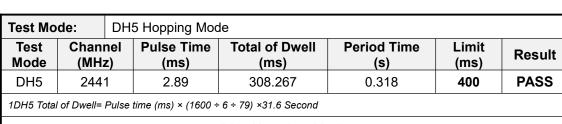
Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. Spectrum Setting:
 - (1) Spectrum Setting: RBW=1MHz, VBW≥RBW.
 - (2) Use video trigger with the trigger level set to enable triggering only on full pulses.
 - (3) Sweep Time is more than once pulse time.
 - (4) Set the center frequency on any frequency would be measure and set the frequency span to zero.
 - (5) Measure the maximum time duration of one single pulse.
 - (6) Set the EUT for packet transmitting.

Test Mode

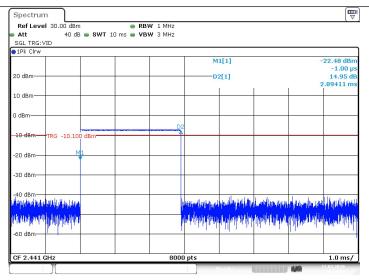
Please refer to the clause 2.3

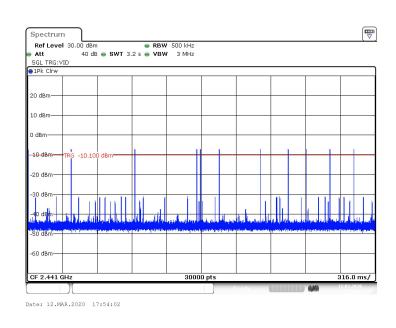
Test Result


Note:

- 1.We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.
- 2.Dwell time=Pulse time (ms) × (1600 ÷ 2 ÷ 79) ×31.6 Second for DH1, 2DH1, 3DH1

Dwell time=Pulse time (ms) × (1600 ÷ 4 ÷ 79) ×31.6 Second for DH3, 2DH3, 3DH3

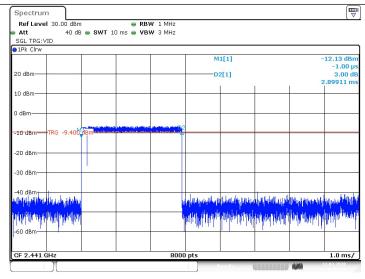

Dwell time=Pulse time (ms) × (1600 ÷ 6 ÷ 79) ×31.6 Second for DH5, 2DH5, 3DH5



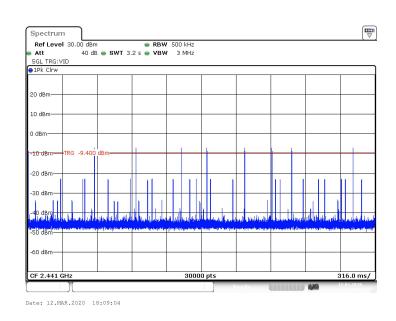
DH5 Hopping Mode

2441 MHz

Date: 12.MAR.2020 17:53:55



Test Mode: 2DH5 Hopping Mode Test **Pulse Time Total of Dwell Period Time** Channel Limit Result Mode (MHz) (ms) (ms) (s) (ms) 2DH5 2441 2.90 309.333 0.261 400 **PASS**

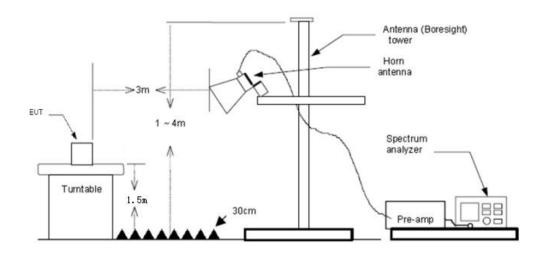

2DH5 Total of Dwell= Pulse time (ms) × (1600 ÷ 6 ÷ 79) ×31.6 Second

2DH5 Hopping Mode

2441 MHz

Date: 12.MAR.2020 18:08:58

3.8. Band Edge Emissions(Radiated)


Limit

Restricted Frequency Band	(dBuV/m)(at 3m)		
(MHz)	Peak	Average	
2310 ~2390	74	54	
2483.5 ~2500	74	54	

Report No.: KS2003S00020E

Note: All restriction bands have been tested, only the worst case is reported.

Test Configuration

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- The receiver set as follow:

RBW=1MHz, VBW=3MHz PEAK detector for Peak value.

RBW=1MHz, VBW=10Hz with Average Detector for Average Value.

Test Mode

Please refer to the clause 2.3.

Test Results

Note:

1.Measurement = Reading level + Correct Factor

Correct Factor=Antenna Factor + Cable Loss -Preamplifier Factor

2.Pre-scan DH5, 2DH5 modulation, and found the 2DH5 modulation which it is worse case, so only show the test data for worse case.