FCC Measurement/Technical Report on Hearing protection Headset with Bluetooth Peltor WS Alert XPI / XP FCC ID: Y9ZMRX21AWS6 IC: 4406A-MRX21AWS6 Test Report Reference: MDE_3M_1601_FCCc Test Laboratory: 7layers GmbH Borsigstrasse 11 40880 Ratingen Germany #### Note: The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory. 7layers GmbH Borsigstraße 11 40880 Ratingen, Germany T +49 (0) 2102 749 0 F +49 (0) 2102 749 350 Geschäftsführer/ Managing Directors: Frank Spiller Bernhard Retka Alexandre Norré-Oudard Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company www.7layers.com #### Table of Contents | 1 | Applied Standards and Test Summary | 3 | |-----|---|----| | 1.1 | Applied Standards | 3 | | 1.2 | FCC-IC Correlation Table | 4 | | 1.3 | Measurement Summary / Signatures | 5 | | 2 | Administrative Data | 8 | | 2.1 | Testing Laboratory | 8 | | 2.2 | Project Data | 8 | | 2.3 | Applicant Data | 3 | | 2.4 | Manufacturer Data | 8 | | 3 | Test object Data | 9 | | 3.1 | General EUT Description | Ç | | 3.2 | EUT Main components | 10 | | 3.3 | Ancillary Equipment | 10 | | 3.4 | Auxiliary Equipment | 11 | | 3.5 | EUT Setups | 11 | | 3.6 | Test Channels | 11 | | 3.7 | Product labelling | 11 | | 4 | Test Results | 12 | | 4.1 | Conducted Emissions at AC Mains | 12 | | 4.2 | Occupied Bandwidth (6 dB) | 15 | | 4.3 | Occupied Bandwidth (99%) | 17 | | 4.4 | Peak Power Output | 19 | | 4.5 | Spurious RF Conducted Emissions | 21 | | 4.6 | Transmitter Spurious Radiated Emissions | 23 | | 4.7 | Band Edge Compliance Conducted | 28 | | 4.8 | Band Edge Compliance Radiated | 31 | | 4.9 | Power Density | 33 | | 5 | Test Equipment | 35 | | 6 | Antenna Factors, Cable Loss and Sample Calculations | 39 | | 6.1 | LISN R&S ESH3-Z5 (150 kHz – 30 MHz) | 39 | | 6.2 | Antenna R&S HFH2-Z2 (9 kHz - 30 MHz) | 40 | | 6.3 | Antenna R&S HL562 (30 MHz - 1 GHz) | 41 | | 6.4 | Antenna R&S HF907 (1 GHz – 18 GHz) | 42 | | 6.5 | Antenna EMCO 3160-09 (18 GHz - 26.5 GHz) | 43 | | 6.6 | Antenna EMCO 3160-10 (26.5 GHz – 40 GHz) | 44 | | 7 | Setup Drawings | 45 | | 8 | Measurement Uncertainties | 46 | | 9 | Photo Report | 46 | #### 1 APPLIED STANDARDS AND TEST SUMMARY #### 1.1 APPLIED STANDARDS #### Type of Authorization Certification for an Intentional Radiator. #### **Applicable FCC Rules** Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15 (10-1-16 Edition). The following subparts are applicable to the results in this test report. Part 2, Subpart J - Equipment Authorization Procedures, Certification Part 15, Subpart C – Intentional Radiators § 15.201 Equipment authorization requirement § 15.207 Conducted limits § 15.209 Radiated emission limits; general requirements § 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz #### Note 1: (DTS Equipment) The tests were selected and performed with reference to the FCC Public Notice "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247, 558074 D01 DTS Meas Guidance v04, 2017-04-05". ANSI C63.10–2013 is applied. #### Note 2: (FHSS Equipment) The tests were selected and performed with reference to the FCC Public Notice DA 00-705, released March 30, 2000. Instead of applying ANSI C63.4-1992 which is referenced in the FCC Public Note, the newer ANSI C63.10-2013 is applied. #### **Summary Test Results:** The EUT complied with all performed tests as listed in chapter 1.3 Measurement Summary / Signatures. TEST REPORT REFERENCE: MDE_3M_1601_FCCc #### 1.2 FCC-IC CORRELATION TABLE # Correlation of measurement requirements for DTS (e.g. WLAN 2.4 GHz, BT LE) equipment from FCC and IC #### DTS equipment | Measurement | FCC reference | IC reference | |---|-------------------------------|--| | Conducted emissions on AC
Mains | § 15.207 | RSS-Gen Issue 4: 8.8 | | Occupied bandwidth | § 15.247 (a) (2) | RSS-247 Issue 1: 5.2 (1) | | Peak conducted output power | § 15.247 (b) (3), (4) | RSS-247 Issue 1: 5.4 (4) | | Transmitter spurious RF conducted emissions | § 15.247 (d) | RSS-Gen Issue 4: 6.13 /
8.9/8.10;
RSS-247 Issue 1: 5.5 | | Transmitter spurious radiated emissions | § 15.247 (d);
§ 15.209 (a) | RSS-Gen Issue 4: 6.13 /
8.9/8.10;
RSS-247 Issue 1: 5.5 | | Band edge compliance | § 15.247 (d) | RSS-247 Issue 1: 5.5 | | Power density | § 15.247 (e) | RSS-247 Issue 1: 5.2 (2) | | Antenna requirement | § 15.203 / 15.204 | RSS-Gen Issue 4: 8.3 | | Receiver spurious emissions | _ | _ | #### 1.3 MEASUREMENT SUMMARY / SIGNATURES | 47 CFR CHAPTER I I | FCC PART 15 Subpart C | § 15.207 | |--------------------|-----------------------|----------| | 815 247 | | | Conducted Emissions at AC Mains The measurement was performed according to ANSI C63.10 Final Result OP-Mode Setup FCC IC Operating mode worst case Setup_AC01_ Passed Passed ACDC 47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247 (a) (2) §15.247 Occupied Bandwidth (6 dB) The measurement was performed according to ANSI C63.10 Final Result OP-Mode
Radio Technology, Operating FrequencySetupFCCICBluetooth LE, highSetup_AE01PassedPassed Bluetooth LE, low Setup_AE01 Passed Passed Bluetooth LE, mid Setup_AE01 Passed Passed ## 47 CFR CHAPTER I FCC PART 15 Subpart C - §15.247 Occupied Bandwidth (99%) The measurement was performed according to ANSI C63.10 Final Result **FCC** IC **OP-Mode** Setup Radio Technology, Operating Frequency Bluetooth LE, high Setup_AE01 N/A Passed Bluetooth LE, low Setup_AE01 N/A Passed Setup_AE01 Bluetooth LE, mid N/A Passed ### 47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247 (b) (3) §15.247 Peak Power Output The measurement was performed according to ANSI C63.10 Final Result OP-Mode Setup FCC IC Radio Technology, Operating Frequency, Measurement method Bluetooth LE, high, conducted Bluetooth LE, low, conducted Bluetooth LE, low, conducted Bluetooth LE, mid, conducted Setup_AE01 Passed Passed Passed Passed Passed Passed Passed Passed | 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 | § 15.247 (d) | | | |--|---|---------------------------------|--| | Spurious RF Conducted Emissions The measurement was performed according to ANSI Co | 63.10 | Final Re | sult | | OP-Mode | Setup | FCC | IC | | Radio Technology, Operating Frequency | • | | | | Bluetooth LE, high | Setup_AE01 | Passed | Passed | | Bluetooth LE, low | Setup_AE01 | Passed | Passed | | Bluetooth LE, mid | Setup_AE01 | Passed | Passed | | 47 CFR CHAPTER I FCC PART 15 Subpart C
§15.247 | § 15.247 (d) | | | | Transmitter Spurious Radiated Emissions | | | | | The measurement was performed according to ANSI Co | 63.10 | Final Re | sult | | OP-Mode | Setup | FCC | IC | | Radio Technology, Operating Frequency, Measurement range | | | | | Bluetooth LE, high, 1 GHz - 26 GHz | Setup_AC01 | Passed | Passed | | Bluetooth LE, high, 30 MHz - 1 GHz | Setup_AC01 | Passed | Passed | | Bluetooth LE, low, 1 GHz - 26 GHz | Setup_AC01 | Passed | Passed | | Bluetooth LE, low, 30 MHz - 1 GHz | Setup_AC01 | Passed | Passed | | Bluetooth LE, mid, 1 GHz - 26 GHz | Setup_AC01 | Passed | Passed | | Bluetooth LE, mid, 30 MHz - 1 GHz | Setup_AC01 | Passed | Passed | | Bluetooth LE, mid, 9 kHz - 30 MHz | Setup_AC01 | Passed | Passed | | | | | | | 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 | § 15.247 (d) | | | | | | Final Re | esult | | §15.247 Band Edge Compliance Conducted The measurement was performed according to ANSI Co | 63.10 | | | | §15.247 Band Edge Compliance Conducted The measurement was performed according to ANSI Co OP-Mode | | Final Re | esult
IC | | §15.247 Band Edge Compliance Conducted The measurement was performed according to ANSI Co | 63.10 | | | | §15.247 Band Edge Compliance Conducted The measurement was performed according to ANSI Co OP-Mode Radio Technology, Operating Frequency, Band Edge | 63.10
Setup | FCC | IC | | Band Edge Compliance Conducted The measurement was performed according to ANSI Co OP-Mode Radio Technology, Operating Frequency, Band Edge Bluetooth LE, high, high Bluetooth LE, low, low 47 CFR CHAPTER I FCC PART 15 Subpart C | 63.10 Setup Setup_AE01 | FCC
Passed | IC
Passed | | §15.247 Band Edge Compliance Conducted The measurement was performed according to ANSI Co OP-Mode Radio Technology, Operating Frequency, Band Edge Bluetooth LE, high, high Bluetooth LE, low, low | Setup Setup_AE01 Setup_AE01 | FCC
Passed | IC
Passed | | Band Edge Compliance Conducted The measurement was performed according to ANSI Co OP-Mode Radio Technology, Operating Frequency, Band Edge Bluetooth LE, high, high Bluetooth LE, low, low 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 | Setup Setup_AE01 Setup_AE01 \$ 15.247 (d) | FCC
Passed | Passed
Passed | | Band Edge Compliance Conducted The measurement was performed according to ANSI Co OP-Mode Radio Technology, Operating Frequency, Band Edge Bluetooth LE, high, high
Bluetooth LE, low, low 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Band Edge Compliance Radiated The measurement was performed according to ANSI Co OP-Mode | Setup Setup_AE01 Setup_AE01 \$ 15.247 (d) | FCC
Passed
Passed | Passed
Passed | | Band Edge Compliance Conducted The measurement was performed according to ANSI Co OP-Mode Radio Technology, Operating Frequency, Band Edge Bluetooth LE, high, high Bluetooth LE, low, low 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Band Edge Compliance Radiated The measurement was performed according to ANSI Co | Setup Setup_AE01 Setup_AE01 § 15.247 (d) | FCC Passed Passed Final Re | Passed
Passed | | Band Edge Compliance Conducted The measurement was performed according to ANSI Co OP-Mode Radio Technology, Operating Frequency, Band Edge Bluetooth LE, high, high Bluetooth LE, low, low 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Band Edge Compliance Radiated The measurement was performed according to ANSI Co OP-Mode Radio Technology, Operating Frequency, Band Edge | Setup Setup_AE01 Setup_AE01 § 15.247 (d) 63.10 Setup | FCC Passed Passed Final Ref | Passed Passed Passed | | Band Edge Compliance Conducted The measurement was performed according to ANSI Co OP-Mode Radio Technology, Operating Frequency, Band Edge Bluetooth LE, high, high Bluetooth LE, low, low 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Band Edge Compliance Radiated The measurement was performed according to ANSI Co OP-Mode Radio Technology, Operating Frequency, Band Edge Bluetooth LE, high, high 47 CFR CHAPTER I FCC PART 15 Subpart C | Setup Setup_AE01 Setup_AE01 § 15.247 (d) Setup Setup Setup Setup Setup Setup_AC01 § 15.247 (e) | FCC Passed Passed Final Ref | Passed Passed Passed Passed Passed | | Band Edge Compliance Conducted The measurement was performed according to ANSI Co OP-Mode Radio Technology, Operating Frequency, Band Edge Bluetooth LE, high, high Bluetooth LE, low, low 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Band Edge Compliance Radiated The measurement was performed according to ANSI Co OP-Mode Radio Technology, Operating Frequency, Band Edge Bluetooth LE, high, high 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Power Density The measurement was performed according to ANSI Co | Setup Setup_AE01 Setup_AE01 § 15.247 (d) 63.10 Setup Setup_AC01 § 15.247 (e) 63.10 | FCC Passed Final Ref FCC Passed | Passed Passed Passed Passed Passed Passed | | Band Edge Compliance Conducted The measurement was performed according to ANSI Conducted The measurement was performed according to ANSI Conducted OP-Mode Radio Technology, Operating Frequency, Band Edge Bluetooth LE, high, high Bluetooth LE, low, low 47 CFR CHAPTER I FCC PART 15 Subpart Conducted The measurement was performed according to ANSI Conducted The measurement was performed according to ANSI Conducted OP-Mode Radio Technology, Operating Frequency, Band Edge Bluetooth LE, high, high 47 CFR CHAPTER I FCC PART 15 Subpart Conducted S15.247 Power Density The measurement was performed according to ANSI Conducted OP-Mode | Setup Setup_AE01 Setup_AE01 § 15.247 (d) Setup Setup Setup Setup Setup Setup_AC01 § 15.247 (e) | FCC Passed Final Ref | Passed Passed Passed Passed Passed | | Band Edge Compliance Conducted The measurement was performed according to ANSI Co OP-Mode Radio Technology, Operating Frequency, Band Edge Bluetooth LE, high, high Bluetooth LE, low, low 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Band Edge Compliance Radiated The measurement was performed according to ANSI Co OP-Mode Radio Technology, Operating Frequency, Band Edge Bluetooth LE, high, high 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Power Density The measurement was performed according to ANSI Co | Setup Setup_AE01 Setup_AE01 § 15.247 (d) 63.10 Setup Setup_AC01 § 15.247 (e) 63.10 | FCC Passed Final Ref FCC Passed | Passed Passed Passed Passed Passed Passed | TEST REPORT REFERENCE: MDE_3M_1601_FCCc 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 § 15.247 (e) Power Density The measurement was performed according to ANSI C63.10 **Final Result** **OP-Mode** Radio Technology, Operating Frequency Bluetooth LE, low Bluetooth LE, mid Setup **FCC** IC Setup_AE01 Setup_AE01 Passed Passed Passed Passed N/A: Not applicable N/P: Not performed > (responsible for accreditation scope) Dipl.-Ing. Bernhard Retka (responsible for testing and report) Dipl.-Ing. Andreas Petz 7 layers GmbH, Borsigstr. 11 40880 Ratingen, Germany Phone +49 (0)2102 749 0 #### 2 ADMINISTRATIVE DATA | 2 1 | TESTING | IAROD | $\Lambda T \cap DV$ | |------|-----------------------|-------|--------------------------| | Z. I | 1 1 2 1 1 1 1 1 1 1 1 | LADUK | $A \cup C \cup C \cup C$ | Company Name: 7layers GmbH Address: Borsigstr. 11 40880 Ratingen Germany This facility has been fully described in a report submitted to the ISED and accepted under the registration number: Site# 3699A-1. The test facility is also accredited by the following accreditation organisation: Laboratory accreditation no: DAkkS D-PL-12140-01-00 FCC Designation Number: DE0015 FCC Test Firm Registration: 929146 Responsible for accreditation scope: Dipl.-Ing. Bernhard Retka Report Template Version: 2018-01-10 2.2 PROJECT DATA Responsible for testing and report: Dipl.-Ing. Andreas Petz Employees who performed the tests: documented internally at 7Layers Date of Report: 2018-03-23 Testing Period: 2016-11-10 to 2018-01-24 2.3 APPLICANT DATA Company Name: 3M Svenska AB Address: Malmstensg. 19 331 02 Värnamo Sweden Contact Person: Mr. Pär Rundqvist 2.4 MANUFACTURER DATA Company Name: please see at applicant data Address: Contact Person: #### 3 TEST OBJECT DATA #### 3.1 GENERAL EUT DESCRIPTION | Kind of Device product description | Hearing protection Headset with Bluetooth and FM-radio | |--|--| | Product name | Peltor WS Alert XPI | | Туре | Peltor WS Alert XPI (tested) | | | will be marketed also as models Peltor WS Alert XP and MRX21*WS6* | | Declared EUT data by | the supplier | | Voltage Type | DC and AC | | Voltage Level | DC: 2 x 1.5 V (primary cells) | | | AC: 120 V / 60 Hz + 2 x 1.2 V DC (rechargeable batteries) | | General product description | The EUT is a headset/handsfree which uses Bluetooth and Bluetooth Low Energy technology to be connected to other devices. It provides a function to listen to surrounding sound and is not only a closed audio headset. The headset is a hearing protection with level-dependent function for ambient listening. | | Specific product description for the EUT | It is supplied by internal batteries (2x 1.5 V) or rechargeable batteries (2x 1.2 V). | | | A 3.5 mm DC cable can be connected to recharge batteries of type NiMH, an unshielded cable of approx. 1.5 m length has been attached during the tests. | | | The FM receiver is not scope of this test report. | | The EUT provides the | Headset: DC Input; | | following ports: | AC/DC adapter: AC Input; | | T | Charger cable: DC input and DC output | | Tested Modulation Type | GFSK, n/4 DQPSK, 8-DPSK | | Tested datarates | GFSK Modulation, 1-DH1 packets, 1 Mbps | | Antenna Type / Gain | Integral / 2.7 dBi | The main components of the EUT are listed and described in chapter 3.2 EUT Main components. #### 3.2 EUT MAIN COMPONENTS | Sample Name | Sample Code | Description | |------------------|-------------------------|---------------------------| | Conducted sample | DE1223000ae01 | Sample with SMA connector | | Sample Parameter | V | /alue | | Serial No. | - | | | HW Version | K388Ava05 and K396Ava00 | | | SW Version | Sw-k388-ie-release-9 | | | Comment | | | | Integral Antenna | yes | | | Sample Name | Sample Code | Description | |------------------|-------------------------|------------------------------| | Radiated sample | DE1223000ac01 | Sample without SMA connector | | Sample Parameter | | Value | | Serial No. | - | | | HW Version | K388Ava05 and K396Ava00 | | | SW Version | Sw-k388-ie-release-9 | | | Comment | | | | Integral Antenna | yes | | NOTE: The short description is used to simplify the identification of the EUT in this test report. #### 3.3 ANCILLARY EQUIPMENT For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results. | Device | Details
(Manufacturer, Type Model, OUT
Code) | Description | |--------------------|--|--| | FR09 Charger cable | 3M Peltor, SE-33102,
Input: 5 V DC, 500 mA,
Output: 5 V DC, 300 mA
DE1223000CCAB | Voltage / Current /
Charge controller | | Sample Name | Description | | | Charger cable | current limiter | | | AC/DC adapter | CUI INC, P/N: SMI5-5-V-I38-C2
Model_ 6A-054WP05B
Input: 100-240 V, 50-60 Hz, 0.3 A,
Output: 5 V, 1.0 A
DE1223000ACDC | Switch-mode power
supply | | Sample Name | Description | | | AC/DC adapter | power supply | | #### 3.4 AUXILIARY EQUIPMENT For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it.
But nevertheless Auxiliary Equipment can influence the test results. | Device | Details
(Manufacturer, HW, SW, S/N) | Description | |--------|--|-------------| | - | | - | #### 3.5 EUT SETUPS This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards. | Setup | Combination of EUTs | Description and Rationale | |-----------------|---|-------------------------------------| | Setup_AE01 | Conducted sample | with temporary SMA-connector | | Setup_AC01_ACDC | AC/DC adapter, Radiated sample, Charger cable | Headset, AC Adapter, Charging cable | #### 3.6 TEST CHANNELS BT LE Test Channels: Channel: Frequency [MHz] | 2.4 GHz ISM | | | | |-------------------|------|------|--| | 2400 - 2483.5 MHz | | | | | low | mid | high | | | 0 | 19 | 39 | | | 2402 | 2440 | 2480 | | #### 3.7 PRODUCT LABELLING #### 3.7.1 FCC ID LABEL Please refer to the documentation of the applicant. #### 3.7.2 LOCATION OF THE LABEL ON THE EUT Please refer to the documentation of the applicant. #### 4 TEST RESULTS #### 4.1 CONDUCTED EMISSIONS AT AC MAINS Standard FCC Part 15 Subpart C #### The test was performed according to: ANSI C63.10 #### 4.1.1 TEST DESCRIPTION The test set-up was made in accordance to the general provisions of ANSI C 63.10 The Equipment Under Test (EUT) was setup in a shielded room to perform the conducted emissions measurements in a typical installation configuration. The EUT was powered from $50\mu H \mid\mid 50$ Ohm Line Impedance Stabilization Network (LISN). The LISN's unused connections were terminated with 50 Ohm loads. The measurement procedure consists of two steps. It is implemented into the EMI test software EMC-32 from R&S. #### Step 1: Preliminary scan Intention of this step is, to determine the conducted EMI-profile of the EUT. EMI receiver settings: - Detector: Peak Maxhold & CISPR-Average (linear) - Frequency range: 150 kHz 30 MHz - Frequency steps: 2.5 kHz - IF-Bandwidth: 9 kHz- Measuring time / Frequency step: 100 ms (FFT-based) - Measurement on phase + neutral lines of the power cords On basis of this preliminary scan the highest amplitudes and the corresponding frequencies relative to the limit are identified. Emissions above the limit and emissions which are in the 10 dB range below the limit are considered. #### Step 2: Final measurement Intention of this step is, to determine the highest emissions with the settings defined in the test specification for the frequencies identified in step 1. EMI receiver settings: - Detector: Quasi-Peak & CISPR-Average (linear) - IF Bandwidth: 9 kHz - Measuring time: 1 s / frequency At each frequency determined in step 1, four measurements are performed in the following combinations: - 1) Neutral lead reference ground (PE grounded) - 2) Phase lead reference ground (PE grounded) - 3) Neutral lead reference ground (PE floating) - 4) Phase lead reference ground (PE floating) The highest value is reported. #### 4.1.2 TEST REQUIREMENTS / LIMITS FCC Part 15, Subpart C, §15.207 | Frequency (MHz) | QP Limits (dBµV) | AV Limits (dBμV) | |-----------------|------------------|------------------| | 0.15 - 0.5 | 66 - 56 | 56 - 46 | | 0.5 - 5 | 56 | 46 | | 5 - 30 | 60 | 50 | Used conversion factor: Limit (dB μ V) = 20 log (Limit (μ V)/1 μ V). #### 4.1.3 TEST PROTOCOL Temperature: 24 °C Air Pressure: 987 hPa Humidity: 38 % | Power line | PE | Frequency
[MHz] | Measured value QP [dBµV] | Measured value AV [dBµV] | Limit
[dBµV] | Margin
[dB] | |------------|-----|--------------------|--------------------------|--------------------------|-----------------|----------------| | N | GND | 0.161 | | 42.5 | 55.4 | 12.9 | | N | GND | 0.168 | 58.5 | | 65.1 | 6.6 | | N | FLO | 0.197 | 57.2 | | 63.7 | 6.5 | | N | GND | 0.202 | | 38.6 | 53.5 | 14.9 | | L1 | GND | 0.238 | 54.9 | | 62.2 | 7.3 | | N | GND | 0.240 | | 34.7 | 52.1 | 17.4 | | N | GND | 0.553 | | 22.2 | 46.0 | 23.8 | | L1 | GND | 0.587 | 36.5 | | 56.0 | 19.5 | | N | GND | 0.593 | | 22.4 | 46.0 | 23.6 | | L1 | FLO | 0.632 | 37.3 | | 56.0 | 18.7 | | N | GND | 0.632 | | 20.8 | 46.0 | 25.2 | | L1 | GND | 0.672 | 39.7 | | 56.0 | 16.3 | | N | GND | 0.672 | | 29.4 | 46.0 | 16.6 | | L1 | FLO | 0.713 | 37.6 | | 56.0 | 18.4 | | N | GND | 0.713 | | 22.9 | 46.0 | 23.1 | | N | FLO | 0.755 | | 18.4 | 46.0 | 27.6 | | L1 | FLO | 0.755 | 34.3 | | 56.0 | 21.7 | #### 4.1.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") #### **Common Information** Test Description: Conducted Emissions Test Standard: FCC15 Subpart C, §15.207 EUT / Setup Code: DE1223000ac01 + DE1223000ACDC + DE1223000CCAB Operating Conditions: DE1223000ac01 + DE1223000ACDC + DE1223000CCAB GFSK, TX on 2440, max. RF power, MHz, 120 V / 60 Hz Operator Name: MEI Comment: charging of batteries Legend: Trace: blue = PK, green = CISPR AV; Star: red or blue = critical frequency; Rhombus: blue = final QP, green = final CISPR AV Tested Port / used LISN: AC mains => ESH3-Z5 Termination of other ports: N/A #### 4.1.5 TEST EQUIPMENT USED - Conducted Emissions FCC #### 4.2 OCCUPIED BANDWIDTH (6 DB) #### Standard FCC Part 15 Subpart C #### The test was performed according to: ANSI C63.10 #### 4.2.1 TEST DESCRIPTION The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements. The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical. The results recorded were measured with the modulation which produce the worst-case (smallest) emission bandwidth. The EUT was connected to spectrum analyzer via a short coax cable with a known loss. #### Analyzer settings: Resolution Bandwidth (RBW): 100 kHzVideo Bandwidth (VBW): 300 kHz Span: 3 MHz Trace: Maxhold Sweeps: 2000 Sweeptime: 5 ms Detector: Peak #### 4.2.2 TEST REQUIREMENTS / LIMITS FCC Part 15, Subpart C, §15.247 (a) (2) Systems using digital modulation techniques may operate in the 902-928 MHz and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz. #### 4.2.3 TEST PROTOCOL Ambient 23 °C temperature: Air Pressure: 1012 hPa Humidity: 38 % #### BT LE GFSK | D. LE G. G.K | | | | | | | | | |--------------|----------------|--------------------|----------------------|----------------|-----------------------|--|--|--| | Band | Channel
No. | Frequency
[MHz] | 6 dB Bandwidth [kHz] | Limit
[MHz] | Margin to Limit [kHz] | | | | | 2.4 GHz ISM | 0 | 2402 | 751.5 | 1 | 251.5 | | | | | | 19 | 2440 | 751.5 | 1 | 251.5 | | | | | | 39 | 2480 | 745.5 | 1 | 245.5 | | | | Remark: Please see next sub-clause for the measurement plot. TEST REPORT REFERENCE: MDE_3M_1601_FCCc #### 4.2.4 MEASUREMENT PLOT (SHOWING THE LOWEST VALUE, "WORST CASE") #### Date: 13.JAN.2017 12:26:06 #### 4.2.5 TEST EQUIPMENT USED - Regulatory Bluetooth RF Test Solution #### 4.3 OCCUPIED BANDWIDTH (99%) #### Standard FCC Part 15 Subpart C #### The test was performed according to: ANSI C63.10 #### 4.3.1 TEST DESCRIPTION The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements. The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical. The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings: Resolution Bandwidth (RBW): 30 kHzVideo Bandwidth (VBW): 100 kHz Span: 3 MHz Trace: Maxhold Sweeps: 2000 Sweeptime: 8.5 ms Detector: Sample The 99 % measurement function of the spectrum analyser function was used to determine the 99 % bandwidth. #### 4.3.2 TEST REQUIREMENTS / LIMITS No applicable limit: #### 4.3.3 TEST PROTOCOL Ambient temperature: 23 °C Air Pressure: 1012 hPa Humidity: 38 % #### BT LE | Band | Channel No. | Frequency [MHz] | 99 % Bandwidth [kHz] | |-------------|-------------|-----------------|----------------------| | 2.4 GHz ISM | 0 | 2402 | 1022.0 | | | 19 | 2440 | 1028.1 | | | 39 | 2480 | 1028.1 | Remark: Please see next sub-clause for the measurement plot. #### 4.3.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") 4.3.5 - Regulatory Bluetooth RF Test Solution TEST EQUIPMENT USED #### PEAK POWER OUTPUT 4 4 Standard FCC Part 15 Subpart C #### The test was performed according to: ANSI C63.10 #### 4.4.1 **TEST DESCRIPTION** The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power. The reference level of the spectrum analyzer was set higher than the output power of the EUT. The EUT was connected to the spectrum analyzer via a short coax cable with a known loss. Analyzer settings: • Resolution Bandwidth (RBW): 1 MHz Video Bandwidth (VBW): 3 MHz • Trace: Maxhold • Sweeps: 2000 • Sweeptime: 5 ms Detector: Peak The channel power function of the spectrum analyser was used (Used channel bandwidth = DTS bandwidth). #### TEST REQUIREMENTS / LIMITS 4.4.2 #### DTS devices: FCC Part 15, Subpart C, §15.247 (b) (3) For systems using digital modulation techniques in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands: 1 watt. ==> Maximum conducted peak output power: 30 dBm (excluding antenna gain, if antennas with directional gains that do not exceed 6 dBi are used). #### 4.4.3 **TEST PROTOCOL** Ambient 23 °C temperature: Air Pressure: Humidity: 1012 hPa 38 % #### RTIF | Band | Channel
No. | Frequency
[MHz] | Peak Power [dBm] | Limit
[dBm] | Margin to Limit [dB] | |-------------|----------------|--------------------
------------------|----------------|----------------------| | 2.4 GHz ISM | 0 | 2402 | -0.2 | 30.0 | 30.2 | | | 19 | 2440 | 1.5 | 30.0 | 28.5 | | | 39 | 2480 | 1.5 | 30.0 | 28.5 | Remark: Please see next sub-clause for the measurement plot. TEST REPORT REFERENCE: MDE_3M_1601_FCCc Page 19 of 46 #### 4.4.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") #### Date: 13.JAN.2017 12:27:01 #### 4.4.5 TEST EQUIPMENT USED - Regulatory Bluetooth RF Test Solution #### 4.5 SPURIOUS RF CONDUCTED EMISSIONS Standard FCC Part 15 Subpart C The test was performed according to: ANSI C63.10 #### 4.5.1 TEST DESCRIPTION The Equipment Under Test (EUT) was set up to perform the spurious emissions measurements. The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings: Frequency range: 30 – 25000 MHz Resolution Bandwidth (RBW): 100 kHz Video Bandwidth (VBW): 300 kHz Trace: MaxholdSweeps: 2 Sweep Time: 330 sDetector: Peak The reference value for the measurement of the spurious RF conducted emissions is determined during the test "band edge compliance conducted". This value is used to calculate the 20 dBc limit. #### 4.5.2 TEST REQUIREMENTS / LIMITS FCC Part 15, Subpart C, §15.247 (c) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. #### 4.5.3 TEST PROTOCOL Ambient temperature: 23 °C Air Pressure: 1012 hPa Humidity: 38 % BT LE GFSK | Channel No | Channel
Center
Freq.
[MHz] | Spurious
Freq.
[MHz] | Spurious
Level
[dBm] | Detector | RBW
[kHz] | Ref.
Level
[dBm] | Limit
[dBm] | Margin
to Limit
[dB] | |------------|-------------------------------------|----------------------------|----------------------------|----------|--------------|------------------------|----------------|----------------------------| | 0 | 2402 | = | - | PEAK | 100 | 0.5 | -19.5 | > 20 dB | | 19 | 2440 | - | - | PEAK | 100 | 1.2 | -18.8 | > 20 dB | | 39 | 2480 | - | - | PEAK | 100 | 1.2 | -18.8 | > 20 dB | Remark: Please see next sub-clause for the measurement plot. TEST REPORT REFERENCE: MDE_3M_1601_FCCc #### 4.5.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Title: spurious emissions Comment A: CH M2: 2440 MHz Date: 13.JAN.2017 11:35:49 #### 4.5.5 TEST EQUIPMENT USED - Regulatory Bluetooth RF Test Solution #### 4.6 TRANSMITTER SPURIOUS RADIATED EMISSIONS #### Standard FCC Part 15 Subpart C #### The test was performed according to: ANSI C63.10 #### 4.6.1 TEST DESCRIPTION The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated. The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered from a DC power source. #### 1. Measurement up to 30 MHz The Loop antenna HFH2-Z2 is used. #### Step 1: pre measurement - Anechoic chamber - Antenna distance: 3 m - Detector: Peak-Maxhold - Frequency range: 0.009 0.15 MHz and 0.15 30 MHz - Frequency steps: 0.05 kHz and 2.25 kHz - IF-Bandwidth: 0.2 kHz and 9 kHz - Measuring time / Frequency step: 100 ms (FFT-based) Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified. #### Step 2: final measurement For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level. - Open area test side - Antenna distance: according to the Standard - Detector: Quasi-Peak - Frequency range: 0.009 30 MHz - Frequency steps: measurement at frequencies detected in step 1 - IF-Bandwidth: 0.2 10 kHz - Measuring time / Frequency step: 1 s #### 2. Measurement above 30 MHz and up to 1 GHz #### **Step 1:** Preliminary scan This is a preliminary test to identify the highest amplitudes relative to the limit. Settings for step 1: - Antenna distance: 3 m - Detector: Peak-Maxhold / Quasipeak (FFT-based) - Frequency range: 30 1000 MHz - Frequency steps: 30 kHzIF-Bandwidth: 120 kHz - Measuring time / Frequency step: 100 ms - Turntable angle range: -180° to 90° TEST REPORT REFERENCE: MDE_3M_1601_FCCc - Turntable step size: 90° Height variation range: 1 – 3 m Height variation step size: 2 m Polarisation: Horizontal + Vertical Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified. #### **Step 2:** Adjustment measurement In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency. For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted. - Detector: Peak - Maxhold - Measured frequencies: in step 1 determined frequencies - IF - Bandwidth: 120 kHz - Measuring time: 100 ms - Turntable angle range: \pm 45 $^{\circ}$ around the determined value - Height variation range: ± 100 cm around the determined value - Antenna Polarisation: max. value determined in step 1 #### Step 3: Final measurement with QP detector With the settings determined in step 3, the final measurement will be performed: EMI receiver settings for step 4: - Detector: Quasi-Peak (< 1 GHz) - Measured frequencies: in step 1 determined frequencies - IF – Bandwidth: 120 kHz - Measuring time: 1 s After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement. #### 3. Measurement above 1 GHz The following modifications apply to the measurement procedure for the frequency range above 1 GHz: #### Step 1: The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber. All steps were performed with one height (1.5 m) of the receiving antenna only. The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 °. The turn table step size (azimuth angle) for the preliminary measurement is 45 °. #### Step 2: Due to the fact, that in this frequency range the test is performed in a fully anechoic room, the height scan of the receiving antenna instep 2 is omitted. Instead of this, a maximum search with a step size \pm 45° for the elevation axis is performed. The turn table azimuth will slowly vary by $\pm 22.5^{\circ}$. The elevation angle will slowly vary by $\pm 45^{\circ}$ EMI receiver settings (for all steps): - Detector: Peak, Average - IF Bandwidth = 1 MHz #### Step 3: Spectrum analyser settings for step 3: - Detector: Peak / Average - Measured frequencies: in step 1 determined frequencies IF – Bandwidth: 1 MHzMeasuring time: 1 s #### 4.6.2 TEST REQUIREMENTS / LIMITS FCC Part 15, Subpart C, §15.247 (d) ... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)). FCC Part 15, Subpart C, §15.209, Radiated Emission Limits | Frequency in MHz | Limit (μV/m) | Measurement distance (m) | Limits (dBµV/m) | |------------------|------------------|--------------------------|--------------------| | 0.009 - 0.49 | 2400/F(kHz)@300m | 3 | (48.5 – 13.8)@300m | | 0.49 - 1.705 | 24000/F(kHz)@30m | 3 | (33.8 – 23.0)@30m | | 1.705 – 30 | 30@30m | 3 | 29.5@30m | The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2). | Frequency in MHz | Limit (μV/m) | Measurement distance (m) | Limits (dBµV/m) | |------------------|--------------|--------------------------|-----------------| | 30 – 88 | 100@3m | 3 | 40.0@3m | | 88 – 216 | 150@3m | 3 | 43.5@3m | | 216 – 960 | 200@3m | 3 | 46.0@3m | | 960 - 26000 | 500@3m | 3 | 54.0@3m | | 26000 - 40000 | 500@3m | 1 | 54.0@3m | The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade). $\S15.35(b)$..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit.... Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$ #### 4.6.3 TEST PROTOCOL Ambient 24 °C temperature: Air Pressure: Humidity: 1007 hPa 33 % BT low Energy | Ch.
No. | Ch.
Center
Freq.
[MHz] | Spurious
Freq. [MHz] | Spurious Level [dBµV/m] | Detec-
tor | RBW
[kHz] | Limit
[dBµV/m] | Margin to
Limit [dB] | Limit
Type | |------------|------------------------------|-------------------------|-------------------------|---------------|--------------|-------------------|-------------------------|---------------| | 0 | 2402 | 4803.9 | 43.4 | AV | 1000 | 54.0 | 10.6 | RB | | 0 | 2402 | 4803.9 | 54.8 | PEAK | 1000 | 74.0 | 19.2 | RB | | 19 | 2440 | 4880.1 | 39.8 | AV | 1000 | 54.0 | 14.2 | RB | | 19 | 2440 | 4880.1 | 54.7 | PEAK | 1000 | 74.0 | 19.3 | RB | | 39 | 2480 | 4959.9 | 40.9 | AV | 1000 | 54.0 | 13.1 | RB | | 39 | 2480 | 4959.9 | 55.0 | PEAK | 1000 | 74.0 | 19.0 | RB | Remark: Please see next sub-clause for the measurement plot. #### 4.6.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") #### 4.6.5 TEST EQUIPMENT USED - Radiated Emissions #### 4.7 BAND EDGE COMPLIANCE CONDUCTED Standard FCC Part 15 Subpart C The test was performed according to: ANSI C63.10 #### 4.7.1 TEST DESCRIPTION For the conducted measurement, the Equipment Under Test (EUT) is placed in a shielded room. The reference power was measured in the test case "Spurious RF Conducted Emissions". The EUT was connected to the spectrum analyzer via a short coax cable with a known loss. #### Analyzer settings: • Frequency Span: 6 MHz • Detector: Peak Resolution Bandwidth (RBW): 100 kHzVideo Bandwidth (VBW): 300 kHz Sweeptime: 5 msSweeps: 1000Trace: Maxhold #### 4.7.2 TEST REQUIREMENTS / LIMITS #### FCC Part 15.247 (d) "In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. ... If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c))." For the conducted measurement the RF power at the band edge shall be "at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power..." TEST REPORT REFERENCE: MDE_3M_1601_FCCc #### 4.7.3 TEST PROTOCOL Ambient 23 °C temperature: Air Pressure: 1012 hPa Humidity: 38 % BT LE GFSK | Channel No. | Channel
Center
Frequency
[MHz] | Band
Edge
Freq.
[MHz] | Spurious
Level
[dBm] | Detector | RBW
[kHz] | Ref.
Level
[dBm] | Limit
[dBm] | Margin
to Limit
[dB] | |-------------|---|--------------------------------|----------------------------|----------|--------------|------------------------|----------------|----------------------------| | 0 | 2402 | 2400.0 | -50.8 | PEAK | 100 | -0.5 | -20.5 | 30.3 | | 39 | 2480 | 2483.5 | -57.1 | PEAK | 100 | 1.2 | -18.8 | 38.3 | Remark: Please see next sub-clause for the measurement plot. #### 4.7.4 MEASUREMENT PLOT (SHOWING THE LOWEST MARGIN, "WORST CASE") Title: Band Edge Compliance Comment A: CH B: 2402 MHz Date: 13.JAN.2017 11:36:55 Title: Band Edge Compliance Comment A: CH T:2480 MHz Date: 13.JAN.2017 11:02:32 #### 4.7.5 TEST EQUIPMENT USED - Regulatory Bluetooth RF Test Solution #### 4.8 BAND EDGE COMPLIANCE RADIATED Standard FCC Part 15 Subpart C The test was performed according to: ANSI C63.10 #### 4.8.1 TEST DESCRIPTION Please see test description for the test case "Spurious Radiated Emissions" #### 4.8.2 TEST REQUIREMENTS / LIMITS For band edges connected to a restricted band, the limits are specified in Section 15.209(a) FCC Part 15, Subpart C, §15.209, Radiated Emission Limits | Frequency in MHz | Limit (μV/m) | Measurement distance (m) | Limits (dBµV/m) | |------------------|------------------|--------------------------|--------------------| | 0.009 - 0.49 | 2400/F(kHz)@300m | 3 | (48.5 – 13.8)@300m | | 0.49 - 1.705 | 24000/F(kHz)@30m | 3 | (33.8 – 23.0)@30m | | 1.705 – 30 | 30@30m | 3 | 29.5@30m | The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2). | Frequency in MHz | Limit (μV/m) | Measurement distance (m) | Limits (dBµV/m) | |------------------|--------------|--------------------------|-----------------| | 30 – 88 | 100@3m | 3 | 40.0@3m | | 88 – 216 | 150@3m | 3 | 43.5@3m | | 216 – 960 | 200@3m | 3 | 46.0@3m | | 960 - 26000 | 500@3m | 3 | 54.0@3m | | 26000 - 40000 | 500@3m | 1 | 54.0@3m | The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade). §15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit.... Used conversion factor: Limit (dB μ V/m) = 20 log (Limit (μ V/m)/1 μ V/m) TEST REPORT REFERENCE: MDE_3M_1601_FCCc #### 4.8.3 TEST PROTOCOL Ambient 24 °C temperature: Air Pressure: Humidity: BT LE GFSK | Ch.
No. | Ch. Center
Freq.
[MHz] | Band Edge
Freq.
[MHz] | Spurious Level
[dBµV/m] | Detec-
tor | RBW
[kHz] | Limit
[dBµV/m] | Margin to
Limit [dB] | Limit
Type | |------------|------------------------------|-----------------------------|----------------------------|---------------|--------------|-------------------|-------------------------|---------------| | 39 | 2480 | 2483.5 | 53.0 | PEAK | 1000 | 74.0 | 21.0 | BE | | 39 | 2480 | 2483.5 | 39.5 | AV | 1000 | 54.0 | 14.5 | BE | Remark: Please see next sub-clause for the measurement plot. #### 4.8.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") #### 4.8.5 TEST EQUIPMENT USED - Radiated Emissions #### 4.9 POWER DENSITY #### Standard FCC Part 15 Subpart C #### The test was performed according to: ANSI C63.10 #### 4.9.1 TEST DESCRIPTION The Equipment Under Test (EUT) was set up in a shielded room to perform the Power Density measurements. The results recorded were measured with the modulation which produces the worst-case (highest) power density. The EUT was connected to the spectrum analyzer via a short coax cable with a known loss. #### Analyzer settings: Resolution Bandwidth (RBW): 3 kHzVideo Bandwidth (VBW): 10 kHz Trace: MaxholdSweeps: 500 Sweeptime: 420 msDetector: Peak #### 4.9.2 TEST REQUIREMENTS / LIMITS FCC Part 15, Subpart C, §15.247 (e) For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. . . . The same method of determining the conducted output power shall be used to determine the power spectral density. #### 4.9.3 TEST PROTOCOL Ambient temperature: 23 °C Air Pressure: 1012 hPa Humidity: 38 % #### BT LE | Band | Channel
No. | Frequency
[MHz] | Power Density
[dBm / 3 kHz] | Limit
[dBm / 3 kHz] | Margin to Limit
[dB] | |---------|----------------|--------------------|--------------------------------|------------------------|-------------------------| | 2.4 GHz | 0 | 2402 | -16.0 | 8.0 | 24.0 | | ISM | 19 | 2440 | -14.3 | 8.0 | 22.3 | | | 39 | 2480 | -14.3 | 8.0 | 22.3 | Remark: Please see next sub-clause for the measurement plot. #### 4.9.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Date: 13.JAN.2017 12:33:06 #### 4.9.5 TEST EQUIPMENT USED - Regulatory WLAN RF Test Solution #### 5 TEST EQUIPMENT Conducted Emissions FCCConducted Emissions power line for FCC standards | Ref.No. | Device Name | Description | Manufacturer | Serial Number | Last
Calibration | Calibration
Due | |---------|-------------------------|---|--------------------------------------|---------------|---------------------|--------------------| | 1.1 | Opus10 TPR
(8253.00) | | Lufft Mess- und
Regeltechnik GmbH | 13936 | 2017-04 | 2019-04 | | 1.2 | Fluke 177 | Digital
Multimeter 03
(Multimeter) | Fluke Europe B.V. | 86670383 | 2016-02 | 2018-02 | | 1.3 | ESH3-Z5 | Two-Line V-
Network | Rohde & Schwarz | 828304/029 | 2017-05 | 2019-05 | | 1.4 | EP 1200/B,
NA/B1 | Amplifier with integrated variable Oscillator | Spitzenberger &
Spieß | B6278 | 2015-07 | 2018-07 | | 1.5 | Chroma 6404 | AC Power
Source | Chroma ATE INC. | 64040001304 | | | | 1.6 | Shielded Room
02 | Shielded Room
for conducted
testing, 12qm | Frankonia | - | | | | 1.7 | ESH3-Z5 | | Rohde & Schwarz | 829996/002 | 2017-05 | 2019-05 | | 1.8 | ESR 7 | EMI Receiver /
Spectrum
Analyzer | Rohde & Schwarz | 101424 | 2016-11 | 2018-11 | | 1.9 | Opus10 THI
(8152.00) | ThermoHygro | Lufft Mess- und
Regeltechnik GmbH | 7489 | 2017-04 | 2019-04 | | 1.10 | ESIB 26 | Spectrum
Analyzer | Rohde & Schwarz | 830482/004 | 2015-12 | 2017-12 | #### 2 R&S TS8997 EN300328/301893 Test Lab | Ref.No. | Device Name | Description | Manufacturer | Serial Number | Last
Calibration | Calibration
Due | |---------|--------------|--|-------------------------|----------------|---------------------|--------------------| | 2.1 | SMB100A | Signal
Generator 9
kHz - 6 GHz | Rohde & Schwarz | 107695 | 2014-06 | 2017-06 | | 2.2 | MFS | Rubidium
Frequency
Standard | Datum-Beverly | 5489/001 | 2016-06 | 2017-06 | | 2.3 | 1515 / 93459 | | Weinschel
Associates |
LN673 | | | | 2.4 | FSV30 | Signal
Analyzer 10 Hz
- 30 GHz | Rohde & Schwarz | 103005 | 2016-02 | 2018-02 | | 2.5 | Fluke 177 | Digital
Multimeter 03
(Multimeter) | Fluke Europe B.V. | 86670383 | 2016-02 | 2018-02 | | 2.6 | VT 4002 | Temperature
Chamber | Vötsch | 58566002150010 | 2016-03 | 2018-03 | | 2.7 | A8455-4 | 4 Way Power
Divider (SMA) | | - | | | | Ref.No. | Device Name | Description | Manufacturer | Serial Number | Last | Calibration | |---------|-------------|---|--------------------------------------|---------------|-------------|-------------| | | | | | | Calibration | Due | | 2.8 | ' | 3 0 | Lufft Mess- und
Regeltechnik GmbH | | 2015-02 | 2017-02 | | 2.9 | | , | Rohde & Schwarz | 259291 | 2016-10 | 2019-10 | | 2.10 | | Switching Unit
with
integrated
power meter | Rohde & Schwarz | 101158 | 2016-11 | 2018-11 | # Radiated Emissions Lab to perform radiated emission tests | Ref.No. | Device Name | Description | Manufacturer | Serial Number | | Calibration | |---------|--------------------------|--|--------------------------------------|------------------------|-------------|-------------| | | | | | | Calibration | | | 3.1 | NRV-Z1 | | Rohde & Schwarz | 827753/005 | 2017-05 | 2018-05 | | 3.2 | MFS | Rubidium
Frequency
Normal MFS | Datum GmbH | 002 | 2017-10 | 2018-10 | | 3.3 | Opus10 TPR
(8253.00) | sure
Datalogger 13
(Environ) | Lufft Mess- und
Regeltechnik GmbH | 13936 | 2017-04 | 2019-04 | | 3.4 | Anechoic
Chamber | 10.58 x 6.38 x
6.00 m ³ | Frankonia | none | 2016-05 | 2019-05 | | 3.5 | HL 562 | Ultralog new biconicals | Rohde & Schwarz | 830547/003 | 2015-06 | 2018-06 | | 3.6 | 5HC2700/12750
-1.5-KK | High Pass
Filter | Trilithic | 9942012 | | | | 3.7 | ASP 1.2/1.8-10
kg | Antenna Mast | Maturo GmbH | - | | | | 3.8 | Fully Anechoic
Room | 8.80m x
4.60m x
4.05m (I x w x
h) | Albatross Projects | P26971-647-001-
PRB | 2015-06 | 2018-06 | | 3.9 | Fluke 177 | Multimeter 03
(Multimeter) | Fluke Europe B.V. | 86670383 | 2016-02 | 2018-02 | | 3.10 | JS4-18002600-
32-5P | Broadband
Amplifier 18
GHz - 26 GHz | Miteq | 849785 | | | | 3.11 | FSW 43 | Spectrum
Analyzer | Rohde & Schwarz | 103779 | 2016-12 | 2018-12 | | 3.12 | 3160-09 | Standard Gain
/ Pyramidal
Horn Antenna
26.5 GHz | EMCO Elektronic
GmbH | 00083069 | | | | 3.13 | WHKX 7.0/18G-
8SS | High Pass
Filter | Wainwright | 09 | | | | 3.14 | 4HC1600/12750
-1.5-KK | High Pass
Filter | Trilithic | 9942011 | | | | 3.15 | Chroma 6404 | AC Power
Source | Chroma ATE INC. | 64040001304 | | | | 3.16 | JS4-00102600-
42-5A | Broadband
Amplifier 30
MHz - 26 GHz | Miteq | 619368 | | | | 3.17 | TT 1.5 WI | Turn Table | Maturo GmbH | - | | | | Ref.No. | Device Name | Description | Manufacturer | Serial Number | Last | Calibration | |---------|-------------------------------------|--|--------------------------------------|--------------------------------|-------------|-------------| | | | | | | Calibration | Due | | 3.18 | HL 562 Ultralog | Logper.
Antenna | Rohde & Schwarz | 100609 | 2016-04 | 2019-04 | | 3.19 | 3160-10 | Standard Gain
/ Pyramidal
Horn Antenna
40 GHz | EMCO Elektronic
GmbH | 00086675 | | | | 3.20 | 5HC3500/18000
-1.2-KK | High Pass
Filter | Trilithic | 200035008 | | | | 3.21 | HFH2-Z2 | Loop Antenna | Rohde & Schwarz | 829324/006 | 2018-01 | 2021-01 | | 3.22 | Opus10 THI
(8152.00) | , , , | Lufft Mess- und
Regeltechnik GmbH | 12482 | 2017-03 | 2019-03 | | 3.23 | ESR 7 | EMI Receiver /
Spectrum
Analyzer | Rohde & Schwarz | 101424 | 2016-11 | 2018-11 | | 3.24 | JS4-00101800-
35-5P | Broadband
Amplifier 30
MHz - 18 GHz | Miteq | 896037 | | | | 3.25 | AS 620 P | Antenna mast | HD GmbH | 620/37 | | | | 3.26 | Tilt device
Maturo
(Rohacell) | Antrieb TD1.5-
10kg | Maturo GmbH | TD1.5-
10kg/024/37907
09 | | | | 3.27 | ESIB 26 | Spectrum
Analyzer | Rohde & Schwarz | 830482/004 | 2015-12 | 2017-12 | | 3.28 | PAS 2.5 - 10 kg | | Maturo GmbH | - | | | | 3.29 | AM 4.0 | Antenna mast | Maturo GmbH | AM4.0/180/1192
0513 | | | | 3.30 | HF 907 | Double-ridged
horn | Rohde & Schwarz | 102444 | 2015-05 | 2018-05 | # 4 Regulatory Bluetooth RF Test Solution Regulatory Bluetooth RF Tests | Ref.No. | Device Name | Description | Manufacturer | Serial Number | Last | Calibration | |---------|-------------------------|---|--------------------------------------|----------------|-------------|-------------| | | | | | | Calibration | Due | | 4.1 | MFS | Rubidium | Datum GmbH | 002 | 2017-10 | 2018-10 | | | | Frequency
Normal MFS | | | | | | 4.2 | EX520 | Digital
Multimeter 12
(Multimeter) | Extech Instruments
Corp | 05157876 | 2016-02 | 2018-02 | | 4.3 | NRV Z1 A | Power Sensor | Rohde & Schwarz | 832279/013 | 2016-09 | 2017-09 | | 4.4 | Opus10 THI
(8152.00) | | Lufft Mess- und
Regeltechnik GmbH | 13985 | 2015-03 | 2017-03 | | 4.5 | TOCT Switching
Unit | | 7layers, Inc. | 040107 | | | | 4.6 | KWP 120/70 | Temperature
Chamber
Weiss 01 | Weiss | 59226012190010 | 2016-03 | 2018-03 | | 4.7 | Box 7 | used for
automated
testing (EMMI)
only | Ontrak Control
Systems Inc | A04380 | | | | 4.8 | CBT | IL BT RF Test
Solution | Rohde & Schwarz | 100302 | 2016-02 | 2017-02 | | 4.9 | NRVD | Power Meter | Rohde & Schwarz | 832025/059 | 2016-08 | 2017-09 | | 4.10 | FSIQ26 | Signal
Analyser | Rohde & Schwarz | 832695/007 | 2016-09 | 2018-09 | | Ref.No. | Device Name | Description | Manufacturer | Serial Number | Last | Calibration | |---------|-------------|---------------|-----------------|---------------|-------------|-------------| | | | | | | Calibration | Due | | 4.11 | SMP02 | Signal | Rohde & Schwarz | 833286/0014 | 2016-05 | 2019-05 | | | | Generator SMP | | | | | | 4.12 | SMIQ03B | Signal | Rohde & Schwarz | 832870/017 | 2016-06 | 2019-06 | | | | Generator | | | | | | 4.13 | CBT | Bluetooth | Rohde & Schwarz | 100589 | 2015-01 | 2018-01 | | | | Tester | | | | | | 4.14 | NGSM 32/10 | Power Supply | Rohde & Schwarz | 2725 | 2015-06 | 2017-06 | # 5 Regulatory WLAN RF Test Solution Regulatory WLAN RF Tests | Ref.No. | Device Name | Description | Manufacturer | Serial Number | | Calibration | |---------|-------------------------|--|---|----------------|-------------|-------------| | | | | | | Calibration | Due | | 5.1 | MFS | Rubidium
Frequency
Normal MFS | Datum GmbH | 002 | 2017-10 | 2018-10 | | 5.2 | TGA12101 | Arbitrary
Waveform
Generator | Aim and Thurlby
Thandar
Instruments | 284482 | | | | 5.3 | EX520 | Digital
Multimeter 12
(Multimeter) | Extech Instruments
Corp | 05157876 | 2016-02 | 2018-02 | | 5.4 | NRV Z1 A | Power Sensor | Rohde & Schwarz | 832279/013 | 2016-09 | 2017-09 | | 5.5 | Opus10 THI
(8152.00) | T/H Logger 15 | Lufft Mess- und
Regeltechnik GmbH | 13985 | 2015-03 | 2017-03 | | 5.6 | TOCT Switching
Unit | | 7layers, Inc. | 040107 | | | | 5.7 | KWP 120/70 | Temperature
Chamber
Weiss 01 | Weiss | 59226012190010 | 2016-03 | 2018-03 | | 5.8 | NRVD | Power Meter | Rohde & Schwarz | 832025/059 | 2016-08 | 2017-09 | | 5.9 | FSIQ26 | Signal
Analyser | Rohde & Schwarz | 832695/007 | 2016-09 | 2018-09 | | 5.10 | SMIQ03B | Signal
Generator | Rohde & Schwarz | 832870/017 | 2016-06 | 2019-06 | | 5.11 | NGSM 32/10 | Power Supply | Rohde & Schwarz | 2725 | 2015-06 | 2017-06 | The calibration interval is the time interval between "Last Calibration" and "Calibration Due". Please note that only calibration data is shown for periods where tests have been performed using the listed instrument, i.e. no test has been performed after the due date is outdated, tests with this instrument have been finished before. #### 6 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN. #### 6.1 LISN R&S ESH3-Z5 (150 KHZ – 30 MHZ) | Frequency | | Corr. | |-----------|---|-------| | MHz | | dB | | 0.15 | | 10.1 | | 5 | | 10.3 | | 7 | | 10.5 | | 10 | | 10.5 | | 12 | | 10.7 | | 14 | | 10.7 | | 16 | | 10.8 | | 18 | | 10.9 | | 20 | | 10.9 | | 22 | | 11.1 | | 24 | _ | 11.1 | | 26 | | 11.2 | | 28 | | 11.2 | | 30 | | 11.3 | | | cable | |------------|-----------| | LISN | loss | | insertion | (incl. 10 | | loss | dB | | ESH3- | atten- | | Z 5 | uator) | | dB | dB | | 0.1 | 10.0 | | 0.1 | 10.2 | | 0.2 | 10.3 | | 0.2 | 10.3 | | 0.3 | 10.4 | | 0.3 | 10.4 | | 0.4 | 10.4 | | 0.4 | 10.5 | | 0.4 | 10.5 | | 0.5 | 10.6 | | 0.5 | 10.6 | | 0.5 | 10.7 | | 0.5 | 10.7 | | 0.5 | 10.8 | #### Sample calculation U_{LISN} (dB μ V) = U (dB μ V) + Corr. (dB) U = Receiver reading LISN Insertion loss = Voltage Division Factor of LISN Corr. = sum of single correction factors of used LISN, cables, switch units (if used) Linear interpolation will be used for frequencies in between the values in the table. #### 6.2 ANTENNA R&S HFH2-Z2 (9 KHZ - 30 MHZ) | | AF | | |-----------|----------|-------| | Frequency | HFH-Z2) | Corr. | | MHz | dB (1/m) | dB | | 0.009 | 20.50 | -79.6 | | 0.01 | 20.45 | -79.6 | | 0.015 | 20.37 | -79.6 | | 0.02 | 20.36 | -79.6 | | 0.025 | 20.38 | -79.6 | | 0.03 | 20.32 | -79.6 | | 0.05 | 20.35 | -79.6 | | 0.08 | 20.30 | -79.6 | | 0.1 | 20.20 | -79.6 | | 0.2 | 20.17 | -79.6 | | 0.3 | 20.14 | -79.6 | | 0.49 | 20.12 | -79.6 | | 0.490001 | 20.12 | -39.6 | | 0.5 | 20.11 | -39.6 | | 0.8 | 20.10 | -39.6 | | 1 | 20.09 | -39.6 | | 2 | 20.08 | -39.6 | | 3 | 20.06 | -39.6 | | 4 | 20.05 | -39.5 | | 5 | 20.05 | -39.5 | | 6 | 20.02 | -39.5 | | 8 | 19.95 | -39.5 | | 10 | 19.83 | -39.4 | |
12 | 19.71 | -39.4 | | 14 | 19.54 | -39.4 | | 16 | 19.53 | -39.3 | | 18 | 19.50 | -39.3 | | 20 | 19.57 | -39.3 | | 22 | 19.61 | -39.3 | | 24 | 19.61 | -39.3 | | 26 | 19.54 | -39.3 | | 28 | 19.46 | -39.2 | | 30 | 19.73 | -39.1 | | cable loss 1 cable loss 2 cable loss 3 cable loss 4 distance corr. (meas. (meas | | |---|-----| | (inside chamber) (outside chamber) (switch unit) (to receiver) (-40 dB/decade) distance distance (use decade) distance (use decade) dB dB dB dB dB m m 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0 | d | | chamber) chamber) unit) receiver) decade) (limit) (use dB dB dB dB m m 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 | is. | | dB dB dB dB dB m m 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 | nce | | 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 | d) | | 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 | | | 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 | 3 | | 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -40 30 | 3 | | 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 | 3 | | 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 | 3 | | 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 | 3 | | 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 | 3 | | 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 | 3 | | 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 | 3 | | 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 | 3 | | 0.1 0.1 0.1 0.1 -80 300 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 | 3 | | 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 | 3 | | 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 | 3 | | 0.1 0.1 0.1 0.1 -40 30 0.1 0.1 0.1 0.1 -40 30 | 3 | | 0.1 0.1 0.1 -40 30 | 3 | | | 3 | | 0.1 0.1 0.1 0.1 -40 30 | 3 | | | 3 | | 0.1 0.1 0.1 0.1 -40 30 | 3 | | 0.2 0.1 0.1 0.1 -40 30 | 3 | | 0.2 0.1 0.1 0.1 -40 30 | 3 | | 0.2 0.1 0.1 0.1 -40 30 | 3 | | 0.2 0.1 0.1 0.1 -40 30 | 3 | | 0.2 0.1 0.2 0.1 -40 30 | 3 | | 0.2 0.1 0.2 0.1 -40 30 | 3 | | 0.2 0.1 0.2 0.1 -40 30 | 3 | | 0.3 0.1 0.2 0.1 -40 30 | 3 | | 0.3 0.1 0.2 0.1 -40 30 | 3 | | 0.3 0.1 0.2 0.1 -40 30 | 3 | | 0.3 0.1 0.2 0.1 -40 30 | 3 | | 0.3 0.1 0.2 0.1 -40 30 | 3 | | 0.3 0.1 0.2 0.1 -40 30 | 3 | | 0.3 0.1 0.3 0.1 -40 30 | 3 | | 0.4 0.1 0.3 0.1 -40 30 | 3 | #### Sample calculation E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB) U = Receiver reading AF = Antenna factor Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = -40 * LOG (d_{Limit} / d_{used}) Linear interpolation will be used for frequencies in between the values in the table. Table shows an extract of values #### 6.3 ANTENNA R&S HL562 (30 MHZ – 1 GHZ) | (a _{Limit} = 3 m) | | | | | | | |----------------------------|-----------|-------|--|--|--|--| | 5 | AF
R&S | 0.000 | | | | | | Frequency | HL562 | Corr. | | | | | | MHz | dB (1/m) | dB | | | | | | 30 | 18.6 | 0.6 | | | | | | 50 | 6.0 | 0.9 | | | | | | 100 | 9.7 | 1.2 | | | | | | 150 | 7.9 | 1.6 | | | | | | 200 | 7.6 | 1.9 | | | | | | 250 | 9.5 | 2.1 | | | | | | 300 | 11.0 | 2.3 | | | | | | 350 | 12.4 | 2.6 | | | | | | 400 | 13.6 | 2.9 | | | | | | 450 | 14.7 | 3.1 | | | | | | 500 | 15.6 | 3.2 | | | | | | 550 | 16.3 | 3.5 | | | | | | 600 | 17.2 | 3.5 | | | | | | 650 | 18.1 | 3.6 | | | | | | 700 | 18.5 | 3.6 | | | | | | 750 | 19.1 | 4.1 | | | | | | 800 | 19.6 | 4.1 | | | | | | 850 | 20.1 | 4.4 | | | | | | 900 | 20.8 | 4.7 | | | | | | 950 | 21.1 | 4.8 | | | | | | 1000 | 21.6 | 4.9 | | | | | | cable | cable | cable | cable | distance | $d_{l imit}$ | d_{used} | |----------|----------|---------|-----------|----------|--------------|------------| | loss 1 | loss 2 | loss 3 | loss 4 | corr. | (meas. | (meas. | | (inside | (outside | (switch | (to | (-20 dB/ | distance | distance | | chamber) | chamber) | unit) | receiver) | decade) | (limit) | (used) | | dB | dB | dB | dB | dB | m | m | | 0.29 | 0.04 | 0.23 | 0.02 | 0.0 | 3 | 3 | | 0.39 | 0.09 | 0.32 | 0.08 | 0.0 | 3 | 3 | | 0.56 | 0.14 | 0.47 | 0.08 | 0.0 | 3 | 3 | | 0.73 | 0.20 | 0.59 | 0.12 | 0.0 | 3 | 3 | | 0.84 | 0.21 | 0.70 | 0.11 | 0.0 | 3 | 3 | | 0.98 | 0.24 | 0.80 | 0.13 | 0.0 | 3 | 3 | | 1.04 | 0.26 | 0.89 | 0.15 | 0.0 | 3 | 3 | | 1.18 | 0.31 | 0.96 | 0.13 | 0.0 | 3 | 3 | | 1.28 | 0.35 | 1.03 | 0.19 | 0.0 | 3 | 3 | | 1.39 | 0.38 | 1.11 | 0.22 | 0.0 | 3 | 3 | | 1.44 | 0.39 | 1.20 | 0.19 | 0.0 | 3 | 3 | | 1.55 | 0.46 | 1.24 | 0.23 | 0.0 | 3 | 3 | | 1.59 | 0.43 | 1.29 | 0.23 | 0.0 | 3 | 3 | | 1.67 | 0.34 | 1.35 | 0.22 | 0.0 | 3 | 3 | | 1.67 | 0.42 | 1.41 | 0.15 | 0.0 | 3 | 3 | | 1.87 | 0.54 | 1.46 | 0.25 | 0.0 | 3 | 3 | | 1.90 | 0.46 | 1.51 | 0.25 | 0.0 | 3 | 3 | | 1.99 | 0.60 | 1.56 | 0.27 | 0.0 | 3 | 3 | | 2.14 | 0.60 | 1.63 | 0.29 |
0.0 | 3 | 3 | | 2.22 | 0.60 | 1.66 | 0.33 | 0.0 | 3 | 3 | | 2.23 | 0.61 | 1.71 | 0.30 | 0.0 | 3 | 3 | | (| Limit | = | 10 | m) | |---|-------|---|----|----| |---|-------|---|----|----| | $(d_{Limit} = 10 \text{ m})$ | , | | | | | | | | | |------------------------------|------|------|------|------|------|------|-------|----|---| | 30 | 18.6 | -9.9 | 0.29 | 0.04 | 0.23 | 0.02 | -10.5 | 10 | 3 | | 50 | 6.0 | -9.6 | 0.39 | 0.09 | 0.32 | 0.08 | -10.5 | 10 | 3 | | 100 | 9.7 | -9.2 | 0.56 | 0.14 | 0.47 | 0.08 | -10.5 | 10 | 3 | | 150 | 7.9 | -8.8 | 0.73 | 0.20 | 0.59 | 0.12 | -10.5 | 10 | 3 | | 200 | 7.6 | -8.6 | 0.84 | 0.21 | 0.70 | 0.11 | -10.5 | 10 | 3 | | 250 | 9.5 | -8.3 | 0.98 | 0.24 | 0.80 | 0.13 | -10.5 | 10 | 3 | | 300 | 11.0 | -8.1 | 1.04 | 0.26 | 0.89 | 0.15 | -10.5 | 10 | 3 | | 350 | 12.4 | -7.9 | 1.18 | 0.31 | 0.96 | 0.13 | -10.5 | 10 | 3 | | 400 | 13.6 | -7.6 | 1.28 | 0.35 | 1.03 | 0.19 | -10.5 | 10 | 3 | | 450 | 14.7 | -7.4 | 1.39 | 0.38 | 1.11 | 0.22 | -10.5 | 10 | 3 | | 500 | 15.6 | -7.2 | 1.44 | 0.39 | 1.20 | 0.19 | -10.5 | 10 | 3 | | 550 | 16.3 | -7.0 | 1.55 | 0.46 | 1.24 | 0.23 | -10.5 | 10 | 3 | | 600 | 17.2 | -6.9 | 1.59 | 0.43 | 1.29 | 0.23 | -10.5 | 10 | 3 | | 650 | 18.1 | -6.9 | 1.67 | 0.34 | 1.35 | 0.22 | -10.5 | 10 | 3 | | 700 | 18.5 | -6.8 | 1.67 | 0.42 | 1.41 | 0.15 | -10.5 | 10 | 3 | | 750 | 19.1 | -6.3 | 1.87 | 0.54 | 1.46 | 0.25 | -10.5 | 10 | 3 | | 800 | 19.6 | -6.3 | 1.90 | 0.46 | 1.51 | 0.25 | -10.5 | 10 | 3 | | 850 | 20.1 | -6.0 | 1.99 | 0.60 | 1.56 | 0.27 | -10.5 | 10 | 3 | | 900 | 20.8 | -5.8 | 2.14 | 0.60 | 1.63 | 0.29 | -10.5 | 10 | 3 | | 950 | 21.1 | -5.6 | 2.22 | 0.60 | 1.66 | 0.33 | -10.5 | 10 | 3 | | 1000 | 21.6 | -5.6 | 2.23 | 0.61 | 1.71 | 0.30 | -10.5 | 10 | 3 | #### Sample calculation E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB) U = Receiver reading AF = Antenna factor Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = -20 * LOG (d_{Limit}/d_{used}) Linear interpolation will be used for frequencies in between the values in the table. Tables show an extract of values. #### 6.4 ANTENNA R&S HF907 (1 GHZ - 18 GHZ) | | AF
R&S | | |-----------|-----------|-------| | Frequency | HF907 | Corr. | | MHz | dB (1/m) | dB | | 1000 | 24.4 | -19.4 | | 2000 | 28.5 | -17.4 | | 3000 | 31.0 | -16.1 | | 4000 | 33.1 | -14.7 | | 5000 | 34.4 | -13.7 | | 6000 | 34.7 | -12.7 | | 7000 | 35.6 | -11.0 | | | | cable | | | |----------|----------|----------|------------|--| | cable | | loss 3 | | | | loss 1 | | (switch | | | | (relay + | cable | unit, | | | | cable | loss 2 | atten- | cable | | | inside | (outside | uator & | loss 4 (to | | | chamber) | chamber) | pre-amp) | receiver) | | | dB | dB | dB | dB | | | 0.99 | 0.31 | -21.51 | 0.79 | | | 1.44 | 0.44 | -20.63 | 1.38 | | | 1.87 | 0.53 | -19.85 | 1.33 | | | 2.41 | 0.67 | -19.13 | 1.31 | | | 2.78 | 0.86 | -18.71 | 1.40 | | | 2.74 | 0.90 | -17.83 | 1.47 | | | 2.82 | 0.86 | -16.19 | 1.46 | | | | AF | | |-----------|----------|-------| | | R&S | | | Frequency | HF907 | Corr. | | MHz | dB (1/m) | dB | | 3000 | 31.0 | -23.4 | | 4000 | 33.1 | -23.3 | | 5000 | 34.4 | -21.7 | | 6000 | 34.7 | -21.2 | | 7000 | 35.6 | -19.8 | | | | | cable
loss 4 | | | |----------|----------|----------|-----------------|------------|--------| | cable | | | (switch | | | | loss 1 | cable | cable | unit, | | used | | (relay | loss 2 | loss 3 | atten- | cable | for | | inside | (inside | (outside | uator & | loss 5 (to | FCC | | chamber) | chamber) | chamber) | pre-amp) | receiver) | 15.247 | | dB | dB | dB | dB | dB | | | 0.47 | 1.87 | 0.53 | -27.58 | 1.33 | | | 0.56 | 2.41 | 0.67 | -28.23 | 1.31 | | | 0.61 | 2.78 | 0.86 | -27.35 | 1.40 | | | 0.58 | 2.74 | 0.90 | -26.89 | 1.47 | | | 0.66 | 2.82 | 0.86 | -25.58 | 1.46 | | | | AF
R&S | | |-----------|-----------|-------| | Frequency | HF907 | Corr. | | MHz | dB (1/m) | dB | | 7000 | 35.6 | -57.3 | | 8000 | 36.3 | -56.3 | | 9000 | 37.1 | -55.3 | | 10000 | 37.5 | -56.2 | | 11000 | 37.5 | -55.3 | | 12000 | 37.6 | -53.7 | | 13000 | 38.2 | -53.5 | | 14000 | 39.9 | -56.3 | | 15000 | 40.9 | -54.1 | | 16000 | 41.3 | -54.1 | | 17000 | 42.8 | -54.4 | | 18000 | 44.2 | -54.7 | | cable | | | | | | |----------|--------|--------|----------|----------|-----------| | loss 1 | cable | cable | cable | cable | cable | | (relay | loss 2 | loss 3 | loss 4 | loss 5 | loss 6 | | inside | (High | (pre- | (inside | (outside | (to | | chamber) | Pass) | amp) | chamber) | chamber) | receiver) | | dB | dB | dB | dB | dB | dB | | 0.56 | 1.28 | -62.72 | 2.66 | 0.94 | 1.46 | | 0.69 | 0.71 | -61.49 | 2.84 | 1.00 | 1.53 | | 0.68 | 0.65 | -60.80 | 3.06 | 1.09 | 1.60 | | 0.70 | 0.54 | -61.91 | 3.28 | 1.20 | 1.67 | | 0.80 | 0.61 | -61.40 | 3.43 | 1.27 | 1.70 | | 0.84 | 0.42 | -59.70 | 3.53 | 1.26 | 1.73 | | 0.83 | 0.44 | -59.81 | 3.75 | 1.32 | 1.83 | | 0.91 | 0.53 | -63.03 | 3.91 | 1.40 | 1.77 | | 0.98 | 0.54 | -61.05 | 4.02 | 1.44 | 1.83 | | 1.23 | 0.49 | -61.51 | 4.17 | 1.51 | 1.85 | | 1.36 | 0.76 | -62.36 | 4.34 | 1.53 | 2.00 | | 1.70 | 0.53 | -62.88 | 4.41 | 1.55 | 1.91 | #### Sample calculation E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB) U = Receiver reading AF = Antenna factor Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table. Tables show an extract of values. #### 6.5 ANTENNA EMCO 3160-09 (18 GHZ - 26.5 GHZ) | Frequency | AF
EMCO
3160-09 | Corr. | |-----------|-----------------------|-------| | MHz | dB (1/m) | dB | | 18000 | 40.2 | -23.5 | | 18500 | 40.2 | -23.2 | | 19000 | 40.2 | -22.0 | | 19500 | 40.3 | -21.3 | | 20000 | 40.3 | -20.3 | | 20500 | 40.3 | -19.9 | | 21000 | 40.3 | -19.1 | | 21500 | 40.3 | -19.1 | | 22000 | 40.3 | -18.7 | | 22500 | 40.4 | -19.0 | | 23000 | 40.4 | -19.5 | | 23500 | 40.4 | -19.3 | | 24000 | 40.4 | -19.8 | | 24500 | 40.4 | -19.5 | | 25000 | 40.4 | -19.3 | | 25500 | 40.5 | -20.4 | | 26000 | 40.5 | -21.3 | | 26500 | 40.5 | -21.1 | | cable | cable | cable | cable | cable | |----------|--------|----------|---------|-----------| | loss 1 | loss 2 | loss 3 | loss 4 | loss 5 | | (inside | (pre- | (inside | (switch | (to | | chamber) | amp) | chamber) | unit) | receiver) | | dB | dB | dB | dB | dB | | 0.72 | -35.85 | 6.20 | 2.81 | 2.65 | | 0.69 | -35.71 | 6.46 | 2.76 | 2.59 | | 0.76 | -35.44 | 6.69 | 3.15 | 2.79 | | 0.74 | -35.07 | 7.04 | 3.11 | 2.91 | | 0.72 | -34.49 | 7.30 | 3.07 | 3.05 | | 0.78 | -34.46 | 7.48 | 3.12 | 3.15 | | 0.87 | -34.07 | 7.61 | 3.20 | 3.33 | | 0.90 | -33.96 | 7.47 | 3.28 | 3.19 | | 0.89 | -33.57 | 7.34 | 3.35 | 3.28 | | 0.87 | -33.66 | 7.06 | 3.75 | 2.94 | | 0.88 | -33.75 | 6.92 | 3.77 | 2.70 | | 0.90 | -33.35 | 6.99 | 3.52 | 2.66 | | 0.88 | -33.99 | 6.88 | 3.88 | 2.58 | | 0.91 | -33.89 | 7.01 | 3.93 | 2.51 | | 0.88 | -33.00 | 6.72 | 3.96 | 2.14 | | 0.89 | -34.07 | 6.90 | 3.66 | 2.22 | | 0.86 | -35.11 | 7.02 | 3.69 | 2.28 | | 0.90 | -35.20 | 7.15 | 3.91 | 2.36 | #### Sample calculation E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB) U = Receiver reading AF = Antenna factor Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table. Table shows an extract of values. #### 6.6 ANTENNA EMCO 3160-10 (26.5 GHZ - 40 GHZ) | Frequency | AF
EMCO
3160-10 | Corr. | |-----------|-----------------------|-------| | GHz | dB (1/m) | dB | | 26.5 | 43.4 | -11.2 | | 27.0 | 43.4 | -11.2 | | 28.0 | 43.4 | -11.1 | | 29.0 | 43.5 | -11.0 | | 30.0 | 43.5 | -10.9 | | 31.0 | 43.5 | -10.8 | | 32.0 | 43.5 | -10.7 | | 33.0 | 43.6 | -10.7 | | 34.0 | 43.6 | -10.6 | | 35.0 | 43.6 | -10.5 | | 36.0 | 43.6 | -10.4 | | 37.0 | 43.7 | -10.3 | | 38.0 | 43.7 | -10.2 | | 39.0 | 43.7 | -10.2 | | 40.0 | 43.8 | -10.1 | | cable
loss 1
(inside
chamber) | cable
loss 2
(outside
chamber) | cable
loss 3
(switch
unit) | cable
loss 4
(to
receiver) | distance
corr.
(-20 dB/
decade) | d _{Limit}
(meas.
distance
(limit) | d _{used}
(meas.
distance
(used) | |--|---|-------------------------------------|-------------------------------------|--|---|---| | dB | dB | dB | dB | dB | m | m | | 4.4 | | | | -15.6 | 3 | 0.5 | | 4.4 | | | | -15.6 | 3 | 0.5 | | 4.5 | | | | -15.6 | 3 | 0.5 | | 4.6 | | | | -15.6 | 3 | 0.5 | | 4.7 | | | | -15.6 | 3 | 0.5 | | 4.7 | | | | -15.6 | 3 | 0.5 | | 4.8 | | | | -15.6 | 3 | 0.5 | | 4.9 | | | | -15.6 | 3 | 0.5 | | 5.0 | | | | -15.6 | 3 | 0.5 | | 5.1 | | | | -15.6 | 3 | 0.5 | | 5.1 | | | | -15.6 | 3 | 0.5 | | 5.2 | | | | -15.6 | 3 | 0.5 | | 5.3 | | | | -15.6 | 3 | 0.5 | | 5.4 | | | | -15.6 | 3 | 0.5 | | 5.5 | | | | -15.6 | 3 | 0.5 | #### Sample calculation E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB) U = Receiver reading AF = Antenna factor Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table. distance correction = -20 * LOG (d_{Limit}/d_{used}) Linear interpolation will be used for frequencies in between the values in the table. Table shows an extract of values. #### 7 SETUP DRAWINGS Remark: Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used. **Drawing 1:** Setup in the Anechoic chamber. For measurements below 1 GHz the ground was replaced by a conducting groundplane. **Drawing 2:** Setup for conducted radio tests. #### 8 MEASUREMENT UNCERTAINTIES | Test Case | Parameter | Uncertainty |
--------------------------------------|--------------------|------------------------| | AC Power Line | Power | ± 3.4 dB | | Field Strength of spurious radiation | Power | ± 5.5 dB | | 6 dB / 26 dB / 99% Bandwidth | Power
Frequency | ± 2.9 dB
± 11.2 kHz | | Conducted Output Power | Power | ± 2.2 dB | | Band Edge Compliance | Power
Frequency | ± 2.2 dB
± 11.2 kHz | | Frequency Stability | Frequency | ± 25 Hz | | Power Spectral Density | Power | ± 2.2 dB | #### 9 PHOTO REPORT Please see separate photo report.