

FCC and IC Certification

Nemko Korea Co., Ltd.

155 & 159, Osan-Ro, Mohyeon-Eup, Cheoin-Gu, Yongin-Si, Gyeonggi-Do 16885 KOREA, REPUBLIC OF TEL:+82 31 330-1700 FAX:+82 31 322 2332

FCC and IC EVALUATION REPORT FOR CERTIFICATION

Applicant:

YAMAHA CORPORATION
Dates of Issue: July 28, 2022
10-1, Nakazawa-Cho, NaKa-Ku, Hamamatsu
-Shi, Shizuoka-Ken, 430-8650, Japan
Test Site: Nemko Korea Co., Ltd.

Attn.: Naohiro Emoto

FCC ID

Brand Name

Contact Person

A6RCS500 740B-CS500

YAMAHA CORPORATION

10-1, Nakazawa-Cho, Naka-Ku, Hamamatsu-Shi, Shizuoka-Ken, 430-8650, Japan Naohiro Emoto

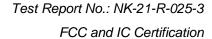
Telephone No.: +81-53-460-2812

Applied Standard: FCC 47 CFR Part 15.247

IC RSS-247 Issue 2 and IC RSS-GEN Issue 5

Classification: Digital Transmission System (DTS) EUT Type: VIDEO CONFERENCE SYSTEM

The device bearing the brand name and model specified above has been shown to comply with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. The client should not use it to claim product endorsement by TAF or any government agencies. The test results in the report only apply to the tested sample.


I attest to the accuracy of data and all measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Tested By: Yonghwan Kim

Test Engineer

Reviewed By: Hoonpyo Lee

Technical Manager

Revision History

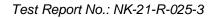
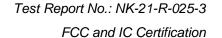

Rev.	Issue Date	Revisions	Revised By
00	July 28, 2022	Initial issue	

TABLE OF CONTENTS


1.	Scope	5
2.	Introduction (Site Description)	6
	2.1 Test facility	6
	2.2 Accreditation and listing	7
3.	Test Conditions & EUT Information	8
	3.1 Operation During Test	8
	3.1.1 Table of test power setting	8
	3.1.2 Table of test channels	9
	3.1.3 Antenna information	9
	3.1.4 Additional Information Related to Testing	9
	3.1.5 Table of test modes	10
	3.2 Support Equipment	11
	3.3 Setup Drawing	11
	3.4 EUT Information	12
4.	Summary of Test Results	13
5.	Recommendation / Conclusion	14
6.	Antenna Requirements	15
7.	Description of Test	16
	7.1 Conducted Emissions	16
	7.2 Radiated Emissions	17
	7.3 6 dB Bandwidth	18
	7.4 Maximum Conducted Output Power (average)	19
	7.5 Maximum Power Spectral Density (average)	20
	7.6 Conducted Spurious Emissions	21
	7.7 Duty Cycle	22

FCC and IC Certification

8.	Test Data	23
	8.1 Conducted Emissions	23
	8.2 Radiated Emissions	25
	8.3 6 dB Bandwidth	27
	8.4 Maximum Conducted Output Power (average) and E.I.R.P.	34
	8.5 Maximum Power Spectral Density (average)	42
	8.6 Conducted Spurious Emissions	50
	8.7 Radiated Spurious Emissions	68
	8.8 Radiated Band Edge	72
9.	Test Equipment	74
10.	Accuracy of Measurement	75

1. SCOPE

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission under FCC part 15 and IC RSS-247 Issue2.

Responsible Party: YAMAHA CORPORATION

10-1, Nakazawa-Cho, Naka-Ku, Hamamatsu-Shi, Shizuoka-Ken,

430-8650, Japan

Contact Person: Naohiro Emoto

Manufacturer: YAMAHA CORPORATION

10-1, Nakazawa-Cho, Naka-Ku, Hamamatsu-Shi, Shizuoka-Ken,

430-8650, Japan

• FCC ID: A6RCS500

• IC: 740B-CS500

Model: CS-500HVIN: CS-500

EUT Type: VIDEO CONFERENCE SYSTEM
 District Transmission Content (DTC)

Classification: Digital Transmission System (DTS)

Applied Standard: FCC 47 CFR Part 15.247

IC RSS-247 Issue 2 and IC RSS-GEN Issue 5

• Test Procedure(s): ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

Dates of Test:
 June 13, 2022 ~ July 18, 2022

Place of Test: Nemko Korea Co., Ltd.

2. INTRODUCTION

2.1 Test facility

The measurement procedure described in American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz (ANSI C63.4-2014), the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2013) was used in determining radiated and conducted emissions emanating from YAMAHA CORPORATION FCC ID: A6RCS500 and IC: 740B-CS500.

These measurement tests were conducted at Nemko Korea Co., Ltd. EMC Laboratory .

The site address 155 & 159, Osan-Ro, Mohyeon-Eup, Cheoin-Gu, Yongin-Si, Gyeonggi-Do 16885 KOREA, REPULIC OF.

The area of Nemko Korea Corporation Ltd. EMC Test Site is located in a mountain area at 80 km (48 miles) southeast and Incheon International Airport (Incheon Airport), 30 km (18miles) south-southeast from central Seoul.

It is located in the valley surrounded by mountains in all directions where ambient radio signal conditions are quiet and a favorable area to measure the radio frequency interference on open field test site for the computing and ISM devices manufactures.

The detailed description of the measurement facility was found to be in compliance with the requirements of ANSI C63.4-2014 according to §2.948.

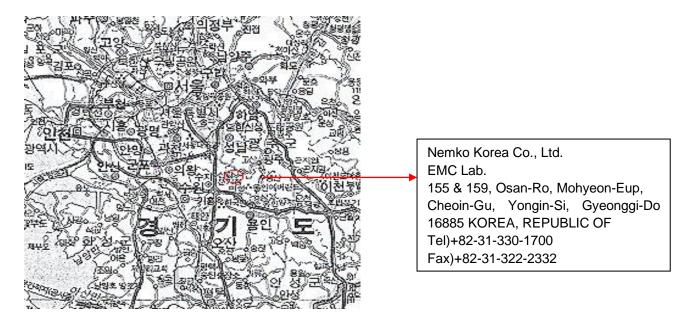


Fig. 1. The map above shows the Seoul in Korea vicinity area.

The map also shows Nemko Korea Corporation Ltd. EMC Lab. and Incheon Airport.

YAMAHA CORPORATION FCC ID: A6RCS500 / IC: 740B-CS500

2.2 Accreditation and listing

	Accreditation type	Accreditation number
F©	CAB Accreditation for DOC	Designation No. KR0026
KOLAS (STORY ACCREDITATION ACC	KOLAS Accredited Lab. (Korea Laboratory Accreditation Scheme)	Registration No. KT155
Industry Canada	Canada IC Registered site	Site No. 2040E
VEI	VCCI registration site(RE/CE/Telecom CE)	Member No. 2118
IECEE SCHEME	EMC CBTL	TL124
	KCC(RRL)Designated Lab.	Registration No. KR0026

3. TEST CONDITIONS & EUT INFORMATION

3.1 Operation During Test

The EUT is the transceiver which is WiFi supporting 802.11b/g/n(20, 40MHz) mode. The Laptop was used to control the EUT to transmit the wanted TX channel constantly (duty cycle< 98%) by the testing program (QRCT) supported by manufacturer. The operating voltage of EUT was 20 Vdc supplied from AC/DC adapter

The EUT was tested at the lowest, middle and the highest channels with the maximum output power in accordance with the manufacturer's specifications. The worst data were recorded in the report.

3.1.1 Table of test power setting

Frequency	Mode Power setting Level (1T)	
	802.11b	5
2 412 MHz	802.11g	7
	802.11n (20 MHz)	7
	802.11b	5
2 437 MHz	802.11g	7
	802.11n (20 MHz)	7
	802.11b	5
2 462 MHz	802.11g	7
	802.11n (20 MHz)	7
2 422MHz		7
2 437 MHz	802.11n (40 MHz)	7
2 452 MHz		7

YAMAHA CORPORATION FCC ID: A6RCS500 / IC: 740B-CS500

3.1.2 Table of test frequency

Frequency band	Mode	Mode Test Channel (CH)	
		1	2 412
	802.11b,g,n (20 MHz)	6	2 437
2.4.01.		11	2 462
2.4 GHz		3	2 422
	802.11n (40 MHz)	6	2 437
		9	2 452

3.1.3 Antenna information

Frequency band	Mode	Data rate	Antenna TX mode	Beamforming
	802.11b	All	■ 1TX, □ 2TX	□Yes, ∎No
0.4.011	802.11g	All	■ 1TX, □ 2TX	□Yes, ∎No
2.4 GHz	802.11n (20 MHz)	MCS 0~7	■ 1TX, □ 2TX	□Yes, ∎No
	802.11n (40 MHz)	MCS 0~7	■ 1TX, □ 2TX	□Yes, ∎No

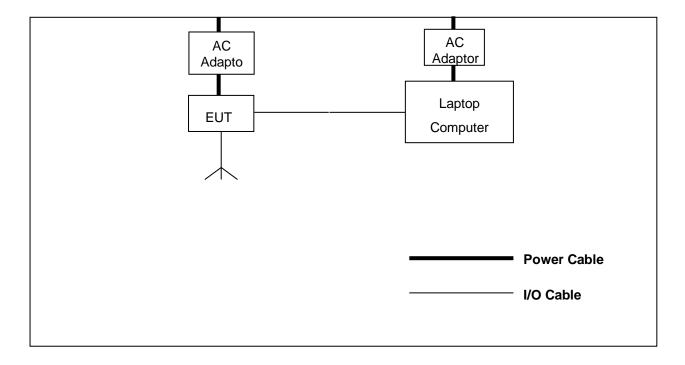
3.1.4 Additional Information Related to Testing

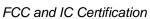
The cable and attenuator loss from 30MHz to 26.5GHz was reflected in spectrum analyzer with correction factor for all conducted testing.

3.1.5 Table of test modes

2.4GHz - Part 15.247, RSS-247 Issue 2 and RSS-GEN Issue 5					
Test Items	Mode	*Data rate (Mbps)	Test Channel (CH)		
Conducted Emissions	802.11n (20 MHz)	MCS7	1		
Radiated Emissions	802.11g	54	1		
	802.11b	11	1/6/11		
C dD Doodwidth	802.11g	54	1/6/11		
6 dB Bandwidth	802.11n (20 MHz)	MCS7	1/6/11		
	802.11n (40 MHz)	MCS7	3/6/9		
Maximum Conducted Output Power	802.11b	11	1/6/11		
	802.11g	54	1/6/11		
	802.11n (20 MHz)	MCS7	1/6/11		
	802.11n (40 MHz)	MCS7	3/6/9		
	802.11b	11	1/6/11		
Dough Chapter Donaite	802.11g	54	1/6/11		
Power Spectral Density	802.11n (20 MHz)	MCS7	1/6/11		
	802.11n (40 MHz)	MCS7	3/6/9		
	802.11b	11	1/6/11		
Conducted Spurious Emission,	802.11g	54	1/6/11		
Radiated Spurious Emission, Band edge Emission	802.11n (20 MHz)	MCS7	1/6/11		
-	802.11n (40 MHz)	MCS7	3/6/9		

^{*}The worst data rate was determined by the conducted output power that generates the highest emission performing pre-scan testing in all data rates of each mode.

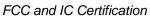



3.2 Support Equipment

EUT YAMAHA CORPORATION Model : CS-500		S/N: Z83000387	
Laptop Computer	HP Model : G62-355TU	FCC DOC S/N: CNF0489WDT	
AC/DC Adapter	HP Model: PPP009D 1.5 m unshielded power cable	FCC DOC S/N: WBGSV0ACXZH162	

3.3 Setup Drawing

YAMAHA CORPORATION
FCC ID: A6RCS500 / IC: 740B-CS500



3.4 EUT Information

The EUT is the YAMAHA CORPORATION VIDEO CONFERENCE SYSTEM FCC ID: A6RCS500, IC: 740B-CS500.

Specifications:

Specifications:		
EUT Type	VIDEO CONFERENCE SYSTEM	
Model Name	CS-500	
Brand Name	⊗YAMAHA	
Frequency of Operation	802.11b,g,n (20 MHz) : 2 412 MHz ~ 2 462 MHz 802.11n (40 MHz) : 2 422 MHz ~ 2 452 MHz	
Maximum Conducted Output Power	802.11b : 13.40 dBm 802.11g : 13.74 dBm 802.11n (20 MHz) : 13.80 dBm 802.11n (40 MHz) : 13.73 dBm	
FCC Classification	Digital Transmission System (DTS)	
Number of Channels	802.11b,g,n (20 MHz): 11 CH 802.11n (40 MHz): 7 CH	
Modulations	DSSS(BPSK,QPSK,CCK) for 802.11b OFDM(BPSK,QPSK,16QAM,64QAM) for 802.11g/n	
Antenna Gain (peak)	Ant : 2.5 dBi	
Antenna Setup	802.11b/g/n (20, 40 MHz) : 1TX / 1RX	
EUT Rated Voltage	20 Vdc, 2.1 A, 42 W	
EUT Test Voltage	20 Vdc, 2.1 A, 42 W	
Temperature Range	-10 °C ~ +70 °C	
HVIN (Hardware Version Number)	CS-500	
FVIN (Firmware Version Identification Number)	CS-500	
Remarks	-	

4. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specification:

Name of Test	FCC Paragraph No.	IC Paragraph No.	Result	Remark
Conducted Emission	15.207	RSS-GEN Issue 5 8.8	Complies	
Radiated Emission	15.209	RSS-GEN Issue 5 8.9	Complies	
6 dB Bandwidth	15.247(a)(2)	RSS-247 Issue 2 5.2	Complies	
Maximum Conducted Output Power	15.247(b)(3)	RSS-247 Issue 2 5.4	Complies	
Power Spectral Density	15.247(e)	RSS-247 Issue 2 5.2	Complies	
Conducted Spurious Emission	15.247(d)	RSS-247 Issue 2 5.5	Complies	
Radiated Spurious Emission	15.247(d)	RSS-247 Issue 2 5.5	Complies	
Maximum Permissible Exposure	1.1307(b)	RSS-102 Issue 5	Complies	

5. RECOMMENDATION/CONCLUSION

The data collected shows that the YAMAHA CORPORATION VIDEO CONFERENCE SYSTEM FCC ID: A6RCS500, IC: 740B-CS500 is in compliance with Part 15.247 of the FCC Rule and RSS-247 Issue 2 of the IC Specification.

YAMAHA CORPORATION FCC ID: A6RCS500 / IC: 740B-CS500

6. ANTENNA REQUIREMENTS

§15.203 of the FCC Rules part 15 Subpart C

: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

The antenna of the YAMAHA CORPORATION VIDEO CONFERENCE SYSTEM FCC ID: A6RCS500, IC: 740B-CS500 is permanently attached and there are no provisions for connection to an external antenna. It complies with the requirement of §15.203.

Used Antenna		
Model name	Max. gain (dBi)	
Wiodel Hame	2.4 GHz	
AFPBTCS8HOP	2.5	

7. DESCRIPTION OF TESTS

7.1 Conducted Emissions

The Line conducted emission test facility is located inside a 4 x 7 x 2.5 meter shielded enclosure. It is manufactured by EM engineering. The shielding effectiveness of the shielded room is in accordance with MIL-STD-285 or NSA 65-6. A 1 m x 1.5 m wooden table 0.8 m height is placed 0.4 m away from the vertical wall and 1.5 m away from the side of wall of the shielded room. Rohde & Schwarz (ENV216) of the 50 ohm/50 µH Line Impedance Stabilization Network (LISN) are bonded to the shielded room. The EUT is powered from the Rohde & Schwarz LISN (ENV216). Power to the LISNs are filtered by high-current high insertion loss Power line filters. The purpose of filter is to attenuate ambient signal interference and this filter is also bonded to shielded enclosure. All electrical cables are shielded by tinned copper zipper tubing with inner diameter of 1 / 2 ". If DC power device, power will be derived from the source power supply it normally will be powered from and this supply lines will be connected to the LISNs, All interconnecting cables more than 1 meter were shortened by non-inductive bundling (serpentinefashion) to a 1 meter length. Sufficient time for EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer to determine the frequency producing the maximum EME from the EUT. The spectrum was scanned from 150 kHz to 30 MHz with 200 msec sweep time. The frequency producing the maximum level was re-examined using the EMI test receiver. (Rohde & Schwarz ESCI). The detector functions were set to CISPR quasi-peak mode & average mode. The bandwidth of receiver was set to 9 kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each EME emission. Each emission was maximized by; switching power lines; varying the mode of operation or resolution; clock or data exchange speed; scrolling H pattern to the EUT and of support equipment, and powering the monitor from the floor mounted outlet box and computer aux AC outlet, if applicable; whichever determined the worst case emission.

Each EME reported was calibrated using the R&S signal generator.

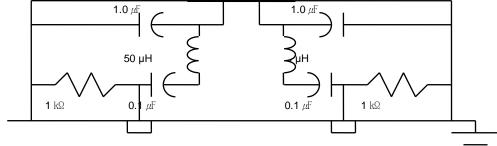


Fig. 2. LISN Schematic Diagram

7.2 Radiated Emissions

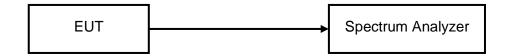
The measurement was performed at the test site that is specified in accordance with ANSI C63.10-2013.

The spurious emission was scanned from 9 kHz to 30 MHz using Loop Antenna(Rohde&Schwarz, HFH2-Z2) and 30 to 1000 MHz using Trilog broadband test antenna(Schwarzbeck, VULB 9163). Above 1 GHz, Horn antenna (Schwarzbeck HF907: up to 18 GHz, Q-par Angus QMS-00225 : 18 to 26.5 GHz) was used.

For emissions testing at below 1GHz, The test equipment was placed on turntable with 0.8 m above ground. For emission measurements above 1 GHz, The test equipment was placed on turntable with 1.5 m above ground. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The EUT, cable, wire arrangement and mode of operation that has the highest amplitude relative to the limit was selected. Then, the turn table was rotated from 0° to 360° and an antenna mast was moved from 1 m to 4 m height to maximize the suspected highest amplitude signal. The final maximized level was recorded.

At frequencies below 1000 MHz, measurements performed using the CISPR quasi-peak detection. At frequencies above 1000 MHz, measurements performed using the peak and average measurement procedures described in ANSI 63.10-2013 section 11.12. Peak emission levels were measured by setting the analyzer RBW = 1 MHz, VBW = 3 MHz, Detector = Peak, Trace mode = max hold. Average emission levels were measured by setting the analyzer RBW = 1 MHz, VBW = 10 kHz, Detector = Peak, Trace mode = max hold. Allow max hold to run for at least 50 times (1/duty cycle) traces.

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705–30.0	30	30
30–88	100	3
88–216	150	3
216–960	200	3
Above 960	500	3


Radiated Emissions Limits per 47 CFR 15.209(a) and RSS-GEN Issue 5 8.9

YAMAHA CORPORATION FCC ID: A6RCS500 / IC: 740B-CS500

7.3 6 dB Bandwidth

Test Setup

Test Procedure

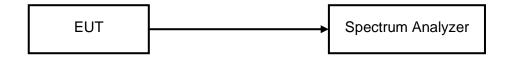
EUTs 6 dB bandwidth is measured at low, middle, high channels with a spectrum analyzer connected to the antenna terminal while the EUTs operating at its maximum power control level. The spectrum analyzer setting is as follows.

RBW = 100 kHz

 $VBW > 3 \times RBW$

Detector = Peak

Trace mode = max hold


Sweep = auto couple

The bandwidth measurement function on the spectrum analyzer is used to measure the 6 dB bandwidth.

7.4 Maximum Conducted Output Power (average)

Test Setup

Test Procedure

EUTs Maximum Conducted Output Power (average) is measured at low, middle, high channels with a spectrum analyzer connected to the antenna terminal while the EUTs operating at its maximum power control level.

The spectrum analyzer setting is as follows.

Measure the duty cycle, x, of the transmitter output signal

Span to at least 1.5 times the OBW.

RBW = 1 - 5 % of the OBW, not to exceed 1MHz

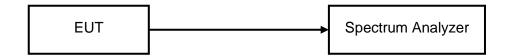
VBW ≥ $3 \times RBW$.

Number of points in sweep $\geq 2 \times \text{span} / \text{RBW}$

Sweep time = auto couple

Detector = RMS

Trace average at least 100 traces in power averaging mode.


Add 10 log (1/x), where x is the duty cycle

Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with band limits set equal to the OBW band edges.

7.5 Maximum Power Spectral Density (average)

Test Setup

Test Procedure

EUTs Maximum Power Spectral Density (average) is measured at low, middle, high channels with a spectrum analyzer connected to the antenna terminal while the EUTs operating at its maximum power control level.

The spectrum analyzer setting is as follows.

Center frequency = DTS channel center frequency

Span = at least 1.5 times the DTS bandwidth

 $RBW: 3 kHz \le RBW \le 100 kHz$

 $VBW \ge 3 \times RBW$

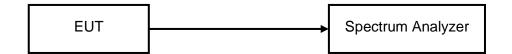
Detector = power averaging (RMS)

Ensure that the number of measurement points = sweep ≥ 2 x span / RBW

Sweep time = auto couple

Employ trace averaging (RMS) = minimum of 100 traces

Add 10 log (1/x), where x is the duty cycle


Use the peak marker function to determine the maximum amplitude level.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.6 Conducted Spurious Emissions

Test Setup

Test Procedure

EUTs Conducted spurious emissions are measured at low, middle, high channels with a spectrum analyzer connected to the antenna terminal while the EUTs operating at its maximum power control level. The spectrum analyzer setting is as follows.

1) Reference Level

Center frequency = DTS channel center frequency

Span \geq 1.5 x DTS bandwidth

RBW = 100 kHz

 $VBW \geq 3 \times RBW$

Detector = peak

Sweep time = auto couple

Trace mode = max hold

Allow trace to fully stabilize.

Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

2) Unwanted Emissions

Set the center frequency and span to encompass frequency range to be measured.

RBW = 100 kHz

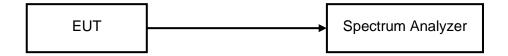
 $VBW \geq 3 \times RBW$

Detector = peak

Sweep time = auto couple

Trace mode = max hold

Allow trace to fully stabilize.


Use the peak marker function to determine the maximum amplitude level.

7.7 Duty Cycle

Test Setup

Test Procedure

EUTs duty cycle are measured at lowest channel with a spectrum analyzer connected to the antenna terminal while the EUTs operating at its maximum power control level. The spectrum analyzer setting is as follows.

Center frequency = Center frequency of the transmission

Span = zero

RBW = 8 MHz

VBW = 8 MHz

Detector = peak

Sweep time = at least 3 ms

Sweep mode = Single

The marker function on the spectrum analyzer is used to determine the duty cycle.

The results of the duty cycle measurement according to the above test procedure.

	Data rate	On time (ms)	On + Off time (ms)	Duty Cycle (%)	Duty Factor (dB)
b mode	11Mbps	0.913	1.116	81.8	0.872
g mode	54Mbps	0.170	0.370	45.9	3.378
n(20 MHz)mode	MCS7	0.157	0.358	43.9	3.580
n(40 MHz)mode	MCS7	0.094	0.295	32.0	4.967

YAMAHA CORPORATION FCC ID: A6RCS500 / IC: 740B-CS500

8. TEST DATA

8.1 Conducted Emissions

FCC §15.207, RSS-GEN Issue 5 8.8

Result

Frequency	Level	(dBµV)	*) Factor **) Line		Limit	Limit (dB μ V)		n (dB)
(MHz)	Q-Peak	Average	(dB)	iii) Line	Q-Peak	Average	Q-Peak	Average
0.16	52.4	32.0	9.90	L	65.6	55.6	13.2	23.6
0.17	49.6	30.0	10.00	N	64.8	54.7	15.2	24.7
0.25	39.4	21.6	9.70	N	61.7	51.6	22.3	30.0
0.36	40.6	29.9	9.80	L	58.5	48.5	17.9	18.6
0.40	47.8	38.5	9.90	L	57.7	47.7	9.9	9.2
21.72	40.2	35.4	10.20	N	60.0	50.0	19.8	14.6

Line Conducted Emissions Tabulated Data

Notes:

- 1. Measurements using CISPR quasi-peak mode & average mode.
- 2. All modes of operation were investigated and the worst -case emission are reported. See attached Plots.
- 3. 1 channel (2 412MHz) in 802.11n (20 MHz) mode is the worst case.
- 4. *) Factor = LISN + Cable Loss
- 5. **) LINE : L = Line , N = Neutral
- 6. The limit is on the FCC §15.207(a) and IC RSS-GEN issue5 8.8.

Worst Case

Conducted Emission at the Mains port (Line + Neutral)

TEST DATA

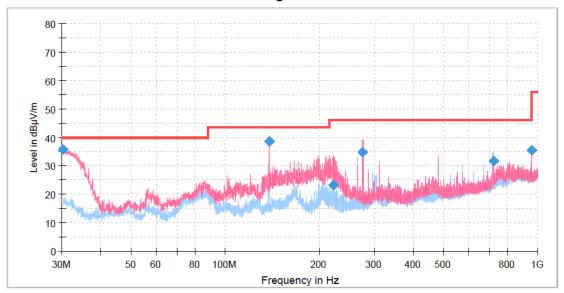
8.2 Radiated Emissions

FCC §15.209, IC RSS-Gen Issue 5 8.9

Result

Frequency (MHz)	Reading (dBµV)	Pol* (H/V)	mode	AF+CL+Amp (dB)**	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)
30.16	60.22	V	QP	-24.4	35.82	40.0	4.18
138.10	66.41	V	QP	-27.9	38.51	43.5	4.99
222.60	47.08	V	QP	-23.8	23.28	46.0	22.72
275.63	56.90	V	QP	-22.0	34.90	46.0	11.10
720.05	44.03	Н	QP	-12.2	31.83	46.0	14.17
960.01	45.40	٧	QP	-9.8	35.60	56.0	20.40

Radiated Measurements at 3meters


Notes:

- 1. The worst-case emission was reported.
- 2. *Pol. H = Horizontal, V = Vertical
- 3. **AF + CL + Amp. = Antenna Factor + Cable Loss + Amplifier.
- 4. Measurements using CISPR quasi-peak mode below 1 GHz.
- 5. The radiated emissions testing were made by rotating EUT through three orthogonal axes and rotating the receive antenna with horizontal, Vertical polarization. The worst data was recorded.
- 6. 1 channel (2 412 MHz) in 802.11g mode is the worst case.
- 7. No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz).
- 8. The limit is on the FCC §15.209 and RSS-Gen Issue5 8.9.

Worst Case

Radiated emission below 1GHz_ 802.11g mode 2 412 MHz

8.3 6 dB Bandwidth

FCC §15.247(a)(2), IC RSS-247 Issue 2 5.2

Test Mode: Set to Lowest channel, Middle channel and Highest channel,

802.11b mode

Channel	Frequency (MHz) 6 dB modulated bandwidth (MHz)		Limit (MHz)	Margin (MHz)	99% emission bandwidth (MHz)
Lowest	2 412	8.85	0.50	8.35	13.03
Middle	2 437	8.97	0.50	8.47	13.07
Highest	2 462	8.51	0.50	8.01	13.02

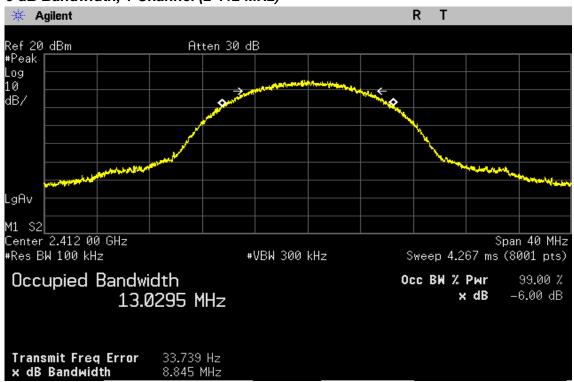
802.11g mode

Channel	Frequency (MHz)	6 dB modulated bandwidth (MHz)	Limit (MHz)	Margin (MHz)	99% emission bandwidth (MHz)
Lowest	2 412	16.48	0.50	15.98	16.48
Middle	2 437	16.48	0.50	15.98	16.47
Highest	2 462	16.48	0.50	15.98	16.47

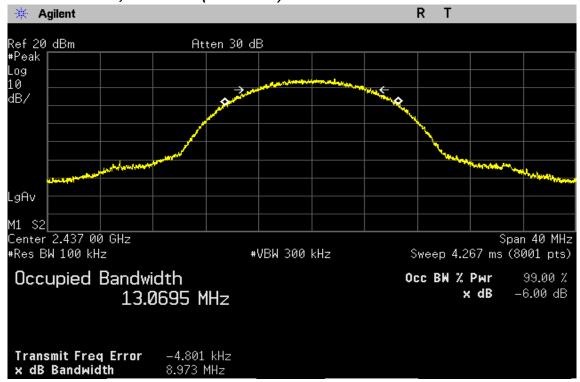
802.11n (20 MHz) mode

Channel	Frequency (MHz)	6 dB modulated bandwidth (MHz)	Limit (MHz)	Margin (MHz)	99% emission bandwidth (MHz)
Lowest	2 412	17.71	0.50	17.21	17.67
Middle	2 437	17.71	0.50	17.21	17.67
Highest	2 462	17.69	0.50	17.19	17.66

802.11n (40 MHz) mode

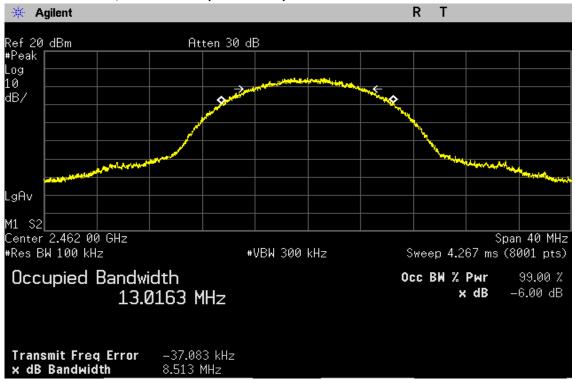

Channel	Frequency (MHz)	6 dB modulated bandwidth (MHz)	Limit (MHz)	Margin (MHz)	99% emission bandwidth (MHz)
Lowest	2 422	36.26	0.50	35.76	36.06
Middle	2 437	36.00	0.50	35.50	36.04
Highest	2 452	35.98	0.50	35.48	36.00

YAMAHA CORPORATION
FCC ID: A6RCS500 / IC: 740B-CS500

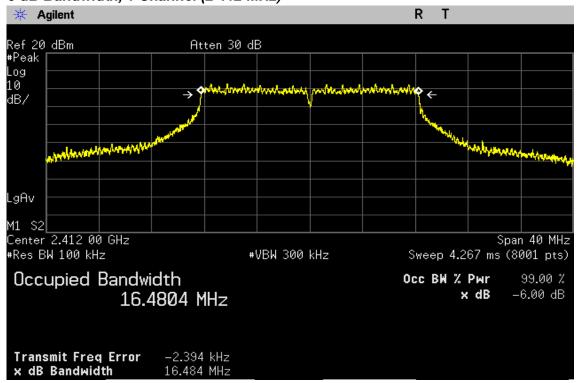


802.11b mode

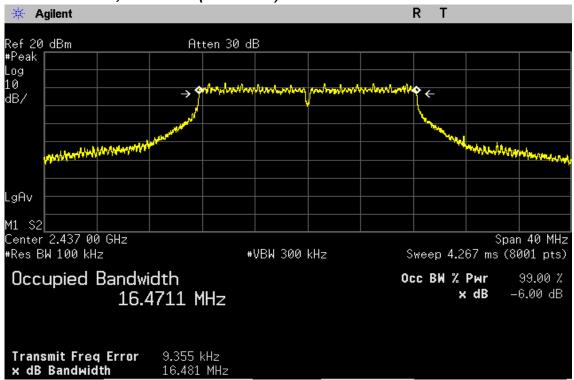
6 dB Bandwidth, 1 Channel (2 412 MHz)



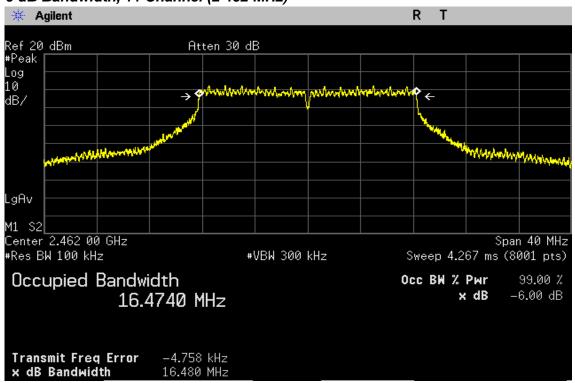
6 dB Bandwidth, 6 Channel (2 437 MHz)



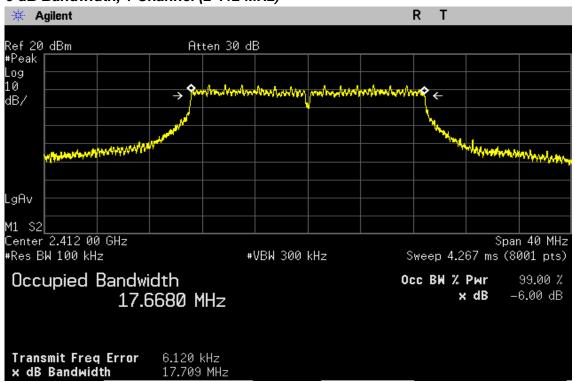
6 dB Bandwidth, 11 Channel (2 462 MHz)

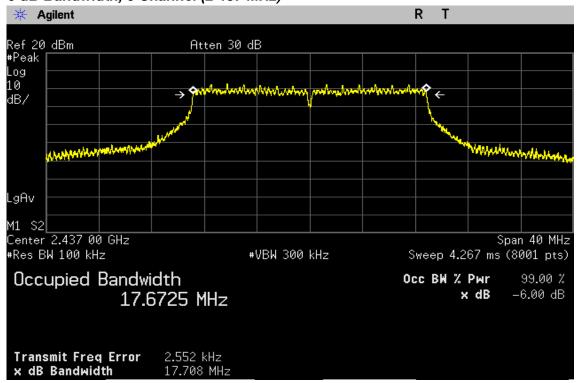

802.11g mode

6 dB Bandwidth, 1 Channel (2 412 MHz)



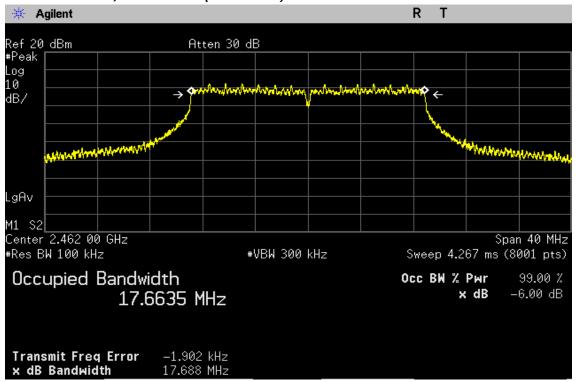
6 dB Bandwidth, 6 Channel (2 437 MHz)


6 dB Bandwidth, 11 Channel (2 462 MHz)

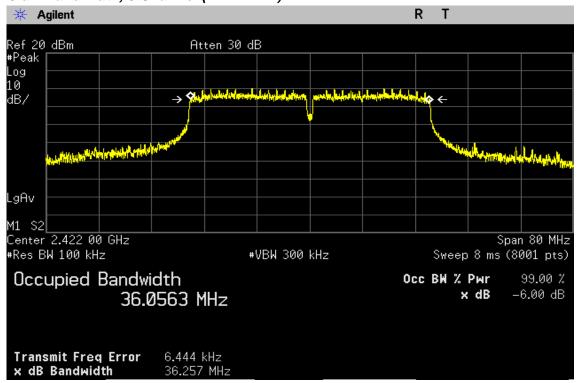


802.11n (20 MHz) mode

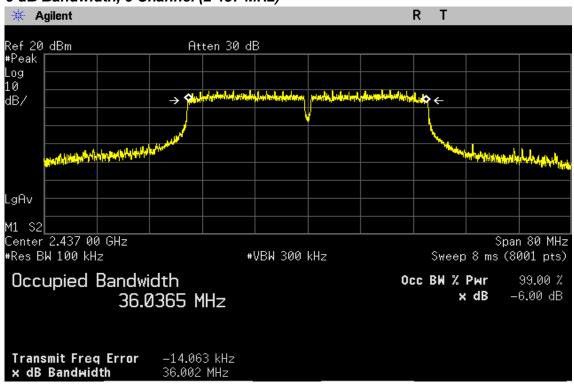
6 dB Bandwidth, 1 Channel (2 412 MHz)



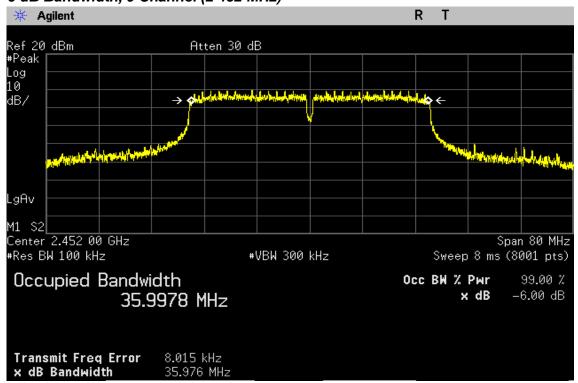
6 dB Bandwidth, 6 Channel (2 437 MHz)



6 dB Bandwidth, 11 Channel (2 462 MHz)


802.11n (40 MHz) mode

6 dB Bandwidth, 3 Channel (2 422 MHz)



6 dB Bandwidth, 6 Channel (2 437 MHz)

6 dB Bandwidth, 9 Channel (2 452 MHz)

8.4 Maximum Conducted Output Power (average) and E.I.R.P.

FCC §15.247(b)(3), IC RSS-247 Issue 2 5.4

Test Mode: Set to Lowest channel, Middle channel and Highest channel,

802.11b mode

Channel	Frequency (MHz)	Measured conducted power (dBm)	Duty Factor (dB)	*Maximum Conducted Power (dBm)	Limit (dBm)	E.I.R.P (dBm)	E.I.R.P Limit (dBm)
1	2 412	12.55	0.87	13.43	30.00	15.93	36.00
6	2 437	12.39	0.87	13.26	30.00	15.76	36.00
11	2 462	12.04	0.87	12.92	30.00	15.42	36.00

802.11g mode

Channel	Frequency (MHz)	Measured conducted power (dBm)	Duty Factor (dB)	*Maximum Conducted Power (dBm)	Limit (dBm)	E.I.R.P (dBm)	E.I.R.P Limit (dBm)
1	2 412	10.33	3.38	13.71	30.00	16.21	36.00
6	2 437	10.14	3.38	13.52	30.00	16.02	36.00
11	2 462	9.93	3.38	13.30	30.00	15.80	36.00

TEST DATA

802.11n (20 MHz) mode

Channel	Frequency (MHz)	Measured conducted power (dBm)	Duty Factor (dB)	*Maximum Conducted Power (dBm)	Limit (dBm)	E.I.R.P (dBm)	E.I.R.P Limit (dBm)
1	2 412	10.29	3.58	13.87	30.00	16.37	36.00
6	2 437	10.07	3.58	13.65	30.00	16.15	36.00
11	2 462	9.82	3.58	13.40	30.00	15.90	36.00

802.11n (40 MHz) mode

Channel	Frequency (MHz)	Measured conducted power (dBm)	Duty Factor (dB)	*Maximum Conducted Power (dBm)	Limit (dBm)	E.I.R.P (dBm)	E.I.R.P Limit (dBm)
3	2 422	8.84	4.97	13.81	30.00	16.31	36.00
6	2 437	8.75	4.97	13.72	30.00	16.22	36.00
9	2 452	8.58	4.97	13.55	30.00	16.05	36.00

Note:

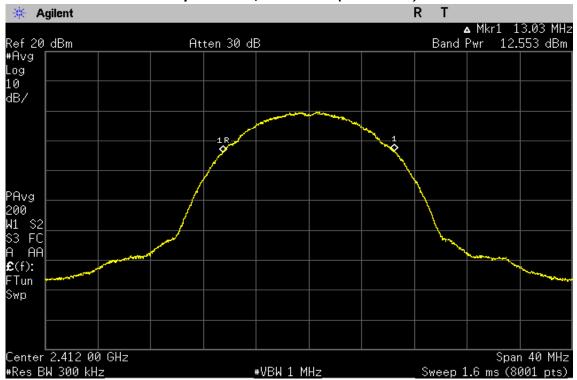
- 1. *Maximum Conducted (average) Power = Measured conducted power + Duty Factor
- 2. E.I.R.P was calculated by following equation according to KDB412172 D01 Determining ERP and EIRP v01r01.

 $E.I.R.P = P_T + G_T - Lc$

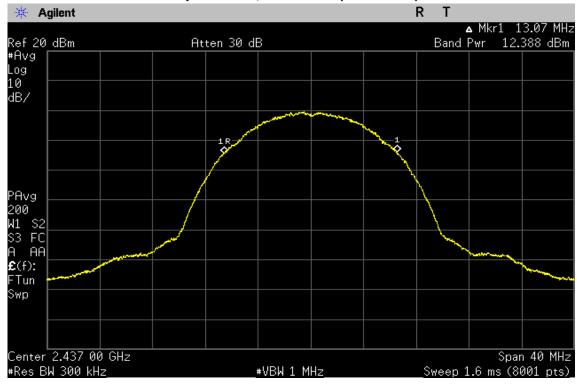
 P_T = Peak outputpower (dBm)

 G_T = Gain of the transmitting antenna in dBi, Directional antenna gain is **2.5 dBi**.

L_C = Signal attenuation in the connecting cable between the transmitter and antenna in dB. This factor of an integral antenna is negligible.


3. The following equation was used for spectrum offset:

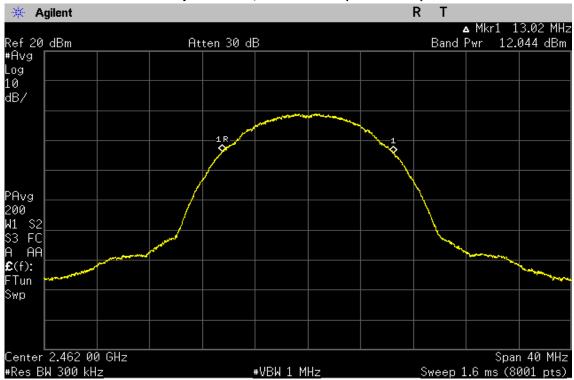
Spectrum offset (dB) = Attenuator (dB) + Cable Loss (dB) + SMA Type Connector Loss (dB)



802.11b mode

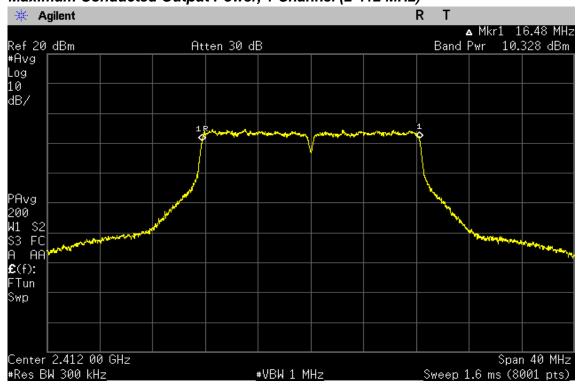
Maximum Conducted Output Power, 1 Channel (2 412 MHz)

Maximum Conducted Output Power, 6 Channel (2 437 MHz)

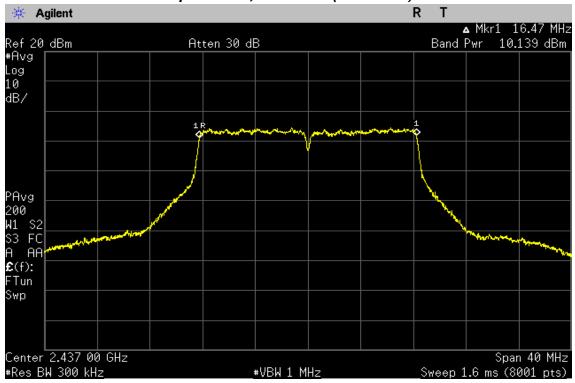


YAMAHA CORPORATION FCC ID: A6RCS500 / IC: 740B-CS500

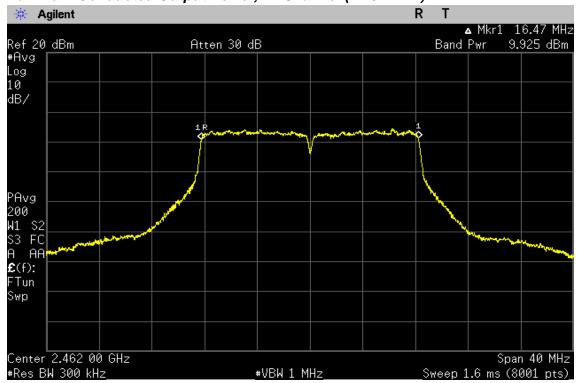
Page 36 of 76



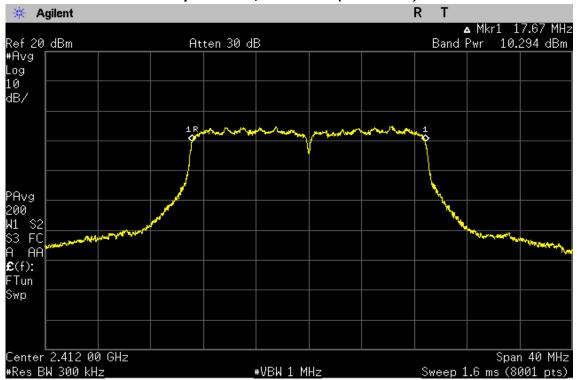
Maximum Conducted Output Power, 11 Channel (2 462 MHz)

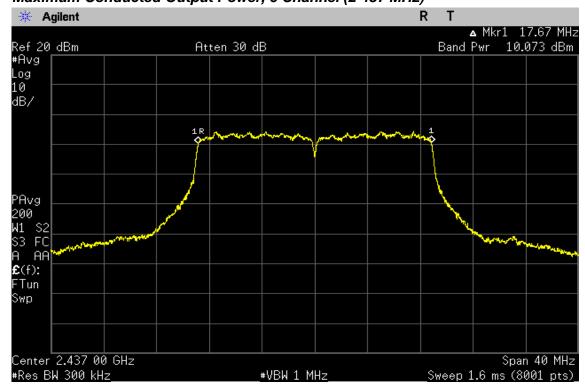

802.11g mode

Maximum Conducted Output Power, 1 Channel (2 412 MHz)



Maximum Conducted Output Power, 6 Channel (2 437 MHz)

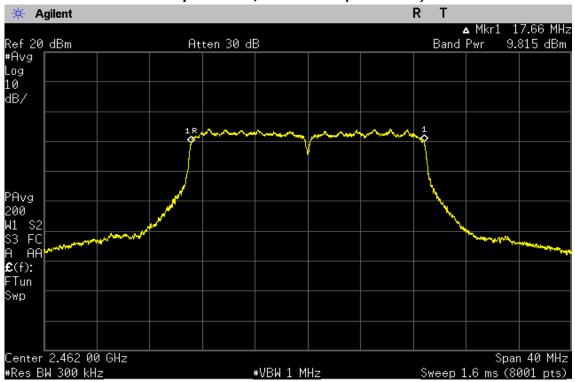

Maximum Conducted Output Power, 11 Channel (2 462 MHz)



802.11n (20 MHz) mode

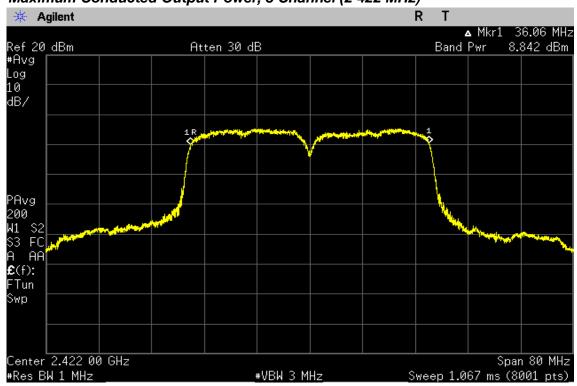
Maximum Conducted Output Power, 1 Channel (2 412 MHz)

Maximum Conducted Output Power, 6 Channel (2 437 MHz)



YAMAHA CORPORATION FCC ID: A6RCS500 / IC: 740B-CS500

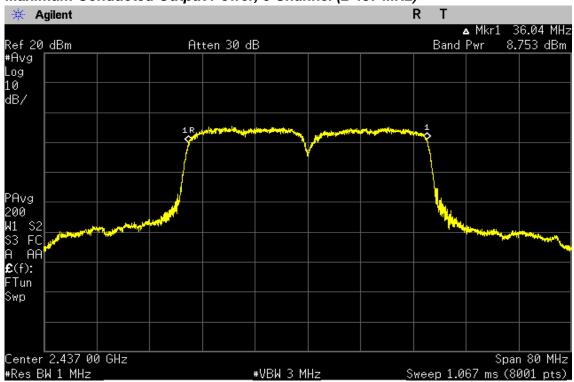
Page 39 of 76



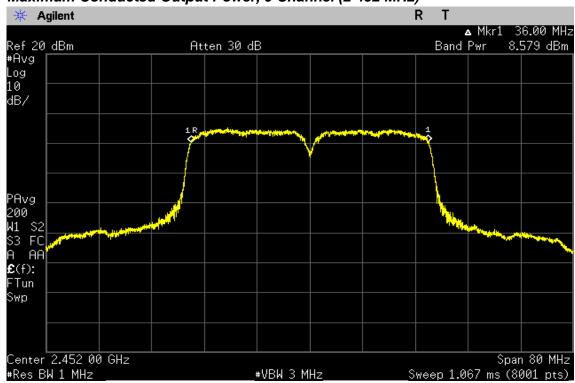
Maximum Conducted Output Power, 11 Channel (2 462 MHz)

802.11n (40 MHz) mode

Maximum Conducted Output Power, 3 Channel (2 422 MHz)



YAMAHA CORPORATION FCC ID: A6RCS500 / IC: 740B-CS500


Page 40 of 76

Maximum Conducted Output Power, 6 Channel (2 437 MHz)

Maximum Conducted Output Power, 9 Channel (2 452 MHz)

8.5 Maximum Power Spectral Density (average)

FCC §15.247(e), IC RSS-247 Issue 2 5.2

Test Mode: Set to Lowest channel, Middle channel and Highest channel,

802.11b mode

Channel	Frequency (MHz)	Measured PSD (dBm/100kHz)	Duty Factor (dB)	*Maximum PSD (dBm/100kHz)	Limit (dBm/3kHz)
1	2 412	-4.84	0.87	-3.97	8.00
6	2 437	-4.89	0.87	-4.02	8.00
11	2 462	-4.97	0.87	-4.10	8.00

802.11g mode

Channel	Frequency (MHz)	Measured PSD (dBm/100kHz)	Duty Factor (dB)	*Maximum PSD (dBm/100kHz)	Limit (dBm/3kHz)
1	2 412	-8.37	3.38	-4.99	8.00
6	2 437	-8.68	3.38	-5.30	8.00
11	2 462	-8.17	3.38	-4.80	8.00

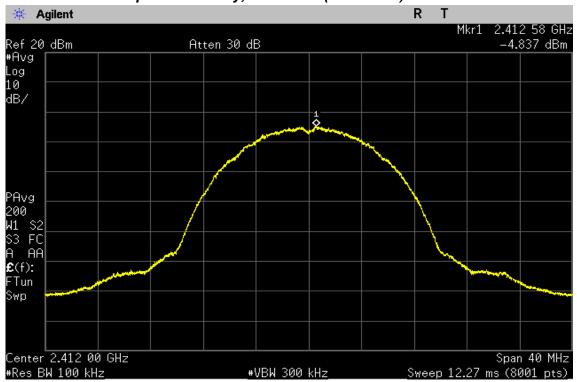
TEST DATA

802.11n (20 MHz) mode

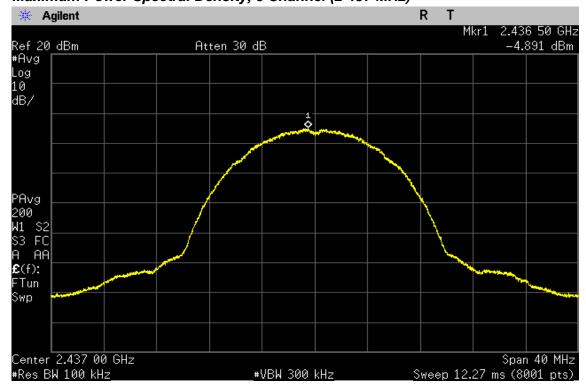
Channel	Frequency (MHz)	Measured PSD (dBm/100kHz)	Duty Factor (dB)	*Maximum PSD (dBm/100kHz)	Limit (dBm/3kHz)
1	2 412	-7.94	3.58	-4.36	8.00
6	2 437	-8.81	3.58	-5.23	8.00
11	2 462	-8.40	3.58	-4.82	8.00

802.11n (40 MHz) mode

Channel	Frequency (MHz)	Measured PSD (dBm/100kHz)	Duty Factor (dB)	*Maximum PSD (dBm/100kHz)	Limit (dBm/3kHz)
3	2 422	-11.56	4.97	-6.59	8.00
6	2 437	-11.34	4.97	-6.37	8.00
9	2 452	-10.95	4.97	-5.98	8.00


Note:

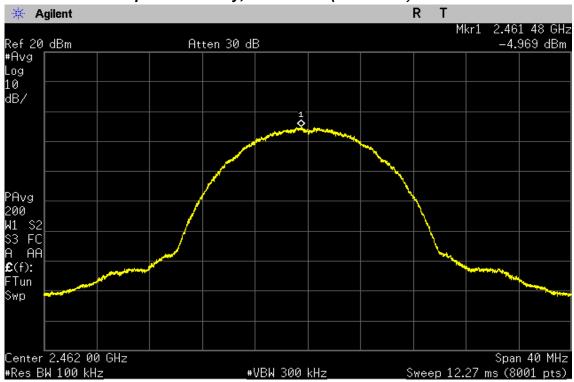
- 1. *Maximum PSD = Measured PSD + Duty Factor
- 2. The following equation was used for spectrum offset: Spectrum offset (dB) = Attenuator (dB) + Cable Loss (dB) + SMA Type Connector Loss (dB)



802.11b mode

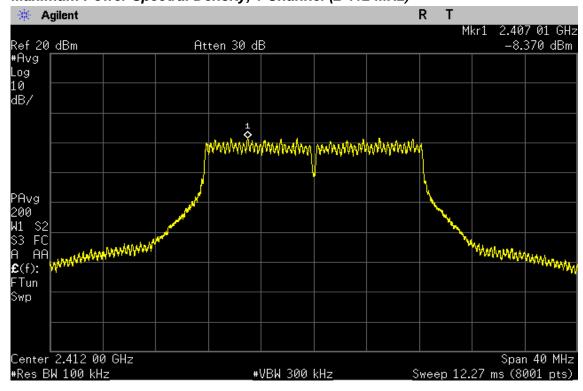
Maximum Power Spectral Density, 1 Channel (2 412 MHz)

Maximum Power Spectral Density, 6 Channel (2 437 MHz)

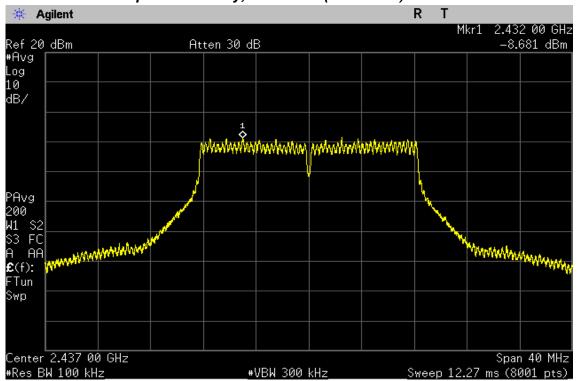


YAMAHA CORPORATION FCC ID: A6RCS500 / IC: 740B-CS500

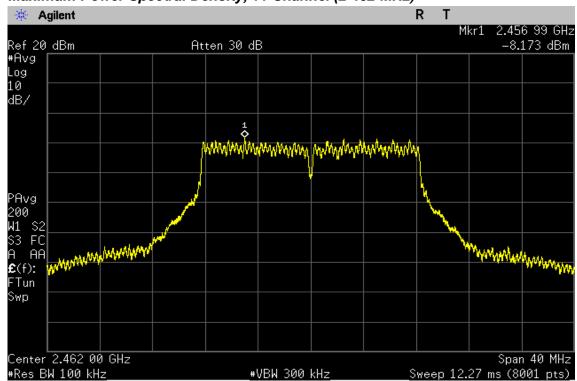
Page 44 of 76



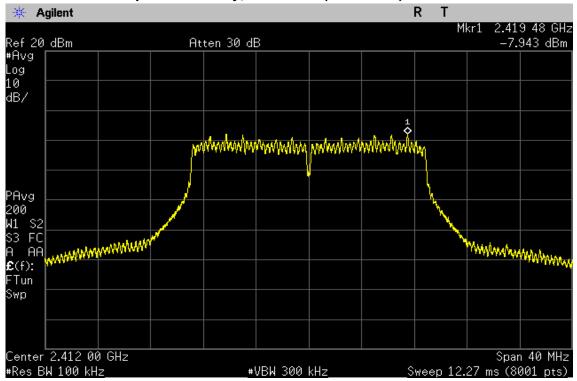
Maximum Power Spectral Density, 11 Channel (2 462 MHz)

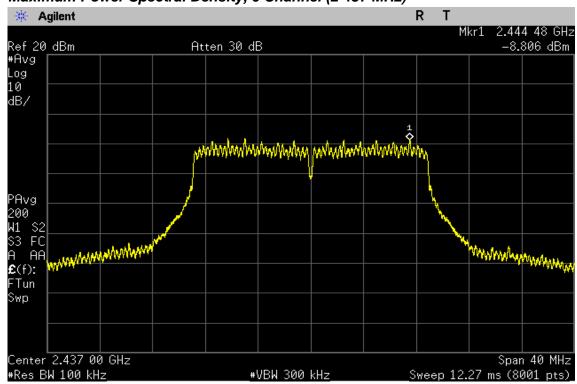

802.11g mode

Maximum Power Spectral Density, 1 Channel (2 412 MHz)



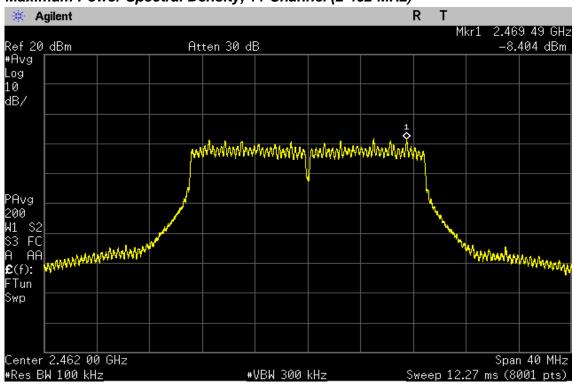
Maximum Power Spectral Density, 6 Channel (2 437 MHz)


Maximum Power Spectral Density, 11 Channel (2 462 MHz)

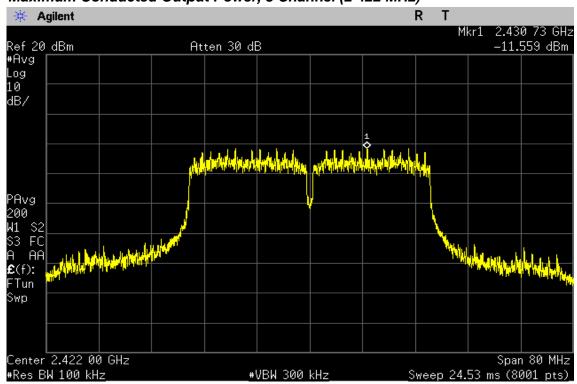


802.11n (20 MHz) mode

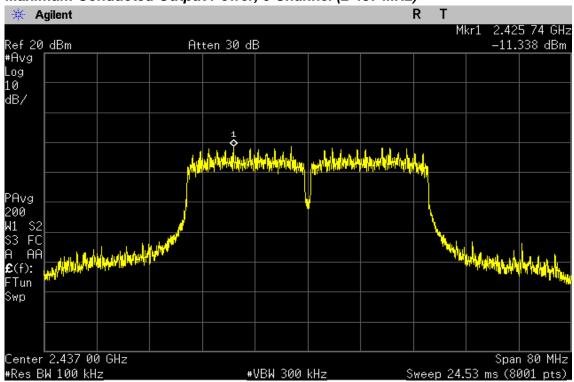
Maximum Power Spectral Density, 1 Channel (2 412 MHz)



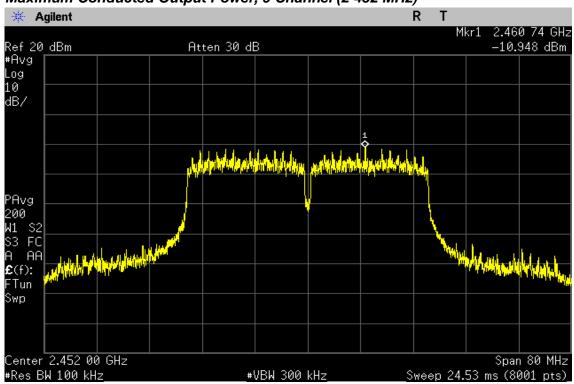
Maximum Power Spectral Density, 6 Channel (2 437 MHz)



Maximum Power Spectral Density, 11 Channel (2 462 MHz)


802.11n (40 MHz) mode

Maximum Conducted Output Power, 3 Channel (2 422 MHz)



Maximum Conducted Output Power, 6 Channel (2 437 MHz)

Maximum Conducted Output Power, 9 Channel (2 452 MHz)

FCC ID: A6RCS500 / IC: 740B-CS500

TEST DATA

8.6 Conducted Spurious Emissions

FCC §15.247(d), IC RSS-247 Issue 2 5.5

Test Mode: Set to Lowest channel, Middle channel and Highest channel,

802.11b mode

Channel	Frequency (MHz)	Reference Level (dBm/100kHz)	Conducted Spurious Emissions (dBc)	Limit (dBc)
1	2 412	5.17	More than 30 dBc	30
6	2 437	5.07	More than 30 dBc	30
11	2 462	4.97	More than 30 dBc	30

802.11g mode

Channel	Frequency (MHz)	Reference Level (dBm/100kHz)	Conducted Spurious Emissions (dBc)	Limit (dBc)
1	2 412	2.74	More than 30 dBc	30
6	2 437	2.51	More than 30 dBc	30
11	2 462	2.36	More than 30 dBc	30

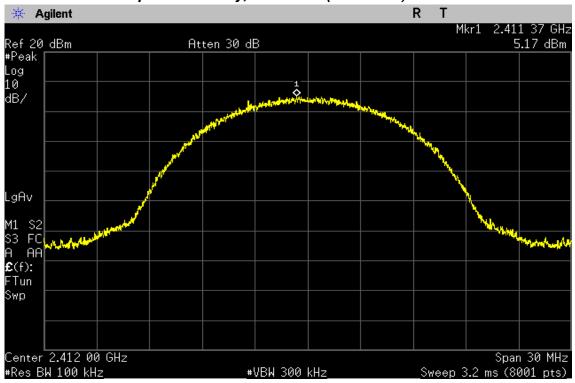
TEST DATA

802.11n (20 MHz) mode

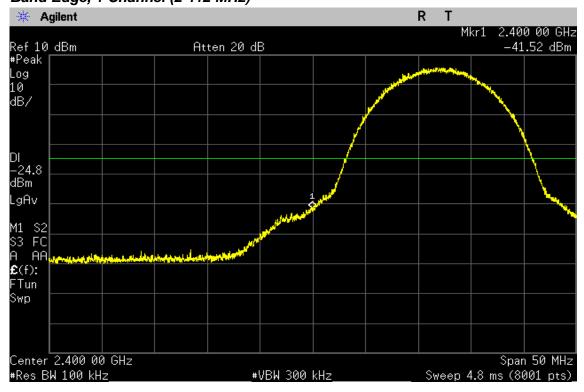
Channel	Frequency (MHz)	Reference Level (dBm/100kHz)	•	
1	2 412	2.75	More than 30 dBc	30
6	2 437	2.55	More than 30 dBc	30
11	2 462	2 2.39 More than 30 dBc		30

802.11n (40 MHz) mode

Channel	Frequency (MHz)	Reference Level (dBm/100kHz)	· '	
3	2 422	0.03	More than 30 dBc	30
6	2 437	-0.05	More than 30 dBc	30
9	2 452	-0.17	More than 30 dBc	30


Notes:

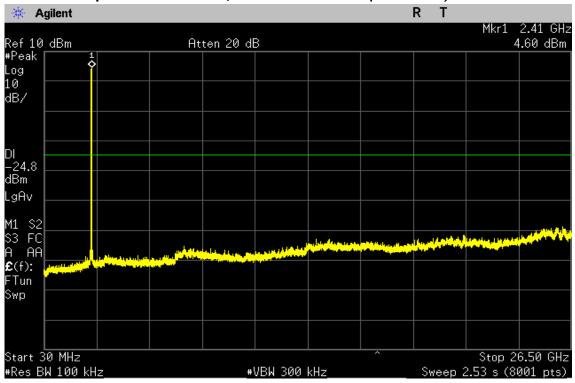
The cable and attenuator loss from 30 MHz to 26.5 GHz was reflected in spectrum analyzer with correction factor for the spurious emissions test.



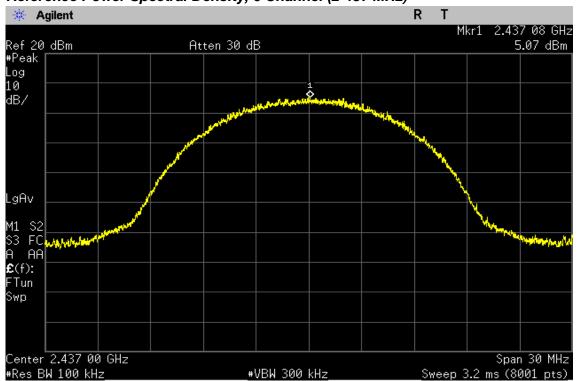
802.11b mode

Reference Power Spectral Density, 1 Channel (2 412 MHz)

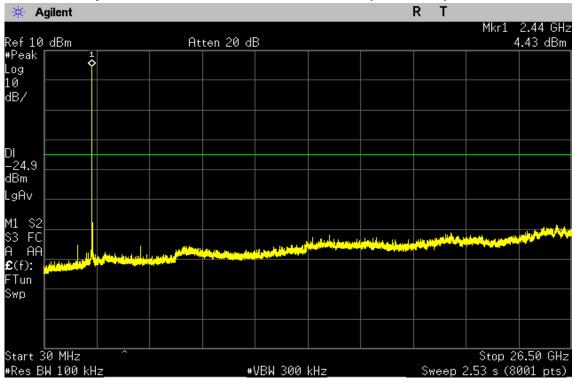
Band Edge, 1 Channel (2 412 MHz)



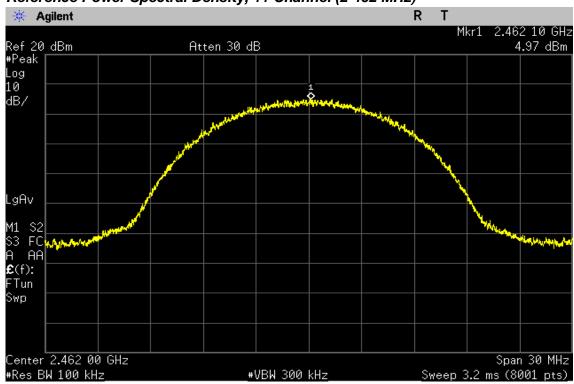
YAMAHA CORPORATION FCC ID: A6RCS500 / IC: 740B-CS500


Page 52 of 76

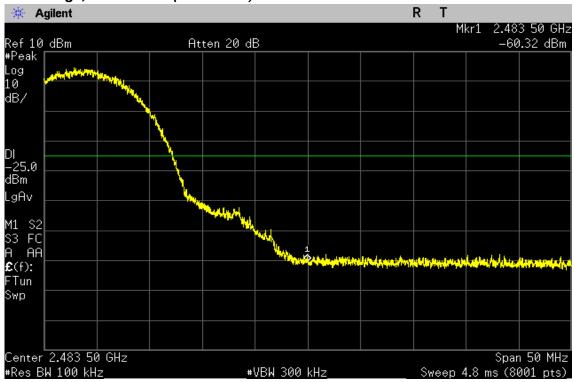
Conducted Spurious Emissions, 30 MHz ~ 26.5 GHz (2 412 MHz)



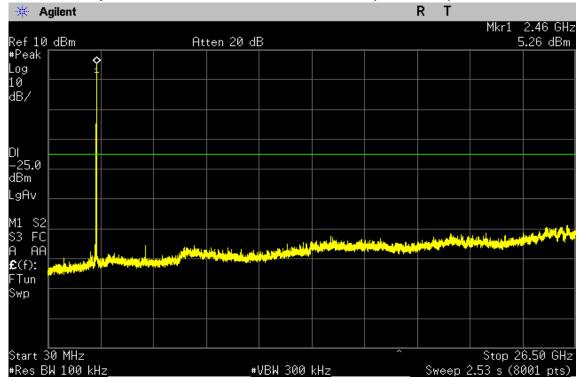
Reference Power Spectral Density, 6 Channel (2 437 MHz)



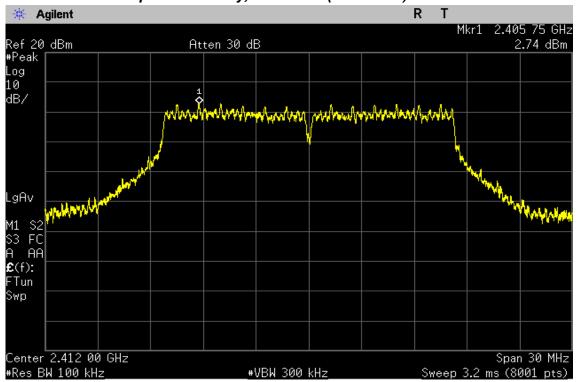
Conducted Spurious Emissions, 30 MHz ~ 26.5 GHz (2 437 MHz)

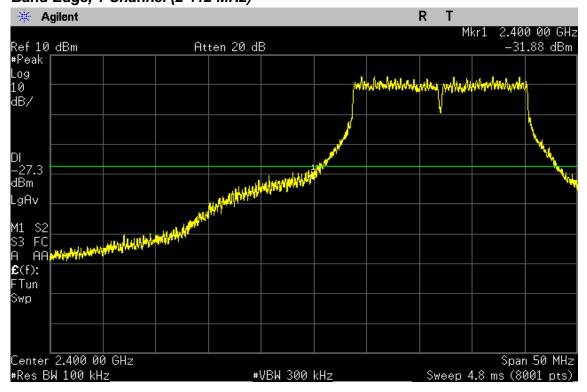


Reference Power Spectral Density, 11 Channel (2 462 MHz)



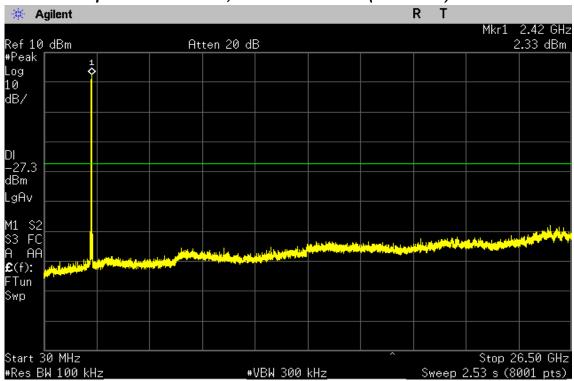
Band Edge, 11 Channel (2 462 MHz)


Conducted Spurious Emissions, 30 MHz ~ 26.5 GHz (2 462 MHz)

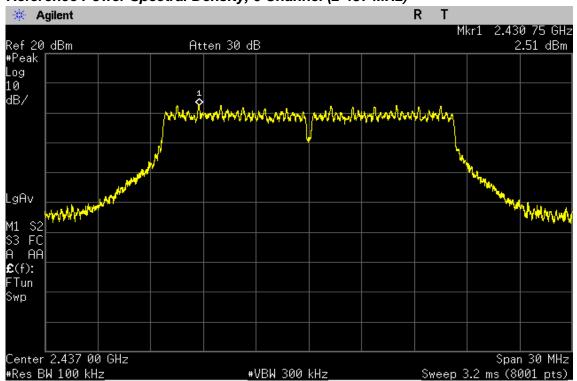


802.11g mode

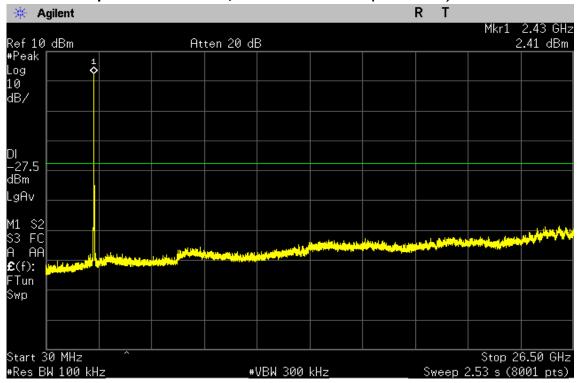
Reference Power Spectral Density, 1 Channel (2 412 MHz)



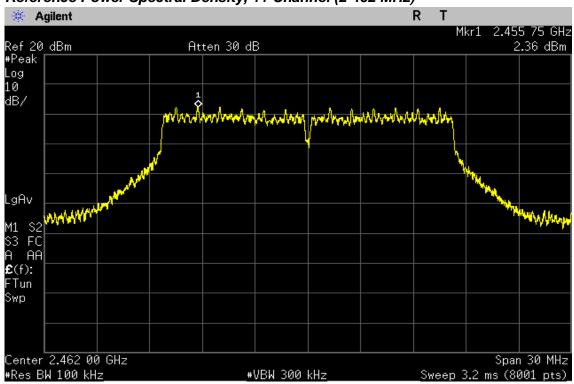
Band Edge, 1 Channel (2 412 MHz)



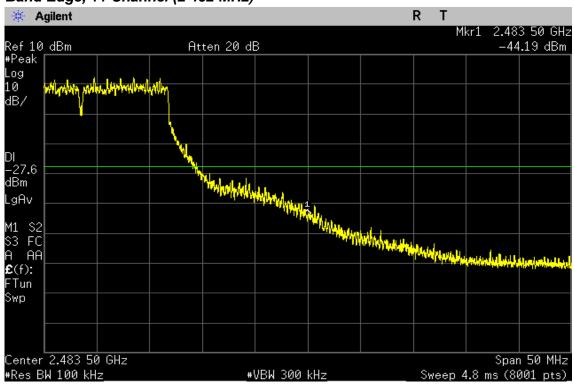
Conducted Spurious Emissions, 30 MHz ~ 26.5 GHz (2 412 MHz)



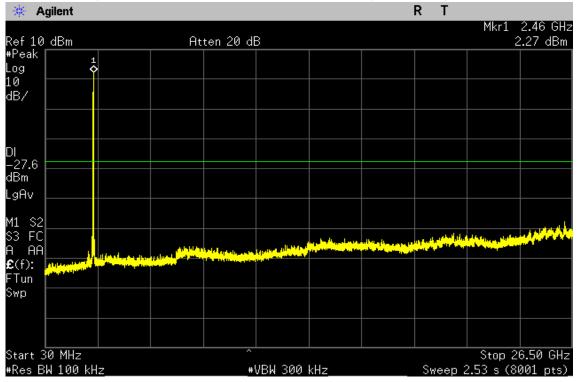
Reference Power Spectral Density, 6 Channel (2 437 MHz)



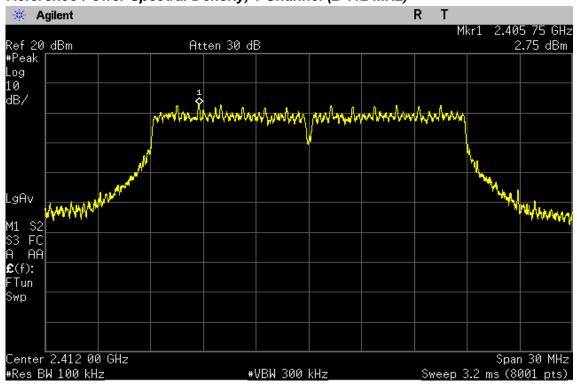
Conducted Spurious Emissions, 30 MHz ~ 26.5 GHz (2 437 MHz)

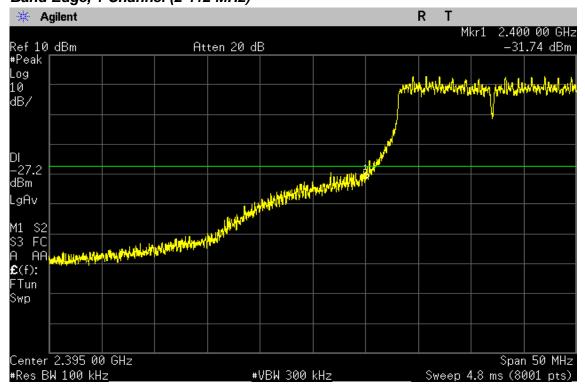


Reference Power Spectral Density, 11 Channel (2 462 MHz)



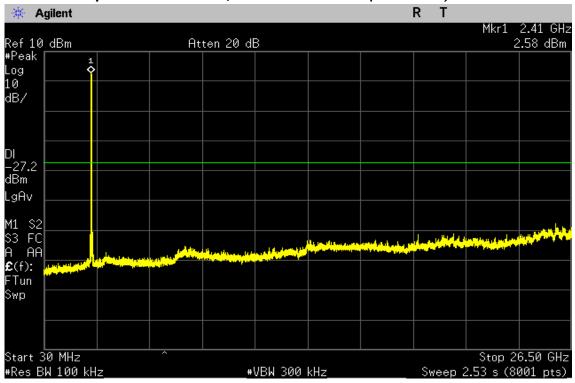
Band Edge, 11 Channel (2 462 MHz)


Conducted Spurious Emissions, 30 MHz ~ 26.5 GHz (2 462 MHz)

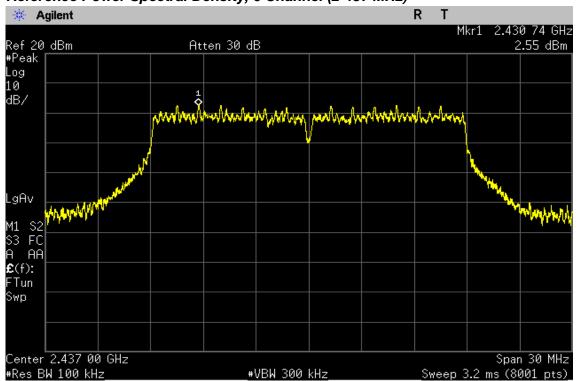


802.11n (20 MHz) mode

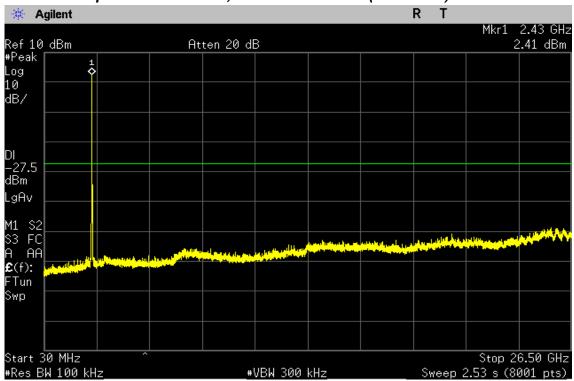
Reference Power Spectral Density, 1 Channel (2 412 MHz)



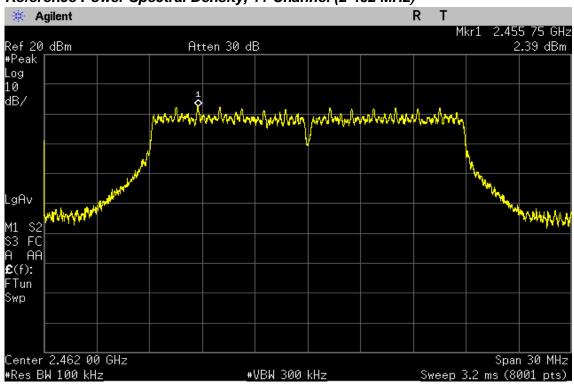
Band Edge, 1 Channel (2 412 MHz)



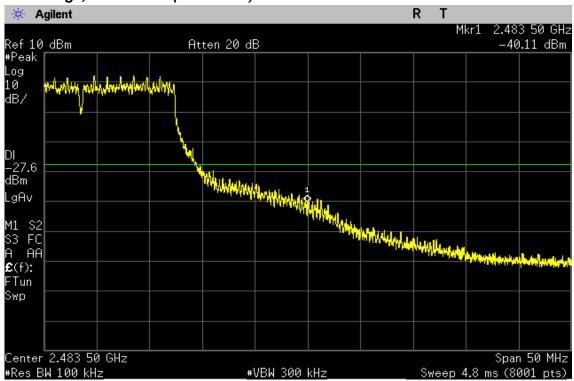
Conducted Spurious Emissions, 30 MHz ~ 26.5 GHz (2 412 MHz)



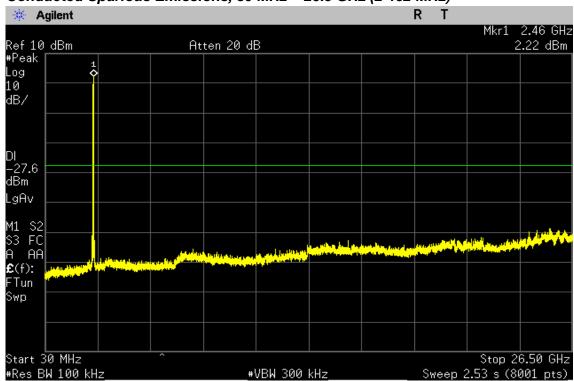
Reference Power Spectral Density, 6 Channel (2 437 MHz)



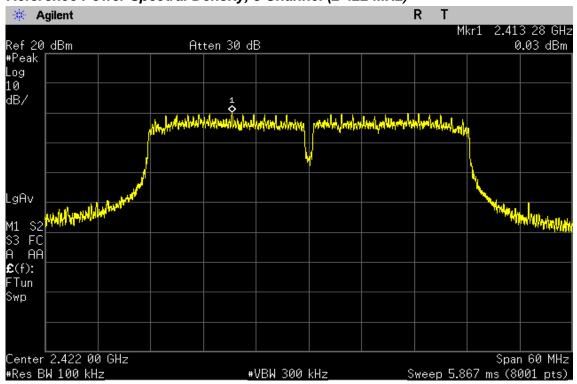
Conducted Spurious Emissions, 30 MHz ~ 26.5 GHz (2 437 MHz)



Reference Power Spectral Density, 11 Channel (2 462 MHz)



Band Edge, 11 Channel (2 462 MHz)

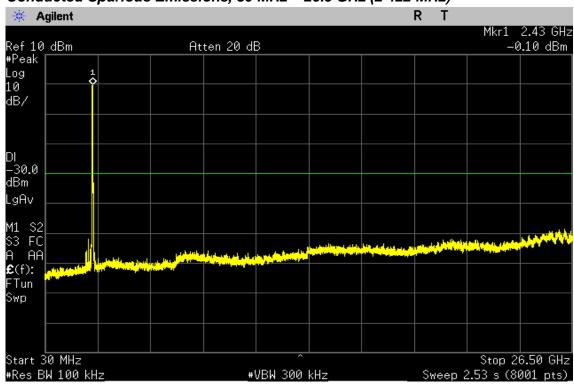

Conducted Spurious Emissions, 30 MHz ~ 26.5 GHz (2 462 MHz)



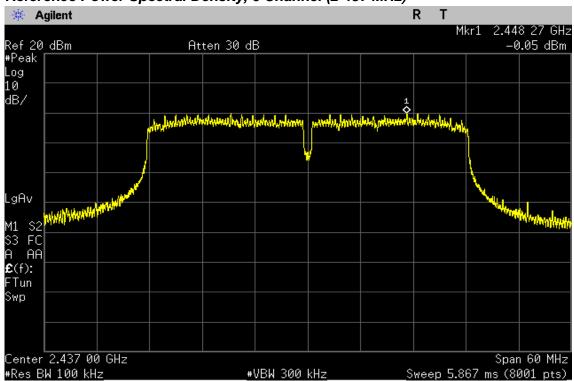
802.11n (40 MHz) mode

Reference Power Spectral Density, 3 Channel (2 422 MHz)

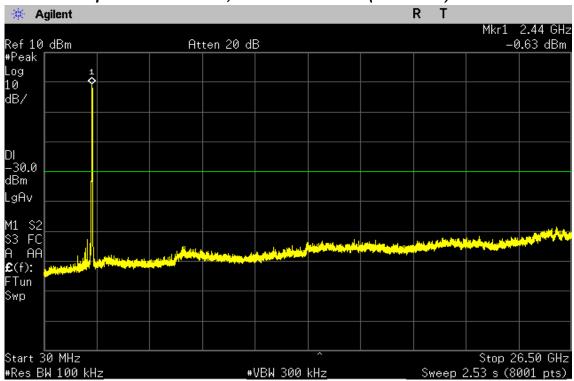
Band Edge, 3 Channel (2 422 MHz)



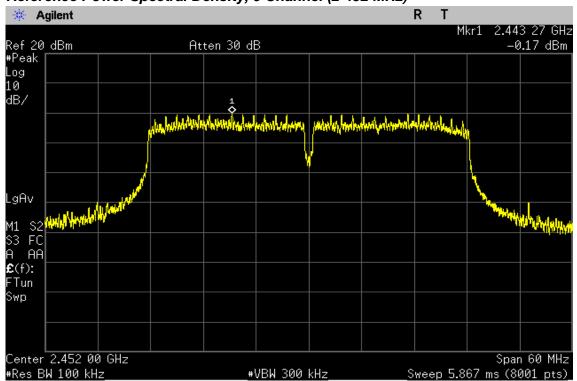
YAMAHA CORPORATION FCC ID: A6RCS500 / IC: 740B-CS500


Page 64 of 76

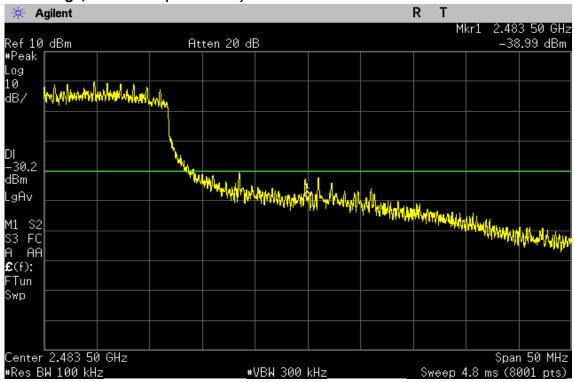
Conducted Spurious Emissions, 30 MHz ~ 26.5 GHz (2 422 MHz)



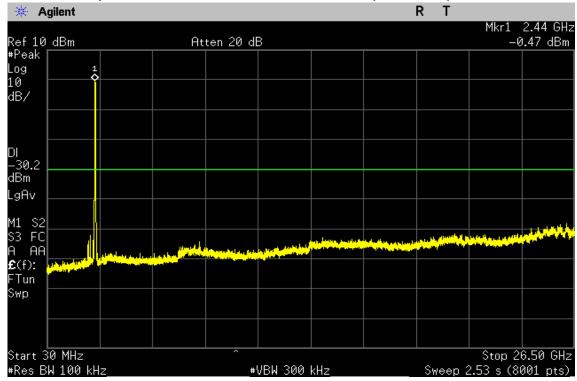
Reference Power Spectral Density, 6 Channel (2 437 MHz)



Conducted Spurious Emissions, 30 MHz ~ 26.5 GHz (2 437 MHz)



Reference Power Spectral Density, 9 Channel (2 452 MHz)



Band Edge, 9 Channel (2 452 MHz)

Conducted Spurious Emissions, 30 MHz ~ 26.5 GHz (2 452 MHz)

8.7 Radiated Spurious Emissions

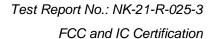
FCC §15.247(d), IC RSS-247 Issue 2 5.5

Test Mode: Set to Lowest channel, Middle channel and Highest channel,

802.11g mode

1 Channel

Frequency (MHz)	Reading (dBµV)	Pol* (H/V)	mode	AF+CL+Amp (dB)**	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)
5387.50	45.8	Н	peak	3.4	49.17	74.0	24.83
7273.75	42.4	Н	peak	6.0	48.39	74.0	25.61
7690.63	42.6	Н	peak	7.4	50.00	74.0	24.00
14475.19	46.8	Н	peak	16.2	63.00	74.0	11.00
14476.88	33.6	Н	average	16.2	49.84	54.0	4.16


6 Channel

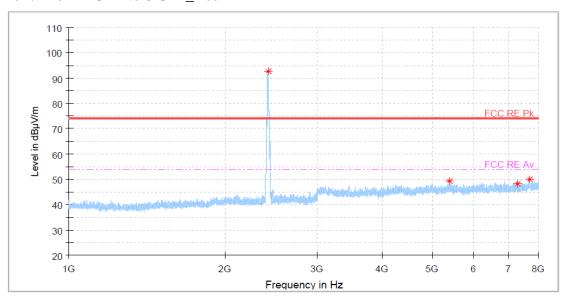
Frequency (MHz)	Reading (dBµV)	Pol* (H/V)	mode	AF+CL+Amp (dB)**	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4945.63	46.4	V	peak	2.3	48.70	74.0	25.30
7487.50	43.0	V	peak	6.6	49.63	74.0	24.37

11 Channel

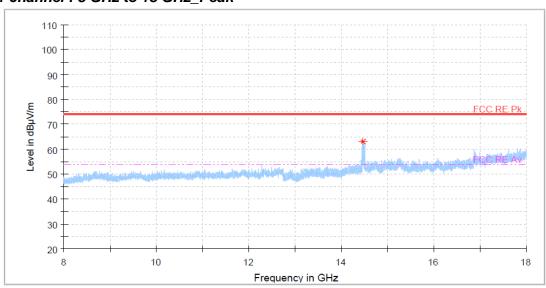
Frequency (MHz)	Reading (dBµV)	Pol* (H/V)	mode	AF+CL+Amp (dB)**	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)
5433.13	44.6	Н	peak	3.4	47.95	74.0	26.05
7261.88	42.6	Н	peak	6.1	48.69	74.0	25.31
7626.25	42.0	V	peak	7.0	49.02	74.0	24.98

YAMAHA CORPORATION
FCC ID: A6RCS500 / IC: 740B-CS500

TEST DATA

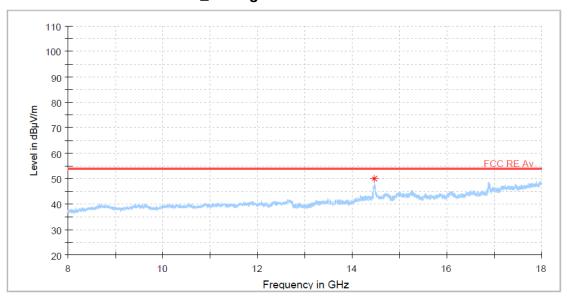

Note:

- 1. *Pol. H = Horizontal V = Vertical
- 2. **AF + CL + Amp. = Antenna Factor + Cable Loss + Amplifier.
- 3. Average measurement was not performed when peak-detected emission complies with the average limit.
- 4. Other spurious was under 30 dB below Fundamental.
- 5. 1 channel (2 412 MHz) in 802.11g mode was the worst condition. For other modes, peak-detected emissions have enough margin more than 20dBc, therefore the results were not recorded in this report
- 6. The radiated emissions testing were made by rotating the receive antenna with horizontal, Vertical polarization. The worst data was recorded.
- 7. Peak emissions were measured using RBW = 1 MHz, VBW = 3 MHz, Detector = Peak.
- 8. Average emissions were measured using RBW = 1 MHz, VBW = 10 kHz, Detector = Peak.
- 9. The spectrum was measured from 9 kHz to 10th harmonic and the worst-case emissions were reported. No significant emissions were found beyond the 3rd harmonic for this device.

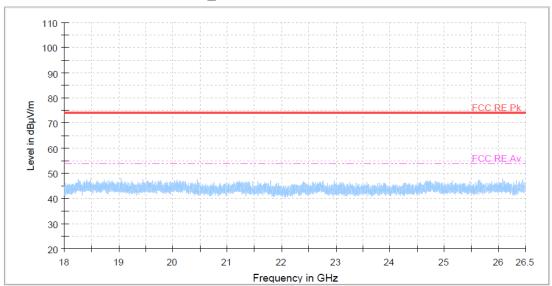


Worst Case

1 channel: 1 GHz to 8 GHz_Peak



1 channel: 8 GHz to 18 GHz Peak



1 channel: 8 GHz to 18 GHz_Average

1 channel: 18 GHz to 26.5 GHz_Peak

TEST DATA

8.8 Radiated Band Edge

FCC §15.247(d), IC RSS-247 Issue 2 5.5

Test Mode: Set to Lowest channel and Highest channel

802.11n (40 MHz) mode

3 Channel

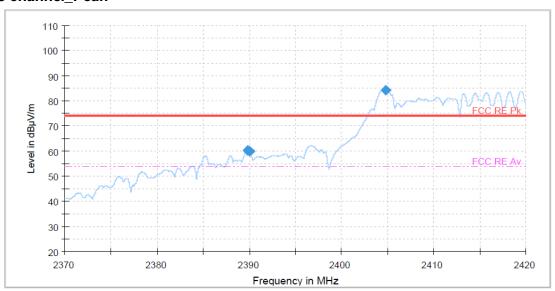
Frequency (MHz)	Reading (dBµV)	Pol* (H/V)	mode	AF+CL+Amp (dB)**	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)
2389.84	58.7	Н	average	-7.9	50.75	54.0	3.25
2390.00	57.3	Н	average	-7.9	49.41	54.0	4.59
2389.81	68.2	Н	peak	-7.9	60.28	74.0	13.72
2390.00	67.8	Н	peak	-7.9	59.88	74.0	14.12

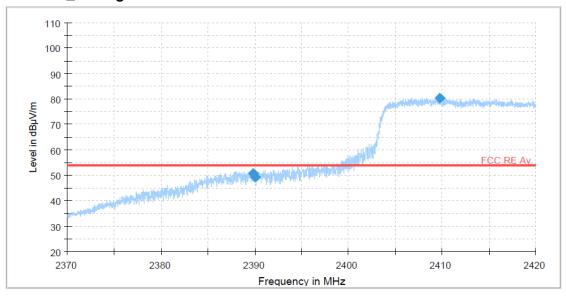
9 Channel

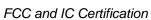
Frequency (MHz)	Reading (dBµV)	Pol* (H/V)	mode	AF+CL+Amp (dB)**	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)
2483.50	57.2	Н	average	-7.2	49.98	54.0	4.02
2483.53	57.8	Н	average	-7.2	50.55	54.0	3.45
2483.50	67.6	Н	peak	-7.2	60.39	74.0	13.61
2486.89	71.2	Н	peak	-7.1	64.08	74.0	9.92

Note:

- 1. *Pol. H = Horizontal V = Vertical
- 2. **AF + CL + Amp. = Antenna Factor + Cable Loss + Amplifier.
- 3. Other spurious was under 30 dB below Fundamental.
- 4. 3 channel (2 422 MHz) in 802.11n(40 MHz) mode was the worst condition.
- 5. The radiated emissions testing were made by rotating the receive antenna with horizontal, Vertical polarization. The worst data was recorded.
- 6. Peak emissions were measured using RBW = 1 MHz, VBW = 3 MHz, Detector = Peak.
- 7. Average emissions were measured using RBW = 1 MHz, VBW = 10 kHz, Detector = Peak.


YAMAHA CORPORATION FCC ID: A6RCS500 / IC: 740B-CS500


PLOT OF TEST DATA


Worst Case

3 channel_Peak

3 channel_Average

9. TEST EQUIPMENT

No.	Instrument	Manufacturer	Model	Serial No.	Calibration Date	Calibration Interval
1	*Test Receiver	R&S	ESW44	103091	May. 16 2022	1 year
2	*Test Receiver	R&S	ESCI	101041	Apr. 05 2022	1 year
3	*Attenuator	FAIRVIEW	SA3N5W-06	N/A	Apr. 06 2022	1 year
4	*Attenuator	FAIRVIEW	SA3N5W-10	N/A	Apr. 06 2022	1 year
5	*Attenuator	FAIRVIEW	SA26B-10	1643	Jul. 06 2022	1 year
6	*Amplifier	R&S	SCU 01	10029	Apr. 05 2022	1 year
7	*Amplifier	R&S	SCU 18	10065	Apr. 05 2022	1 year
8	*Amplifier	R&S	SCU26D	1984522	Jul. 08 2022	1 year
9	Amplifier	R&S	SCU40	100380	Jul. 08 2022	1 year
10	Spectrum Analyzer	R&S	FSW43	100732	Apr. 05 2022	1 year
11	*Spectrum Analyzer	Agilent	E4440A	MY44303257	Oct. 13 2021	1 year
12	*Loop Antenna	R&S	HFH2-Z2	100279	Mar. 14 2022	1 year
13	*Horn Antenna	R&S	HF907	102585	Jul. 08 2022	1 year
14	*Horn Antenna	Q-par Angus	QMS-00225	17637	Sep. 15 2021	1 year
15	Horn Antenna	Q-par Angus	QSH22K20	8180	Jul. 14 2022	1 year
16	*Trilog-Broadband Antenna	SCHWARZBECK	VULB 9163	01431	May. 11 2021	2 year
17	*LISN	R&S	ENV216	101156	Apr. 05 2022	1 year
18	Position Controller	INNCO	CO2000	12480406/L	N/A	N/A
19	*Controller	INNCO	CO3000	CO3000/937/38330516/L	N/A	N/A
20	Turn Table	INNCO	DS1200S	N/A	N/A	N/A
21	*Turn Table	INNCO	DT2000-2t	N/A	N/A	N/A
22	Antenna Mast	INNCO	MA4000	N/A	N/A	N/A
23	*TILT Antenna Mast	INNCO	MA4640-XP-EP	N/A	N/A	N/A
24	Open Switch And Control Unit	R&S	OSP-120	100081	N/A	N/A
25	*Open Switch And Control Unit	R&S	OSP-120	101766	N/A	N/A
26	Shielded Room	Seo-Young EMC	N/A	N/A	N/A	N/A
27	*Anechoic Chamber	Seo-Young EMC	N/A	N/A	N/A	N/A
28	WiFi Filter Bank	R&S	U083	N/A	N/A	N/A
29	*WiFi Filter Bank	R&S	U082	N/A	N/A	N/A

^{*)} Test equipment used during the test

10. ACCURACY OF MEASUREMENT

The Measurement Uncertainties stated were calculated in accordance with the requirements of measurement uncertainty contained in CISPR 16-4-2 with the confidence level of 95%

1. Conducted Uncertainty Calculation

		Uncertainty of Xi		Cavaraga			
Source of Uncertainty	Xi	Value (dB)	Probability Distribution	Coverage factor k	<i>u(Xi)</i> (dB)	Ci	Ci u(Xi) (dB)
Receiver reading	RI	± 0.1	normal 1	1.000	0.1	1	0.1
Attenuation AMN-Receiver	LC	± 0.08	normal 2	2.000	0.04	1	0.04
AMN Voltage division factor	LAMN	± 0.8	normal 2	2.000	0.4	1	0.4
Sine wave voltage	dVSW	± 2.00	normal 2	2.000	1.00	1	1.00
Pulse amplitude response	dVPA	± 1.50	rectangular	1.732	0.87	1	0.87
Pulse repetition rate response	dVPR	± 1.50	rectangular	1.732	0.87	1	0.87
Noise floor proximity	dVNF	± 0.00	-	-	0.00	1	0.00
AMN Impedance	dΖ	± 1.80	triangular	2.449	0.73	1	0.73
Mismatch	М	+ 0.70	U-Shaped	1.414	0.49	1	0.49
Mismatch	М	- 0.80	U-Shaped	1.414	- 0.56	1	- 0.56
Measurement System Repeatability	RS	0.05	normal 1	1.000	0.05	1	0.05
Remark	(a): AMN-Receiver Mismatch : + (b): AMN-Receiver Mismatch : -					•	
Combined Standard Uncertainty	Normal			± 1.88			
Expended Uncertainty U	Normal (<i>k</i> = 2)			± 3.76			

2. Radiation Uncertainty Calculation

		Uncertainty of Xi					
Source of Uncertainty	Xi	Value (dB)	Probability Distribution	Coverage factor k	<i>u(Xi)</i> (dB)	Ci	Ci u(Xi) (dB)
Measurement System Repeatability	RS	0.34	normal 1	1.00	0.34	1	0.34
Receiver reading	Ri	± 0.02	normal 2	2.00	0.01	1	0.01
Sine wave voltage	dVsw	± 0.17	normal 2	2.00	0.09	1	0.09
Pulse amplitude response	dVpa	± 0.92	normal 2	2.00	0.46	1	0.46
Pulse repetition rate response	dVpr	± 0.35	normal 2	2.00	0.18	1	0.18
Noise floor proximity	dVnf	± 0.50	normal 2	2.00	0.25	1	0.25
Antenna Factor Calibration	AF	± 2.00	rectangular	√3	1.15	1	1.15
Cable Loss	CL	± 1.00	normal 2	2.00	0.50	1	0.50
Antenna Directivity	AD	± 0.00	rectangular	√3	0.00	1	0.00
Antenna Factor Height Dependence	AH	± 2.00	rectangular	√3	1.15	1	1.15
Antenna Phase Centre Variation	AP	± 0.20	rectangular	√3	0.12	1	0.12
Antenna Factor Frequency Interpolation	Ai	± 0.25	rectangular	√3	0.14	1	0.14
Site Imperfections	Si	± 4.00	triangular	√6	1.63	1	1.63
Measurement Distance Variation	DV	± 0.60	rectangular	√3	0.35	1	0.35
Antenna Balance	Dbal	± 0.90	rectangular	√3	0.52	1	0.52
Cross Polarisation	DCross	± 0.00	rectangular	√3	0.00	1	0.18
Mismatch	М	+ 0.98 - 1.11	U-Shaped	$\sqrt{2}$	0.74	1	0.74
EUT Volume Diameter	Vd	0.33	normal 1	1.00	0.33	1	0.11
Remark							
Combined Standard Uncertainty	Normal						
Expended Uncertainty U	Normal (<i>k</i> = 2)						