

Page 116 of 229

Report No. : EED32L00378901 Page 117 of 229

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is Internal Antenna and no consideration of replacement. The best case gain of the antenna is 2dBi.

Report No. : EED32L00378901 Page 118 of 229

Appendix G): AC Power Line Conducted Emission

	Test frequency range :150KHz-30MHz							
	1)The mains terminal disturbance voltage test was conducted in a shielded room.							
	2) The EUT was connected to	AC power source t	through a LISN 1 (Li	ine Impedar				
	Stabilization Network) which							
	power cables of all other u							
	which was bonded to the gr the unit being measured. A							
	power cables to a single LIS							
	exceeded.							
	3)The tabletop EUT was plac reference plane. And for flo horizontal ground reference	oor-standing arrange						
	4) The test was performed with		ference plane. The r	ear of the E				
	shall be 0.4 m from the	ū	•	•				
	reference plane was bonde	•	•					
		was placed 0.8 m from the boundary of the unit under test and bonded to a ground						
	reference plane for LISNs mounted on top of the ground reference plane. The							
	The second secon							
	distance was between the d	closest points of the l	LISN 1 and the EUT	. All other u				
	distance was between the of the EUT and associated e	closest points of the lequipment was at lea	LISN 1 and the EUT ast 0.8 m from the LIS	. All other u SN 2.				
	distance was between the d	closest points of the lequipment was at lean n emission, the relati	LISN 1 and the EUT ast 0.8 m from the LIS ive positions of equ	. All other u SN 2. uipment and				
	distance was between the of the EUT and associated 6 5) In order to find the maximum	closest points of the lequipment was at lean n emission, the relati	LISN 1 and the EUT ast 0.8 m from the LIS ive positions of equ	. All other u SN 2. uipment and				
mit:	distance was between the confidence of the EUT and associated 6 solutions of the interface cables must be distance was between the confidence of the interface cables must be distance was between the confidence of the confidence	closest points of the lequipment was at lean n emission, the relati	LISN 1 and the EUT ast 0.8 m from the LIS ive positions of equ	. All other u SN 2. uipment and				
mit:	distance was between the confidence of the EUT and associated confidence of the interface cables must measurement.	closest points of the lequipment was at lean n emission, the relati	LISN 1 and the EUT list 0.8 m from the LIS ive positions of equ ding to ANSI C63.10	. All other u SN 2. uipment and				
mit:	distance was between the confidence of the EUT and associated 6 solutions of the interface cables must be distance was between the confidence of the interface cables must be distance was between the confidence of the confidence	closest points of the lequipment was at lean emission, the relating the changed according to the change according t	LISN 1 and the EUT list 0.8 m from the LIS ive positions of equ ding to ANSI C63.10	. All other u SN 2. uipment and				
mit:	distance was between the confidence of the EUT and associated confidence of the interface cables must measurement.	closest points of the lequipment was at learn emission, the relative be changed accordance. Limit (LISN 1 and the EUT ast 0.8 m from the LIS ive positions of equal ding to ANSI C63.10 dBµV)	. All other u SN 2. uipment and				
mit:	distance was between the confidence of the EUT and associated confidence of the interface cables must measurement. Frequency range (MHz)	closest points of the lequipment was at learn emission, the relative be changed accordant to the	LISN 1 and the EUT ast 0.8 m from the LIS ive positions of equiding to ANSI C63.10 dBµV) Average	. All other u SN 2. uipment and				
mit:	distance was between the confidence of the EUT and associated of the EUT and associated of the interface cables must measurement. Frequency range (MHz) 0.15-0.5	closest points of the lequipment was at learn emission, the relative be changed according to the change of the learn the change of the learn the change of the learn t	LISN 1 and the EUT ast 0.8 m from the LIS ive positions of equal ding to ANSI C63.10 dBµV) Average 56 to 46*	. All other u SN 2. uipment and				
mit:	distance was between the confidence of the EUT and associated of the EUT and associated of the interface cables must measurement. Frequency range (MHz) 0.15-0.5 0.5-5	closest points of the lequipment was at learn emission, the relative be changed according to the change of the learn emission. Limit (and the change of the	LISN 1 and the EUT ast 0.8 m from the LIS ive positions of equal ding to ANSI C63.10 dBµV) Average 56 to 46* 46 50	. All other u SN 2. uipment and on conduc				
mit:	distance was between the confirmed of the EUT and associated estables in order to find the maximum of the interface cables must measurement. Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly was to 0.50 MHz.	closest points of the lequipment was at learn emission, the relative be changed according to the change of the learn emission. The relative be changed according to the change of the ch	LISN 1 and the EUT ast 0.8 m from the LIS ive positions of equal ding to ANSI C63.10 dBµV) Average 56 to 46* 46 50 The frequency in the results of the second sec	. All other u SN 2. uipment and on conduc				
mit:	distance was between the confidence of the EUT and associated estables. 5) In order to find the maximum of the interface cables must measurement. Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly was associated estables.	closest points of the lequipment was at learn emission, the relative be changed according to the change of the learn emission. The relative be changed according to the change of the ch	LISN 1 and the EUT ast 0.8 m from the LIS ive positions of equal ding to ANSI C63.10 dBµV) Average 56 to 46* 46 50 The frequency in the results of the second sec	. All other u SN 2. uipment and on conduc				

Report No.: EED32L00378901 Page 119 of 229

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Product : WIFI Module Model/Type reference : W2MM2510

Temperature : 24° **Humidity** : 52%

Live line:

No. Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1 *	0.1770	30.52	10.00	40.52	64.63	-24.11	QP		
2	0.1770	12.48	10.00	22.48	54.63	-32.15	AVG		
3	0.4785	6.06	10.00	16.06	46.37	-30.31	AVG		
4	0.4786	21.00	10.00	31.00	56.36	-25.36	QP		
5	2.4810	-2.02	9.83	7.81	46.00	-38.19	AVG		
6	2.6385	14.29	9.83	24.12	56.00	-31.88	QP		
7	3.4125	17.13	9.83	26.96	56.00	-29.04	QP		
8	3.6690	4.13	9.83	13.96	46.00	-32.04	AVG		
9	6.3150	16.71	9.84	26.55	60.00	-33.45	QP		
10	6.3195	2.29	9.84	12.13	50.00	-37.87	AVG		
11	8.4120	14.94	9.90	24.84	60.00	-35.16	QP		
12	8.4120	1.83	9.90	11.73	50.00	-38.27	AVG		

Page 120 of 229

Neutral line:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1770	15.60	10.00	25.60	54.63	-29.03	AVG	
2	0.1815	29.43	10.00	39.43	64.42	-24.99	QP	
3	0.3030	23.59	10.10	33.69	60.16	-26.47	QP	
4	0.3075	13.18	10.09	23.27	50.04	-26.77	AVG	
5	0.6134	15.04	10.05	25.09	56.00	-30.91	QP	
6 *	0.6134	12.13	10.05	22.18	46.00	-23.82	AVG	
7	1.8015	12.87	9.85	22.72	56.00	-33.28	QP	
8	1.8375	7.87	9.84	17.71	46.00	-28.29	AVG	
9	3.6600	20.10	9.83	29.93	56.00	-26.07	QP	
10	3.7770	7.62	9.83	17.45	46.00	-28.55	AVG	
11	6.2565	16.99	9.84	26.83	60.00	-33.17	QP	
12	6.3239	2.52	9.84	12.36	50.00	-37.64	AVG	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: EED32L00378901 Page 121 of 229

Appendix H): Restricted bands around fundamental frequency (Radiated)

(Madiated)		1.07.27.2				
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	4011	Peak	1MHz	3MHz	Peak	- 10 to
	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:	a. The EUT was placed of at a 3 meter semi-ane determine the position. b. The EUT was set 3 me was mounted on the toto. c. The antenna height is determine the maximular polarizations of the and. d. For each suspected enter the antenna was tuned was turned from 0 degree. The test-receiver systems and width with Maxim f. Place a marker at the	on the top of a rota choic camber. The of the highest race eters away from the op of a variable-he varied from one n im value of the fiel tenna are set to m mission, the EUT of d to heights from 1 grees to 360 degree em was set to Pea num Hold Mode.	e table wadiation. The interfer eight anterneter to foold strength hake the name arran arran arran to be to find ak Detect	ence-receinna tower. our meters n. Both hor neasurement ged to its 4 meters the maxin Function a	wing antennal above the grait and vent. worst case and the rotate and the rotate and Specified	to i, whic ound t rertical
	frequency to show cor bands. Save the spect for lowest and highest	npliance. Also me trum analyzer plot	asure any	emission	s in the restri	
	frequency to show corbands. Save the spect for lowest and highest Above 1GHz test proced g. Different between aboto fully Anechoic Chan 18GHz the distance is h. Test the EUT in the let. The radiation measure Transmitting mode, an	mpliance. Also me trum analyzer plot channel ure as below: ve is the test site, nber change form 1 meter and table owest channel, the ments are performed found the X axis	change fi table 0.8 e is 1.5 me ne Highest med in X, s positioni	remissions for each por from Semi- meter to 1 eter). channel Y, Z axis ping which i	s in the restriction of the control	dulatio nambe ove
imit:	frequency to show corbands. Save the spect for lowest and highest Above 1GHz test proced g. Different between aboto fully Anechoic Chanas 18GHz the distance is h. Test the EUT in the let. The radiation measure Transmitting mode, and j. Repeat above procedures.	mpliance. Also me trum analyzer plot channel ure as below: ve is the test site, nber change form 1 meter and table owest channel, the ments are performed found the X axisures until all frequents.	change for table 0.8 er is 1.5 more Highest med in X, is positionic encies me	remissions for each por form Semi- meter to 1 eter). channel Y, Z axis points ing which interest was	Anechoic Ch .5 meter(Abo positioning for t is worse cases complete.	dulation nambe ove
imit:	frequency to show corbands. Save the spect for lowest and highest Above 1GHz test proced g. Different between above 18GHz the distance is h. Test the EUT in the leteration measure Transmitting mode, and great above procedure. Frequency	mpliance. Also me trum analyzer plot channel ure as below: ve is the test site, nber change form 1 meter and table towest channel, the ments are performed found the X axisures until all frequents (dBµV/n)	change for table 0.8 er is 1.5 more Highest med in X, is positionic encies me	rom Semi- meter to 1 eter). channel Y, Z axis p ing which i	Anechoic Ch .5 meter(Abo positioning for it is worse cas as complete.	dulation nambe ove
imit:	frequency to show corbands. Save the spect for lowest and highest Above 1GHz test proced g. Different between above 1gHz the distance is h. Test the EUT in the let. i. The radiation measure Transmitting mode, and j. Repeat above procedure. Frequency 30MHz-88MHz	mpliance. Also me trum analyzer plot channel ure as below: ve is the test site, nber change form 1 meter and table owest channel, the ments are perforred found the X axisures until all frequents (dBµV/n 40.0)	change fi table 0.8 e is 1.5 me he Highest med in X, s positioni encies me m @3m)	rom Semi-meter to 1 eter). channel Y, Z axis ping which i easured war Rei Quasi-pe	Anechoic Ch. 5 meter (Aboositioning for tis worse cases complete.	dulation nambe ove
imit:	frequency to show corbands. Save the spect for lowest and highest Above 1GHz test proced g. Different between above 18GHz the distance is h. Test the EUT in the leteration measure Transmitting mode, and great above procedure. Frequency	mpliance. Also me trum analyzer plot channel ure as below: ve is the test site, nber change form 1 meter and table towest channel, the ments are performed found the X axisures until all frequences until all frequences. Limit (dBµV/n 40.0 43.5	change for table 0.8 as is 1.5 more Highest med in X, is positioning encies med in @3m)	rom Semi- meter to 1 eter). channel Y, Z axis p ing which i easured wa Rei Quasi-pe	Anechoic Ch .5 meter(Abo positioning for t is worse cas as complete. mark eak Value	dulation nambe ove
imit:	frequency to show corbands. Save the spect for lowest and highest Above 1GHz test proced g. Different between aboto fully Anechoic Chanal 18GHz the distance is h. Test the EUT in the let. The radiation measure Transmitting mode, and j. Repeat above procedus Frequency 30MHz-88MHz 88MHz-216MHz	mpliance. Also me trum analyzer plot channel ure as below: ve is the test site, nber change form 1 meter and table owest channel, the ments are perforred found the X axisures until all frequents (dBµV/n 40.0)	change fi table 0.8 is 1.5 me ie Highest med in X, s positioni encies me m @3m)	rom Semi- meter to 1 eter). channel Y, Z axis p ing which i easured wa Rei Quasi-pe Quasi-pe	Anechoic Ch. 5 meter (Above Stioning for tis worse cases complete. mark eak Value eak Value eak Value	dulation nambe ove
Limit:	frequency to show corbands. Save the spect for lowest and highest Above 1GHz test proced g. Different between aboto fully Anechoic Chan 18GHz the distance is h. Test the EUT in the let. The radiation measure Transmitting mode, and j. Repeat above procedute Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz	mpliance. Also me trum analyzer plot channel ure as below: ve is the test site, nber change form 1 meter and table owest channel, the ments are perforred found the X axisures until all frequents and table owest channel, the ments are performed found the X axisures until all frequents are unti	change fi table 0.8 e is 1.5 me he Highest med in X, s positioni encies me m @3m)	rom Semi- meter to 1 eter). channel Y, Z axis p ing which i easured wa Rei Quasi-pe Quasi-pe Quasi-pe	Anechoic Ch.5 meter(Aboositioning for tis worse cases complete. mark eak Value eak Value eak Value	dulation nambe ove
Limit:	frequency to show corbands. Save the spect for lowest and highest Above 1GHz test proced g. Different between above 16Hz the distance is h. Test the EUT in the let. i. The radiation measure Transmitting mode, and j. Repeat above procedure Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	mpliance. Also me trum analyzer plot channel ure as below: ve is the test site, nber change form 1 meter and table owest channel, the ments are performed found the X axisures until all frequents (dBµV/n 40.0 43.5 46.0 54.0	change fi table 0.8 e is 1.5 me ne Highest med in X, s positioni encies me m @3m)	rom Semi- meter to 1 eter). channel Y, Z axis p ng which i easured wa Rer Quasi-pe Quasi-pe Quasi-pe Quasi-pe Average	Anechoic Ch. 5 meter (Above Stioning for tis worse cases complete. mark eak Value eak Value eak Value	dulatio nambe ove

Report No. : EED32L00378901 Page 122 of 229

Test plot as follows:

Ant 1:

Mode:	802.11 b(11Mbps) Transmitting	Channel:	2412
Remark:	PK		

Test Graph

Ant Cable Pream Reading Freq. Level Limit Margin Factor NO loss gain Result **Polarity** [MHz] [dBµV] $[dB\mu V/m]$ [dBµV/m] [dB] [dB] [dB] [dB] 1 2390.0000 32.25 13.37 -43.12 50.28 52.78 74.00 21.22 **Pass** Horizontal Pass 2 2411.9024 32.28 13.35 -43.12 104.68 107.19 74.00 -33.19 Horizontal

Page	123	of 229
------	-----	--------

Mode:	802.11 b(11Mbps) Transmitting	Channel:	2412
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	49.71	52.21	74.00	21.79	Pass	Vertical
2	2411.9024	32.28	13.35	-43.12	102.09	104.60	74.00	-30.60	Pass	Vertical

Page	124	of 229
------	-----	--------

Mode:	802.11 b(11Mbps) Transmitting	Channel:	2412
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	39.66	42.16	54.00	11.84	Pass	Horizontal
2	2412.3342	32.28	13.36	-43.12	90.40	92.92	54.00	-38.92	Pass	Horizontal

Page	125	of 229
------	-----	--------

Mode:	802.11 b(11Mbps) Transmitting	Channel:	2412
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	39.32	41.82	54.00	12.18	Pass	Vertical
2	2411.0388	32.28	13.35	-43.12	88.46	90.97	54.00	-36.97	Pass	Vertical

Page	126	of 229
------	-----	--------

Mode:	802.11 b(11Mbps) Transmitting	Channel:	2462
Remark:	PK		

Test Graph

N	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2461.8723	32.35	13.48	-43.12	105.00	107.71	74.00	-33.71	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	50.31	52.96	74.00	21.04	Pass	Horizontal

Page	127	of 229
------	-----	--------

Mode:	802.11 b(11Mbps) Transmitting	Channel:	2462
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2461.7998	32.35	13.48	-43.12	102.45	105.16	74.00	-31.16	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	49.92	52.57	74.00	21.43	Pass	Vertical

Page	128	of 229
------	-----	--------

Mode:	802.11 b(11Mbps) Transmitting	Channel:	2462
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2462.3805	32.35	13.47	-43.11	90.28	92.99	54.00	-38.99	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	41.27	43.92	54.00	10.08	Pass	Horizontal

Page	129	of 229
------	-----	--------

Mode:	802.11 b(11Mbps) Transmitting	Channel:	2462
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2461.2190	32.35	13.48	-43.11	88.34	91.06	54.00	-37.06	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	41.00	43.65	54.00	10.35	Pass	Vertical

Page	130	of 229
------	-----	--------

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2412
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	60.20	62.70	74.00	11.30	Pass	Horizontal
2	2413.6295	32.28	13.36	-43.12	103.92	106.44	74.00	-32.44	Pass	Horizontal

Page	131	of 229
------	-----	--------

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2412
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	58.59	61.09	74.00	12.91	Pass	Vertical
2	2413.4856	32.28	13.36	-43.12	101.24	103.76	74.00	-29.76	Pass	Vertical

Page	132	of 229
------	-----	--------

Mode:	Mode: 802.11 g(6Mbps) Transmitting		2412
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	41.64	44.14	54.00	9.86	Pass	Horizontal
2	2412.9099	32.28	13.36	-43.12	68.28	70.80	54.00	-16.80	Pass	Horizontal

Page	133	of 229
------	-----	--------

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2412
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	41.01	43.51	54.00	10.49	Pass	Vertical
2	2410.6070	32.27	13.35	-43.11	67.16	69.67	54.00	-15.67	Pass	Vertical

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2462	
Remark:	PK			

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2463.4693	32.35	13.47	-43.11	104.49	107.20	74.00	-33.20	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	58.72	61.37	74.00	12.63	Pass	Horizontal
3	2483.7947	32.38	13.37	-43.10	63.04	65.69	74.00	8.31	Pass	Horizontal

Page	135	of 229
------	-----	--------

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2462
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2459.6220	32.34	13.49	-43.11	102.02	104.74	74.00	-30.74	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	57.79	60.44	74.00	13.56	Pass	Vertical
3	2488.2228	32.38	13.35	-43.09	62.00	64.64	74.00	9.36	Pass	Vertical

Page	136	of 229
------	-----	--------

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2462
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2463.3242	32.35	13.47	-43.11	69.66	72.37	54.00	-18.37	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	42.83	45.48	54.00	8.52	Pass	Horizontal

Page	137	of 229
------	-----	--------

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2462
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2460.7835	32.35	13.48	-43.11	68.48	71.20	54.00	-17.20	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	42.34	44.99	54.00	9.01	Pass	Vertical

Page 138 of 229

Mode:	802.11 n(HT20) (6.5Mbps) Transmitting	Channel:	2412
Remark:	PK		

Test Graph

NC	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	54.72	57.22	74.00	16.78	Pass	Horizontal
2	2411.0388	32.28	13.35	-43.12	101.76	104.27	74.00	-30.27	Pass	Horizontal

Mode:	802.11 n(HT20) (6.5Mbps) Transmitting	Channel:	2412
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	52.48	54.98	74.00	19.02	Pass	Vertical
2	2413.0538	32.28	13.36	-43.12	98.94	101.46	74.00	-27.46	Pass	Vertical

Page 140 of 229

Mode:	802.11 n(HT20) (6.5Mbps) Transmitting	Channel:	2412
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	40.46	42.96	54.00	11.04	Pass	Horizontal
2	2410.4631	32.27	13.35	-43.12	66.27	68.77	54.00	-14.77	Pass	Horizontal

Page	141	of 229
------	-----	--------

Mode:	802.11 n(HT20) (6.5Mbps) Transmitting	Channel:	2412
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	40.01	42.51	54.00	11.49	Pass	Vertical
2	2410.4631	32.27	13.35	-43.12	65.19	67.69	54.00	-13.69	Pass	Vertical

Page	142	of 229
------	-----	--------

Mode:	802.11 n(HT20) (6.5Mbps) Transmitting	Channel:	2462
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2463.1790	32.35	13.47	-43.11	102.10	104.81	74.00	-30.81	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	52.07	54.72	74.00	19.28	Pass	Horizontal

Page	143	of 229
------	-----	--------

Mode:	802.11 n(HT20) (6.5Mbps) Transmitting	Channel:	2462
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2463.1064	32.35	13.47	-43.11	99.35	102.06	74.00	-28.06	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	51.14	53.79	74.00	20.21	Pass	Vertical

Page	144	of 229
------	-----	--------

Mode:	802.11 n(HT20) (6.5Mbps) Transmitting	Channel:	2462
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2460.7109	32.34	13.48	-43.10	67.59	70.31	54.00	-16.31	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	41.81	44.46	54.00	9.54	Pass	Horizontal

Page	145	of 229
------	-----	--------

Mode:	802.11 n(HT20) (6.5Mbps) Transmitting	Channel:	2462
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2460.6383	32.34	13.48	-43.10	66.44	69.16	54.00	-15.16	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	41.51	44.16	54.00	9.84	Pass	Vertical

Mode:	802.11 n(HT40) (13.5Mbps) Transmitting	Channel:	2422
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	55.97	58.47	74.00	15.53	Pass	Horizontal
2	2424.4180	32.29	13.41	-43.11	98.98	101.57	74.00	-27.57	Pass	Horizontal

Mode:	802.11 n(HT40) (13.5Mbps) Transmitting	Channel:	2422
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	53.75	56.25	74.00	17.75	Pass	Vertical
2	2424.5932	32.29	13.41	-43.11	95.97	98.56	74.00	-24.56	Pass	Vertical

Mode:	802.11 n(HT40) (13.5Mbps) Transmitting	Channel:	2422
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	41.50	44.00	54.00	10.00	Pass	Horizontal
2	2418.8110	32.29	13.39	-43.12	58.87	61.43	54.00	-7.43	Pass	Horizontal

Page	149	of 229
------	-----	--------

Mode:	802.11 n(HT40) (13.5Mbps) Transmitting	Channel:	2422
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	40.98	43.48	54.00	10.52	Pass	Vertical
2	2418.8110	32.29	13.39	-43.12	57.59	60.15	54.00	-6.15	Pass	Vertical

Mode:	802.11 n(HT40) (13.5Mbps) Transmitting	Channel:	2452
Remark:	PK	,	

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2454.4681	32.34	13.51	-43.11	98.90	101.64	74.00	-27.64	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	55.34	57.99	74.00	16.01	Pass	Horizontal

Page	151	of 229
------	-----	--------

Mode:	802.11 n(HT40) (13.5Mbps) Transmitting	Channel:	2452	
Remark:	PK			

Test Graph

	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2449.5745	32.33	13.53	-43.11	96.66	99.41	74.00	-25.41	Pass	Vertical
Ī	2	2483.5000	32.38	13.38	-43.11	53.78	56.43	74.00	17.57	Pass	Vertical

Page	152	of 229
------	-----	--------

Mode:	802.11 n(HT40) (13.5Mbps) Transmitting	Channel:	2452
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2449.1489	32.33	13.53	-43.12	58.89	61.63	54.00	-7.63	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	40.77	43.42	54.00	10.58	Pass	Horizontal

Page	153	of 229	
------	-----	--------	--

Mode:	802.11 n(HT40) (13.5Mbps) Transmitting	Channel:	2452
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2449.0426	32.33	13.53	-43.12	57.90	60.64	54.00	-6.64	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	40.79	43.44	54.00	10.56	Pass	Vertical

Report No.: EED32L00378901 Page 154 of 229

Ant 2:

Mode:	802.11 b(11Mbps) Transmitting	Channel:	2412
Remark:	PK		

Test Graph

N	Ю	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2390.0000	32.25	13.37	-43.12	50.80	53.30	74.00	20.70	Pass	Horizontal
	2	2411.9024	32.28	13.35	-43.12	105.32	107.83	74.00	-33.83	Pass	Horizontal

Page	155	of 229	
------	-----	--------	--

Mode:	802.11 b(11Mbps) Transmitting	Channel:	2412
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	50.85	53.35	74.00	20.65	Pass	Vertical
2	2411.9024	32.28	13.35	-43.12	101.45	103.96	74.00	-29.96	Pass	Vertical

Page	156	of 229
------	-----	--------

Mode:	802.11 b(11Mbps) Transmitting	Channel:	2412
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	40.84	43.34	54.00	10.66	Pass	Horizontal
2	2412.1902	32.28	13.36	-43.12	90.43	92.95	54.00	-38.95	Pass	Horizontal

Page	157	of 229
------	-----	--------

Mode:	802.11 b(11Mbps) Transmitting	Channel:	2412
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	39.70	42.20	54.00	11.80	Pass	Vertical
2	2412.1902	32.28	13.36	-43.12	87.63	90.15	54.00	-36.15	Pass	Vertical

Page	158	of 229
------	-----	--------

Mode:	802.11 b(11Mbps) Transmitting	Channel:	2462	
Remark:	PK			

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2461.8723	32.35	13.48	-43.12	106.29	109.00	74.00	-35.00	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	50.37	53.02	74.00	20.98	Pass	Horizontal

Page	159	of 229
------	-----	--------

Mode:	802.11 b(11Mbps) Transmitting	Channel:	2462	
Remark:	PK			

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2461.8723	32.35	13.48	-43.12	101.98	104.69	74.00	-30.69	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	50.50	53.15	74.00	20.85	Pass	Vertical

Page	160	of 229
------	-----	--------

Mode:	802.11 b(11Mbps) Transmitting	Channel:	2462
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2461.2916	32.35	13.48	-43.11	91.34	94.06	54.00	-40.06	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	41.64	44.29	54.00	9.71	Pass	Horizontal

Page	161	of 229
------	-----	--------

Mode:	802.11 b(11Mbps) Transmitting	Channel:	2462
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2462.4531	32.35	13.47	-43.11	88.02	90.73	54.00	-36.73	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	41.00	43.65	54.00	10.35	Pass	Vertical

Page	162	of 229	
------	-----	--------	--

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2412
Remark:	PK		

Test Graph

1	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2390.0000	32.25	13.37	-43.12	61.06	63.56	74.00	10.44	Pass	Horizontal
	2	2413.3417	32.28	13.36	-43.12	104.75	107.27	74.00	-33.27	Pass	Horizontal

