

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctest.com

MEASUREMENT REPORT FCC PART 15.407 UNII 802.11a/n/ac

Applicant Name:

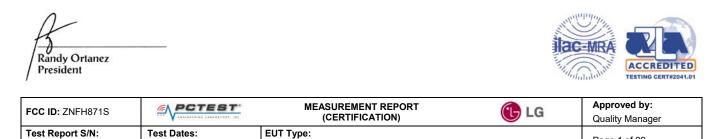
FCC ID:

LG Electronics U.S.A, INC 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 **United States**

Date of Testing: 7/31 - 8/21/2018 **Test Site/Location:** PCTEST Lab. Columbia, MD, USA **Test Report Serial No.:** 1M1808100154-06.ZNF

ZNFH871S

APPLICANT:


Test Dates:

LG Electronics U.S.A, INC

Application Type:	Certification
Model:	LG-H871S
Additional Model(s):	LGH871S, H871S
EUT Type:	Portable Handset
Frequency Range:	5180 – 5825MHz
FCC Classification:	Unlicensed National Information Infrastructure (UNII)
FCC Rule Part(s):	Part 15 Subpart C (15.407)
Test Procedure(s):	ANSI C63.10-2013, KDB 789033 D02 v02r01

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013 and KDB 789033 D02 v02r01. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Page 1 of 89 1M1808100154-06.ZNF 7/31 - 8/21/2018 Portable Handset © 2018 PCTEST Engineering Laboratory, Inc. V 8.3 07/10/2018 All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

TABLE OF CONTENTS

1.0	INTR	RODUCTION	4
	1.1	Scope	4
	1.2	PCTEST Test Location	4
	1.3	Test Facility / Accreditations	4
2.0	PRO	DUCT INFORMATION	5
	2.1	Equipment Description	5
	2.2	Device Capabilities	5
	2.3	Test Configuration	6
	2.4	EMI Suppression Device(s)/Modifications	6
3.0	DESC	CRIPTION OF TESTS	7
	3.1	Evaluation Procedure	7
	3.2	AC Line Conducted Emissions	7
	3.3	Radiated Emissions	8
	3.4	Environmental Conditions	8
4.0	ANTE	ENNA REQUIREMENTS	9
5.0	MEAS	SUREMENT UNCERTAINTY	10
6.0	TEST	T EQUIPMENT CALIBRATION DATA	11
7.0	TEST	T RESULTS	12
	7.1	Summary	12
	7.2	26dB Bandwidth Measurement – 802.11a/n/ac	13
	7.3	6dB Bandwidth Measurement – 802.11a/n/ac	
	7.4	UNII Output Power Measurement – 802.11a/n/ac	
	7.5	Maximum Power Spectral Density – 802.11a/n/ac	
	7.6	Radiated Spurious Emission Measurements – Above 1GHz	61
		7.6.1 Radiated Spurious Emission Measurements	64
		7.6.2 Radiated Band Edge Measurements (20MHz BW)	73
		7.6.3 Radiated Band Edge Measurements (40MHz BW)	75
		7.6.4 Radiated Band Edge Measurements (80MHz BW)	77
	7.7	Radiated Spurious Emissions Measurements – Below 1GHz	
	7.8	Line-Conducted Test Data	83
8.0	CON	ICLUSION	

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 2 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 2 of 89
© 2018 PCTEST Engineering La	V 8.3 07/10/2018			

MEASUREMENT REPORT

			Conducte	Conducted Power		
UNII Band	Channel Bandwidth (MHz)	Tx Frequency (MHz)	Max. Power (mW)	Max. Power (dBm)		
1		5180 - 5240	22.080	13.44		
2A	20	5260 - 5320	22.336	13.49		
2C		5500 - 5720	22.336	13.49		
3		5745 - 5825	22.233	13.47		
1		5190 - 5230	17.742	12.49		
2A	40	5270 - 5310	17.498	12.43		
2C	40	5510 - 5710	17.742	12.49		
3		5755 - 5795	17.338	12.39		
1		5210	16.482	12.17		
2A	80	5290	16.904	12.28		
2C		5530 - 5690	16.482	12.17		
3		5775	16.255	12.11		

EUT Overview

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Quality Manager
Test Report S/N: Test Dates:		EUT Type:		Dage 2 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 3 of 89
© 2018 PCTEST Engineering Laboratory Inc				V 8 3 07/10/2018

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 PCTEST Test Location

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

1.3 Test Facility / Accreditations Measurements were performed at PCTEST Engineering Lab located in Columbia, MD 21046, U.S.A.

- PCTEST is an ISO 17025-2005 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- PCTEST facility is a registered (2451B) test laboratory with the site description on file with ISED.

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 4 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 4 of 89
© 2018 PCTEST Engineering Laboratory. Inc.				V 8.3 07/10/2018

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **LG Portable Handset FCC ID: ZNFH871S**. The test data contained in this report pertains only to the emissions due to the EUT's UNII transmitter.

Test Device Serial No.: 00851, 05876, 00844

2.2 Device Capabilities

This device contains the following capabilities:

850/1900 GPRS/EDGE, 850/1900 WCDMA/HSPA, Multi-band LTE, 802.11b/g/n/ac WLAN, 802.11a/n/ac UNII, Bluetooth (1x, EDR, LE), NFC

	Band 1		Band 2A		Band 2C		Band 3
Ch.	Frequency (MHz)						
36	5180	52	5260	100	5500	149	5745
:	:	:	:	:	:	:	:
42	5210	56	5280	116	5580	157	5785
:	:	:	:	:	:	:	:
48	5240	64	5320	144	5720	165	5825
-							

Table 2-1. 802.11a / 802.11n / 802.11ac (20MHz) Frequency / Channel Operations

	Band 1
Ch.	Frequency (MHz)
38	5190
:	:
46	5230

	Band 2A
h.	Frequency (MHz)
4	5270
	:
2	5310

С

5

6

/Hz) Frequency / Chann					
	Band 2C				
Ch.	Frequency (MHz)				
102	5510				
:	:				
110	5550				
:	:				

5710

Ch.
151
:
•

5795

159

Table 2-2. 802.11n / 802.11ac (40MHz BW) Frequency / Channel Operations

142

	Band 1		Band 2A	_	Band 2C		Band 3
Ch.	Frequency (MHz)						
42	5210	58	5290	106	5530	155	5775
				:	:		
				138	5690		

Table 2-3. 802.11ac (80MHz BW) Frequency / Channel Operations

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 5 of 90
1M1808100154-06.ZNF 7/31 - 8/21/2018 Port		Portable Handset		Page 5 of 89
© 2018 PCTEST Engineering Laboratory, Inc. V 8.3				V 8.3 07/10/2018

Notes:

5GHz NII operation is possible in 20MHz, and 40MHz, and 80MHz channel bandwidths. The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = peak per the guidance of Section B)2)b) of ANSI C63.10-2013 and KDB 789033 D02 v02r01. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

Maximum Achievable Duty Cycles				
002 11 Made /David				
802.11 Mode/Band				
а	99.3			
n (HT20)	99.2			
ac (HT20)	99.2			
n (HT40)	99.2			
ac (HT40)	99.2			
ac (HT80)	98.2			
	ode/Band a n (HT20) ac (HT20) n (HT40) ac (HT40)			

Table 2-4. Measured Duty Cycles

Data Rate(s) Tested:

6, 9, 12, 18, 24, 36, 48, 54Mbps (802.11a) 6.5/7.2, 13/14.4, 19.5/21.7, 26/28.9, 39/43.3, 52/57.8, 58.5/65, 65/72.2 (n – 20MHz) 13.5/15, 27/30, 40.5/45, 54/60, 81/90, 108/120, 121.5/135, 135/150 (n – 40MHz BW) 29.3/32.5, 58.5/65, 87.8/97.5, 117/130, 175.5/195, 234/260, 263.3/292.5, 292.5/325, 351/390, 390/433.3 (ac – 80MHz BW)

2.3 Test Configuration

The EUT was tested per the guidance of KDB 789033 D02 v02r01. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing. See Sections 3.2 for AC line conducted emissions test setups, 3.3 for radiated emissions test setups, and 7.2, 7.3, 7.4, and 7.5 for antenna port conducted emissions test setups.

2.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 6 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 6 of 89
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.3 07/10/2018

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedures described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) and the guidance provided in KDB 789033 D02 v02r01 were used in the measurement of the EUT.

Deviation from measurement procedure.....None

3.2 AC Line Conducted Emissions

The line-conducted facility is located inside a 10'x16'x9' shielded enclosure. The shielded enclosure is manufactured by ETS Lindgren RF Enclosures. The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 65-5. A 1m x 1.5m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50\mu$ H Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. The external power line filter is an ETS Lindgren Model LPRX-4X30 (100dB Attenuation, 14kHz-18GHz) and the two EMI/RFI filters are ETS Lindgren Model LRW-2030-S1 (100dB Minimum Insertion Loss, 14kHz – 10GHz). These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply line(s) will be connected to the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference groundplane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The spectrum was scanned from 150kHz to 30MHz with a spectrum analyzer. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 10kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions is used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

Line conducted emissions test results are shown in Section 7.8. The EMI Receiver mode of the Agilent MXE was used to perform AC line conducted emissions testing.

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega Z of 90	
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 7 of 89	
© 2018 PCTEST Engineering Laboratory. Inc.				V 8.3 07/10/2018	

3.3 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. An 80cm tall test table made of Styrodur is placed on top of the turn table. For measurements above 1GHz, an additional Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33 depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions.

3.4 Environmental Conditions

The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 9 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 8 of 89
© 2018 PCTEST Engineering Laboratory, Inc.			V 8.3 07/10/2018	

4.0 ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antennas of the EUT are permanently attached.
- There are no provisions for connection to an external antenna.

Conclusion:

The EUT complies with the requirement of §15.203.

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 0 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 9 of 89
© 2018 PCTEST Engineering La	boratory, Inc.			V 8.3 07/10/2018

5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Line Conducted Disturbance	3.09
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 10 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 10 of 89
© 2018 PCTEST Engineering Laboratory, Inc.			V 8.3 07/10/2018	

6.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	WL25-1	Conducted Cable Set (25GHz)	1/23/2018	Annual	1/23/2019	WL25-1
Agilent	N9020A	MXA Signal Analyzer	1/24/2018	Annual	1/24/2019	US46470561
Agilent	N9030A	PXA Signal Analyzer (44GHz)	5/25/2018	Annual	5/25/2019	MY52350166
Anritsu	MA2411B	Pulse Power Sensor	10/22/2017	Annual	10/22/2018	846215
Anritsu	ML2495A	Power Meter	10/22/2017	Annual	10/22/2018	941001
Com-Power	AL-130	9kHz - 30MHz Loop Antenna	10/10/2017	Biennial	10/10/2019	121034
Emco	3115	Horn Antenna (1-18GHz)	3/28/2018	Biennial	3/28/2020	9704-5182
EMCO	3160-09	Small Horn (18 - 26.5GHz)	8/23/2016	Biennial	8/23/2018	135427
EMCO	3160-10	Small Horn (26.5 - 40GHz)	8/23/2016	Biennial	8/23/2018	130993
ETS Lindgren	3117	1-18 GHz DRG Horn (Medium)	12/1/2016	Biennial	12/1/2018	125518
ETS-Lindgren	3816/2NM	Line Impedance Stabilization Network	12/27/2016	Biennial	12/27/2018	114451
Huber + Suhner	Sucoflex 102A	40GHz Radiated Cable Set	1/23/2018	Annual	1/23/2019	251425001
Pasternack	NMLC-2	Line Conducted Emissions Cable (NM)	1/23/2018	Annual	1/23/2019	NMLC-2
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	5/21/2018	Annual	5/21/2019	100342
Rohde & Schwarz	ESU40	EMI Test Receiver (40GHz)	8/9/2018	Annual	8/9/2019	100348
Rohde & Schwarz	FSW67	Signal / Spectrum Analyzer	8/11/2017	Annual	8/11/2018	103200
Rohde & Schwarz	SFUNIT-Rx	Shielded Filter Unit	6/18/2018	Annual	6/18/2019	102134
Rohde & Schwarz	SFUNIT-Rx	Shielded Filter Unit	6/25/2018	Annual	6/25/2019	102133
Rohde & Schwarz	TS-PR8	Preamplifier-Antenna SYS; 30MHz-8GHz	10/19/2017	Annual	10/19/2018	102324
Rohde & Schwarz	TS-PR26	18-26.5 GHz Pre-Amplifier	1/24/2018	Annual	1/24/2019	100040
Rohde & Schwarz	TS-PR40	26.5-40 GHz Pre-Amplifier	1/24/2018	Annual	1/24/2019	100037
Seekonk	NC-100	Torque Wrench	12/28/2017	Annual	12/28/2018	N/A
Sunol	DRH-118	Horn Antenna (1-18GHz)	8/11/2017	Biennial	8/11/2019	A050307
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	4/19/2018	Biennial	4/19/2020	A051107

Table 6-1. Annual Test Equipment Calibration Schedule

Note:

For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 11 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 11 of 89
© 2018 PCTEST Engineering Laboratory, Inc. V 8.3 07/10				V 8.3 07/10/2018

7.0 TEST RESULTS

7.1 Summary

Company Name:	LG Electronics U.S.A, INC
FCC ID:	ZNFH871S
FCC Classification:	Unlicensed National Information Infrastructure (UNII)

FCC Part Section(s)	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
N/A	RSS-Gen [6.6]	26dB Bandwidth	N/A		PASS	Section 7.2
15.407(e)	RSS-Gen [6.6]	6dB Bandwidth	>500kHz(5725-5850MHz)		PASS	Section 7.3
15.407 (a.1.iv), (a.2), (a.3)	RSS-247 [6.2]	Maximum Conducted Output Power	Maximum conducted powers must meet the limits detailed in 15.407 (a) (RSS-247 [6.2])	CONDUCTED	PASS	Section 7.4
15.407 (a.1.iv), (a.2), (a.3)	RSS-247 [6.2]	Maximum Power Spectral Density	Maximum power spectral density must meet the limits detailed in 15.407 (a) (RSS-247 [6.2])		PASS	Section 7.5
15.407(h)	RSS-247 [6.3]	Dynamic Frequency Selection	See DFS Test Report		PASS	See DFS Test Report
15.407(b.1), (2), (3), (4)	RSS-247 [6.2]	Undesirable Emissions	Undesirable emissions must meet the limits detailed in 15.407(b) (RSS-247 [6.2])		PASS	Section 7.6
15.205, 15.407(b.1), (4), (5), (6)	RSS-Gen [8.9]	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209 (RSS-Gen [8.9])	RADIATED	PASS	Section 7.6, 7.7
15.407	RSS-Gen [8.8]	AC Conducted Emissions 150kHz – 30MHz	< FCC 15.207 (RSS-Gen [8.8]) limits	LINE CONDUCTED	PASS	Section 7.8

Notes:

Table 7-1. Summary of Test Results

- 1) All channels, modes, and modulations/data rates were investigated among all UNII bands. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.
- 4) For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "UNII Automation," Version 4.6.
- 5) For radiated band edge, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "Chamber Automation," Version 0.2.8.

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 12 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 12 of 89
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.3 07/10/2018

7.2 26dB Bandwidth Measurement – 802.11a/n/ac RSS-Gen [6.2]

Test Overview and Limit

The bandwidth at 26dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 26dB bandwidth.

The 26dB bandwidth is used to determine the conducted power limits.

Test Procedure Used

ANSI C63.10-2013 – Section 12.4 KDB 789033 D02 v02r01 – Section C

Test Settings

- The signal analyzers' automatic bandwidth measurement capability was used to perform the 26dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 26. The automatic bandwidth measurement function also has the capability of simultaneously measuring the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = approximately 1% of the emission bandwidth
- 3. VBW <u>></u> 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

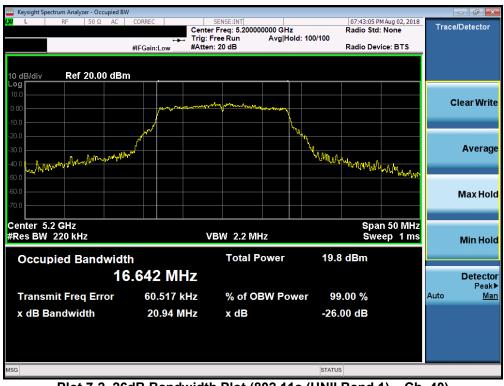
Figure 7-1. Test Instrument & Measurement Setup

Test Notes

None.

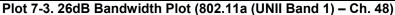
FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 12 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 13 of 89
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.3 07/10/2018

	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured 26dB Bandwidth [MHz]
	5180	36	а	6	21.13
	5200	40	а	6	20.94
	5240	48	а	6	20.75
Ξ	5180	36	n (20MHz)	6.5/7.2 (MCS0)	21.40
Band 1	5200	40	n (20MHz)	6.5/7.2 (MCS0)	21.13
ä	5240	48	n (20MHz)	6.5/7.2 (MCS0)	21.34
	5190	38	n (40MHz)	13.5/15 (MCS0)	39.55
	5230	46	n (40MHz)	13.5/15 (MCS0)	39.35
	5210	42	ac (80MHz)	29.3/32.5 (MCS0)	81.52
	5260	52	а	6	20.97
	5280	56	а	6	20.89
	5320	64	а	6	20.85
2A	5260	52	n (20MHz)	6.5/7.2 (MCS0)	21.32
Band 2A	5280	56	n (20MHz)	6.5/7.2 (MCS0)	21.34
Ва	5320	64	n (20MHz)	6.5/7.2 (MCS0)	21.34
	5270	54	n (40MHz)	13.5/15 (MCS0)	39.05
	5310	62	n (40MHz)	13.5/15 (MCS0)	39.72
	5290	58	ac (80MHz)	29.3/32.5 (MCS0)	81.04
	5500	100	а	6	20.79
	5580	116	а	6	20.95
	5720	144	а	6	20.94
	5500	100	n (20MHz)	6.5/7.2 (MCS0)	21.44
2C	5580	116	n (20MHz)	6.5/7.2 (MCS0)	21.28
Band 2C	5720	144	n (20MHz)	6.5/7.2 (MCS0)	21.48
Ba	5510	102	n (40MHz)	13.5/15 (MCS0)	39.85
	5550	110	n (40MHz)	13.5/15 (MCS0)	39.66
	5710	142	n (40MHz)	13.5/15 (MCS0)	39.66
	5530	106	ac (80MHz)	29.3/32.5 (MCS0)	81.26
	5690	138	ac (80MHz)	29.3/32.5 (MCS0)	81.66


Table 7-2. Conducted Bandwidth Measurements

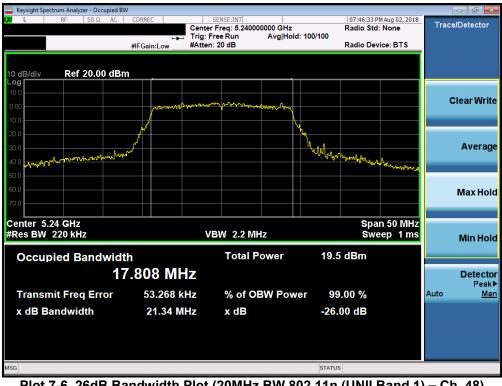
FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 14 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 14 of 89
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.3 07/10/2018

Plot 7-1. 26dB Bandwidth Plot (802.11a (UNII Band 1) - Ch. 36)



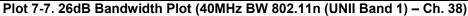

Plot 7-2. 26dB Bandwidth Plot (802.11a (UNII Band 1) - Ch. 40)

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 15 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 15 of 89
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.3 07/10/2018


Plot 7-4. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 36)

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 16 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 16 of 89
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.3 07/10/2018


Plot 7-5. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 40)

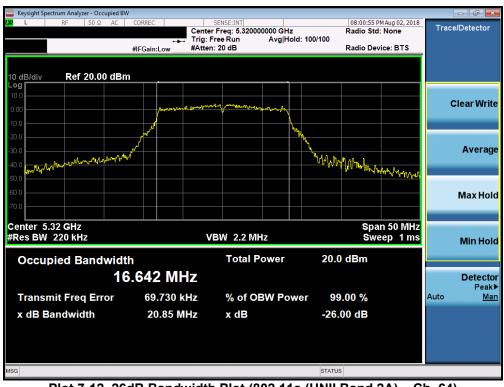


Plot 7-6. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 48)

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 17 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 17 of 89
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.3 07/10/2018


Plot 7-8. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 1) - Ch. 46)

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 19 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 18 of 89
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.3 07/10/2018


Plot 7-10. 26dB Bandwidth Plot (802.11a (UNII Band 2A) - Ch. 52)

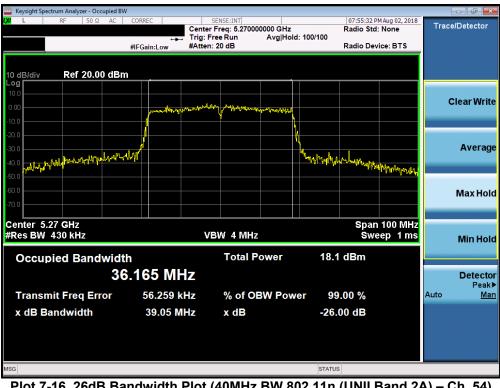
FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 10 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 19 of 89
© 2018 PCTEST Engineering Laboratory. Inc.			V 8.3 07/10/2018	

Plot 7-11. 26dB Bandwidth Plot (802.11a (UNII Band 2A) - Ch. 56)

Plot 7-12. 26dB Bandwidth Plot (802.11a (UNII Band 2A) - Ch. 64)

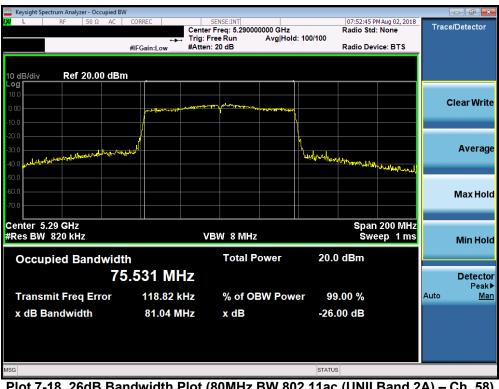
FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 80
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 20 of 89
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.3 07/10/2018

Plot 7-13. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 52)


Plot 7-14. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 56)

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 21 of 20
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 21 of 89
© 2018 PCTEST Engineering Laboratory, Inc.			V 8.3 07/10/2018	

Plot 7-15. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 64)


Plot 7-16. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 2A) - Ch. 54)

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of 20
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 22 of 89
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.3 07/10/2018

Plot 7-17. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 2A) - Ch. 62)

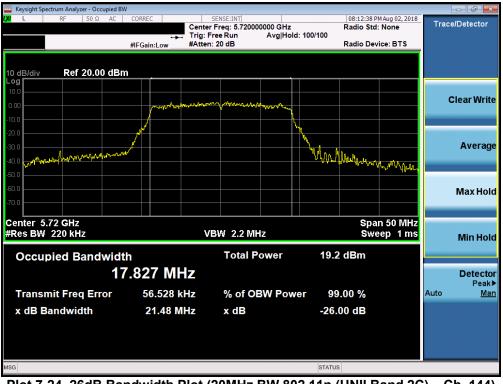
Plot 7-18. 26dB Bandwidth Plot (80MHz BW 802.11ac (UNII Band 2A) - Ch. 58)

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 23 of 89
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.3 07/10/2018

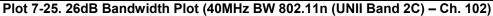
Plot 7-20. 26dB Bandwidth Plot (802.11a (UNII Band 2C) - Ch. 116)

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 24 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 24 of 89
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.3 07/10/2018



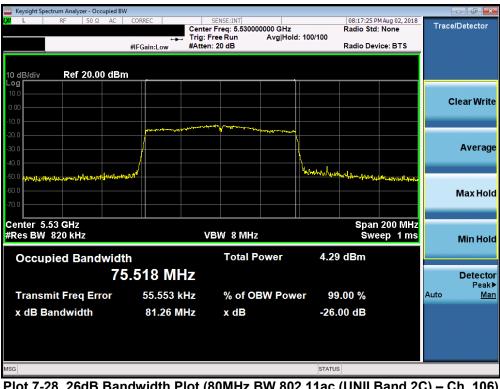

Plot 7-22. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 100)

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 25 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 25 of 89
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.3 07/10/2018



Plot 7-24. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 144)

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 26 of 20
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 26 of 89
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.3 07/10/2018


Plot 7-26. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 2C) - Ch. 110)

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 27 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 27 of 89
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.3 07/10/2018

Keysight Spectrum Analyzer - Occupied BV	V						×
LXU L RF 50Ω AC	CORREC	SENSE:INT Center Freg: 5.59000	0000 GHz	08:15:17 PM/ Radio Std: N		Trace/Detector	
	- -	Trig: Free Run	Avg Hold: 100/100				
	#IFGain:Low	#Atten: 20 dB		Radio Devic	e: BTS		
10 dB/div Ref 20.00 dBr	n						
10.0							
0.00						Clear Wri	te
-10.0							
-20.0	penponther dem	along the second and the second	mermon				
-30.0			<u> </u>			Avera	ge
-40.0			<u> </u>				
-50.0 www.manner.	when		hour hours have been and here	herever white			
-60.0					mare wyteres	Max Ho	Jd
-70.0						Max Hu	u
Center 5.59 GHz					100 MHz		
#Res BW 430 kHz		VBW 4 MHz		Swee	ep 1 ms	Min Ho	ld
Occupied Bandwidt	h	Total P	ower 4.51	l dBm			
	5.217 MH	-				Detect	or
		2				Pea	
Transmit Freq Error	22.365 kH	z % of OE	3W Power 99	0.00 %		Auto <u>M</u>	an
x dB Bandwidth	39.66 MH	z xdB	-26.	00 dB			
MSG			STATU	S			_

Plot 7-27. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 2C) – Ch. 142)

Plot 7-28. 26dB Bandwidth Plot (80MHz BW 802.11ac (UNII Band 2C) - Ch. 106)

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 29 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 28 of 89
© 2018 PCTEST Engineering La	V 8.3 07/10/2018			

Keysight Spectrum Analyzer - Occupied BW							- • •
L RF 50 Ω AC COF	RREC	SENSE:INT enter Freg: 5.69000	0000 GHz		04 PM Aug 02, 2018 Std: None	Trac	e/Detector
	Tr	ig: Free Run	Avg Hold: 10	00/100			
#IF	Gain:Low #A	tten: 20 dB		Radio	Device: BTS		
10 dB/div Ref 20.00 dBm							
10.0							
0.00		man mana				(Clear Write
-10.0							
-20.0							
22.0			μ				Average
and a start and			<u> </u>	al data to .			Average
-40.0 MT11/ 41/10/04/1				and the full of th	hullyn highlaghyan		
-50.0							
-60.0							Max Hold
-70.0							
Center 5.69 GHz				Sp	an 200 MHz		
#Res BW 820 kHz		VBW 8 MHz			weep 1 ms		Min Hold
							Millinoid
Occupied Bandwidth		Total P	ower	19.0 dBm			
75.5	53 MHz						Detector
				~~~~~			Peak►
Transmit Freq Error	158.43 kHz	% of O	BW Power	99.00 %		Auto	Man
x dB Bandwidth	81.66 MHz	x dB		-26.00 dB			
MSG				STATUS			

Plot 7-29. 26dB Bandwidth Plot (80MHz BW 802.11ac (UNII Band 2C) – Ch. 138)

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 29 of 89
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.3 07/10/2018



# 7.3 6dB Bandwidth Measurement – 802.11a/n/ac §15.407 (e); RSS-Gen [6.2]

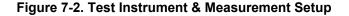
## **Test Overview and Limit**

The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 6dB bandwidth.

### In the 5.725 – 5.850GHz band, the 6dB bandwidth must be $\geq$ 500 kHz.

## **Test Procedure Used**

ANSI C63.10-2013 – Section 6.9.2 KDB 789033 D02 v02r01 – Section C


## **Test Settings**

- The signal analyzers' automatic bandwidth measurement capability was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The automatic bandwidth measurement function also has the capability of simultaneously measuring the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 100 kHz
- 3. VBW <u>></u> 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple

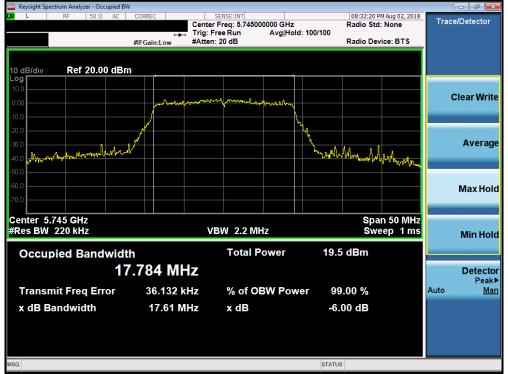
### Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.





### Test Notes

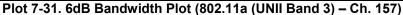

None.

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 20 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 30 of 89
© 2018 PCTEST Engineering La	V 8.3 07/10/2018			



	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured 6dB Bandwidth [MHz]
	5745	149	а	6	17.61
	5785	157	а	6	16.28
	5825	165	а	6	16.35
e	5745	149	n (20MHz)	6.5/7.2 (MCS0)	17.58
Band	5785	157	n (20MHz)	6.5/7.2 (MCS0)	17.52
ä	5825	165	n (20MHz)	6.5/7.2 (MCS0)	17.57
	5755	151	n (40MHz)	13.5/15 (MCS0)	36.40
	5795	159	n (40MHz)	13.5/15 (MCS0)	35.91
	5775	155	ac (80MHz)	29.3/32.5 (MCS0)	76.01

Table 7-3. Conducted Bandwidth Measurements



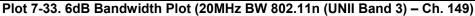

Plot 7-30. 6dB Bandwidth Plot (802.11a (UNII Band 3) - Ch. 149)

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 21 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 31 of 89
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.3 07/10/2018









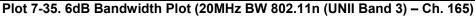

#### Plot 7-32. 6dB Bandwidth Plot (802.11a (UNII Band 3) - Ch. 165)

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 32 of 89
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		
© 2018 PCTEST Engineering Laboratory. Inc.				V 8.3 07/10/2018










Plot 7-34. 6dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 3) - Ch. 157)

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 33 of 89
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		
© 2018 PCTEST Engineering Laboratory, Inc.			V 8.3 07/10/2018	










Plot 7-36. 6dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 3) - Ch. 151)

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 34 of 89
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		
© 2018 PCTEST Engineering Laboratory, Inc.			V 8.3 07/10/2018	









Plot 7-38. 6dB Bandwidth Plot (80MHz BW 802.11ac (UNII Band 3) - Ch. 155)

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 35 of 89
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		
© 2018 PCTEST Engineering Laboratory, Inc.			V 8.3 07/10/2018	



## 7.4 UNII Output Power Measurement – 802.11a/n/ac §15.407(a.1.iv) §15.407(a.2) §15.407(a.3); RSS-247 [6.2]

### **Test Overview and Limits**

A transmitter antenna terminal of the EUT is connected to the input of an RF pulse power sensor. Measurement is made using a broadband average power meter while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies.

In the 5.15 – 5.25GHz band, the maximum permissible conducted output power is 250mW (23.98dBm).

In the 5.25 – 5.35GHz band, the maximum permissible conducted output power is the lesser of 250mW (23.98dBm) and 11 dBm +  $10\log_{10}(26dB BW) = 11 dBm + 10\log_{10}(20.85) = 24.19dBm$ .

In the 5.47 – 5.725GHz band, the maximum permissible conducted output power is the lesser of 250mW (23.98dBm) and 11 dBm +  $10log_{10}(26dB BW) = 11 dBm + <math>10log_{10}(20.79) = 24.18dBm$ .

In the 5.725 – 5.850GHz band, the maximum permissible conducted output power is 1W (30dBm).

## Test Procedure Used

ANSI C63.10-2013 – Section 12.3.3.2 Method PM-G KDB 789033 D02 v02r01 – Section E)3)b) Method PM-G

### Test Settings

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

### Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.



Figure 7-3. Test Instrument & Measurement Setup

### Test Notes

Per RSS-247 Section 6.2.3, transmission on channels which overlap the 5600-5650 MHz is prohibited. This device operates under these frequencies only under the control of a certified master device and does not support active scanning on these channels. This device does not transmit any beacons or initiate any transmissions in UNII Bands 2A or 2C.

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 26 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 36 of 89
© 2018 PCTEST Engineering Laboratory. Inc.			V 8.3 07/10/2018	



Freq [MHz]	Channel	Detector	IEEE Transmission Mode					Conducted Power Limit	Conducted Power
			802.11a	802.11n	802.11ac	[dBm]	Margin [dB]		
5180	36	AVG	13.34	12.98	12.98	23.98	-10.64		
5200	40	AVG	13.44	13.03	12.98	23.98	-10.54		
5220	44	AVG	13.41	13.00	13.16	23.98	-10.57		
5240	48	AVG	13.42	13.23	13.14	23.98	-10.56		
5260	52	AVG	13.48	13.11	13.05	23.98	-10.50		
5280	56	AVG	13.49	13.05	13.07	23.98	-10.49		
5300	60	AVG	13.48	13.04	13.04	23.98	-10.50		
5320	64	AVG	13.44	13.03	13.16	23.98	-10.54		
5500	100	AVG	13.49	13.31	13.21	23.98	-10.49		
5580	116	AVG	13.45	13.06	13.12	23.98	-10.53		
5660	132	AVG	13.43	12.77	12.86	23.98	-10.55		
5720	144	AVG	13.12	12.73	12.62	23.98	-10.86		
5745	149	AVG	13.47	13.23	13.21	30.00	-16.53		
5785	157	AVG	13.46	12.98	12.86	30.00	-16.54		
5825	165	AVG	13.27	12.79	12.93	30.00	-16.73		

Table 7-4. 20MHz BW (UNII) Maximum Conducted Output Power

Freq [MHz]	Channel Detector		Conducted Power Limit	Conducted Power		
			802.11n 802.11ac		[dBm]	Margin [dB]
5190	38	AVG	12.27	12.38	23.98	-11.60
5230	46	AVG	12.37	12.49	23.98	-11.49
5270	54	AVG	12.27	12.23	23.98	-11.71
5310	62	AVG	12.40	12.43	23.98	-11.55
5510	102	AVG	12.48	12.49	23.98	-11.49
5550	110	AVG	12.42	12.41	23.98	-11.56
5670	134	AVG	12.08	12.21	23.98	-11.77
5710	142	AVG	12.00	12.06	23.98	-11.92
5755	151	AVG	12.39	12.34	30.00	-17.61
5795	159	AVG	12.25	12.26	30.00	-17.74

Table 7-5. 40MHz BW (UNII) Maximum Conducted Output Power

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 27 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 37 of 89
© 2018 PCTEST Engineering L	aboratory Inc			V 8 3 07/10/2018



Freq [MHz]	Channel	Detector	IEEE Transmission <u>Mode</u> 802.11ac	Conducted Power Limit [dBm]	Conducted Power Margin [dB]
5210	42	AVG	12.17	23.98	-11.81
5290	58	AVG	12.28	23.98	-11.70
5530	106	AVG	12.17	23.98	-11.81
5690	138	AVG	11.85	23.98	-12.13
5775	155	AVG	12.11	30.00	-17.89

Table 7-6. 80MHz BW (UNII) Maximum Conducted Output Power

FCC ID: ZNFH871S	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 29 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 38 of 89
© 2018 PCTEST Engineering La	boratory, Inc.	·		V 8.3 07/10/2018



# 7.5 Maximum Power Spectral Density – 802.11a/n/ac §15.407(a.1.iv) §15.407(a.2) §15.407(a.3); RSS-247 [6.2]

### **Test Overview and Limit**

The spectrum analyzer was connected to the antenna terminal while the EUT was operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies. Method SA-1, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, was used to measure the power spectral density.

# In the 5.15 – 5.25GHz, 5.25 – 5.35GHz, 5.47 – 5.725GHz bands, the maximum permissible power spectral density is 11dBm/MHz.

In the 5.725 – 5.850GHz band, the maximum permissible power spectral density is 30dBm/500kHz.

#### Test Procedure Used

ANSI C63.10-2013 – Section 12.3.2.2 KDB 789033 D02 v02r01 – Section F

#### **Test Settings**

- 1. Analyzer was set to the center frequency of the UNII channel under investigation
- 2. Span was set to encompass the entire emission bandwidth of the signal
- 3. RBW = 1MHz
- 4. VBW = 3MHz
- 5. Number of sweep points  $\geq 2 \times (\text{span/RBW})$
- 6. Sweep time = auto
- 7. Detector = power averaging (RMS)
- 8. Trigger was set to free run for all modes
- 9. Trace was averaged over 100 sweeps
- 10. The peak search function of the spectrum analyzer was used to find the peak of the spectrum.

#### Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.



Figure 7-4. Test Instrument & Measurement Setup

# Test Notes

#### None

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 20
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset	Page 39 of 89
© 2018 PCTEST Engineering La	boratory, Inc.		V 8.3 07/10/2018



	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Power Density [dBm]	Max Power Density [dBm/MHz]	Margin [dB]
	5180	36	а	6	3.40	11.0	-7.60
	5200	40	а	6	3.28	11.0	-7.72
	5240	48	а	6	3.19	11.0	-7.81
-	5180	36	n (20MHz)	6.5/7.2 (MCS0)	2.17	11.0	-8.83
Band 1	5200	40	n (20MHz)	6.5/7.2 (MCS0)	2.63	11.0	-8.37
ä	5240	48	n (20MHz)	6.5/7.2 (MCS0)	2.54	11.0	-8.46
	5190	38	n (40MHz)	13.5/15 (MCS0)	-0.97	11.0	-11.97
	5230	46	n (40MHz)	13.5/15 (MCS0)	-0.90	11.0	-11.90
	5210	42	ac (80MHz)	29.3/32.5 (MCS0)	-4.13	11.0	-15.13
	5260	52	а	6	2.98	11.0	-8.02
	5280	56	а	6	3.09	11.0	-7.91
	5320	64	а	6	3.13	11.0	-7.87
2A	5260	52	n (20MHz)	6.5/7.2 (MCS0)	2.52	11.0	-8.48
Band 2A	5280	56	n (20MHz)	6.5/7.2 (MCS0)	1.81	11.0	-9.19
Ba	5320	64	n (20MHz)	6.5/7.2 (MCS0)	2.62	11.0	-8.39
	5270	54	n (40MHz)	13.5/15 (MCS0)	-0.77	11.0	-11.77
	5310	62	n (40MHz)	13.5/15 (MCS0)	-0.79	11.0	-11.79
	5290	58	ac (80MHz)	29.3/32.5 (MCS0)	-4.03	11.0	-15.03
	5500	100	а	6	3.30	11.0	-7.70
	5580	116	а	6	3.22	11.0	-7.78
	5720	144	а	6	3.29	11.0	-7.71
	5500	100	n (20MHz)	6.5/7.2 (MCS0)	1.21	11.0	-9.80
SC	5580	116	n (20MHz)	6.5/7.2 (MCS0)	2.63	11.0	-8.37
Band 2C	5720	144	n (20MHz)	6.5/7.2 (MCS0)	2.35	11.0	-8.65
Ba	5510	102	n (40MHz)	13.5/15 (MCS0)	-0.74	11.0	-11.74
	5550	110	n (40MHz)	13.5/15 (MCS0)	-0.72	11.0	-11.72
	5710	142	n (40MHz)	13.5/15 (MCS0)	-1.14	11.0	-12.14
	5530	106	ac (80MHz)	29.3/32.5 (MCS0)	-4.11	11.0	-15.11
	5690	138	ac (80MHz)	29.3/32.5 (MCS0)	-4.46	11.0	-15.46

Table 7-7. Bands 1, 2A, 2C Conducted Power Spectral Density Measurements

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 40 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 40 of 89
© 2018 PCTEST Engineering La	boratory. Inc.			V 8.3 07/10/2018



Keysight Sp	pectrum Analyze	r - Swep	ot SA									
XI L	RF	50 Ω	AC	CORREC	ast ⊶⊷		#Avg Typ	e: RMS	TRAC	Aug 02, 2018 E 1 2 3 4 5 6 E A WWWW T A N N N N N	Fr	equency
10 dB/div Log	Ref 10.	00 di	Зm	IFGain:L		#Atten: 2		Mkr	5.180 7			Auto Tune
0.00	,		مرجنة فر و د <del>ا</del> ل	where the state of	all a state of the	an a	A Strage march staff of the	anan - Ingan	a marked a second se			Center Fred 0000000 GH:
-10.0	will when									h brug	5.16	Start Fred 7500000 GH:
-30.0										North North	5.19	<b>Stop Fred</b> 2500000 GH:
50.0											Auto ²	CF Stej 2.500000 MH Ma
70.0												Freq Offse 0 H
-80.0	10000 01								0	5 00 BALL	Log	Scale Type
	.18000 GH 1.0 MHz	IZ		\$	≠vbw	3.0 MHz		Sweep	Span 2 1.000 ms (	5.00 MHz 1001 pts)	Log	
//SG								STATU	S			

Plot 7-39. Power Spectral Density Plot (802.11a (UNII Band 1) - Ch. 36)




Plot 7-40. Power Spectral Density Plot (802.11a (UNII Band 1) - Ch. 40)

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 41 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 41 of 89
© 2018 PCTEST Engineering La	boratory. Inc.			V 8.3 07/10/2018






Plot 7-41. Power Spectral Density Plot (802.11a (UNII Band 1) - Ch. 48)



Plot 7-42. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 36)

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 42 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 42 of 89
© 2018 PCTEST Engineering La	aboratory Inc			V 8 3 07/10/2018










Plot 7-44. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 48)

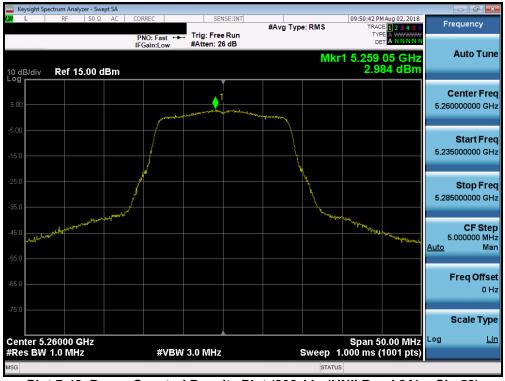
FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 42 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 43 of 89
© 2018 PCTEST Engineering La	boratory. Inc.	-		V 8.3 07/10/2018



L	Spectrum Analy	50 Ω A		RREC	SEI	NSE:INT			09:45:29 PI	4 Aug 02, 2018	
			Р	NO: Fast ↔ Gain:Low		e Run	#Avg Typ	e: RMS	TRAC	E 1 2 3 4 5 6 E A WWWW T A N N N N N	Frequency
) dB/div	Ref 1	5.00 dBr		Jam.Low				Mk	r1 5.18 -0.9	8 4 GHz 70 dBm	Auto Tui
i.00						1					<b>Center Fr</b> 5.190000000 G
5.0				Antopolynum							<b>Start Fr</b> 5.140000000 G
5.0											<b>Stop Fr</b> 5.240000000 G
5.0 ••••••	and the second s	and the second	היישיאלי היישיאלי					Markey Markey	hard mail many	there was the second	CF Ste 10.000000 M <u>Auto</u> M
5.0											Freq Offs 0
5.0											Scale Ty
	5.19000 G W 1.0 MH:			#VBW	/ 3.0 MHz			Sweep 1	Span 1 .000 m <u>s (</u>	00.0 MHz 1001 pts)	Log <u>L</u>
G								STATUS			

Plot 7-45. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 1) - Ch. 38)




Plot 7-46. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 1) - Ch. 46)

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 11 of 90	
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 44 of 89	
© 2018 PCTEST Engineering La	boratory. Inc.	-		V 8.3 07/10/2018	



Keysight S	Spectrum Analyz	zer - Swept S/ 50 Ω A		REC		NSE:INT			00:47:49.0	M Aug 02, 2018	
L		1 20 32 A	PN	NO: Fast ↔ Gain:Low		Run	#Avg Typ	e: RMS	TRAC	DE 1 2 3 4 5 6 DE A WWWW ET A NNNNN	Frequency
0 dB/div og	Ref 15	.00 dBr		Sam:Low	#Atten: 2	u B		MI	(r1 5.21) -4.	3 2 GHz 13 dBm	Auto Tui
5.00						<b>↓</b> 1					Center Fre 5.210000000 GI
5.0				myanar (ndistring) mily	and the second sec		han any of the start				Start Fre 5.110000000 GI
5.0											<b>Stop Fre</b> 5.310000000 GI
5.0	works	ntwood and	hermon and					& work of the has	an grant and a start of the sta	to lynn yw yw yr b	CF Ste 20.000000 Mi <u>Auto</u> Mi
5.0											Freq Offs 0 I
/5.0											Scale Typ
	5.2100 GH V 1.0 MHz			#VBW	/ 3.0 MHz			Sweep 1	Span 2 .000 ms (	00.0 MHz 1001 pts)	Log <u>L</u>
SG								STATU	5		



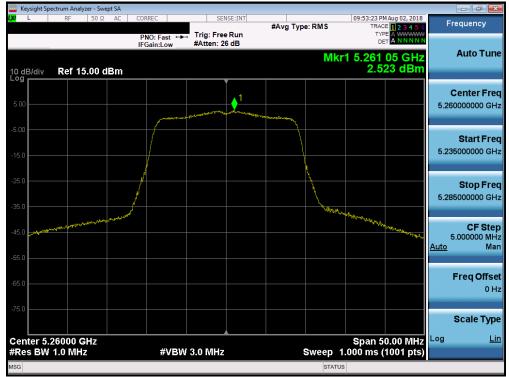


Plot 7-48. Power Spectral Density Plot (802.11a (UNII Band 2A) - Ch. 52)

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 45 of 90	
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 45 of 89	
© 2018 PCTEST Engineering La	aboratory Inc.			V 8 3 07/10/2018	



🔤 Keysight Sp	pectrum Analyz	er - Swept SA										
<mark>XI</mark> L	RF	50 Ω A	PN	EC │ D:Fast ↔ ain:Low			#Avg Typ	e: RMS	TRAC	Aug 02, 2018 E 1 2 3 4 5 6 E A WWWW T A N N N N N	Fr	equency
10 dB/div	Ref 15	.00 dBn		an:Low	#Atten: 2			Mkı	r1 5.280			Auto Tune
5.00					the and the second s	1	anglanselag					enter Fred 0000000 GH
-5.00											5.255	<b>Start Fre</b> 5000000 GH
-25.0			- All					NA N			5.305	<b>Stop Fre</b> 5000000 GH
-45.0	feating the feature for the	mithing	× .					· • • • • • • • •	al Anderwood and	water where and the	5 <u>Auto</u>	CF Ste 000000 MH Ma
65.0											ľ	F <b>req Offs</b> e 0 H
-75.0												Scale Typ
Center 5. #Res BW	.28000 G 1.0 MHz	Hz		#VBW	/ 3.0 MHz			Sweep 1	5 Span 1.000 ms (	0.00 10112	Log	<u>Lir</u>
MSG								STATU	s			


Plot 7-49. Power Spectral Density Plot (802.11a (UNII Band 2A) - Ch. 56)

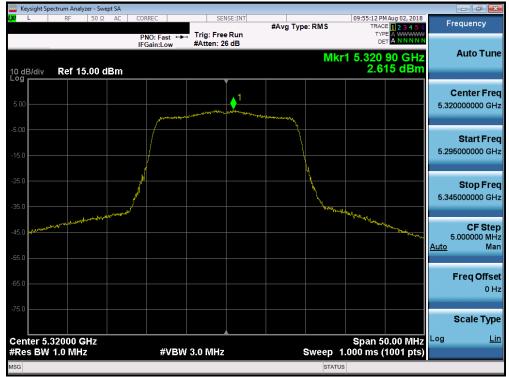



Plot 7-50. Power Spectral Density Plot (802.11a (UNII Band 2A) - Ch. 64)

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 46 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 46 of 89
© 2018 PCTEST Engineering La	boratory. Inc.	•		V 8.3 07/10/2018






Plot 7-51. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 52)



Plot 7-52. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 56)

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 47 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 47 of 89
© 2018 PCTEST Engineering La	boratory. Inc.	•		V 8.3 07/10/2018





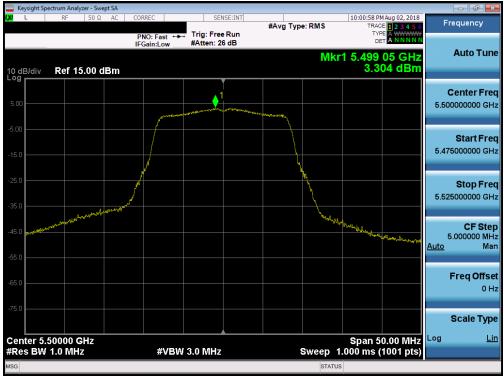
Plot 7-53. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 64)



FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 49 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset	Page 48 of 89	
© 2018 PCTEST Engineering La	V 8.3 07/10/2018			



🔤 Keysight Sp	ectrum Analyze										_	
LXI L	RF	50 Ω AC	CORREC		SEN	ISE:INT	#Avg Typ	e: RMS		MAug 02, 2018	Fred	uency
	_		PNO: IFGain	Fast ↔→→ :Low	Trig: Free #Atten: 2				TY D			
10 dB/div Log	Ref 15.	.00 dBm						М	kr1 5.31 -0.7	1 6 GHz 93 dBm	A	uto Tune
					,							nter Freq
5.00					www.www.	1 1					5.3100	00000 GHz
-5.00						/						Start Freq
-15.0											5.2600	00000 GHz
-25.0								}			5	Stop Fred
-35.0								<u></u>			5.3600	00000 GHz
-45.0	man	manne	umpered					Marin Marine	in my want of an	Λ.		CF Step
-55.0										- Vien menustra	10.0 <u>Auto</u>	00000 MHz Mar
-65.0											Fr	eq Offse
-05:0												0 H:
-75.0											S	cale Type
Center 5. #Res BW				#VBW	3.0 MHz			Sween	Span 1	00.0 MHz (1001 pts)	Log	Lin
MSG					010 11112			STATU		(1001-pt5)		


Plot 7-55. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2A) - Ch. 62)

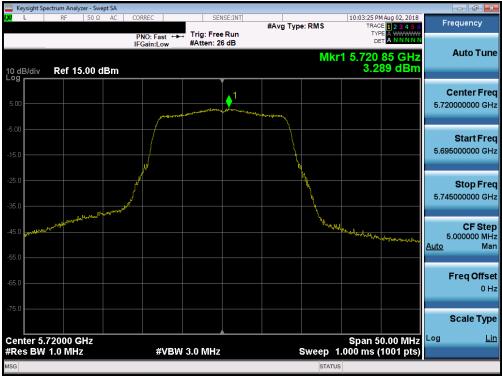



Plot 7-56. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 2A) - Ch. 58)

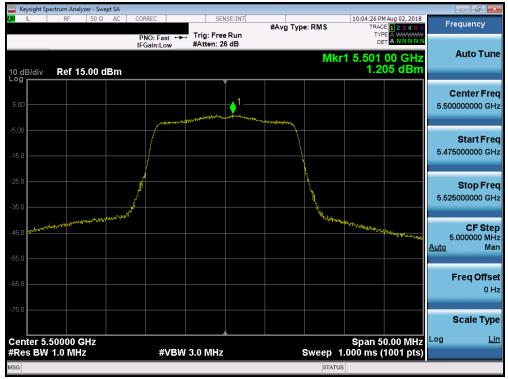
FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 40 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset	Page 49 of 89	
© 2018 PCTEST Engineering La	V 8.3 07/10/2018			







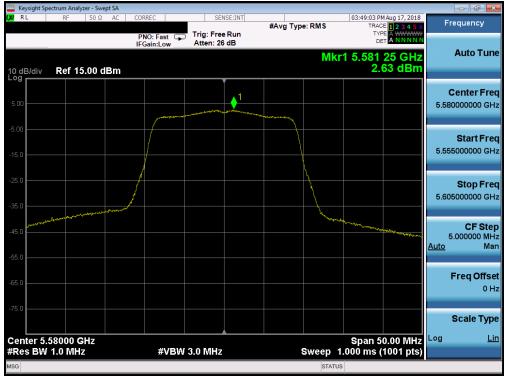




Plot 7-58. Power Spectral Density Plot (802.11a (UNII Band 2C) - Ch. 116)

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 50 of 90	
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 50 of 89	
© 2018 PCTEST Engineering La	boratory. Inc.	•		V 8.3 07/10/2018	






Plot 7-59. Power Spectral Density Plot (802.11a (UNII Band 2C) – Ch. 144)

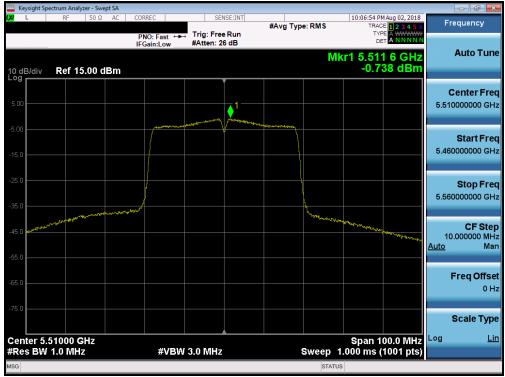


Plot 7-60. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 100)

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 51 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 51 of 89
© 2018 PCTEST Engineering La	boratory. Inc.			V 8.3 07/10/2018






Plot 7-61. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2C) – Ch. 116)



Plot 7-62. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 144)

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 52 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 52 of 89
© 2018 PCTEST Engineering La	V 8.3 07/10/2018			





Plot 7-63. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2C) – Ch. 102)



Plot 7-64. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2C) - Ch. 110)

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 52 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 53 of 89
© 2018 PCTEST Engineering La	V 8.3 07/10/2018			



🔤 Keysight Sp	ectrum Analy:												
L <mark>XI</mark> L	RF	50 Ω	AC	CORREC		SEI	ISE:INT	#Avg Typ	e: RMS		PM Aug 02, 2018 CE 1 2 3 4 5 6	Free	quency
	_			PNO: Fa	ast ↔→ .ow	Trig: Free #Atten: 2		• //		T` [			uto Tune
10 dB/div Log	Ref 15	.00 dB	im.						N	1kr1 5.70 -1.1	8 0 GHz 38 dBm	, , , , , , , , , , , , , , , , , , ,	
												Ce	enter Fred
5.00						water and the second	( management					5.7100	00000 GH:
-5.00						<u> </u>	/'					:	Start Free
-15.0												5.6600	00000 GH:
-25.0												:	Stop Free
-35.0				_								5.7600	00000 GH
-45.0	der and a start	from and	ሊዲሥራታ						hubrow	whether whether			CF Step
.55.0										are a ford of	Wy Part Mar Branch Same	10.0 <u>Auto</u>	00000 MH Ma
												FI	req Offse
-65.0													. он
-75.0												S	cale Type
Center 5. #Res BW					ŧv/RM	3.0 MHz			Sweep	Span	100.0 MHz (1001 pts)	Log	Lir
ARCS DW	1.0 10112			1	FV DVV	3.0 WIN2			Sweep		(1001 pts)		

Plot 7-65. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2C) - Ch. 142)



Plot 7-66. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 2C) - Ch. 106)

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 54 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 54 of 89
© 2018 PCTEST Engineering La	V 8.3 07/10/2018			



Keysight Spectrum	ectrum Analyzer	- Swept S										×
UL	RF 5	50Ω 4	P	RREC NO: Fast Gain:Low		Free Run	#Avg Typ	e: RMS	TRAC	M Aug 02, 2018 DE <b>1 2 3 4 5 6</b> PE A WWWWW ET A N N N N N	Frequency	
0 dB/div	Ref 15.0	0 dBi		Gam.Low				MI	kr1 5.69 -4.4	3 6 GHz 63 dBm	Auto Tu	In
5.00						▲ ¹					Center Fr 5.690000000 G	
15.0					Interest Production of the second		and the second				Start Fi 5.590000000 G	
35.0											<b>Stop Fi</b> 5.790000000 G	
15.0	and and and an and a state of the state of t	physes of the	Alerander, ber					- marine	13 Yuna Wanada a yana	manufun	CF St 20.000000 M <u>Auto</u> M	
5.0											Freq Off 0	is )⊦
	6900 GHz								Span 2	200.0 MHz	Scale Ty	ур <u>Li</u>
	1.0 MHz			#VE	3W 3.0 M	Hz			.000 ms (	(1001 pts)		
SG								STATU	S			

Plot 7-67. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 2C) – Ch. 138)

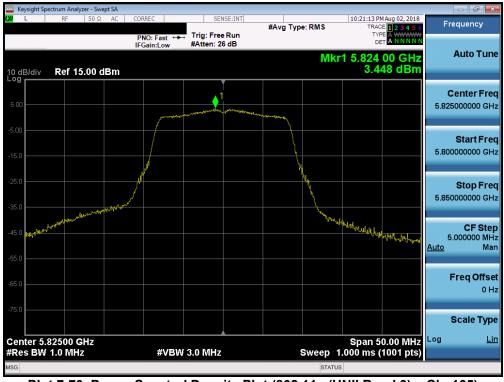
FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage EE of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 55 of 89
© 2018 PCTEST Engineering La	V 8.3 07/10/2018			



	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Power Density [dBm]	Max Permissible Power Density [dBm/500kHz]	Margin [dB]
	5745	149	а	6	3.49	30.0	-26.51
	5785	157	а	6	3.42	30.0	-26.58
	5825	165	а	6	3.45	30.0	-26.55
m	5745	149	n (20MHz)	6.5/7.2 (MCS0)	2.62	30.0	-27.38
Band	5785	157	n (20MHz)	6.5/7.2 (MCS0)	2.96	30.0	-27.05
ä	5825	165	n (20MHz)	6.5/7.2 (MCS0)	2.66	30.0	-27.34
	5755	151	n (40MHz)	13.5/15 (MCS0)	-0.50	30.0	-30.50
	5795	159	n (40MHz)	13.5/15 (MCS0)	-0.61	30.0	-30.61
	5775	155	ac (80MHz)	29.3/32.5 (MCS0)	-3.33	30.0	-33.33

Table 7-8. Band 3 Conducted Power Spectral Density Measurements

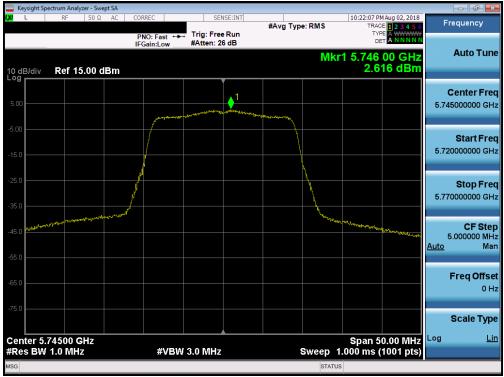



Plot 7-68. Power Spectral Density Plot (802.11a (UNII Band 3) - Ch. 149)

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 56 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 56 of 89
© 2018 PCTEST Engineering La	V 8.3 07/10/2018			










Plot 7-70. Power Spectral Density Plot (802.11a (UNII Band 3) - Ch. 165)

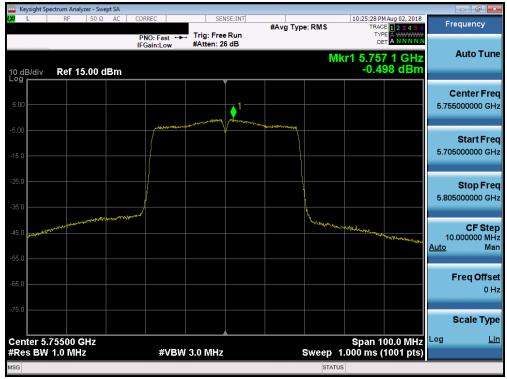
FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 57 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 57 of 89
© 2018 PCTEST Engineering La	V 8 3 07/10/2018			






Plot 7-71. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 3) - Ch. 149)




Plot 7-72. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 3) - Ch. 157)

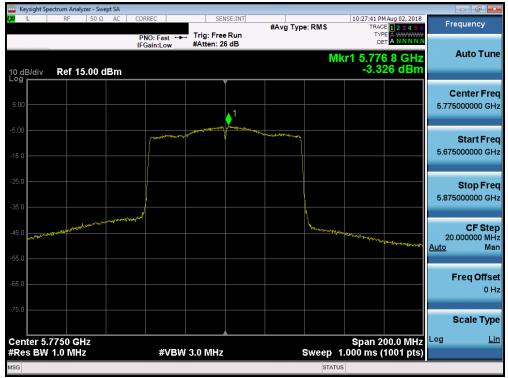
FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 59 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 58 of 89
© 2018 PCTEST Engineering L	V 8 3 07/10/2018			






Plot 7-73. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 3) - Ch. 165)




Plot 7-74. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 3) - Ch. 151)

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 50 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 59 of 89
© 2018 PCTEST Engineering La	V 8.3 07/10/2018			





Plot 7-75. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 3) – Ch. 159)



Plot 7-76. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 3) - Ch. 155)

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 60 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 60 of 89
© 2018 PCTEST Engineering La	V 8.3 07/10/2018			



# 7.6 Radiated Spurious Emission Measurements – Above 1GHz §15.407(b) §15.205 §15.209; RSS-Gen [8.9]

### **Test Overview and Limit**

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies. All channels, modes (e.g. 802.11a, 802.11n (20MHz BW), 802.11n (40MHz BW), and 802.11ac (80MHz)), and modulations/data rates were investigated among all UNII bands. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

For transmitters operating in the 5.15-5.25 GHz and 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of −27 dBm/MHz.

For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of −27 dBm/MHz.

For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at 5 MHz above or below the band edge.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR and Table 6 of RSS-Gen (8.10) must not exceed the limits shown in Table 7-9 per Section 15.209 and RSS-Gen (8.9).

Frequency	Field Strength [μV/m]	Measured Distance [Meters]	
Above 960.0 MHz	500	3	

Table 7-9. Radiated Limits

#### **Test Procedures Used**

ANSI C63.10-2013 – Sections 12.7.7.2, 12.7.6, 12.7.5 KDB 789033 D02 v02r01 – Section G

#### **Test Settings**

#### Average Measurements above 1GHz (Method AD)

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = power average (RMS)
- 5. Number of measurement points = 1001 (Number of points must be  $\geq 2 \times \text{span/RBW}$ )
- 6. Averaging type = power (RMS)
- 7. Sweep time = auto couple
- 8. Trace was averaged over 100 sweeps

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type: Portable Handset		Dage 61 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018			Page 61 of 89
© 2018 PCTEST Engineering La	V 8 3 07/10/2018			



#### Peak Measurements above 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

### Peak Measurements below 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Span was set greater than 1MHz
- 3. RBW = 120kHz
- 4. Detector = CISPR quasi-peak
- 5. Sweep time = auto couple
- 6. Trace was allowed to stabilize

### Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

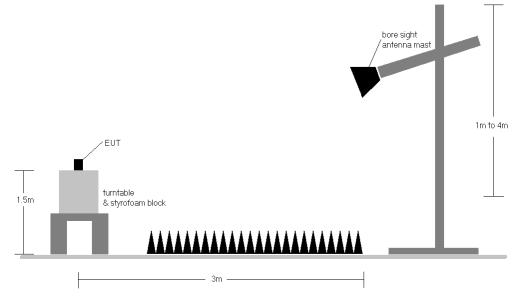



Figure 7-5. Test Instrument & Measurement Setup

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 62 of 90	
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 62 of 89	
© 2018 PCTEST Engineering La	V 8.3 07/10/2018				



#### **Test Notes**

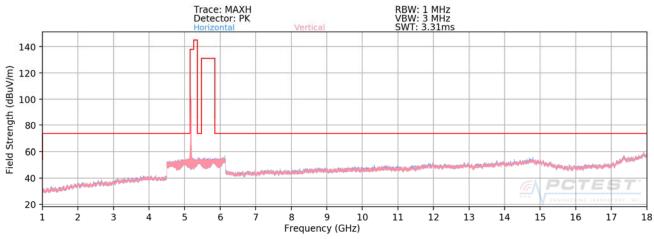
- 1. All emissions that lie in the restricted bands (denoted by a * next to the frequency) specified in §15.205 and Section 8.10 of RSS-Gen are below the limit shown in Table 7-9.
- 2. All spurious emissions lying in restricted bands specified in §15.205 and Section 8.10 of RSS-Gen are below the limit shown in Table 7-9. All spurious emissions that do not lie in a restricted band are subject to a peak limit of -27dBm/MHz. At a distance of 3 meters, the field strength limit in dBµV/m can be determined by adding a "conversion" factor of 95.2dB to the EIRP limit of -27dBm/MHz to obtain the limit for out of band spurious emissions of 68.2dBµV/m.
- 3. The antenna is manipulated through typical positions, polarity and length during the tests. The EUT is manipulated through three orthogonal planes.
- 4. This unit was tested with its standard battery.
- 5. The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter using CISPR quasi peak detector below 1GHz. Above 1 GHz, average and peak measurements were taken using linearly polarized horn antennas. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 6. Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 7. The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. Any emissions found to be within 20dB of the limit are fully investigated and the results are shown in this section.
- 8. The "-" shown in the following RSE tables are used to denote a noise floor measurement.

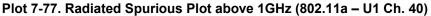
#### **Sample Calculations**

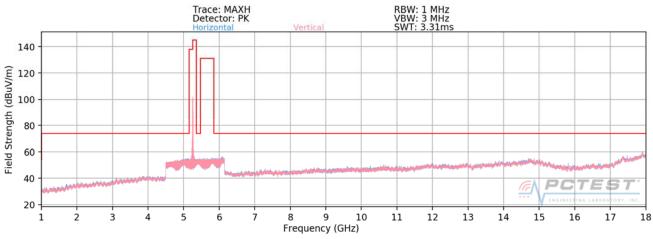
# **Determining Spurious Emissions Levels**

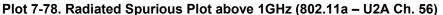
- ο Field Strength Level [dBµV/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m]
- AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB]
- ο Margin [dB] = Field Strength Level [dBμV/m] Limit [dBμV/m]

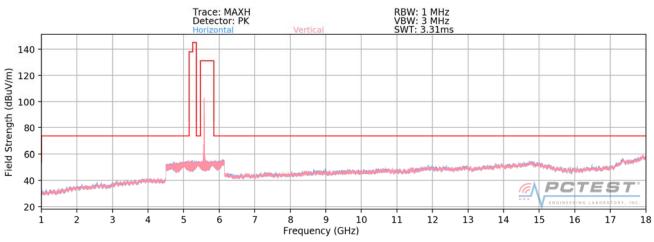
#### Radiated Band Edge Measurement Offset


• The amplitude offset shown in the radiated restricted band edge plots in Section 7.6 was calculated using the formula:


Offset (dB) = (Antenna Factor + Cable Loss + Attenuator) – Preamplifier Gain


FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 62 of 90	
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 63 of 89	
© 2018 PCTEST Engineering La	V 8.3 07/10/2018				

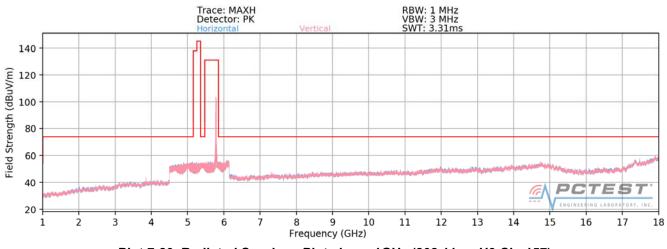


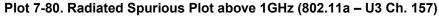


# 7.6.1 Radiated Spurious Emission Measurements





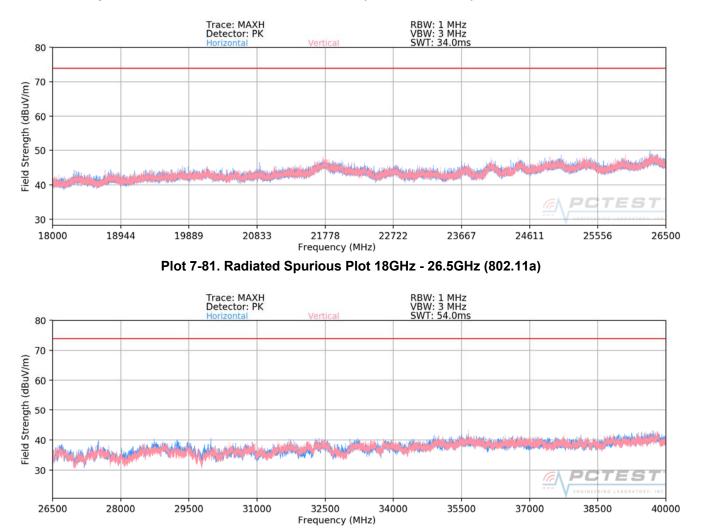





Plot 7-79. Radiated Spurious Plot above 1GHz (802.11a - U2C Ch. 116)

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 64 of 89	
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset			
© 2018 PCTEST Engineering La	V 8 3 07/10/2018				








FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 65 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 65 of 89
© 2018 PCTEST Engineering La	V 8.3 07/10/2018			





Plot 7-82. Radiated Spurious Plot 26.5GHz - 40GHz (802.11a)

# **Radiated Spurious Emissions Measurements (Above 18GHz)**

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager				
Test Report S/N:	Test Dates:	EUT Type:		Dege 66 of 90			
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 66 of 89			
© 2018 PCTEST Engineering Laboratory, Inc. V 8.3 07/10/2018							



# Radiated Spurious Emission Measurements §15.407(b) §15.205 & §15.209; RSS-Gen [8.9]

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5180MHz
Channel:	36

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10360.00	Peak	V	107	17	-66.73	10.68	0.00	50.95	68.20	-17.25
*	15540.00	Average	V	-	-	-81.03	13.80	0.00	39.77	53.98	-14.21
*	15540.00	Peak	V	-	-	-69.97	13.80	0.00	50.83	73.98	-23.15
*	20720.00	Average	V	-	-	-71.10	7.94	-9.54	34.30	53.98	-19.68
*	20720.00	Peak	V	-	-	-59.48	7.94	-9.54	45.92	73.98	-28.06
	25900.00	Peak	V	-	-	-56.90	8.46	-9.54	49.02	68.20	-19.18

## Table 7-10. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a	
6Mbps	
1 & 3 Meters	
5200MHz	
40	

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10400.00	Peak	V	107	28	-67.56	10.90	0.00	50.34	68.20	-17.86
*	15600.00	Average	V	-	-	-81.24	13.62	0.00	39.38	53.98	-14.60
*	15600.00	Peak	V	-	-	-69.70	13.62	0.00	50.92	73.98	-23.06
*	20800.00	Average	V	-	-	-71.05	7.95	-9.54	34.36	53.98	-19.62
*	20800.00	Peak	V	-	-	-59.73	7.95	-9.54	45.68	73.98	-28.30
	26000.00	Peak	V	-	-	-57.69	8.60	-9.54	48.37	68.20	-19.83

# Table 7-11. Radiated Measurements

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 67 of 90	
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 67 of 89	
© 2018 PCTEST Engineering La	V 8.3 07/10/2018				



Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5240MHz
Channel:	48

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10480.00	Peak	V	335	34	-68.33	11.30	0.00	49.97	68.20	-18.23
*	15720.00	Average	V	-	-	-81.09	12.07	0.00	37.98	53.98	-16.00
*	15720.00	Peak	V	-	-	-69.88	12.07	0.00	49.19	73.98	-24.79
*	20960.00	Average	V	-	-	-71.48	7.91	-9.54	33.89	53.98	-20.09
*	20960.00	Peak	V	-	-	-59.55	7.91	-9.54	45.82	73.98	-28.16
	26200.00	Peak	V	-	-	-56.97	8.62	-9.54	49.11	68.20	-19.09

# Table 7-12. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel: 802.11a 6Mbps 1 & 3 Meters 5260MHz 52

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10520.00	Peak	V	-	-	-68.87	10.99	0.00	49.12	68.20	-19.08
*	15780.00	Average	V	-	-	-81.15	11.07	0.00	36.92	53.98	-17.06
*	15780.00	Peak	V	-	-	-69.95	11.07	0.00	48.12	73.98	-25.86
*	21040.00	Average	V	-	-	-71.24	7.92	-9.54	34.14	53.98	-19.84
*	21040.00	Peak	V	-	-	-59.26	7.92	-9.54	46.12	73.98	-27.86
	26300.00	Peak	V	-	-	-56.18	8.73	-9.54	50.01	68.20	-18.19

#### Table 7-13. Radiated Measurements

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 68 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 68 of 89
© 2018 PCTEST Engineering La	boratory Inc			V 8 3 07/10/2018



Worst Case Mode:	802.11a			
Worst Case Transfer Rate:	6Mbps			
Distance of Measurements:	1 & 3 Meters			
Operating Frequency:	5280MHz			
Channel:	56			

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10560.00	Peak	V	-	-	-68.38	11.16	0.00	49.78	68.20	-18.42
*	15840.00	Average	V	-	-	-80.60	11.20	0.00	37.60	53.98	-16.38
*	15840.00	Peak	V	-	-	-69.38	11.20	0.00	48.82	73.98	-25.16
*	21120.00	Average	V	-	-	-70.64	7.96	-9.54	34.78	53.98	-19.20
*	21120.00	Peak	V	-	-	-59.43	7.96	-9.54	45.99	73.98	-27.99
	26400.00	Peak	V	-	-	-56.70	8.94	-9.54	49.70	68.20	-18.50

Table 7-14. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a 6Mbps 1 & 3 Meters 5320MHz 64

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	10640.00	Average	V	-	-	-80.01	11.47	0.00	38.46	53.98	-15.52
*	10640.00	Peak	V	-	-	-67.91	11.47	0.00	50.56	73.98	-23.42
*	15960.00	Average	V	-	-	-80.22	12.78	0.00	39.56	53.98	-14.42
*	15960.00	Peak	V	-	-	-68.73	12.78	0.00	51.05	73.98	-22.93
*	21280.00	Average	V	-	-	-70.27	8.04	-9.54	35.23	53.98	-18.75
*	21280.00	Peak	V	-	-	-59.08	8.04	-9.54	46.42	73.98	-27.56
	26600.00	Peak	V	-	-	-48.84	-8.30	-9.54	40.31	68.20	-27.89

#### Table 7-15. Radiated Measurements

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager						
Test Report S/N:	Test Dates:	EUT Type:		Dage 60 of 90						
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 69 of 89						
© 2010 DOTECT Engineering La										



Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5500MHz
Channel:	100

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11000.00	Average	V	-	-	-80.51	11.57	0.00	38.06	53.98	-15.92
*	11000.00	Peak	V	-	-	-68.92	11.57	0.00	49.65	73.98	-24.33
	16500.00	Peak	V	-	-	-69.21	13.23	0.00	51.02	68.20	-17.18
	22000.00	Peak	V	-	-	-58.44	8.43	-9.54	47.44	68.20	-20.76
	27500.00	Peak	V	-	-	-48.47	-8.80	-9.54	40.19	68.20	-28.01

able 7-1	6. Radiated	Measurements
able 7-1	6. Radiated	Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel: 802.11a 6Mbps 1 & 3 Meters 5580MHz 116

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11160.00	Average	V	-	-	-80.53	11.17	0.00	37.64	53.98	-16.34
*	11160.00	Peak	V	-	-	-69.44	11.17	0.00	48.73	73.98	-25.25
	16740.00	Peak	V	-	-	-69.45	13.05	0.00	50.60	68.20	-17.60
*	22320.00	Average	V	-	-	-70.00	8.08	-9.54	35.54	53.98	-18.44
*	22320.00	Peak	V	-	-	-58.06	8.08	-9.54	47.48	73.98	-26.50
	27900.00	Peak	V	-	-	-49.68	-9.08	-9.54	38.70	68.20	-29.50

Table 7-17. Radiated Measurements

	C DOTEOT	MEASUREMENT REPORT		Approved by:	
FCC ID: ZNFH871S		(CERTIFICATION)	🕒 LG	Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 70 of 90	
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 70 of 89	
© 2018 PCTEST Engineering La	horatory Inc			V 8 3 07/10/2018	



Worst Case Mode:	802.11a		
Worst Case Transfer Rate:	6Mbps		
Distance of Measurements:	1 & 3 Meters		
Operating Frequency:	5720MHz		
Channel:	144		

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11440.00	Average	V	-	-	-80.85	12.38	0.00	38.53	53.98	-15.45
*	11440.00	Peak	V	-	-	-69.80	12.38	0.00	49.58	73.98	-24.40
	17160.00	Peak	V	-	-	-69.60	13.94	0.00	51.34	68.20	-16.86
*	22880.00	Average	V	-	-	-70.50	8.37	-9.54	35.33	53.98	-18.65
*	22880.00	Peak	V	-	-	-59.37	8.37	-9.54	46.46	73.98	-27.52
	28600.00	Peak	V	-	-	-48.81	-8.95	-9.54	39.70	68.20	-28.50

 Table 7-18. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel: 802.11a 6Mbps 1 & 3 Meters 5745MHz 149

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11490.00	Average	V	-	-	-80.47	10.99	0.00	37.52	53.98	-16.46
*	11490.00	Peak	V	-	-	-69.11	10.99	0.00	48.88	73.98	-25.10
	17235.00	Peak	V	-	-	-69.70	16.64	0.00	53.94	68.20	-14.26
*	22980.00	Average	V	-	-	-71.23	8.16	-9.54	34.39	53.98	-19.59
*	22980.00	Peak	V	-	-	-59.92	8.16	-9.54	45.70	73.98	-28.28
	28725.00	Peak	V	-	-	-47.37	-9.24	-9.54	40.85	68.20	-27.35

#### Table 7-19. Radiated Measurements

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 71 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 71 of 89
© 2018 PCTEST Engineering La	V 8 3 07/10/2018			



Worst Case Mode:	802.11a		
Worst Case Transfer Rate:	6Mbps		
Distance of Measurements:	1 & 3 Meters		
Operating Frequency:	5785MHz		
Channel:	157		

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11570.00	Average	V	-	-	-80.08	11.81	0.00	38.73	53.98	-15.25
*	11570.00	Peak	V	-	-	-68.13	11.81	0.00	50.68	73.98	-23.30
	17355.00	Peak	V	-	-	-68.67	19.70	0.00	58.03	68.20	-10.17
	23140.00	Peak	V	-	-	-59.35	8.37	-9.54	46.48	68.20	-21.72
	28925.00	Peak	V	-	-	-47.29	-9.65	-9.54	40.52	68.20	-27.68

# Table 7-20. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel: 802.11a 6Mbps 1 & 3 Meters 5825MHz 165

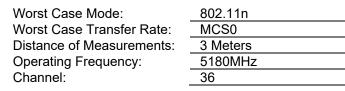
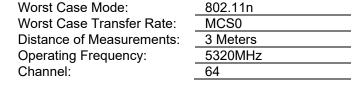

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11650.00	Average	V	-	-	-79.96	11.32	0.00	38.36	53.98	-15.62
*	11650.00	Peak	V	-	-	-68.67	11.32	0.00	49.65	73.98	-24.33
	17475.00	Peak	V	-	-	-69.29	19.69	0.00	57.40	68.20	-10.80
	23300.00	Peak	V	-	-	-59.75	8.50	-9.54	46.21	68.20	-21.99
	29125.00	Peak	V	-	-	-47.68	-9.87	-9.54	39.91	68.20	-28.29

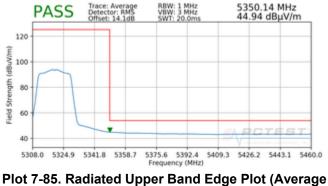
Table 7-21. Radiated Measurements

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type: Portable Handset		Dago 72 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018			Page 72 of 89
© 2018 PCTEST Engineering La	V 8 3 07/10/2018			

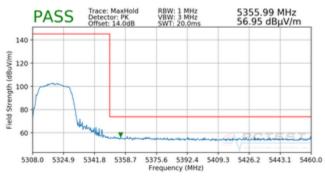


#### 7.6.2 Radiated Band Edge Measurements (20MHz BW) §15.407(b.1)(b.2) §15.205 §15.209; RSS-Gen [8.9]; RSS-Gen [8.9]




Plot 7-83. Radiated Lower Band Edge Plot (Average – UNII Band 1)

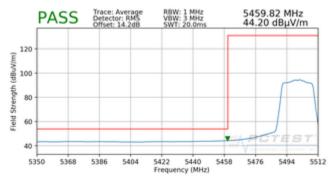



Plot 7-84. Radiated Lower Band Edge Plot (Peak – UNII Band 1)



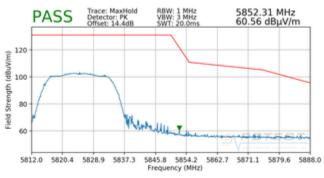




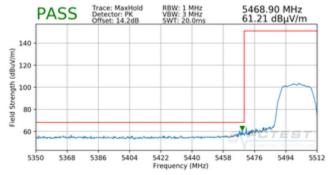





FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 72 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 73 of 89
© 2018 PCTEST Engineering Laboratory. Inc.			V 8.3 07/10/2018	




Worst Case Mode:802.11nWorst Case Transfer Rate:MCS0Distance of Measurements:3 MetersOperating Frequency:5500MHzChannel:100




Plot 7-87. Radiated Lower Band Edge Plot (Average – UNII Band 2C)

Worst Case Mode:	802.11n
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5825MHz
Channel:	165

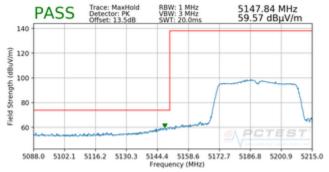


Plot 7-89. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

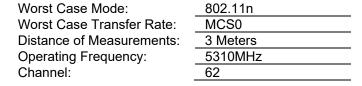


Plot 7-88. Radiated Lower Band Edge Plot (Peak – UNII Band 2C)

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 74 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 74 of 89
© 2018 PCTEST Engineering Laboratory, Inc.			V 8.3 07/10/2018	

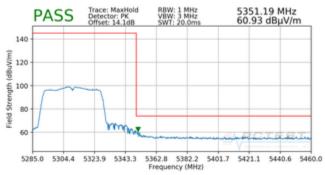



#### 7.6.3 Radiated Band Edge Measurements (40MHz BW) §15.407(b.1)(b.2) §15.205 §15.209; RSS-Gen [8.9]


Worst Case Mode:	802.11n
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5190MHz
Channel:	38



Plot 7-90. Radiated Lower Band Edge Plot (Average – UNII Band 1)

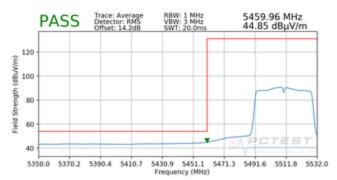




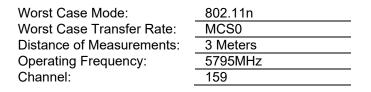


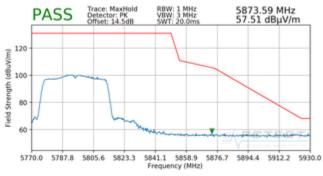




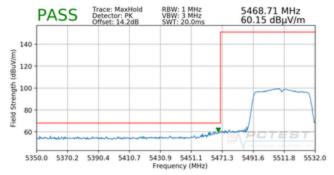







FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 75 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 75 of 89
© 2018 PCTEST Engineering Laboratory, Inc.			V 8.3 07/10/2018	




Worst Case Mode:802.11nWorst Case Transfer Rate:MCS0Distance of Measurements:3 MetersOperating Frequency:5510MHzChannel:102




Plot 7-94. Radiated Lower Band Edge Plot (Average – UNII Band 2C)





Plot 7-96. Radiated Upper Band Edge Plot (Peak – UNII Band 3)





FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 76 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 76 of 89
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.3 07/10/2018



#### 7.6.4 Radiated Band Edge Measurements (80MHz BW) §15.407(b.1)(b.2) §15.205 §15.209; RSS-Gen [8.9]

Worst Case Mode:	802.11ac
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5210MHz
Channel:	42

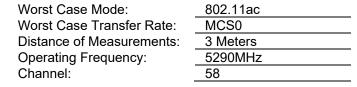


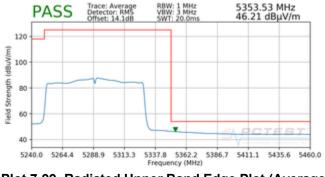
Plot 7-97. Radiated Lower Band Edge Plot (Average - UNII Band 1)



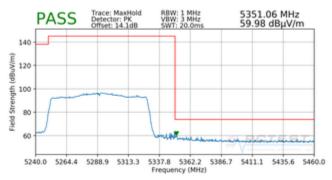
RBW: 1 MHz VBW: 3 MHz SWT: 20.0m

5146.08 MHz 61.92 dBµV/m


Trace: MaxHold Detector: PK Offset: 13.5dB


Detector: Offset: 13

PASS


140



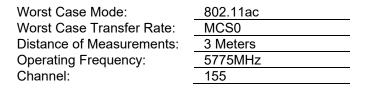


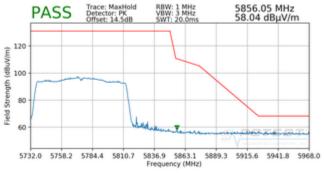




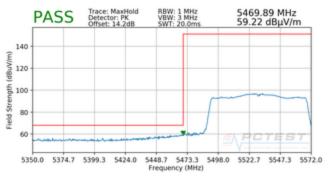





FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 77 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 77 of 89
© 2018 PCTEST Engineering Laboratory. Inc.			V 8.3 07/10/2018	




Worst Case Mode:802.11acWorst Case Transfer Rate:MCS0Distance of Measurements:3 MetersOperating Frequency:5530MHzChannel:106




#### Plot 7-101. Radiated Lower Band Edge Plot (Average – UNII Band 2C)





Plot 7-103. Radiated Upper Band Edge Plot (Peak – UNII Band 3)





FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 79 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset		Page 78 of 89
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.3 07/10/2018



#### 7.7 Radiated Spurious Emissions Measurements – Below 1GHz §15.209; RSS-Gen [8.9]

#### **Test Overview and Limit**

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

# All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR and Table 6 of RSS-Gen (8.10) must not exceed the limits shown in Table 7-22 per Section 15.209 and RSS-Gen (8.9).

Frequency	Field Strength [μV/m]	Measured Distance [Meters]
0.009 – 0.490 MHz	2400/F (kHz)	300
0.490 – 1.705 MHz	24000/F (kHz)	30
1.705 – 30.00 MHz	30	30
30.00 – 88.00 MHz	100	3
88.00 – 216.0 MHz	150	3
216.0 – 960.0 MHz	200	3
Above 960.0 MHz	500	3

Table 7-22. Radiated Limits

#### **Test Procedures Used**

ANSI C63.10-2013

#### **Test Settings**

#### **Quasi-Peak Field Strength Measurements**

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 120kHz (for emissions from 30MHz 1GHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dego 70 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset	Page 79 of 89
© 2018 PCTEST Engineering Laboratory, Inc.			V 8.3 07/10/2018



#### Test Setup

The EUT and measurement equipment were set up as shown in the diagrams below.

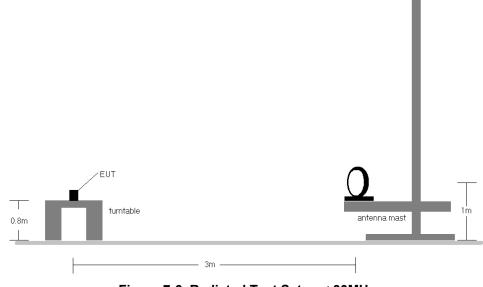
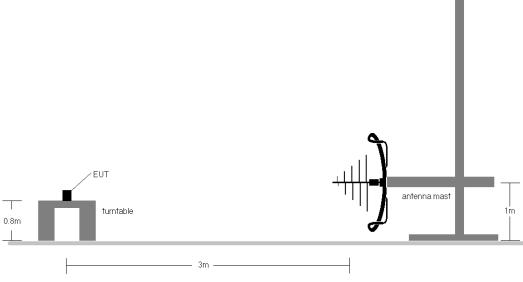
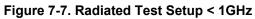
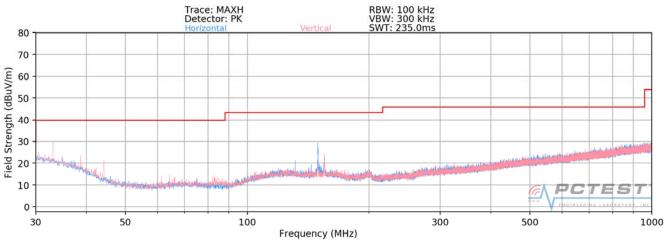





Figure 7-6. Radiated Test Setup < 30MHz





FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 90 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset	Page 80 of 89
© 2018 PCTEST Engineering Laboratory, Inc.			V 8.3 07/10/2018




- 1. All emissions lying in restricted bands specified in §15.205 and RSS-Gen (8.10) are below the limit shown in Table 7-22.
- 2. The broadband receive antenna is manipulated through vertical and horizontal polarizations during the tests. The EUT is manipulated through three orthogonal planes.
- 3. This unit was tested with its standard battery.
- 4. The spectrum is investigated using a peak detector and final measurements are recorded using CISPR quasi peak detector. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 5. Emissions were measured at a 3 meter test distance.
- 6. Emissions are investigated while operating on the center channel of the mode, band, and modulation that produced the worst case results during the transmitter spurious emissions testing.
- 7. No spurious emissions were detected within 20dB of the limit below 30MHz.
- 8. The results recorded using the broadband antenna is known to correlate with the results obtained by using a tuned dipole with an acceptable degree of accuracy. The VSWR for the measurement antenna was found to be less than 2:1.
- The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. There were no emissions detected in the 30MHz – 1GHz frequency range, as shown in the subsequent plots.

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 01 of 00
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset	Page 81 of 89
© 2018 PCTEST Engineering La	boratory. Inc.		V 8.3 07/10/2018



## Radiated Spurious Emissions Measurements (Below 1GHz) §15.209; RSS-Gen [8.9]



Plot 7-104. Radiated Spurious Plot below 1GHz (802.11a - U3 Ch. 157)

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 92 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset	Page 82 of 89
© 2018 PCTEST Engineering La	boratory, Inc.		V 8.3 07/10/2018



#### 7.8 Line-Conducted Test Data §15.407; RSS-Gen [8.8]

#### **Test Overview and Limit**

All AC line conducted spurious emissions are measured with a receiver connected to a grounded LISN while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for conducted spurious emissions. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section.

### All conducted emissions must not exceed the limits shown in the table below, per Section 15.207 and RSS-Gen (8.8).

Frequency of emission	Conducted Limit (dBµV)					
(MHz)	Quasi-peak	Average				
0.15 – 0.5	66 to 56*	56 to 46*				
0.5 – 5	56	46				
5 – 30	60	50				

Table 7-23. Conducted Limits

*Decreases with the logarithm of the frequency.

#### **Test Procedures Used**

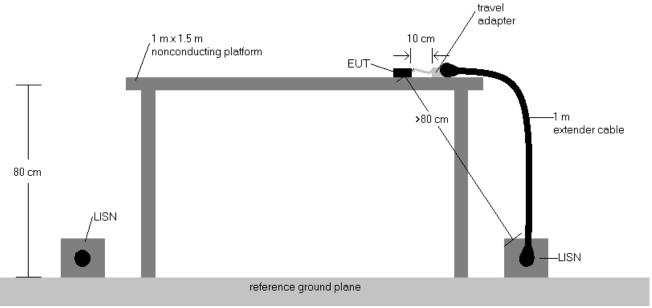
ANSI C63.10-2013, Section 6.2

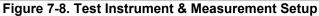
#### **Test Settings**

#### Quasi-Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

#### Average Field Strength Measurements


- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = RMS
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

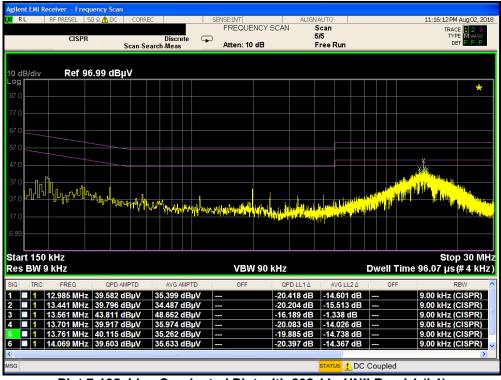

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 92 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset	Page 83 of 89
© 2018 PCTEST Engineering La	boratory, Inc.		V 8.3 07/10/2018

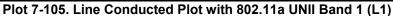


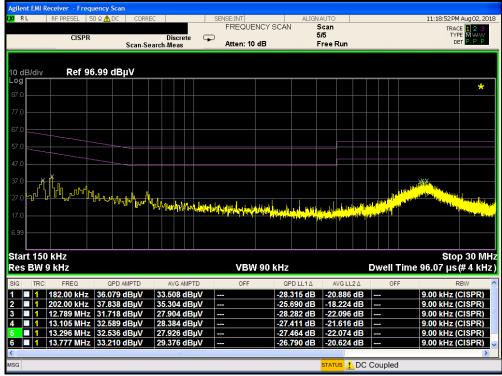
#### Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.





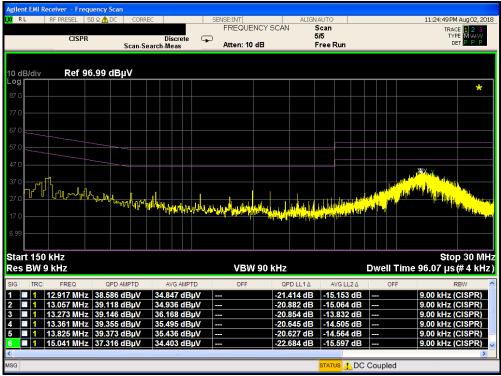


#### Test Notes


- All modes of operation were investigated and the worst-case emissions are reported using mid channel. The emissions found were not affected by the choice of channel used during testing.
- 2. The limit for an intentional radiator from 150kHz to 30MHz are specified in 15.207 and RSS-Gen (8.8).
- 3. Corr. (dB) = Cable loss (dB) + LISN insertion factor (dB)
- 4. QP/AV Level (dB $\mu$ V) = QP/AV Analyzer/Receiver Level (dB $\mu$ V) + Corr. (dB)
- 5. Margin (dB) = QP/AV Limit (dB $\mu$ V) QP/AV Level (dB $\mu$ V)
- 6. Traces shown in plot are made using a peak detector.
- 7. Deviations to the Specifications: None.

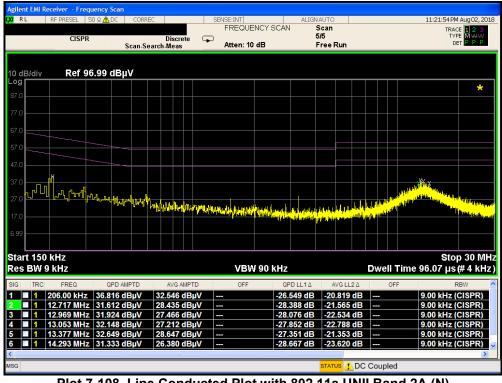
FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 94 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset	Page 84 of 89
© 2018 PCTEST Engineering La	aboratory, Inc.		V 8.3 07/10/2018







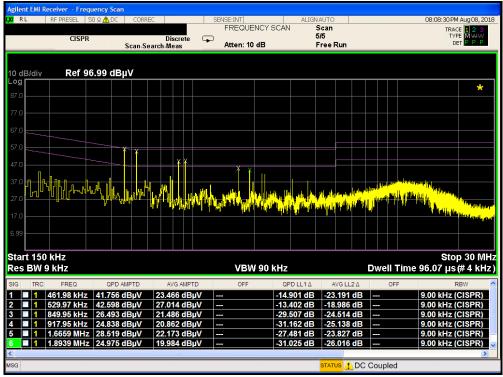




Plot 7-106. Line Conducted Plot with 802.11a UNII Band 1 (N)

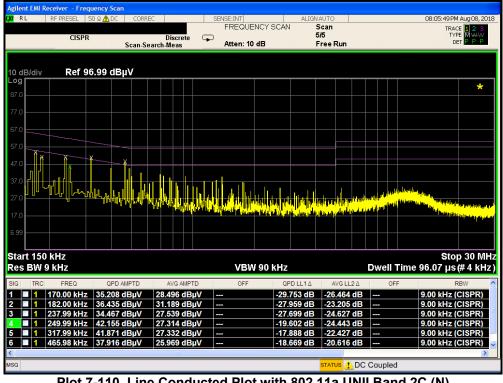
FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 85 of 80
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset	Page 85 of 89
© 2018 PCTEST Engineering La	V 8.3 07/10/2018		






Plot 7-107. Line Conducted Plot with 802.11a UNII Band 2A (L1)




Plot 7-108. Line Conducted Plot with 802.11a UNII Band 2A (N)

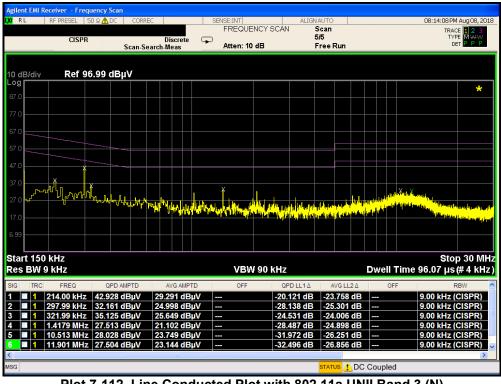
FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 96 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset	Page 86 of 89
© 2018 PCTEST Engineering La	boratory, Inc.		V 8.3 07/10/2018





Plot 7-109. Line Conducted Plot with 802.11a UNII Band 2C (L1)




Plot 7-110. Line Conducted Plot with 802.11a UNII Band 2C (N)

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 97 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset	Page 87 of 89
© 2018 PCTEST Engineering La	V 8.3 07/10/2018		



RL	RF PRESEL	50 Q 🧘	DC	CORRE	C					E:INT REQU	ENCY	SCAN		GN AUT Sca						08:		M Aug 08, 1 .CE <u>1</u> 2 3	
	CISP	R	Sr	can-Se	arch		crete as	Ģ	P 4	tten: 1	D dB			5/5 Free	e Run						TY		N
dB/div g	Ref	96.99	авμν			_	_																
.0																						*	•
.0																	$\vdash$						
.0					=	=	+	+			+				-								
.0 4																							
XX		< .																					
° <mark>л Қ</mark> ₽	<u>ЧЧШ 0_</u> л/		Ι.	ារ	I a	.		١.		3	1							appelland	and the second	distant,	1.		
₀└┧║╴	0 - 0.0	[الرك ^ي ال		N.	1. A'	4	ш.,	nu (	N. and	de la com	<b>.</b>	4 <b>1</b> , 1	l la l	la but	Marker.	N THE I	in the line	14	<mark>, IN</mark> M	Max.	a and the second		
			0.000	Í.	0{D .	ų,	Υr	, i	, <mark>A</mark> str	, W		"N _{lya} r	n n	Und M	h www	i hi h		Y   ''	Ì	1	1)kuuta	a sector and the sector of the	-
.0																						Line and	nk
39																	$\vdash$						
art 150	kHz																				Sto	p 30 N	V
s BW 9	kHz									VB۱	V 90	kHz					D٧	/ell	Time	96.	07 µs	;(#4 kl	
TRC	FREQ	0		TD	1	AVG	AMP	TD	1	OFF		QF	D LL1		AVG L	L2 Δ	1	OF	F	1		RBW	-
	170.00 kHz	z 43.8	348 dB	μV	27	.97(	) dE	μV				-21.	113 di	3 -2	26.99	) dB				9.00	) kHz	(CISPR)	)
	186.00 kHz		979 dB				6 dE						234 dI		4.39					9.00	) kHz	(CISPR	)
	98.00 kHz		28 dE				8 dE					_	467 di		25.23							(CISPR	
	229.99 kHz 237.99 kHz		/ <u>35 dB</u> 909 dB				3 dE 6 dE						715 di 257 di		21.08 25.70							(CISPR)	
	297.99 kHz 297.99 kHz		/39 dB				7 dE						267 de 560 de		22.72		-					(CISPR	
<u>الحد اد :</u>							1111																>

Plot 7-111. Line Conducted Plot with 802.11a UNII Band 3 (L1)



Plot 7-112. Line Conducted Plot with 802.11a UNII Band 3 (N)

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 89 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset	Page 88 of 89
© 2018 PCTEST Engineering La	boratory, Inc.		V 8.3 07/10/2018



### 8.0 CONCLUSION

The data collected relate only the item(s) tested and show that the **LG Portable Handset FCC ID: ZNFH871S** is in compliance with Part 15 Subpart C (15.407) of the FCC Rules.

FCC ID: ZNFH871S		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 90 of 90
1M1808100154-06.ZNF	7/31 - 8/21/2018	Portable Handset	Page 89 of 89
© 2018 PCTEST Engineering La	V 8.3 07/10/2018		