

Test Report:	2W06328
Applicant:	Digital Security Controls Ltd. 3301 Langstaff Road Vaughan, Ontario L4K 4L2
Equipment Under Test: (EUT)	SKYROUTE CL3050 Cellemetry Transceiver
FCC ID:	F5302CL3050
In Accordance With:	FCC Part 22
Tested By:	Nemko Canada Inc.
·	303 River Road, R.R. 5 Ottawa, Ontario K1V 1H2

J. Harrington, RF Group Manager

21 August 2002

12

Total Number of Pages:

Date:

Table of Contents

Section 1.	Summary of Test Results	3
	General Equipment Specification	
	RF Power Output	
Section 4.	Field Strength of Spurious Emissions	8
Section 5.	Block Diagrams	1
Section 6.	Test Equipment List	12

Section 1. **Summary of Test Results**

General

All measurements are traceable to national standards.

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with FCC Part 22.

THIS TEST REPORT RELATES ONLY TO THE ITEM(S) TESTED.

THE FOLLOWING DEVIATIONS FROM, ADDITIONS TO, OR EXCLUSIONS FROM THE TEST SPECIFICATIONS HAVE BEEN MADE.

See "Summary of Test Data".

	Buyger	
TESTED BY:		DATE: 16 August 2002
	Glen Westwell, Wireless Technologist	

11/11/11

Nemko Canada Inc., a testing laboratory, is accredited by the Standards Council of Canada. The tests included in this report are within the scope of this accreditation. The results apply only to the samples tested.

Nemko Canada Inc. authorizes the above named company to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this

This report applies only to the items tested.

FCC PART 22

PROJECT NO.: 2W06328

FCC PART 22

PROJECT NO.: 2W06328

Summary Of Test Data

Name Of Test	Para. No.	Result
RF Power Output	2.1046	Complies
Audio Frequency Response	2.1047	N/A
Audio Low-Pass Filter Response	2.1047	N/A
Modulation Limiting	2.1047	Not Tested
Occupied Bandwidth	2.1049	Not Tested
Spurious Emissions at Antenna	2.1051	Not Tested
Terminals		
Field Strength of Spurious Emissions	2.1053	Complies
Frequency Stability	2.1055	Not Tested
Transient Frequency Behavior		N/A

Footnotes For N/A's:

This equipment does not use voice modulation.

This equipment has been previously approved for user under FCC ID: APV09001. The approval is for OEM integration using 3dBi antenna. The applicant has changed the antenna to 0dBi and has mounted the transceiver module on a digital interface card for installation in an alarm control panel. Therefore measurements made were Transmitter Power Output and Transmitter Radiated Spurious Emissions. The applicant has permission from the original certificate holder to obtain equipment authorization based on the original certificate.

Description:

The Skyroute CL3050 transceiver offers a new wireless communication method for transmission of event information using Cellemetry service. Events are transmitted from the Skyroute CL3050 transceiver via Cellemetry network to the Clearing House and than to the Central Monitoring Station in a faster manner, maximum 2 seconds on every transmitter's activation.

The transceiver consists of the OEM radio module, Standard Model CMM7700 and a digital interface board UA366 rev. 01 assembled together in a plastic enclosure. The digital interface receives the alarm events from the alarm control panel and communicates them over to the radio module which then transmits the information over the RF network.

Indoor Temperature: 24 °C

Humidity: 48 %

Outdoor Temperature: 28 °C

Humidity: 54 %

Page 4 of 12

PROJECT NO.: 2W06328 EQUIPMENT: SKYROUTE CL3050

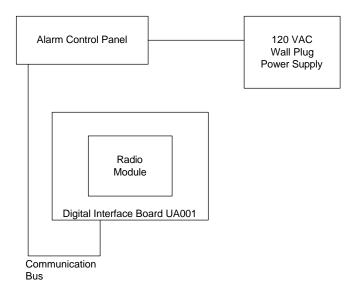
Section 2. **General Equipment Specification**

Model No.: SKYROUTE CL3050

Serial No.: None

Date Received In Laboratory: July 26, 2002

Nemko Identification No.: Item #3


Frequency: Tx: 824 - 849 MHz

> 869 – 894 MHz Rx:

Output Power: 0.6 Watts

Emission Designator: 36K0F1D

Block Diagram

Page 5 of 12

FCC PART 22

FCC PART 22 PROJECT NO.: 2W06328

MPE Statement FCC Radio Frequency Exposure Limits 1.1310 Health Canada Safety Code 6 Industry Canada RSS 102 Skyroute CL3050

General Population Limit =
$$f/1500$$
 mW / cm² = $824/1500$ = 0.549 mW / cm² Maximum power at antenna port = 600 mW Maximum Antenna Gain = 0 dBi $EIRP(GP) = 600$ mW

Therefore
$$\frac{GP}{4\mathbf{p}R^2}$$
£ Limit

$$R = \ddot{0}EIRP/4pL = \ddot{0}1269/4p0.549 = 9.3cm * 10cm$$

This minimum safe distance for the general population of 10.0cm shall be stated in the installation & operators instruction manual under the RF Safety Exposure Warning Statement.

Analysis provided by, Glen Westwell, Nemko Canada Inc. for Digital Security Controls.

Nemko Canada Inc.

EQUIPMENT: SKYROUTE CL3050

FCC PART 22 PROJECT NO.: 2W06328

Section 3. **RF Power Output**

Para. No.: 2.1046

Test Performed By: Glen Westwell **Date of Test:** 8 Aug 2002

Minimum Standard: 22.913(a), 500 Watts ERP

Complies within ± 1 dB of rated power. **Test Results:**

Measurement Data: Measured: 27.6 dBm

> Rated: 27.8 dBm

Antenna Gain: 0dBi, -2.15 dBd

ERP: 25.7 dBm (372mW)

Page 7 of 12

nada Inc. FCC PART 22 PROJECT NO.: 2W06328

Section 4. Field Strength of Spurious Emissions

Para. No.: 2.1053

Test Performed By: Glen Westwell **Date of Test:** 9 Aug 2002

Minimum Standard: 22.917 (d)(e), -13 dBm ERP

Test Results: Complies.

Measurement Data: See attached test data.

The spectrum was searched up to the 10th harmonic of the

fundamental frequency of operation.

The EUT was searched on 3 orthogonal axis for worst case

emissions.

Page 8 of 12

Test Data - Field Strength of Spurious Emissions

Test Distance (meters): 3	Range: A Tower		Receiver: Spectrum Analyzer		RBW(kHz) : 1000	Detec Pea	
Freq. (MHz)	Ant. *	Pol. (V/H)	RCVD Signal (dBµV/m)	Conversion Factor (dBµV, dBm)	Field Strength (dBm)	Limit (dBm)	Margin (dB)
1672.4	SSV	V	90.5	-117.5	-27.0	-13.0	14.0
1672.4	SSH	Н	88.2	-117.9	-29.7	-13.0	16.7
2508.6	SSV	V	86.8	-123.2	-36.4	-13.0	23.4
2508.6	SSH	Н	84.0	-122.9	-38.9	-13.0	25.9
3344.8	SSV	V	78.7	-119.9	-41.2	-13.0	28.2
3344.8	SSH	Н	75.6	-120.8	-45.2	-13.0	32.2
4180.9	SSV	V	59.2	-113.4	-54.2	-13.0	41.2
4180.9	SSH	Н	58.3	-113.1	-54.8	-13.0	41.8
4541.0	SSV	V	56.7	-113.7	-57.0	-13.0	44.0
4541.0	SSH	Н	54.2	-114.3	-60.1	-13.0	47.1
2778.6	SSV	V	78.7	-122.6	-43.9	-13.0	30.9
2778.6	SSH	Н	75.4	-124.3	-48.9	-13.0	35.9

Notes:

B/C = Biconical, B/L = Biconilog, L/P = Log-Periodic, H = Horn, D/P = Dipole

* Re-measured using dipole antenna.

** Includes cable loss when amplifier is not used.

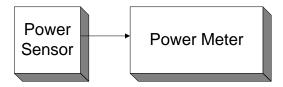
*** Includes cable loss.

() Denotes failing emission level.

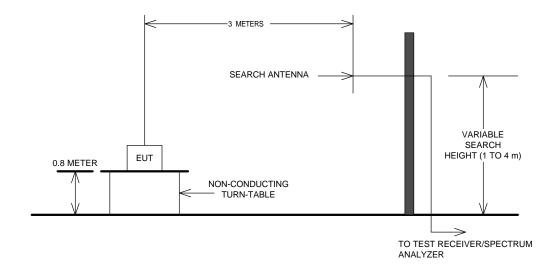
N.D. = Not Detected

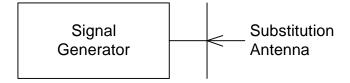
FCC PART 22

PROJECT NO.: 2W06328


Field Strength of Spurious Emissions Photograph

Front View:




Section 5. Block Diagrams

Para. No. 2.1046 - R.F. Power Output

Para. No. 2.1053 - Field Strength of Spurious Radiation

Section 6. Test Equipment List

CAL	EQUIPMENT	MANUFACTURER	MODEL	SERIAL	LAST CAL.	NEXT CAL.
CYCLE						
1 Year	Spectrum Analyzer	Hewlett Packard	8565E	FA000981	July 15/02	July 15/03
3 Year	RF Millivoltmeter	Rohde & Schwarz	URV5	FA001570	July 3/00	July 3/03
3 Year	Power Sensor	Rohde & Schwarz	URV5-Z5	FA000419	Oct. 6/99	Oct. 6/02
1 Year	Horn Antenna	EMCO #2	3115	4336	Dec. 1/01	Dec. 1/02
1 Year	RF AMP	JCA	2-4 GHz	FA001496	COU	COU
1 Year	RF AMP	JCA	1-2 GHz	FA001498	COU	COU
1 Year	RF AMP	JCA	4-8 GHz	FA001497	COU	COU
2 Year	RF AMP	Narda	5 - 18GHz	FA001409	COU	COU

NA: Not Applicable NCR: No Cal Required COU: CAL On Use

Page 12 of 12