

# **Test report**

according to ISO/IEC 17025:2017

FCC (Federal Communications Commission) Test Firm Registration Number: 768032 Designation Number DE0022

ISED (Inovation, Science and Economic Development) CAB identifier: DE0012 ISED#: 6155A

# **Electromagnetic compatibility**

Intentional Radiators



DAkkS

Deutsche Akkreditierungsstelle D-PL-17379-01-00 D-PL-17379-01-02 D-PL-17379-01-03 Bundesnetzagentur

BNetzA-CAB-18/21-19



**STC Germany GmbH** Ohmstrasse 1 84160 Frontenhausen, Germany Tel.: + 49 (0) 8732 6381 Fax: + 49 (0) 8732 2345 E-mail: grstc@stc.group

Test report no .:

20/01-0030-A

Page 1 of 108 pages



# Table of contents

| 1.  | Client information                                                       | 3   |
|-----|--------------------------------------------------------------------------|-----|
| 2.  | Equipment under test (EUT)                                               | 3   |
| 3.  | Description of the Equipment under test and test conditions              | 4   |
| 4.  | Performed measurements and results                                       | 6   |
| 5.  | AC Mains conducted emissions                                             | 7   |
| 6.  | Radiated emission measurements                                           | 13  |
| 7.  | Operation within the band 902-928 MHz, 2400-2483,5 MHz and 5725-5850 MHz | 20  |
| 8.  | Test equipment                                                           | 98  |
| 9.  | Test Setups                                                              | 100 |
| 10. | Measurement uncertainty                                                  | 104 |
| 11. | Photos setup                                                             | 106 |
| 12. | Conclusions                                                              | 107 |
| 13. | Photos of tested sample                                                  | 108 |

# Location of test facility:



STC Germany GmbH Ohmstrasse 1 84160 Frontenhausen Germany

|--|

### 1. Client information

| Name:            | Vestel Elektronik San ve Tic. A.S.                                         |
|------------------|----------------------------------------------------------------------------|
| Address:         | Organize Sanayi Bölgesi<br>Vestel City, High-End<br>45030 MANISA<br>TURKEY |
| Name of contact: | Mr. Andac Pamuk                                                            |
| Telephone:       | +90 236 2332582                                                            |
| Fax:             | +90 236 2332584                                                            |
| E-mail:          | Andac.pamuk@vestel.com.tr                                                  |

# 2. Equipment under test (EUT)

| 2.1 Identification of the EUT                                                                           |                                                                                                          |
|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Equipment:                                                                                              | WIFI Module                                                                                              |
| Model:                                                                                                  | 17WFM21                                                                                                  |
| Brand name:                                                                                             | -/-                                                                                                      |
| Serial no.:                                                                                             | -/-                                                                                                      |
| Manufacturer:                                                                                           | Vestel Elektronik San ve Tic. A.S., Organize Sanayi Bölgesi, Vestel City, High-End, 45030 MANISA, TURKEY |
| Country of origin:                                                                                      | TURKEY                                                                                                   |
| Power rating:                                                                                           |                                                                                                          |
| Highest frequency generated or used<br>in the device or on which the device<br>operates or tunes (MHz): | 5.70 GHz                                                                                                 |
| Date Sample Received:                                                                                   | 16.01.2020, 25.03.2020                                                                                   |
| Tests were performed:                                                                                   | 01.04.2020 - 08.04.2020                                                                                  |

#### **2.2 Additional information about the EUT:**

The EUT can also operate as 5 GHz Wifi module, but not simultaneously to the 2.4 Ghz RF-function. The 5 GHz is not documented in this Report.

#### To duplicate parts of this test report needs the written confirmation of the test laboratory.

The test results relate only to the above mentioned test sample(s).

| TESTED          | Test report no.: | Page 4 of 108 pages |
|-----------------|------------------|---------------------|
| ESIC IN GERMANY | 20/01-0030-A     | Fage 4 01 100 pages |

# 3. Description of the Equipment under test and test conditions

| FCC-ID:                         | 2AVQS-17WFM21                                            |                                                             |                                                    |                                          |
|---------------------------------|----------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------|------------------------------------------|
| IC:                             | 25888-17WFM21                                            |                                                             |                                                    |                                          |
| HVIN:                           | 260419-R3                                                |                                                             |                                                    |                                          |
| Firmware version:               | 3.4.1                                                    |                                                             |                                                    |                                          |
| Software to control EUT:        | MT7662 QA tool (V1.0.3.24)                               |                                                             |                                                    |                                          |
| Power:                          | nominal 5 V =, +/-                                       | 5 %                                                         |                                                    |                                          |
| Cables:                         | USB cable                                                | 100 cm                                                      |                                                    |                                          |
|                                 | Cable to test adap                                       | tor 30 cm                                                   |                                                    |                                          |
| Approx. Size (I x w x h):       | (70 x 25 x 4.5) mm                                       |                                                             |                                                    |                                          |
| Test conditions:                | The "WIFI Module                                         | – 17WFM21" (= eq                                            | uipment under test                                 | – FUT) had been                          |
|                                 | tested, where appl<br>(1) 802.11b: Tx<br>(2) 802.11b: Tx | icable, in the follow<br>mode BW 20MHz (<br>mode BW 20MHz ( | ing modes:<br>CCK 1MBps 2412 M<br>CCK 1MBps 2437 M | 1Hz<br>1Hz                               |
|                                 | (3) 802.11b: Tx<br>(4) 802.11g: Tx                       | mode BW 20MHz (<br>mode BW 20MHz (                          | CCK 1MBps 2462 M<br>DFDM 6MBps 2412                | 1Hz<br>MHz                               |
|                                 | (5) 802.11g: IX                                          | mode BW 20MHz (                                             |                                                    | MHZ<br>MHZ                               |
|                                 | (6) 802.119.1X                                           | mode BW 2011172 (<br>mode BW 2011172 (                      | JFDIVI 61V1BPS 2462                                | IVITIZ<br>Bas 2/12 MHz                   |
|                                 | (7) 802.111.1X                                           | mode BW 20MHz F                                             | TT Greenfield 6 5M                                 | Bps 2412 MHz<br>Bps 2437 MHz             |
|                                 | (9) 802.11n: Tx                                          | mode BW 20MHz H                                             | T Greenfield 6.5M                                  | Bps 2462MHz                              |
|                                 | (10) 802.11n: Tx                                         | mode BW 40MHz H                                             | HT Greenfield 15ME                                 | Bps 2422 MHz                             |
|                                 | (11) 802.11n: Tx                                         | mode BW 40MHz H                                             | HT Greenfield 15ME                                 | Bps 2437 MHz                             |
|                                 | (12) 802.11n: Tx                                         | mode BW 40MHz H                                             | HT Greenfield 15ME                                 | Bps 2452 MHz                             |
|                                 |                                                          |                                                             |                                                    |                                          |
|                                 | with an active WLA                                       | AN connection as w                                          | ell as controlled by                               | a test software                          |
|                                 | with maximum RF-                                         | output power and o                                          | different data rate in                             | order to find the                        |
|                                 | worst case.                                              |                                                             |                                                    |                                          |
| RF Module Model Number:         | 17WFM21                                                  |                                                             |                                                    |                                          |
| Frequency range:                | 2.400 GHz – 2.483                                        | 3,5 GHz                                                     | 1                                                  |                                          |
| Type of modulation:             | 802.11 b                                                 | 802.11 g                                                    | 802.11 n [20]                                      | 802.11 n [40]                            |
| Operating frequencies [MHz]:    | 2412 - 2462                                              | 2412 - 2462                                                 | 2412 - 2462                                        | 2422 - 2452                              |
| 6 dB Bandwidth [MHz]:           | 10.07                                                    | 16.30                                                       | 17.06                                              | 34.46                                    |
| Emission classification:        | 12M9G1D                                                  | 16M6D1D                                                     | 17M6D1D                                            | 36M2D1D                                  |
| I ransmission protocol:         | CCK                                                      | OFDM                                                        | OFDM                                               | OFDM                                     |
| Number of choose do.            | 4 44                                                     | 4 44                                                        | (HI Greenfield)                                    | (HI Greenfield)                          |
| Number of channels:             | [] - ]]<br>50.04 dDu\//m                                 | 1 - 11<br>45.00 dDu\//m                                     | 1 - 11                                             | 3-9<br>5254 dDuV/m                       |
| Spunous Emissions:              | 50.24 αBμ V/m                                            | 45.88 αBμ V/m                                               | 48.00 αθμ v/m<br>@ 2m                              | 03.04 авµ v/m<br>@ 2m                    |
| Max conducted RE output         | 11.86 dBm                                                | 11 51 dBm                                                   | 1/ 30 dBm                                          | 13 75 dBm                                |
| Power [dBm / mW]                | 15.35 mW                                                 | 14.16 mW                                                    | 27 45 mW                                           | 23 74 mW                                 |
| TX Power setting:               | 19                                                       | 19                                                          | 19                                                 | 19                                       |
| Duty Cycle:                     | ≥98%                                                     | ≥ 98%                                                       | ≥ 98%                                              | ≥ 98%                                    |
| Module Tranmission Type         | WI AN (1TX 1RX)                                          | / WI AN (2TX 2RX                                            | ()                                                 | _ 00/0                                   |
| Transmission protocol           |                                                          |                                                             | $\frac{9}{8-0}$ 1 MBpc $-M$                        | CS - 11: 11 MBpc                         |
| Specification:                  |                                                          | MC                                                          | S=0, TIMBPS - M<br>S=0; 6 MBpc M                   | CS = 11, $T1$ MDps<br>CS = -7; $54$ MPps |
| Specification.                  |                                                          |                                                             | S=0, $O$ INIDUS - ININ                             | CS = 7, 54  MBps                         |
|                                 |                                                          |                                                             |                                                    | CS = 9, 20  MBpS                         |
| Environmental conditions during | Ambient temperatu                                        | ire 20°                                                     | C                                                  |                                          |
| tests:                          | Relative humitity                                        | 40 %                                                        | %                                                  |                                          |
|                                 | Atmospheric press                                        | ure 962                                                     | mbar                                               |                                          |
| Antenna specification:          | Model: Printed PC                                        | B Antennas                                                  |                                                    |                                          |
|                                 | Antenna 1 Gain: m                                        | ax. 3.4 dBi                                                 |                                                    |                                          |
|                                 | Antenna 2 Gain: max 2.12 dBi                             |                                                             |                                                    |                                          |
|                                 | Type: 🗌 Externa                                          | al (with accessible a                                       | antenna socket)                                    |                                          |
|                                 | 🛛 Interna                                                | I (integrated, PCB a                                        | antenna)                                           |                                          |

| ESTC TESTED    | Test report no.:<br><b>20/01-0030-A</b>                                                                                                                                                                                                                            | Page 5 of 108 pages                                                            |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Test standard: | <ul> <li>e-CFR Title 47 Chapter I Subchapter A Pa<br/>Operation within the bands 902-928 MHz, 2<br/>and 5725-5850 MHz</li> <li>RSS-247 issue 02 February 2017<br/>Digital Transmission Systems (DTSs), Freq<br/>(FHSs) and Licence-Exempt Local Area Ne</li> </ul> | art 15 Subpart C §15.247:<br>400-2483.5 MHz,<br>uency Hopping Systems<br>twork |

#### **Channel List**

#### 2.4 GHz Band

| Channel | Frequency (MHz) | Channel | Frequency (MHz) |
|---------|-----------------|---------|-----------------|
| 1       | 2412            | 7       | 2442            |
| 2       | 2417            | 8       | 2447            |
| 3       | 2422            | 9       | 2452            |
| 4       | 2427            | 10      | 2457            |
| 5       | 2432            | 11      | 2462            |
| 6       | 2437            |         |                 |

20 MHz bandwith systems, use Channel 1 – Channel 11 / TX Power setting: 19

40 MHz bandwith systems, use Channel 3 – Channel 9 / TX Power setting: 19

# The EUT has two antennas which can be used for transmitting and receiving simultaneously as 2TX and 2RX

The EUT can also operate as 5 GHz Wifi module, but not simultaneously to the 2.4 Ghz RF-function.

### 4. Performed measurements and results

The complete list of measurements required in e-CFR Title 47 Chapter I Subchapter A Part 15 Subpart C §15.247 is given below.

| Standard: | Standard:          | Test Method:                       |                                          | Tes         | at requi<br>applic<br>fulfil | remen<br>able:<br>led: | ts: |
|-----------|--------------------|------------------------------------|------------------------------------------|-------------|------------------------------|------------------------|-----|
| § 15.207  | RSS-Gen<br>issue 5 | ANSI 63.10<br>Section 6.2          | AC Mains Conducted Emissions             | $\boxtimes$ |                              | $\boxtimes$            |     |
| § 15.209  | RSS-Gen<br>issue 5 | ANSI 63.10<br>Section 6.3 -<br>6.6 | Radiated Emissions                       | $\boxtimes$ |                              | $\boxtimes$            |     |
| §15.247   | RSS-247<br>issue 2 | ANSI 63.10<br>Section 11.8.1       | 6 dB DTS Bandwidth                       | $\boxtimes$ |                              | $\boxtimes$            |     |
| §15.247   | RSS-247<br>issue 2 | ANSI 63.10<br>Section 11.9.2       | Output Power of Fundamental<br>Emissions | $\boxtimes$ |                              | $\boxtimes$            |     |
| §15.247   | RSS-247<br>issue 2 | ANSI 63.10<br>Section<br>11.10.3   | Maximum Power Spectral<br>Density        | $\boxtimes$ |                              | $\boxtimes$            |     |
| §15.247   | RSS-247<br>issue 2 | ANSI 63.10<br>Section<br>11.13.2   | Band Edges Measurement                   | $\boxtimes$ |                              | $\boxtimes$            |     |
|           | RSS-Gen<br>issue 5 | ANSI 63.10<br>Section 6.9.3        | 99% Power Bandwidth                      | $\boxtimes$ |                              | $\boxtimes$            |     |
|           | RSS-Gen<br>issue 5 |                                    | Antenna requirement                      | $\boxtimes$ |                              | $\boxtimes$            |     |

All required / applicable tests according to the following standards were performed under Ref-No. 20/01-0030.

- e-CFR Title 47 Chapter I Subchapter A Part 15 Subpart C §15.247 with test Method according to ANSI C63.10-2013

-RSS-247 issue 02 February 2017 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices

- e-CFR data is current as of February 06, 2020

Remark: -/-



### 5. AC Mains conducted emissions

#### **Applied standards**

-e-CFR Title 47 Chapter I Subchapter A Part 15 Subpart C, § 15.207 Conducted limits -RSS-Gen issue 05 section 8.8

#### Test site

Measurements of conducted emission from EUT was made in the shielded chamber (DC - 10GHz) located in the test facility.

#### Test equipment and test set up

Test equipment used for conducted measurements on Mains as given in clause Test equipment of this report. Test setup used for conducted measurements on Mains as given in clause Test setups of this report.

#### Detector function selection and bandwidth

In conducted emissions measurement CISPR quasi-peak- and average-detector were used. The bandwidth of the detector of instrument is 10 kHz over the frequency range of 150 kHz to 30 MHz.

#### Frequency range to be scanned

For conducted emission measurements, the spectrum in the range of 150 kHz to 30 MHz was investigated.

#### Test conditions and configuration of EUT

The EUT was configured and operated with conditions as mentioned under "Test conditions" in clause 3 above.

All modes are investigated by operating the EUT in a range of typical modes of operation, with typical cable positions, and with a typical system equipment configuration and arrangement. For each mode of operation and for each ac power current-carrying conductor, cable manipulation are performed within the range of likely configurations. The highest values measured are shown in the table below. The corresponding configuration is shown in the "Photo(s) of test setup".

The EUT was placed on a 80 cm high non metallic table. Measurements were performed on the AC terminals of the Host AC-Adaptor (Laptop), on neutral (N)- and live (L1)-wire had been performed.

#### Requirements

| Frequency Range                                                          | Quasi-Peak Limits          | Average Limits             |  |  |
|--------------------------------------------------------------------------|----------------------------|----------------------------|--|--|
| [MHz]                                                                    | [dBµV]                     | [dBµV]                     |  |  |
| 0.15 - 0.5                                                               | 66 to 56 <sup>Note 1</sup> | 56 to 46 <sup>Note 1</sup> |  |  |
| 0.5 - 5.0                                                                | 56                         | 46                         |  |  |
| 5.0 - 30.0 60 50                                                         |                            |                            |  |  |
| Note 1: The level decreases linearly with the logarithm of the frequency |                            |                            |  |  |

#### Measurement

Measruement performened on 08.04.2020

As worst cases the mode No. 3. with conditions as mentioned under "Test conditions" in clause 3 was found and documented in this report

| ACTC | TESTED     |
|------|------------|
| BOIL | IN GERMANY |

Page 8 of 108 pages



| ACTC | TESTED     |
|------|------------|
| BOIL | IN GERMANY |

Page 9 of 108 pages





| ACTC | TESTED     |
|------|------------|
| EDIC | IN GERMANY |

Page 11 of 108 pages



| BCTC | TESTED     | Tes |
|------|------------|-----|
| BSIL | IN GERMANY | 20/ |

#### The six highest emissions for each port (L/N)/detector are as following:

| Frequency<br>[MHz] | Reading<br>of test<br>receiver<br>[dBµV] | Detector | Port | loss of cable<br>between<br>LISN and test<br>receiver [dB] | LISN<br>correction<br>[dB] | AC power<br>line<br>conducted<br>emission<br>[dBuV] | Limit<br>[dBµV] | Result |
|--------------------|------------------------------------------|----------|------|------------------------------------------------------------|----------------------------|-----------------------------------------------------|-----------------|--------|
| (1)                | (2)                                      | (3)      | (4)  | (5)                                                        | (6)                        | (7)                                                 | (8)             | (9)    |
| -/-                | -/-                                      | QP       | Ν    | 0.10                                                       | 0.10                       | -/-                                                 | -/-             | Pass   |
| -/-                | -/-                                      | QP       | Ν    | 0.10                                                       | 0.10                       | -/-                                                 | -/-             | Pass   |
| -/-                | -/-                                      | QP       | Ν    | 0.10                                                       | 0.10                       | -/-                                                 | -/-             | Pass   |
| -/-                | -/-                                      | QP       | Ν    | 0.10                                                       | 0.10                       | -/-                                                 | -/-             | Pass   |
| -/-                | -/-                                      | QP       | Ν    | 0.10                                                       | 0.10                       | -/-                                                 | -/-             | Pass   |
| -/-                | -/-                                      | QP       | Ν    | 0.10                                                       | 0.10                       | -/-                                                 | -/-             | Pass   |
| 0.44               | 33.2                                     | AV       | Ν    | 0.10                                                       | 0.10                       | 33.4                                                | 47.1            | Pass   |
| 0.47               | 29.7                                     | AV       | Ν    | 0.10                                                       | 0.10                       | 29.9                                                | 46.5            | Pass   |
| -/-                | -/-                                      | AV       | Ν    | 0.10                                                       | 0.10                       | -/-                                                 | -/-             | Pass   |
| -/-                | -/-                                      | AV       | Ν    | 0.10                                                       | 0.10                       | -/-                                                 | -/-             | Pass   |
| -/-                | -/-                                      | AV       | Ν    | 0.10                                                       | 0.10                       | -/-                                                 | -/-             | Pass   |
| -/-                | -/-                                      | AV       | Ν    | 0.10                                                       | 0.10                       | -/-                                                 | -/-             | Pass   |
| -/-                | -/-                                      | QP       | L1   | 0.10                                                       | 0.10                       | -/-                                                 | -/-             | Pass   |
| -/-                | -/-                                      | QP       | L1   | 0.10                                                       | 0.10                       | -/-                                                 | -/-             | Pass   |
| -/-                | -/-                                      | QP       | L1   | 0.10                                                       | 0.10                       | -/-                                                 | -/-             | Pass   |
| -/-                | -/-                                      | QP       | L1   | 0.10                                                       | 0.10                       | -/-                                                 | -/-             | Pass   |
| -/-                | -/-                                      | QP       | L1   | 0.10                                                       | 0.10                       | -/-                                                 | -/-             | Pass   |
| -/-                | -/-                                      | QP       | L1   | 0.10                                                       | 0.10                       | -/-                                                 | -/-             | Pass   |
| 0.43               | 34.6                                     | AV       | L1   | 0.10                                                       | 0.10                       | 34.8                                                | 47.4            | Pass   |
| 0.42               | 32.5                                     | AV       | L1   | 0.10                                                       | 0.10                       | 32.7                                                | 47.5            | Pass   |
| 0.91               | 29.9                                     | AV       | L1   | 0.10                                                       | 0.10                       | 30.1                                                | 46.0            | Pass   |
| 1.02               | 29.5                                     | AV       | L1   | 0.10                                                       | 0.10                       | 29.7                                                | 46.0            | Pass   |
| 0.48               | 27.6                                     | AV       | L1   | 0.10                                                       | 0.10                       | 27.8                                                | 46.4            | Pass   |
| 1.07               | 27.6                                     | AV       | L1   | 0.10                                                       | 0.10                       | 27.8                                                | 46.0            | Pass   |

(1) = test frequency

(2) = Reading of test receiver in  $dB\mu V$  without correction factors

(3) = used detector

(4) = tested port Phase (live, L1) or Neutral (N)

(5) = loss of cable between LISN and test receiver in dB

(6) = correction factor of LISN in dB

(7) = Reading of test receiver [dBµV] (2) + loss of cable between Line impedance stabilisation network (LISN) and test receiver (dB) (5) + LISN correction [dB] (6)

(8) = relevant limit in  $dB\mu V$ 

(9) = comparison between Limit  $[dB\mu V]$  (7) / (8) and AC power line conducted emission  $[dB\mu V]$ 

#### Result 0.15 MHz – 30 MHz

All emissions in the frequency range 0.15 MHz – 30 MHz are at least 20 dB below the relevant limit.

#### Results

From the measurement data obtained, the tested sample was considered to have **COMPLIED** with the requirements for the **Conducted Emission**.



### 6. Radiated emission measurements

#### **Test site**

Measurement of radiated emissions from EUT was made in the semi-anechoic chamber SAC3 (DC to 40 GHz) located in the test facility.

#### Test equipment and test set up

Test equipment used for radiated measurements as given in clause Test equipment of this report. Test setup used for radiated measurements as given in clause Test setups of this report.

#### Detector function selection and bandwidth

In radiated emissions measurement, an EMI test receiver that have CISPR detectors was used.

| Frequency range                                 | Resolution Bandwidth |
|-------------------------------------------------|----------------------|
| 9KHz – 150kHz (Quasi Peak & Average* Detector)  | 200Hz                |
| 150KHz – 30MHz (Quasi Peak & Average* Detector) | 9kHz                 |
| 30MHz – 1GHz (Quasi Peak Detector)              | 120kHz               |
| Above 1GHz (Peak & Average Detector)            | 1MHz                 |

\*Average Detector only in specify frequency range.

#### Antennas

Measurements were made using a calibrated loop antenna in the range 9 kHz – 30 MHz, as well as a calibrated bilog antenna in the range of 30 to 1000 MHz to determine the emission characteristics of the EUT. Measurements were also made for both horizontal and vertical polarization.

The horizontal distance between the receiving antenna and the EUT was 3 meters.

In the range of 1 GHz to 26 GHz measurements were made using a calibrated horn antenna to determine the emission characteristics of the EUT. Measurements were also made for both horizontal and vertical polarization. The horizontal distance between the receiving antenna and the EUT was 3 meters.

#### Frequency range to be scanned

For radiated emissions measurements, the spectrum in the range of 9kHz MHz to 40 GHz was investigated as the highest frequency generated in the EUT is 5.7 GHz.

#### Test conditions and configuration of EUT

The EUT was configured and operated with conditions as mentioned under "Test conditions" in clause 3 above.

During test the EUT was operated as specified in the user manual of the EUT. For frequencies below 1000 MHz the EUT was placed on a 80 cm and for frequencies above 1000 MHz the RF Transmitter modul was placed on a 150 cm high non metallic table placed on the turntable. The EUT was rotated and the antenna height was varied between 1 m to 4 m to find the maximum RF energy generated from EUT. The procedure according to ANSI C63.10:2013 is used and all modes are investigated by operating the EUT in a range of typical modes of operation, with typical cable positions, and with a typical system equipment configuration and arrangement. For each mode of operation, cable manipulation are performed within the range of likely configurations. The highest values measured are shown in the table below.

As worst cases the mode No. 3 and 4 with conditions as mentioned under "Test conditions" in clause 3 were found and documented in this report

Remarks:

-Correction factor included antenna factor and cable attenuation.

-In the frequency range 1 GHz – 7 GHz the Band Reject Filter 2,4 GHz (ID11243) was used to attenuate the fundamental emission.

|            | Test report no.: | Dage 14 of 100 pages |
|------------|------------------|----------------------|
| IN GERMANY | 20/01-0030-A     | Page 14 01 106 pages |

#### **Applied standards**

-e-CFR Title 47 Chapter I Subchapter A Part 15 Subpart C, § 15.209 Radiated emission limits -RSS-Gen issue 05 section 8.9

#### **Requirements:**

#### acc. e-CFR Title 47 Chapter I Subchapter A Part 15 Subpart C, § 15.209 Radiated emission limits

| Frequency MHz | Limits<br>[µV/m]<br>Quasi-peak | Limits<br>[dBµV/m]<br>Quasi-peak | Limits<br>[µV/m]<br>Average | Limits<br>[dBµV/m]<br>Average | Test distance<br>[m] |
|---------------|--------------------------------|----------------------------------|-----------------------------|-------------------------------|----------------------|
| 0.009 – 0.090 | -/-                            | -/-                              | 2400/F (kHz)                | 48.5 – 28.5                   | 300                  |
| 0.090 - 0.110 | 2400/F (kHz)                   | 28.5 – 26.8                      | -/-                         | -/-                           | 300                  |
| 0.110 – 0.490 | -/-                            | -/-                              | 2400/F (kHz)                | 26.8 – 13.8                   | 300                  |
| 0.490 - 1.705 | 24000/F (kHz)                  | 33.8 – 23.0                      | -/-                         | -/-                           | 30                   |
| 1.705 - 30.0  | 30                             | 29.5                             | -/-                         | -/-                           | 30                   |

#### acc. RSS-Gen issue 05 section 8.9

| Frequency MHz | Limits<br>[µA/m]<br>Quasi-peak | Limits<br>[dBµA/m]<br>Quasi-peak | Limits<br>[µA/m]<br>Average | Limits<br>[dBµA/m]<br>Average | Test distance<br>[m] |
|---------------|--------------------------------|----------------------------------|-----------------------------|-------------------------------|----------------------|
| 0.009 - 0.090 | -/-                            | -/-                              | 6.37/F (kHz)                | -3 – -23.0                    | 300                  |
| 0.090 - 0.110 | 6.37/F (kHz)                   | -23.0 – -24.7                    | -/-                         | -/-                           | 300                  |
| 0.110 – 0.490 | -/-                            | -/-                              | 6.37/F (kHz)                | -24.7 – -37.7                 | 300                  |
| 0.490 - 1.705 | 63.7/F (kHz)                   | -17.7 – -28.5                    | -/-                         | -/-                           | 30                   |
| 1.705 - 30.0  | 0.08                           | -22                              | -/-                         | -/-                           | 30                   |

# acc. e-CFR Title 47 Chapter I Subchapter A Part 15 Subpart C, § 15.209 Radiated emission limits and RSS-Gen issue 05 section 8.9

| Frequency MHz | Limits<br>[µV/m]<br>Quasi-peak | Limits<br>[dBµV/m]<br>Quasi-peak | Limits<br>[µV/m]<br>Average | Limits<br>[dBµV/m]<br>Average | Test distance<br>[m] |
|---------------|--------------------------------|----------------------------------|-----------------------------|-------------------------------|----------------------|
| 30 - 88       | 100                            | 40                               | -/-                         | -/-                           | 3                    |
| 88 - 216      | 150                            | 43.5                             | -/-                         | -/-                           | 3                    |
| 216 - 960     | 200                            | 46                               | -/-                         | -/-                           | 3                    |
| 960 - 1000    | 500                            | 54                               | -/-                         | -/-                           | 3                    |
| Above 1000    | -/-                            | -/-                              | 500                         | 54                            | 3                    |

#### Measurements

The Measurement was performed on: 07.04.2020

#### Result 9 kHz – 30 MHz

In the frequency range 9 kHz – 30 MHz the EUT had been scanned in a distance of 3 m and the Limit were corrected to the test distance of 3 m using a factor with 40 dB/decade acc. to § 15.31 (f)(2).

#### All emissions in the frequency range 9 kHz – 30 MHz are at least 20 dB below the relevant limit.

| <b>BSTC</b> | TESTED    |
|-------------|-----------|
|             | IN GERMAN |

# Test report no.: **20/01-0030-A**

#### Result 30 MHz – 1000 MHz

#### Operation Mode: Mode No.: 4 WLAN 802.11g 20MHz CH1



| TESTED     | Test report no.: | Page 16 of 108 pages |
|------------|------------------|----------------------|
| IN GERMANY | 20/01-0030-A     | Fage to of too pages |

| Frequency<br>[MHz] | Detector | Antenna<br>polarization | Radiated<br>emission<br>[dBµV/m] | Radiated<br>emission<br>[µV/m] | Limit<br>[dBµV/m]<br>(3 m) | Limit<br>[µV/m]<br>(3 m) | Result |
|--------------------|----------|-------------------------|----------------------------------|--------------------------------|----------------------------|--------------------------|--------|
| (1)                | (2)      | (3)                     | (4)                              | (5)                            | (6)                        | (7)                      | (8)    |
| 941.92             | QP       | V                       | 35.21                            | 57.61                          | 46.00                      | 200                      | Pass   |
| 949.00             | QP       | V                       | 35.14                            | 57.15                          | 46.00                      | 200                      | Pass   |
| 916.96             | QP       | V                       | 34.99                            | 56.17                          | 46.00                      | 200                      | Pass   |
| 906.16             | QP       | V                       | 34.84                            | 55.21                          | 46.00                      | 200                      | Pass   |
| 889.24             | QP       | V                       | 34.61                            | 53.77                          | 46.00                      | 200                      | Pass   |
| -/-                | QP       | V                       | -/-                              | -/-                            | -/-                        | -/-                      | -/-    |
| 954.72             | QP       | Н                       | 35.31                            | 58.28                          | 46.00                      | 200                      | Pass   |
| 946.84             | QP       | Н                       | 35.17                            | 57.35                          | 46.00                      | 200                      | Pass   |
| 921.76             | QP       | Н                       | 35.05                            | 56.56                          | 46.00                      | 200                      | Pass   |
| 912.88             | QP       | Н                       | 34.94                            | 55.85                          | 46.00                      | 200                      | Pass   |
| 882.00             | QP       | Н                       | 34.68                            | 54.20                          | 46.00                      | 200                      | Pass   |
| -/-                | QP       | Н                       | -/-                              | -/-                            | -/-                        | -/-                      | -/-    |

# The six highest emissions for each polarization (H/V) in the frequency range 30 MHz - 1000 MHz are as following:

(1) = test frequency

(2) = used detector - quasi peak (QP), peak, average (AV)

(3) = polarization of the test antenna (Horizontal/Vertical)

(4) = Reading of test receiver [dBµV] + correction factor

(5) = 10 ^ ((Radiated emission [dBµV/m] (5))/20)

(6) = relevant limit in  $dB\mu V/m$ 

(7) = relevant limit in  $\mu$ V/m

(8) = comparison between Limit  $[dB\mu V/m]$  (6) and Radiated emission  $[dB\mu V/m]$  (4)

| TED |
|-----|
|     |

Result 1 GHz – 7 GHz

Mode No.: 3 with 802.11b 20MHz

| TESTED                    | MANY                                                                                                            | <br>  <b>Interfer</b><br>acc. to FCC | T 5/6<br>ence radiation<br>§ 15.209 / RSS-Gen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>BSTC</b>                  |
|---------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| RefNo.:                   | 20/01-0030                                                                                                      |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| Product:                  | Transmitting/                                                                                                   | Receiving System                     | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |
| Sample:                   | 01                                                                                                              |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| Date:                     | 07.04.2020                                                                                                      |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| Operator:                 | BI                                                                                                              |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pass fail                    |
| Remarks:                  | Both ANT. OI                                                                                                    | N; Band Stop Filte                   | er (2.4GHz / 11244) used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Result:                      |
| Operation mo              | de: WLAN CH.                                                                                                    | 11; BW = 20MHz                       | ; CCK; 802.11b; Power le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | evel 19                      |
|                           |                                                                                                                 |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m                            |
| Spectrum                  | Receiver                                                                                                        | (X)                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| Input 1 AC                | Att 0 dB                                                                                                        | MI 15<br>Preamp OFF Ste              | IIS6-1-6GHZ.ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b> -</b>                    |
| Scan ⊜1Av                 | Max <b>o</b> 2Pk Max                                                                                            |                                      | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |
| Limit Che                 | eck                                                                                                             | PASS                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| 90 dBjrv/m <del>150</del> | -1-76HZ-PEAK-P                                                                                                  | GG-CLAS PASS                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
|                           |                                                                                                                 |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| 80 dBµV/m                 |                                                                                                                 |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| IT56-1-7GHZ-PE            | EAK-FCC-Class B.LIN                                                                                             | N N                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| т 70 авру/ш—              |                                                                                                                 |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| 60 dBµV/m                 |                                                                                                                 |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
|                           | / FOO Olassi D. I. M.                                                                                           |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| 1156-1-76HZ-AN            | 7-FUU-Class B.LIN                                                                                               |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . men with motion            |
| 10 10 11/-                |                                                                                                                 |                                      | and and and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Note Marken Marken Marken    |
| 40 dBµV/m—                | ٨                                                                                                               | when my when                         | Contraction of the second seco | the work to the the standard |
| 30 dBuV/m-                | And the second second second                                                                                    | m                                    | M. manan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |
|                           | han                                                                                                             | montromen                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| 20 dBµV/m—                | Contraction of the second s |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| 10 40 11/1                |                                                                                                                 |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| 10 dBµV/m                 |                                                                                                                 |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| 01-11-0-011               |                                                                                                                 | TF                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 01                           |
| Start 1.0 GH              | Z                                                                                                               |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stop 7.0 GHz                 |

| Polarisation: V |                   |                            |                   |                  |                 |                   |                            |                   |        |
|-----------------|-------------------|----------------------------|-------------------|------------------|-----------------|-------------------|----------------------------|-------------------|--------|
|                 |                   |                            |                   | Detector<br>Peak |                 |                   |                            |                   |        |
| Frequ.<br>[GHz] | Level<br>[dBµV/m] | Margin<br>to Limit<br>[dB] | Limit<br>[dBµV/m] | Result           | Frequ.<br>[GHz] | Level<br>[dBµV/m] | Margin<br>to Limit<br>[dB] | Limit<br>[dBµV/m] | Result |
| 4,8740          | 48,82             | -5,18                      | 54,00             | pass             | 1-7             | -/-               | >20                        | 74,00             | pass   |
| 6,9880          | 38,80             | -15,20                     | 54,00             | pass             |                 |                   |                            |                   |        |
| 6,7708          | 38,63             | -15,37                     | 54,00             | pass             |                 |                   |                            |                   |        |
| 4,8770          | 38,56             | -15,44                     | 54,00             | pass             |                 |                   |                            |                   |        |
| 4,8660          | 38,17             | -15,83                     | 54,00             | pass             |                 |                   |                            |                   |        |
| 4,8710          | 37,96             | -16,04                     | 54,00             | pass             |                 |                   |                            |                   |        |

| IN GERMANY                                     | IT 5/6<br>Interference radia<br>acc. to FCC § 15.209 / | ation<br>RSS-Gen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 围STC                                           |
|------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| RefNo.: 20/01-0030                             |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
| Operation mode: WLAN CH                        | .11; BW = 20MHz; CCK; 802                              | 2.11b; Power level 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                              |
| Spectrum Receiver                              | x                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
| RBW (EMI) 1 MHz                                | MT 1s                                                  | IT56-1-6GHz.TDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
| Input 1 AC Att 0 dB                            | Preamp OFF Step TD Scan                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
| Limit Check                                    | PASS                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
| Line IT56-1-7GHZ-AV-FC                         | C-Class B PASS                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
| 90 dBjrv/mT56-1-7CHZ-PEAK-                     | FGG-GLAE PAEE                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
|                                                |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
| 80 dBµV/m                                      |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
|                                                |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
| IT56-1-7GHZ-PEAK-FCC-Class B.LI<br>70 ubpv/III | N                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
|                                                |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
| 60 dBuV/m                                      |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
|                                                |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
| IT56-1-7GHZ-AV-FCC-Class B.LIN                 |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
| 35 0500                                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - menten when how how how how how how how have |
| 40 dB: 0/m                                     | set have                                               | and the second s |                                                |
|                                                | manufamout V north                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the        |
| be do with the hard and and                    | an Am                                                  | anonto managhana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and the                                        |
| 30 UBHV/m                                      | man hourse                                             | ~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                |
| the second second                              | with                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
| 20 aBHA/W                                      |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
|                                                |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
| 10 dBµV/m                                      |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
|                                                |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TE                                             |
| Start 1.0 GHz                                  |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stop 7.0 GHz                                   |

| Polarisation: H |                     |                            |                   |        |                 |                   |                            |                   |        |
|-----------------|---------------------|----------------------------|-------------------|--------|-----------------|-------------------|----------------------------|-------------------|--------|
|                 | Detector<br>Average |                            |                   |        |                 |                   | Detector<br>Peak           |                   |        |
| Frequ.<br>[GHz] | Level<br>[dBµV/m]   | Margin<br>to Limit<br>[dB] | Limit<br>[dBµV/m] | Result | Frequ.<br>[GHz] | Level<br>[dBµV/m] | Margin<br>to Limit<br>[dB] | Limit<br>[dBµV/m] | Result |
| 4,8740          | 50,24               | -3,76                      | 54,00             | pass   | 1-7             | -/-               | >20                        | 74,00             | pass   |
| 4,8710          | 39,65               | -14,35                     | 54,00             | pass   |                 |                   |                            |                   |        |
| 6,9913          | 39,11               | -14,89                     | 54,00             | pass   |                 |                   |                            |                   |        |
| 4,8820          | 38,66               | -15,34                     | 54,00             | pass   |                 |                   |                            |                   |        |
| 4,8770          | 38,64               | -15,36                     | 54,00             | pass   |                 |                   |                            |                   |        |
| 4,8660          | 37,84               | -16,16                     | 54,00             | pass   |                 |                   |                            |                   |        |

| ESTED<br>N GERMANY |
|--------------------|
|                    |

| TESTED     | IT 5/6                           | ПСТС |
|------------|----------------------------------|------|
| IN GERMANY | Interference radiation           | EDIL |
|            | according to FCC §15.209 RSS-Gen |      |

# Ref.-No.: 18/11-0061

Operation mode: Tx 2.4GHz (802.11b 20MHz/CH11 - 2462MHz); BPF 2,4GHz (ID11243) used

| Receiver                                              |                            |
|-------------------------------------------------------|----------------------------|
| RBW (EMI) 1 MHz MT 1 s                                | IT56-1-6GHz.TDF            |
| Input 1 AC Att 0 dB Preamp OFF Step TD Scan           |                            |
| Scan 🔵 1 Av Max 😋 2 Pk Max                            |                            |
| Limit Check PASS                                      |                            |
| Line IT56-1-7GHZ-AV-FCC-Class B PASS                  |                            |
| 90 dBjrv/m <del>t56-1-7cHz-reak-Fgg-gla8 - Pass</del> |                            |
|                                                       |                            |
| 80 dBuV/m                                             |                            |
|                                                       |                            |
| IT56-1-7GHZ-PEAK-FCC-CLASS B                          |                            |
| 70 uspv/m                                             |                            |
|                                                       |                            |
| 60 dBµV/m                                             |                            |
|                                                       |                            |
| IT56-1-7GHZ-AV-FCC-Class B                            |                            |
|                                                       | + manufacture manufacture  |
| (# Munu                                               | white manufacture          |
| AQ dBuV/m                                             | and the second             |
| When a summer and a summer of the liste               | a manufacture and a second |
| 30 dBuV/m                                             | and more thank             |
| and the second second                                 |                            |
| Mummum mutant                                         |                            |
| 20 dBµV/m                                             |                            |
|                                                       |                            |
| 10 dBµV/m                                             |                            |
|                                                       |                            |
|                                                       | TF                         |
| Start 1.0 GHz                                         | Stop 7.0 GHz               |

| Polarisation: H     |                   |                            |                   |        |                 |                   |                            |                   |        |
|---------------------|-------------------|----------------------------|-------------------|--------|-----------------|-------------------|----------------------------|-------------------|--------|
| Detector<br>Average |                   |                            |                   |        |                 |                   | Detector<br>Peak           |                   |        |
| Frequ.<br>[GHz]     | Level<br>[dBµV/m] | Margin<br>to Limit<br>[dB] | Limit<br>[dBµV/m] | Result | Frequ.<br>[GHz] | Level<br>[dBµV/m] | Margin<br>to Limit<br>[dB] | Limit<br>[dBµV/m] | Result |
| 4,9240              | 49,95             | -4,05                      | 54,00             | pass   | 1 - 7           | /                 | >20                        | 74                | pass   |
| 3,2828              | 47,45             | -6,55                      | 54,00             | pass   |                 |                   |                            |                   |        |
| 2,3340              | 43,64             | -10,36                     | 54,00             | pass   |                 |                   |                            |                   |        |
| 2,3305              | 43,07             | -10,93                     | 54,00             | pass   |                 |                   |                            |                   |        |
| 2,3075              | 42,53             | -11,47                     | 54,00             | pass   |                 |                   |                            |                   |        |
| 2,3050              | 42,19             | -11,81                     | 54,00             | pass   |                 |                   |                            |                   |        |

#### Result 7GHz – 40GHz

All emissions in the frequency range 7 GHz – 40 GHz are at least 20 dB below the relevant limit

### Results

From the measurement data obtained, the tested sample was considered to have **COMPLIED** with the requirements for the **Radiated Emissions**.



# 7. Operation within the band 902-928 MHz, 2400-2483,5 MHz and 5725-5850 MHz

#### Applied standards

-e-CFR Title 47 Chapter I Subchapter A Part 15 Subpart C §15.247 -RSS-247 issue 2

#### 7.1. 6 dB DTS Bandwidth Measurement

#### **Applied standards**

-e-CFR Title 47 Chapter I Subchapter A Part 15 Subpart C §15.247 (a) (2) -RSS-247 issue 2 Section 5.2 (a)

#### Limit

The minimum 6 dB bandwidth shall be at least 500 kHz.

#### Test equipment and test set up

Test equipment used for conducted measurements as given in clause Test equipment of this report. Test setup used for conducted measurements as given in clause Test setups of this report.

#### Description

Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

#### Measurement

The Measurement was performed on: 01.04.2020 and 02.04.2020

#### Conducted measurement data

| Image: Strep |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

#### Lowest operating frequency - 802.11b 20MHz / CCK - MCS=0; 1 MBps / Antenna 1



### Middle Operating Frequency - 802.11b 20MHz / CCK – MCS=0; 1 MBps / Antenna 1



| RSTC | TESTED     |  |
|------|------------|--|
|      | IN GERMANY |  |

# Test report no.: 20/01-0030-A

#### Highest Operating Frequency - 802.11b 20MHz / CCK – MCS=0; 1 MBps / Antenna 1



#### Lowest operating frequency - 802.11b 20MHz / CCK – MCS=0; 1 MBps / Antenna 2



| RISTC | TESTED     |
|-------|------------|
|       | IN GERMANY |

#### Middle Operating Frequency - 802.11b 20MHz / CCK - MCS=0; 1 MBps / Antenna 2



#### Highest Operating Frequency - 802.11b 20MHz / CCK – MCS=0; 1 MBps / Antenna 2



| ACTC | TESTED     |
|------|------------|
| BSIL | IN GERMANY |

#### Lowest operating frequency - 802.11g 20MHz / OFDM - MCS=0; 6 MBps / Antenna 1



### Middle Operating Frequency - 802.11g / OFDM - MCS=0; 6 MBps / Antenna 1

| MultiView                          | Spectrum      | 🖾 Spe                    | ctrum 2 [      | Spectru         | m 3 🗐            | 1            |            |                 |                                                  |
|------------------------------------|---------------|--------------------------|----------------|-----------------|------------------|--------------|------------|-----------------|--------------------------------------------------|
| Ref Level 30.0                     | 0 dBm         | * RBW 1                  | 00 kHz         |                 |                  |              |            |                 | _                                                |
| 1 Frequency Sv                     | veep          | OAIMS VEW 3              | 00 kH2 Mode Au | to.sweep        |                  |              |            |                 | IPK Max                                          |
| 20 dBm-                            |               |                          |                |                 |                  |              |            | D3[1]<br>M1[1]  | 0.30 dt<br>16.3040 MH<br>0.16 dBn<br>.4357210 GH |
| 10 dbm                             |               |                          |                |                 |                  |              |            |                 |                                                  |
| 0 dBm-                             |               | M                        | Van Marchar    | Manutary p      | and ministration | when the sta | n          |                 |                                                  |
| -10 d8m                            |               |                          |                |                 |                  |              |            |                 |                                                  |
| -20 d8m                            |               | 1                        |                |                 |                  |              | 1          |                 |                                                  |
| -30 d8m-                           |               | K.                       |                |                 |                  |              | Mr.        |                 |                                                  |
| Mannan                             | N. MORENE AND |                          |                |                 |                  |              | - No       | rying Associate | www.how                                          |
| -50 d8m                            |               |                          |                |                 |                  |              |            |                 |                                                  |
| CF 2.437 GHz                       |               |                          | 1001 pts       |                 |                  | 0 MHz/       | 2          | S               | pan 40.0 MHz                                     |
| 2 Marker Table<br>Type   Ref<br>M1 | Trc  <br>1 2  | X-Value<br>435721 GHz    | γ.<br>1 γ.     | Value<br>6 dBm  |                  | Function     |            | Function Re     | sult                                             |
| M2<br>D3 M2                        | 1 <b>2</b>    | 428808 GH2<br>16.304 MH2 | -5.6           | 1 dBm<br>.30 dB |                  |              |            |                 |                                                  |
| Channel                            | Frequen       | cy [MHz]                 | 6 d            | B Bandwi        | dth [MHz]        |              | Limit [MHz | 2] Re           | sult                                             |
| 6                                  | 24            | 37                       |                | 16.30           | )4               |              | 0.5        | Р               | ass                                              |

| ESTC | TESTED |
|------|--------|
|      |        |

#### Highest Operating Frequency - 802.11g 20MHz / OFDM - MCS=0; 6 MBps / Antenna 1



#### Lowest operating frequency - 802.11g 20MHz / OFDM - MCS=0; 6 MBps / Antenna 2

| MultiView             | Spectrum            | III Sp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ectrum 2         | E Spect                  | rum 3 🔅                  |                  |                  |                |               |
|-----------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------|--------------------------|------------------|------------------|----------------|---------------|
| Ref Level 30.0        | 0 dBm               | * RBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100 kHz          |                          |                          | -                |                  |                | _             |
| Att<br>I Frequency Sy | 40 dB SWT 1<br>/eep | .04 ms VBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 308 kHz Mod      | e Auto Sweep             |                          |                  |                  |                | IPK Max       |
|                       | 14054212            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                          |                          |                  |                  | D3[1]          | 0.38 dt       |
| 1975                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                          |                          |                  |                  | 100000000      | 16.3040 MH    |
| 20 dBm-               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                | -                        |                          | -                |                  | M1[1]          | 1.21 dBm      |
|                       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                          |                          |                  |                  |                | 2,4107210 GH  |
| 10 dbm                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                          |                          | -                |                  |                | -             |
|                       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | MI                       |                          |                  |                  |                |               |
| 0 dBm                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1 1            | 1 Acres                  | A. A. A                  |                  |                  |                | -             |
| -                     | 0144-250 alles      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | follow lines www | e Water and a source and | Manuer with a sufficient | good hand hand h | *                |                |               |
| -10 d8m-              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u></u>          | 1.                       | 4                        |                  | 1                |                |               |
|                       |                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                          |                          |                  | 1                |                |               |
| -20 dBm-              |                     | and the second s |                  |                          |                          |                  | 20               |                |               |
|                       |                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                          |                          |                  | 20               |                |               |
| -30 d8mi-             |                     | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                          |                          |                  | 1                |                |               |
| 1909-0000             |                     | A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                          |                          |                  | h                | 1.5            |               |
| 40 -0                 | ARMYNANA            | when.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                          |                          |                  | 'W'              | Ling have      |               |
| A WWWWWW              | WI0                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                          |                          |                  |                  | Mershy         | What was      |
| NVN STATE             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                          |                          |                  |                  |                | www           |
| -50 dem-              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                          |                          | 1                |                  |                |               |
|                       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                          |                          |                  |                  |                | _             |
| CF 2.412 GHz          |                     | ė                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1001 pt          | s                        | <u> </u>                 | 1.0 MHz/         | 28               | 0/ ş           | Span 40.0 MHz |
| 2 Marker Table        | 1 Tax 1             | W. Mahar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                | N. Walar                 | 1                        | Friedland        | 1                | Frank Street F | have de       |
| MI Ker                | 1 2                 | .410721 GI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1z               | 1.21 dBm                 |                          | Function         |                  | Punction F     | cesuit        |
| M2                    | 1 2                 | .403808 GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | iz ·             | 4.77 dBm                 |                          |                  |                  |                |               |
| Ob ann al             | 1                   | 10.304 MI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12               | 0.38 dB                  |                          |                  | L Sec. 14 FRALLS | 1 0            | l(            |
| Channel               | Frequer             | ICY [MHZ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | 6 dB Bandy               | width [MHz]              |                  |                  | zj R           | esult         |
| 1                     | 24                  | 412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | 16.                      | 304                      |                  | 0.5              |                | Pass          |

| Acte | <b>TESTED</b> |
|------|---------------|
| BAL  | IN GERMANY    |

#### Middle Operating Frequency - 802.11g / OFDM - MCS=0; 6 MBps / Antenna 2



### Highest Operating Frequency - 802.11g 20MHz / OFDM – MCS=0; 6 MBps / Antenna 2

| MultiView                  | Spectrum 🖂                           | Spectrum 2        | Spectrum :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3 🖾                  |             |                                |
|----------------------------|--------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------|--------------------------------|
| Ref Level 30.0             | 00 dBm • 1                           | RBW 100 kHz       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>             |             |                                |
| L Frequency S              | Ween                                 | ARM 300 KHZ MO    | de Auto Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |             | EPK Max                        |
|                            |                                      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             | D3[1] 0.28 dt<br>16,3040 MH    |
| 20 dBm                     |                                      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             | M1[1] 0.03 dBn<br>2.4607210 GH |
| 10 dBm                     |                                      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |                                |
| 0 dBm                      |                                      | 29 A A. A.        | Mr. Marghundham mard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | andral day 1         | -           |                                |
| -10 dBm-                   |                                      | A                 | The second secon | - The Second Schools | 1           |                                |
| -20 dBm                    | j                                    | 1                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | 6           |                                |
| -30 d8m                    | /                                    |                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | 1           |                                |
| -40 sten<br>A a rahvan     | Mrs. Mary manut                      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | Jan         | manna and                      |
| -50 d8m                    |                                      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |                                |
| CF 2.462 GHz               |                                      | 1001              | ots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.0 MHz/             |             | Span 40.0 MHz                  |
| 2 Marker Table<br>Type Ref | e<br>  Trc   X-Vali                  | ie l              | Y-Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Function             |             | Function Result                |
| M1<br>M2<br>D3 M2          | 1 2.460721<br>1 2.453808<br>1 16.304 | GHZ<br>GHZ<br>MHZ | -0.03 dBm<br>-6.12 dBm<br>0.28 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | W.          |                                |
| Channel                    | Frequency [MHz]                      |                   | 6 dB Bandwidth [M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | /Hz]                 | Limit [MHz] | Result                         |
| 11                         | 2462                                 |                   | 16.304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      | 0.5         | Pass                           |

| RISTC | TESTED     |
|-------|------------|
| BOIL  | IN GERMANY |

#### Lowest operating frequency - 802.11n 20MHz / HT Greenfield - MCS=0; 6.5 MBps / Antenna 1



#### Middle Operating Frequency - 802.11n 20MHz / HT Greenfield – MCS=0; 6.5 MBps / Antenna 1



| ПСТС | TESTED     |
|------|------------|
| BOIL | IN GERMANY |

#### Highest Operating Frequency - 802.11n 20MHz / HT Greenfield - MCS=0; 6.5 MBps / Antenna 1



#### Lowest operating frequency - 802.11n 20MHz / HT Greenfield – MCS=0; 6.5 MBps / Antenna 2

| MultiView                                          | Spectrum         | II 5       | pectrum 2        | E Spect               | um 3 [      |                       |            |                      |                |
|----------------------------------------------------|------------------|------------|------------------|-----------------------|-------------|-----------------------|------------|----------------------|----------------|
| Ref Level 30.0                                     | 0 dBm            | * RBV      | V 100 kHz        |                       |             |                       |            |                      | _              |
| Att<br>Energiency St                               | AD dB SWI :      | LOA ms VBV | 300 RHZ MO       | de Auto Sweep         |             |                       |            |                      | PK Max         |
|                                                    |                  |            |                  |                       |             |                       |            | D3f11                | -0.04 dB       |
|                                                    |                  |            | 11               |                       |             |                       |            | 10000 M              | 16,9030 MHz    |
| 20 dBm                                             |                  |            | -                |                       |             |                       |            | M1[1]                | 1.08 dBm       |
|                                                    |                  |            |                  |                       |             |                       |            |                      | 2,4132390 GHz  |
| 10 dBat                                            |                  |            | 1                |                       |             |                       | -          |                      |                |
| Mennal.                                            |                  |            |                  |                       | 100         |                       |            |                      |                |
|                                                    |                  |            |                  |                       | T           |                       |            |                      |                |
| 6.dBm                                              |                  | N.         | N. A. A.         | Marchine              | man man mad | A A                   | 03         |                      |                |
|                                                    | 11 + 4.900 dijis | y          | Har Michigan and | MP                    |             | aph a survey rower in | 1 acres    |                      | 1              |
| -10 d8m                                            |                  | - (        |                  |                       | <u></u>     | -                     |            | -                    | -              |
|                                                    |                  | 1          |                  |                       |             |                       | 6          |                      |                |
| -20 d8m-                                           |                  | 1          | -                | _                     |             | -                     |            |                      |                |
|                                                    |                  | p.         | 1                |                       |             |                       | X          |                      |                |
|                                                    |                  | 1          |                  |                       |             |                       | 7          |                      |                |
| - 3u dem                                           | - 10             | 1. 1       |                  |                       |             |                       | 1          |                      |                |
|                                                    |                  | map        |                  |                       |             |                       | MAN        | about and            | 10             |
| 40 - 40 - 50 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - | White the Kare   |            |                  |                       |             |                       |            | the electrony of the | All Dawn &     |
| Margara                                            |                  |            | 1                |                       |             |                       |            |                      | Leas Mar Mary  |
| -50 d8m                                            |                  |            |                  |                       |             |                       |            |                      |                |
| _                                                  |                  |            |                  |                       |             |                       |            |                      |                |
| CE 2 412 CH2                                       |                  |            | 1001 -           |                       |             | LO MUNZ               |            |                      | Spap 40.0 MHz  |
| 2 Marker Table                                     |                  |            | 10011            | 15                    |             | 1.0 MIT27             |            |                      | span 40.0 Minz |
| Type Ref                                           | Trc              | X-Value    |                  | Y-Value               | -           | Function              | -          | Function R           | esult          |
| ML                                                 | 1                | 2.413239 G | Hz               | 1.08 dBm              |             |                       | 10         |                      |                |
| M2<br>D3 M2                                        | 1 7              | 16.903 M   | HZ               | -4.88 dBm<br>-0.04 dB |             |                       |            |                      |                |
| Channel                                            | Freque           | ncy [MHz]  |                  | 6 dB Band             | width [MHz] |                       | Limit [MHz | z] R                 | esult          |
|                                                    |                  |            |                  |                       |             |                       |            |                      |                |

| RISTC | TESTED     |
|-------|------------|
|       | IN GERMANY |

### Middle Operating Frequency - 802.11n 20MHz / HT Greenfield – MCS=0; 6.5 MBps / Antenna 2

| MultiView                                                                                                       | Spectrum      | 🖾 Spe         | ctrum 2            | Spect                     | rum 3 [                  |                      |            |                   |               |
|-----------------------------------------------------------------------------------------------------------------|---------------|---------------|--------------------|---------------------------|--------------------------|----------------------|------------|-------------------|---------------|
| Ref Level 30.0                                                                                                  | 0 dBm         | * RBW         | LOO kHz            |                           |                          | -                    |            |                   | _             |
| 1 Frequency Sy                                                                                                  | Neces         | 1.04 ms VBW C | SOURIE MOD         | e Auto Sweep              |                          |                      |            |                   | IPK Max       |
| 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 |               |               |                    |                           |                          |                      |            | D3[1]             | -0.76 dB      |
|                                                                                                                 |               |               |                    |                           |                          |                      |            | 10-000-545        | 17.0630 MHz   |
| 20 dBm                                                                                                          |               |               |                    |                           |                          |                      |            | M1[1]             | 0.67 dBm      |
|                                                                                                                 |               |               |                    |                           |                          |                      |            | 3                 | 2,4357210 GHz |
| 10 dBm                                                                                                          |               |               |                    |                           |                          | -                    |            |                   |               |
| 012753)                                                                                                         |               |               |                    | 1105                      |                          |                      |            |                   |               |
|                                                                                                                 |               |               |                    | M1                        | 1 Not 198 202            |                      |            |                   |               |
| 0.dBm                                                                                                           |               | M2            | A A. A             | Real march 1990           | marchard                 | A A A                | 153        |                   |               |
|                                                                                                                 | 41-1-130 Marc | 1 Martin      | And a service with | Allowers of Asia a second | and the set of the party | 14-419-414 Jordan 10 | AP. AN     | -                 | -             |
| -10 d8m                                                                                                         |               | 1             |                    | -                         | 4                        |                      |            |                   | -             |
|                                                                                                                 |               | 1             |                    |                           |                          |                      |            |                   |               |
| -20 d8m-                                                                                                        |               | 1             |                    |                           |                          | -                    | 1          |                   |               |
|                                                                                                                 |               |               |                    |                           |                          |                      | 1          |                   |               |
| 20.42                                                                                                           |               | 1             |                    |                           |                          | -                    | 6          |                   |               |
| -3u dem-                                                                                                        |               | and a         |                    |                           |                          |                      | 1          |                   |               |
|                                                                                                                 | ALLANDA A     | Mulla         |                    |                           |                          |                      | you        | Maria             |               |
| -40 dem 1 4000                                                                                                  | WANTANT       |               |                    |                           |                          |                      | Y          | - Show An         | Malake        |
| MAAAAA                                                                                                          |               |               |                    |                           |                          |                      |            | CARGE FORCE WERE  | and MMAN      |
| -50 d8m-                                                                                                        |               |               |                    |                           |                          |                      |            |                   |               |
| _                                                                                                               |               |               |                    |                           |                          |                      |            |                   |               |
| AP 10 10 1 (1) (                                                                                                |               |               | 1001               | ļ                         | L                        |                      |            |                   |               |
| CF 2.437 GHZ                                                                                                    |               |               | 1001 pt            | 5                         |                          | NU MHZ/              |            |                   | pan 40.0 MHz  |
| Type Ref                                                                                                        | Tec           | X-Value       |                    | V-Value                   | 1                        | Function             | -          | Eunction Re       | sult          |
| ML                                                                                                              | 1 2           | 2.435721 GH   | z                  | 0.67 dBm                  | 1                        | 1. Sat Particular    | 1          | T di Periori T Ti | a study to    |
| M2 M2                                                                                                           | 1             | 17.063 MH     |                    | -4.68 dBm                 |                          |                      |            |                   |               |
| Channel                                                                                                         | Freque        | ncy [MHz]     |                    | 6 dB Band                 | width [MHz]              |                      | Limit [MHz | l Re              | esult         |
| 6                                                                                                               | 2             | /37           |                    | 17                        | 063                      |                      | 0.5        |                   | 266           |
| U                                                                                                               | 2             | 437           | 1                  | 17.                       | .003                     |                      | 0.5        | P                 | a33           |

## Highest Operating Frequency - 802.11n 20MHz / HT Greenfield – MCS=0; 6.5 MBps / Antenna 2

| MultiView      | Spectrum 🗵        | Spectrum 2     | Spectru        | m 3 🛛    | 9                                                                                                               |             |                                         |
|----------------|-------------------|----------------|----------------|----------|-----------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------|
| RefLevel 30.0  | 00 dBm 😐          | RBW 100 kHz    |                |          |                                                                                                                 |             |                                         |
| Att            | 40 dB SW1 1.04 ms | VBW 300 RH2 MO | de Auto Sweep  |          |                                                                                                                 |             | PE Max                                  |
|                | VAUCADESC ST      |                |                |          |                                                                                                                 |             | M2[1] -4.83 dBm                         |
|                |                   |                |                |          |                                                                                                                 |             | 2.4534490 GHz                           |
| 20 dBm         |                   |                | + +            |          | -                                                                                                               |             | M1[1] 0.73-dBm                          |
|                |                   |                |                |          |                                                                                                                 |             | 2.4632390 GHz                           |
| 10 dbm         |                   |                | -              |          | -                                                                                                               |             |                                         |
| 0103233        |                   |                |                | 8,8541   |                                                                                                                 |             |                                         |
|                |                   | 2003 10 10     | 10. 10         | T        | 1.15                                                                                                            |             |                                         |
| 0.dkm          |                   | Mr. A. A.      | Auguar a       | montment | A A A                                                                                                           | 03          |                                         |
| -              |                   | Manucipinan    |                |          | part crown refrest of                                                                                           | here        |                                         |
| +10 dbm        |                   |                | 1 1            |          |                                                                                                                 | 1           |                                         |
|                |                   | 1              |                |          |                                                                                                                 | 5           |                                         |
| -20 dBm-       |                   | 1              |                |          | -                                                                                                               | -           |                                         |
|                |                   |                |                |          |                                                                                                                 | 1           |                                         |
| -30 d8mi-      |                   |                |                |          |                                                                                                                 | 4           |                                         |
| 8255252        | in Anol           |                |                |          |                                                                                                                 | 1.00        |                                         |
|                | wanth and want    |                |                |          |                                                                                                                 | 1444        | Man Marken                              |
| and have       | and at.           |                |                |          |                                                                                                                 |             | Man |
|                |                   |                |                |          |                                                                                                                 |             |                                         |
| -50 d8m        |                   |                | 1 1            |          | -                                                                                                               |             |                                         |
|                |                   |                |                |          |                                                                                                                 |             |                                         |
| CE 2,462 GHz   |                   | 1001 r         | its            |          | .0 MHz/                                                                                                         |             | Spap 40.0 MHz                           |
| 2 Marker Table |                   | 10000          | 1010           |          | and the second secon |             |                                         |
| Type Ref       | Trc X-Va          | lue            | Y-Value        | -        | Function                                                                                                        |             | Function Result                         |
| M1             | 1 2.46323         | 9 GHZ          | 0.73 dBm       |          |                                                                                                                 |             |                                         |
| -D3 M2         | 1 17.02           | 3 MHz          | -0.29 dB       |          |                                                                                                                 |             |                                         |
| Channel        | Frequency [MHz]   |                | 6 dB Bandwidth | n [MHz]  |                                                                                                                 | Limit [MHz] | ] Result                                |
| 11             | 2462              |                | 17.023         |          |                                                                                                                 | 0.5         | Pass                                    |

| RESTC | TESTED     |
|-------|------------|
| BOIL  | IN GERMANY |

#### Lowest operating frequency - 802.11n 40MHz / HT Greenfield - MCS=0; 6.5 MBps / Antenna 1



#### Middle Operating Frequency - 802.11n 40MHz / HT Greenfield – MCS=0; 6.5 MBps / Antenna 1



| BSTC | TESTED     |
|------|------------|
|      | IN GERMANY |

#### Highest Operating Frequency - 802.11n 40MHz / HT Greenfield – MCS=0; 6.5 MBps / Antenna 1



#### Lowest operating frequency - 802.11n 40MHz / HT Greenfield – MCS=0; 6.5 MBps / Antenna 2



| RISTC | TESTED     |
|-------|------------|
|       | IN GERMANY |

#### Middle Operating Frequency - 802.11n 40MHz / HT Greenfield – MCS=0; 6.5 MBps / Antenna 2



### Highest Operating Frequency - 802.11n 40MHz / HT Greenfield – MCS=0; 6.5 MBps / Antenna 2



#### Results

From the measurement data obtained, the tested sample was considered to have **COMPLIED** with the requirements for the **6 dB Bandwidth**.



#### 7.2. Output Power of Fundamental Emissions Maximum Conducted Output Power

#### Applied standards

-e-CFR Title 47 Chapter I Subchapter A Part 15 Subpart C §15.247 (b) (3) -RSS-247 Issue 2 section 5.4 (d)

#### Limits for Peak Output Power of Fundamental

The maximum peak conducted output power of the intentional radiator shall not exceeded: 1 Watt As an alternative to the maximum peak conducted output power the average output power is measured to show compliance to the limit.

#### Test equipment and test set up

Test equipment used for conducted measurements as given in clause Test equipment of this report. Test setup used for conducted measurements as given in clause Test setups of this report.

#### Description

For the conducted measurement, the RF output of the EUT was connected to the Analyzer. All the attenuation or cable loss will be added to the measured maximum output power. The results are recorded in Watt.

In addition, the EIRP was calculated taking into account the antenna gain.

#### Measurement

The Measurement was performed on: 01.04.2020 and 02.04.2020

| TESTED          | Test report no.: | Page 24 of 108 pages |
|-----------------|------------------|----------------------|
| ESIC IN GERMANY | 20/01-0030-A     | Fage 54 01 100 pages |

#### Lowest operating frequency - 802.11b 20MHz / CCK - MCS=0; 1 MBps / Antenna 1



#### Middle Operating Frequency - 802.11b 20MHz / CCK - MCS=0; 1 MBps / Antenna 1



|  | Test report no.:<br><b>20/01-0030-A</b> | Page 35 of 108 pages |
|--|-----------------------------------------|----------------------|
|--|-----------------------------------------|----------------------|

#### Highest Operating Frequency - 802.11b 20MHz / CCK – MCS=0; 1 MBps / Antenna 1



| Maximum output power conducted measurement:<br>802.11b 20MHz / CCK – MCS=0; 1 MBps / Antenna 1 |           |                        |               |        |              |       |       |      |
|------------------------------------------------------------------------------------------------|-----------|------------------------|---------------|--------|--------------|-------|-------|------|
| Channel                                                                                        | Frequency | Reading of<br>Analyzer | Cable<br>Loss | Output | Output Power |       | Limit |      |
|                                                                                                | נועורובן  | [dBm]                  | [dB]          | [dBm]  | [mW]         | [dBm] | [mW]  |      |
| 1                                                                                              | 2412      | 10.52                  | 1.2           | 11.72  | 14.86        | 30    | 1000  | Pass |
| 6                                                                                              | 2437      | 10.60                  | 1.2           | 11.80  | 15.14        | 30    | 1000  | Pass |
| 11                                                                                             | 2462      | 10.44                  | 1.2           | 11.64  | 14.59        | 30    | 1000  | Pass |

#### Calculated EIRP:

#### 802.11b 20MHz / CCK – MCS=0; 1 MBps / Antenna 1

| Channel Frequency                                 |          | Output Power |       | Output Power<br>EIRP |       | Limit |      | Result |
|---------------------------------------------------|----------|--------------|-------|----------------------|-------|-------|------|--------|
|                                                   | נועורובן | [dBm]        | [mW]  | [dBm]                | [mW]  | [dBm] | [mW] |        |
| 1                                                 | 2412     | 11.72        | 14.86 | 15.1                 | 32.51 | 36    | 4000 | Pass   |
| 6                                                 | 2437     | 11.80        | 15.14 | 15.2                 | 33.11 | 36    | 4000 | Pass   |
| 11                                                | 2462     | 11.64        | 14.59 | 15.0                 | 31.92 | 36    | 4000 | Pass   |
| Formula: [Output Power] + [Antenna Gain] = [EIRP] |          |              |       |                      |       |       |      |        |
| Antenna 1 Gain: max. 3.4dBi                       |          |              |       |                      |       |       |      |        |
| Antenna 2 Gain: max. 2.12dBi                      |          |              |       |                      |       |       |      |        |

|            | Test report no.:<br><b>20/01-0030-A</b> | Page 36 of 108 pages |
|------------|-----------------------------------------|----------------------|
| IN GERMANY | 20/01-0030-A                            |                      |

#### Lowest operating frequency - 802.11b 20MHz / CCK - MCS=0; 1 MBps / Antenna 2



#### Middle Operating Frequency - 802.11b 20MHz / CCK – MCS=0; 1 MBps / Antenna 2


| ESTC TESTED | Test report no.:<br><b>20/01-0030-A</b> | Page 37 of 108 pages |
|-------------|-----------------------------------------|----------------------|
|-------------|-----------------------------------------|----------------------|

#### Highest Operating Frequency - 802.11b 20MHz / CCK – MCS=0; 1 MBps / Antenna 2



#### Maximum output power conducted measurement: 802.11b 20MHz / CCK - MCS=0; 1 MBps / Antenna 2 Channel Frequency [MHz] Reading of Analyzer [dBm] Cable Loss [dBm] Output Power Limit 1 2412 10.66 1.2 11.86 15.35 30

| Channel |         | Analyzer | Loss |       |       |       |      | Result |
|---------|---------|----------|------|-------|-------|-------|------|--------|
|         | נויורבן | [dBm]    | [dB] | [dBm] | [mW]  | [dBm] | [mW] |        |
| 1       | 2412    | 10.66    | 1.2  | 11.86 | 15.35 | 30    | 1000 | Pass   |
| 6       | 2437    | 10.65    | 1.2  | 11.85 | 15.31 | 30    | 1000 | Pass   |
| 11      | 2462    | 10.64    | 1.2  | 11.84 | 15.28 | 30    | 1000 | Pass   |
|         |         |          |      |       |       |       |      |        |

# Calculated EIRP:

#### 802.11b 20MHz / CCK – MCS=0; 1 MBps / Antenna 2

| Channel Frequency                                 |                | Output Power |       | Output I<br>EIR | Limit |       | Result |      |
|---------------------------------------------------|----------------|--------------|-------|-----------------|-------|-------|--------|------|
|                                                   | נועורובן       | [dBm]        | [mW]  | [dBm]           | [mW]  | [dBm] | [mW]   |      |
| 1                                                 | 2412           | 11.86        | 15.35 | 14.0            | 25.00 | 36    | 4000   | Pass |
| 6                                                 | 2437           | 11.85        | 15.31 | 14.0            | 24.95 | 36    | 4000   | Pass |
| 11                                                | 2462           | 11.84        | 15.28 | 14.0            | 24.89 | 36    | 4000   | Pass |
| Formula: [Output Power] + [Antenna Gain] = [EIRP] |                |              |       |                 |       |       |        |      |
| Antenna 1 Gain: max. 3.4dBi                       |                |              |       |                 |       |       |        |      |
| Antenna 2                                         | 2 Gain: max. 2 | 2.12dBi      |       |                 |       |       |        |      |

#### Lowest operating frequency - 802.11g 20MHz / OFDM - MCS=0; 6 MBps / Antenna 1



#### Middle Operating Frequency - 802.11g 20MHz / OFDM - MCS=0; 6 MBps / Antenna 1



|                 | Test report no.: | Page 30 of 108 pages  |
|-----------------|------------------|-----------------------|
| ESIC IN GERMANY | 20/01-0030-A     | r age 59 of 100 pages |

#### Highest Operating Frequency - 802.11g 20MHz / OFDM - MCS=0; 6 MBps / Antenna 1



# Maximum output power conducted measurement: 802.11g 20MHz / OFDM – MCS=0; 6 MBps / Antenna 1

| Channel | Frequency | Analyzer | Loss | Output | Power | Lii   | nit  | Result |   |
|---------|-----------|----------|------|--------|-------|-------|------|--------|---|
|         | נויודבן   | [dBm]    | [dB] | [dBm]  | [mW]  | [dBm] | [mW] |        |   |
| 1       | 2412      | 9.48     | 1.2  | 10.68  | 11.69 | 30    | 1000 | Pass   | l |
| 6       | 2437      | 9.80     | 1.2  | 11.00  | 12.59 | 30    | 1000 | Pass   |   |
| 11      | 2462      | 9.89     | 1.2  | 11.09  | 12.85 | 30    | 1000 | Pass   |   |

#### Calculated EIRP:

# 802.11g 20MHz / OFDM – MCS=0; 6 MBps / Antenna 1

| Channel                                           | Frequency      | ency Output Power |       | Output I<br>EIR | Limit |       | Result |      |
|---------------------------------------------------|----------------|-------------------|-------|-----------------|-------|-------|--------|------|
|                                                   | נועודיבן       | [dBm]             | [mW]  | [dBm]           | [mW]  | [dBm] | [mW]   |      |
| 1                                                 | 2412           | 10.68             | 11.69 | 14.1            | 25.59 | 36    | 4000   | Pass |
| 6                                                 | 2437           | 11.00             | 12.59 | 14.4            | 27.54 | 36    | 4000   | Pass |
| 11                                                | 2462           | 11.09             | 12.85 | 14.5            | 28.12 | 36    | 4000   | Pass |
| Formula: [Output Power] + [Antenna Gain] = [EIRP] |                |                   |       |                 |       |       |        |      |
| Antenna 1 Gain: max. 3.4dBi                       |                |                   |       |                 |       |       |        |      |
| Antenna                                           | 2 Gain: max. 2 | 2.12dBi           |       |                 |       |       |        |      |

| Test report no.: | Page 40 of 108 pages |
|------------------|----------------------|
| 20/01-0030-A     |                      |

#### Lowest operating frequency - 802.11g 20MHz / OFDM – MCS=0; 6 MBps / Antenna 2



#### Middle Operating Frequency - 802.11g 20MHz / OFDM – MCS=0; 6 MBps / Antenna 2



| ESTC IN GERMANY | Test report no.:<br><b>20/01-0030-A</b> | Page 41 of 108 pages |
|-----------------|-----------------------------------------|----------------------|
|                 | 20/01-0030-A                            | Page 41 of 108 page  |

#### Highest Operating Frequency - 802.11g 20MHz / OFDM – MCS=0; 6 MBps / Antenna 2



#### Maximum output power conducted measurement: 802.11g 20MHz / OFDM - MCS=0; 6 MBps / Antenna 2 Reading of Cable Frequency **Output Power** Limit Channel Analyzer Loss Result [MHz] [dBm] [dBm] [mW] [dBm] [dB] [mW] 2412 1 10.31 1.2 11.51 14.16 30 1000 Pass 2437 1.2 1000 6 9.75 10.95 12.45 30 Pass 11 2462 1000 9.17 1.2 10.37 10.89 30 Pass

#### Calculated EIRP:

#### 802.11g 20MHz / OFDM – MCS=0; 6 MBps / Antenna 2

| Channel                                           | Frequency                    | Frequency Output Power |       | Output F<br>EIR | Limit |       | Result |      |
|---------------------------------------------------|------------------------------|------------------------|-------|-----------------|-------|-------|--------|------|
|                                                   | נועורובן                     | [dBm]                  | [mW]  | [dBm]           | [mW]  | [dBm] | [mW]   |      |
| 1                                                 | 2412                         | 11.51                  | 14.16 | 13.6            | 23.07 | 36    | 4000   | Pass |
| 6                                                 | 2437                         | 10.95                  | 12.45 | 13.1            | 20.28 | 36    | 4000   | Pass |
| 11                                                | 2462                         | 10.37                  | 10.89 | 12.5            | 17.74 | 36    | 4000   | Pass |
| Formula: [Output Power] + [Antenna Gain] = [EIRP] |                              |                        |       |                 |       |       |        |      |
| Antenna 1 Gain: max. 3.4dBi                       |                              |                        |       |                 |       |       |        |      |
| Antenna 2                                         | Antenna 2 Gain: max. 2.12dBi |                        |       |                 |       |       |        |      |

# Lowest operating frequency - 802.11n 20MHz / HT Greenfield - MCS=0; 6.5 MBps / Antenna 1



#### Middle Operating Frequency - 802.11n 20MHz / HT Greenfield – MCS=0; 6.5 MBps / Antenna 1



| TESTED          | Test report no.: | Page 43 of 108 pages |
|-----------------|------------------|----------------------|
| ESIC IN GERMANY | 20/01-0030-A     | Fage 43 01 100 pages |

# Highest Operating Frequency - 802.11n 20MHz / HT Greenfield - MCS=0; 6.5 MBps / Antenna 1



| Maximum output power conducted measurement:<br>802.11n 20MHz / HT Greenfield – MCS=0; 6.5 MBps / Antenna 1 |           |                        |               |              |       |       |      |        |  |
|------------------------------------------------------------------------------------------------------------|-----------|------------------------|---------------|--------------|-------|-------|------|--------|--|
| Channel                                                                                                    | Frequency | Reading of<br>Analyzer | Cable<br>Loss | Output Power |       | Limit |      | Result |  |
|                                                                                                            | [101112]  | [dBm]                  | [dB]          | [dBm]        | [mW]  | [dBm] | [mW] |        |  |
| 1                                                                                                          | 2412      | 9.50                   | 1.2           | 10.70        | 11.75 | 30    | 1000 | Pass   |  |
| 6                                                                                                          | 2437      | 9.56                   | 1.2           | 10.76        | 11.91 | 30    | 1000 | Pass   |  |
| 11                                                                                                         | 2462      | 9.19                   | 1.2           | 10.39        | 10.94 | 30    | 1000 | Pass   |  |

# Lowest operating frequency - 802.11n 20MHz / HT Greenfield – MCS=0; 6.5 MBps / Antenna 2



#### Middle Operating Frequency - 802.11n 20MHz / HT Greenfield – MCS=0; 6.5 MBps / Antenna 2



| ESTC | TESTED |
|------|--------|
|      |        |

#### Highest Operating Frequency - 802.11n 20MHz / HT Greenfield – MCS=0; 6.5 MBps / Antenna 2



| Maximum output power conducted measurement:<br>802.11n 20MHz / HT Greenfield – MCS=0; 6.5 MBps / Antenna 2 |           |                        |               |              |       |       |      |        |  |
|------------------------------------------------------------------------------------------------------------|-----------|------------------------|---------------|--------------|-------|-------|------|--------|--|
| Channel                                                                                                    | Frequency | Reading of<br>Analyzer | Cable<br>Loss | Output Power |       | Limit |      | Result |  |
|                                                                                                            |           | [dBm]                  | [dB]          | [dBm]        | [mW]  | [dBm] | [mW] |        |  |
| 1                                                                                                          | 2412      | 10.76                  | 1.2           | 11.96        | 15.70 | 30    | 1000 | Pass   |  |
| 6                                                                                                          | 2437      | 10.26                  | 1.2           | 11.46        | 14.00 | 30    | 1000 | Pass   |  |
| 11                                                                                                         | 2462      | 10.24                  | 1.2           | 11.44        | 13.93 | 30    | 1000 | Pass   |  |

| Maximum output power conducted measurement:                             |             |                     |                     |                    |       |       |      |        |  |  |
|-------------------------------------------------------------------------|-------------|---------------------|---------------------|--------------------|-------|-------|------|--------|--|--|
| 802.11n 20MHz / HT Greenfield – MCS=0; 6.5 MBps / Antenna 1 + Antenna 2 |             |                     |                     |                    |       |       |      |        |  |  |
| Channel                                                                 | Frequency   | Output<br>Antenna 1 | Output<br>Antenna 2 | Total Output Power |       | Limit |      | Result |  |  |
|                                                                         | נויודבן     | [mW]                | [mW]                | [dBm]              | [mW]  | [dBm] | [mW] |        |  |  |
| 1                                                                       | 2412        | 11.75               | 15.70               | 14.39              | 27.45 | 30    | 1000 | Pass   |  |  |
| 6                                                                       | 2437        | 11.91               | 14.00               | 14.13              | 25.91 | 30    | 1000 | Pass   |  |  |
| 11                                                                      | 2462        | 10.94               | 13.93               | 13.96              | 24.87 | 30    | 1000 | Pass   |  |  |
| According                                                               | to KDB 6629 | 11 D01              |                     |                    |       |       |      |        |  |  |

**Calculated EIRP:** 802.11n 20MHz / HT Greenfield – MCS=0; 6.5 MBps / Antenna 1 + Antenna 2 **Total Output Power Total Output Power** Frequency Limit Channel EIRP Result [MHz] [dBm] [dBm] [mW] [mW] [mW] [dBm] 2412 20.19 4000 1 14.39 27.45 104.47 36 Pass 4000 2437 25.91 98.40 36 Pass 6 14.13 19.93 19.76 4000 11 2462 13.96 24.87 94.62 36 Pass Formula: [Total Output Power] + [DirectionI Gain] = [EIRP] Antenna 1 Gain: max. 3.4dBi Antenna 2 Gain: max. 2.12dBi **Directionl Gain: 5.8dBi** According to KDB 662911 D01

| TESTED     | Test report no.: | Page 46 of 108 pages |
|------------|------------------|----------------------|
| IN GERMANY | 20/01-0030-A     | Fage 40 01 100 pages |

# Lowest operating frequency - 802.11n 40MHz / HT Greenfield - MCS=0; 6.5 MBps / Antenna 1



# Middle Operating Frequency - 802.11n 40MHz / HT Greenfield – MCS=0; 6.5 MBps / Antenna 1



# Highest Operating Frequency - 802.11n 40MHz / HT Greenfield – MCS=0; 6.5 MBps / Antenna 1



| Maximum output power conducted measurement:<br>802.11n 40MHz / HT Greenfield – MCS=0; 15 MBps / Antenna 1 |                    |                        |              |       |       |       |        |      |
|-----------------------------------------------------------------------------------------------------------|--------------------|------------------------|--------------|-------|-------|-------|--------|------|
| Channel                                                                                                   | Frequency<br>[MHz] | Reading of<br>Analyzer | Output Power |       | Limit |       | Result |      |
|                                                                                                           | -                  | [αΒΜ]                  | [αΒ]         | [aBm] | [mvv] | [αΒΜ] | [mvv]  |      |
| 3                                                                                                         | 2422               | 9.32                   | 1.2          | 10.52 | 11.27 | 30    | 1000   | Pass |
| 6                                                                                                         | 2437               | 9.01                   | 1.2          | 10.21 | 10.50 | 30    | 1000   | Pass |
| 9                                                                                                         | 2452               | 9.26                   | 1.2          | 10.46 | 11.12 | 30    | 1000   | Pass |

| ESTC TESTED | Test report no.:<br><b>20/01-0030-A</b> | Page 48 of 108 pages |
|-------------|-----------------------------------------|----------------------|
|-------------|-----------------------------------------|----------------------|

# Lowest operating frequency - 802.11n 40MHz / HT Greenfield – MCS=0; 6.5 MBps / Antenna 2



# Middle Operating Frequency - 802.11n 40MHz / HT Greenfield – MCS=0; 6.5 MBps / Antenna 2



# Highest Operating Frequency - 802.11n 40MHz / HT Greenfield – MCS=0; 6.5 MBps / Antenna 2



| Maximum output power conducted measurement:<br>802.11n 40MHz / HT Greenfield – MCS=0; 15 MBps / Antenna 2 |           |                                   |              |       |       |       |        |      |  |
|-----------------------------------------------------------------------------------------------------------|-----------|-----------------------------------|--------------|-------|-------|-------|--------|------|--|
| Channel                                                                                                   | Frequency | Reading of Cable<br>Analyzer Loss | Output Power |       | Limit |       | Result |      |  |
|                                                                                                           | נאורוצן   | [dBm]                             | [dB]         | [dBm] | [mW]  | [dBm] | [mW]   |      |  |
| 3                                                                                                         | 2422      | 9.71                              | 1.2          | 10.91 | 12.33 | 30    | 1000   | Pass |  |
| 6                                                                                                         | 2437      | 10.02                             | 1.2          | 11.22 | 13.24 | 30    | 1000   | Pass |  |
| 9                                                                                                         | 2452      | 9.54                              | 1.2          | 10.74 | 11.86 | 30    | 1000   | Pass |  |

| Maximum output power conducted measurement:<br>802.11n 40MHz / HT Greenfield – MCS=0; 15 MBps / Antenna 1 + Antenna 2 |             |                                            |                             |                    |       |       |      |        |  |
|-----------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------|-----------------------------|--------------------|-------|-------|------|--------|--|
| Channel                                                                                                               | Frequency   | ency<br>Hz]<br>Output<br>Antenna 1<br>[mW] | Output<br>Antenna 2<br>[mW] | Total Output Power |       | Limit |      | Result |  |
|                                                                                                                       | [IVIHZ]     |                                            |                             | [dBm]              | [mW]  | [dBm] | [mW] |        |  |
| 3                                                                                                                     | 2422        | 11.27                                      | 12.33                       | 13.73              | 23.60 | 30    | 1000 | Pass   |  |
| 6                                                                                                                     | 2437        | 10.50                                      | 13.24                       | 13.75              | 23.74 | 30    | 1000 | Pass   |  |
| 9                                                                                                                     | 2452        | 11.12                                      | 11.86                       | 13.61              | 22.98 | 30    | 1000 | Pass   |  |
| According                                                                                                             | to KDB 6629 | 11 D01                                     |                             |                    |       |       |      |        |  |

| Calculate<br>802.11n | ed EIRP:<br>40MHz / HT ( | Greenfield – MCS=   | 0; 15 MBps / Ant | tenna 1 + Ante             | enna 2 |       |      |        |
|----------------------|--------------------------|---------------------|------------------|----------------------------|--------|-------|------|--------|
| Channel              | Frequency                | Total Output Power  |                  | Total Output Power<br>EIRP |        | Limit |      | Result |
|                      | [INIHZ]                  | [dBm]               | [mW]             | [dBm]                      | [mW]   | [dBm] | [mW] | 1      |
| 1                    | 2412                     | 13.73               | 23.60            | 19.53                      | 89.74  | 36    | 4000 | Pass   |
| 6                    | 2437                     | 13.75               | 23.74            | 19.55                      | 90.16  | 36    | 4000 | Pass   |
| 11                   | 2452                     | 13.61               | 22.98            | 19.41                      | 87.30  | 36    | 4000 | Pass   |
| Formula:             | [Total Output            | Power] + [Direction | Gain] = [EIRP]   |                            |        |       |      |        |
| Antenna <sup>•</sup> | 1 Gain: max. 3           | 3.4dBi              |                  |                            |        |       |      |        |
| Antenna              | 2 Gain: max. 2           | 2.12dBi             |                  |                            |        |       |      |        |
| Direction            | l Gain: 5.8dBi           |                     |                  |                            |        |       |      |        |
| Accordin             | g to KDB 6629            | 911 D01             |                  |                            |        |       |      |        |
|                      |                          |                     |                  |                            |        |       |      |        |

| TESTED     | Test report no.: | Page 50 of 108 pages  |
|------------|------------------|-----------------------|
| IN GERMANY | 20/01-0030-A     | r age 50 01 100 pages |

# Results

From the measurement data obtained, the tested sample was considered to have **COMPLIED** with the requirements of **Output Power of Fundamental Emissions**.



# 7.3. Power Spectral Density

#### **Applied standards**

-e-CFR Title 47 Chapter I Subchapter A Part 15 Subpart C §15.247 (e) -RSS-247 issue 2 Section 5.2 (b)

#### Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

#### Test equipment and test set up

Test equipment used for conducted measurements as given in clause Test equipment of this report. Test setup used for conducted measurements as given in clause Test setups of this report.

#### Description

The maximum average conducted output power was used to determine compliance to the fundamental output power limit. So the maximum average conducted PSD level is measured with a power averaging (rms) detector.

#### Measurement

The Measurement was performed on: 01.04.2020 and 02.04.2020

| ESTC IN GERMANY | Test report no.:<br><b>20/01-0030-A</b> | Page 52 of 108 pages |
|-----------------|-----------------------------------------|----------------------|
|-----------------|-----------------------------------------|----------------------|

# Lowest operating frequency - 802.11b 20MHz / CCK - MCS=0; 1 MBps / Antenna 1



#### Middle Operating Frequency - 802.11b 20MHz / CCK - MCS=0; 1 MBps / Antenna 1



| ESTC IN GERMANY | Test report no.:<br><b>20/01-0030-A</b> | Page 53 of 108 pages |
|-----------------|-----------------------------------------|----------------------|
|-----------------|-----------------------------------------|----------------------|

# Highest Operating Frequency - 802.11b 20MHz / CCK – MCS=0; 1 MBps / Antenna 1



| Maximum power spectral density<br>802.11b 20MHz / CCK – MCS=0; 1 MBps / Antenna 1 |                    |                                         |                       |                                            |                        |        |  |  |  |
|-----------------------------------------------------------------------------------|--------------------|-----------------------------------------|-----------------------|--------------------------------------------|------------------------|--------|--|--|--|
| Channel                                                                           | Frequency<br>[MHz] | Reading of<br>Analyzer<br>[dBm / 3 kHz] | Cable<br>Loss<br>[dB] | Power Spectral<br>Density<br>[dBm / 3 kHz] | Limit<br>[dBm / 3 kHz] | Result |  |  |  |
| 1                                                                                 | 2412               | -22.71                                  | 1.2                   | -21.51                                     | 8                      | Pass   |  |  |  |
| 6                                                                                 | 2437               | -22.51                                  | 1.2                   | -21.31                                     | 8                      | Pass   |  |  |  |
| 11                                                                                | 2462               | -22.59                                  | 1.2                   | -21.39                                     | 8                      | Pass   |  |  |  |

|  | Test report no.:<br><b>20/01-0030-A</b> | Page 54 of 108 pages |
|--|-----------------------------------------|----------------------|
|--|-----------------------------------------|----------------------|

#### Lowest operating frequency - 802.11b 20MHz / CCK – MCS=0; 1 MBps / Antenna 2



#### Middle Operating Frequency - 802.11b 20MHz / CCK – MCS=0; 1 MBps / Antenna 2



| ESTC IN GERMANY | Test report no.:<br><b>20/01-0030-A</b> | Page 55 of 108 pages |
|-----------------|-----------------------------------------|----------------------|
|-----------------|-----------------------------------------|----------------------|

# Highest Operating Frequency - 802.11b 20MHz / CCK – MCS=0; 1 MBps / Antenna 2



| Maximum power spectral density<br>802.11b 20MHz / CCK – MCS=0; 1 MBps / Antenna 2 |                    |                                         |                       |                                            |                        |        |  |  |  |
|-----------------------------------------------------------------------------------|--------------------|-----------------------------------------|-----------------------|--------------------------------------------|------------------------|--------|--|--|--|
| Channel                                                                           | Frequency<br>[MHz] | Reading of<br>Analyzer<br>[dBm / 3 kHz] | Cable<br>Loss<br>[dB] | Power Spectral<br>Density<br>[dBm / 3 kHz] | Limit<br>[dBm / 3 kHz] | Result |  |  |  |
| 1                                                                                 | 2412               | -21.86                                  | 1.2                   | -20.66                                     | 8                      | Pass   |  |  |  |
| 6                                                                                 | 2437               | -22.55                                  | 1.2                   | -21.35                                     | 8                      | Pass   |  |  |  |
| 11                                                                                | 2462               | -22.99                                  | 1.2                   | -21.79                                     | 8                      | Pass   |  |  |  |

|  | Test report no.:<br><b>20/01-0030-A</b> | Page 56 of 108 pages |
|--|-----------------------------------------|----------------------|
|--|-----------------------------------------|----------------------|

#### Lowest operating frequency - 802.11g 20MHz / OFDM - MCS=0; 6 MBps / Antenna 1

| MultiView                            | Spectrum                 |            | Spectrum 2                                          | Spectr               | 'um 3 🔅 | 3        |   |             |                    |
|--------------------------------------|--------------------------|------------|-----------------------------------------------------|----------------------|---------|----------|---|-------------|--------------------|
| Ref Level 10.00<br>Att 2             | dBm<br>DdB <b>SWT</b> 4. | 19 ms (~46 | <ul> <li>RBW 3 ki</li> <li>ms) VBW 10 ki</li> </ul> | iz<br>Iz Mode Auto F | भा      |          |   | s           | GL<br>ount 200/200 |
| 1 Frequency Swe                      | ep                       |            |                                                     |                      |         |          |   | M1[1]       | -24.16 dBm         |
| 0 dBm                                |                          |            | -                                                   |                      |         |          |   |             | 11105000 011       |
| -10 dBm                              |                          |            |                                                     |                      |         |          |   |             |                    |
| -20 d8m                              |                          |            |                                                     | T.                   | 0.0.722 |          |   |             |                    |
| -30 dBm                              |                          | -          | WWWWWW                                              | ANNANNA              | MWW MM  | WWWWWW   | 1 | -           |                    |
| -40 dam                              |                          | 7          | 1                                                   | 1                    |         |          | k |             |                    |
| -50 d8m                              |                          | ľ          | _                                                   |                      |         |          | 1 |             |                    |
| -60.d8m                              |                          | 1          |                                                     |                      |         |          | 1 |             |                    |
| WWWWWW                               | WWWWW                    | W          | -                                                   |                      | 0       |          | W | WWWWWWWW    | www.               |
| -80 d8mi-                            | -                        |            |                                                     |                      |         |          |   |             |                    |
| CF 2.412 GHz                         |                          |            | 30001 p                                             | ts                   | 4       | .0 MHz/  | ~ | 5           | ipan 40.0 MHz      |
| 2 Marker Table<br>Type   Ref  <br>MI | Trc                      | X-Value    | GHz -                                               | Y-Value<br>24.16 dBm | 1       | Function | E | Function Re | esult              |

# Middle Operating Frequency - 802.11g 20MHz / OFDM – MCS=0; 6 MBps / Antenna 1



# Highest Operating Frequency - 802.11g 20MHz / OFDM – MCS=0; 6 MBps / Antenna 1



| Maximum power spectral density<br>802.11g 20MHz / OFDM – MCS=0; 6 MBps / Antenna 1 |                    |                                         |                       |                                            |                        |        |  |  |  |
|------------------------------------------------------------------------------------|--------------------|-----------------------------------------|-----------------------|--------------------------------------------|------------------------|--------|--|--|--|
| Channel                                                                            | Frequency<br>[MHz] | Reading of<br>Analyzer<br>[dBm / 3 kHz] | Cable<br>Loss<br>[dB] | Power Spectral<br>Density<br>[dBm / 3 kHz] | Limit<br>[dBm / 3 kHz] | Result |  |  |  |
| 1                                                                                  | 2412               | -24.16                                  | 1.2                   | -22.96                                     | 8                      | Pass   |  |  |  |
| 6                                                                                  | 2437               | -24.43                                  | 1.2                   | -23.23                                     | 8                      | Pass   |  |  |  |
| 11                                                                                 | 2462               | -24.17                                  | 1.2                   | -22.97                                     | 8                      | Pass   |  |  |  |

| ESTC IN GERMANY | Test report no.:<br><b>20/01-0030-A</b> | Page 58 of 108 pages |
|-----------------|-----------------------------------------|----------------------|
|-----------------|-----------------------------------------|----------------------|

#### Lowest operating frequency - 802.11g 20MHz / OFDM – MCS=0; 6 MBps / Antenna 2

| MultiView                  | Spectrum 🔟                | Spectrum 2        | E Specta             | 'um 3 [2 | 3         |      |             |               |
|----------------------------|---------------------------|-------------------|----------------------|----------|-----------|------|-------------|---------------|
| Ref Level 10.00            | dBm<br>Down ewr as a well | RBW 3k            | iz<br>Mada Auto I    | 96T      |           |      | s           | GL            |
| 1 Frequency Sw             | eep                       | WO HIS? WOR TO IS | 12 MIDAGE MIDIOT     | 71.      |           |      |             | 1Rm Ave       |
|                            | 0240.0                    | 1                 |                      |          |           |      | M1[1]       | -22.87 dBm    |
| 0 dBm                      |                           |                   |                      |          |           |      | <u>.</u>    | TILIOUTU UNA  |
| -10 dBm                    |                           |                   |                      |          | · · · ·   |      |             |               |
| -20 dBm                    |                           |                   |                      | *        | (a. 2010) |      |             |               |
| -30 d8m                    |                           | MMMMMM            | www.www              | wwwww    | WWWWWWW   | 1    |             |               |
| -40 dam                    |                           | 1                 | 63                   | i i      |           | 1    |             |               |
| -50 d8m                    |                           | <u>/</u>          |                      |          |           | M    |             |               |
| -60 dBm                    |                           | 0                 |                      |          |           | 1    | 1.12        |               |
| ANNAWAWA                   | MMMMMM WA                 |                   |                      |          |           | , MM | WWWWWW      | WWWWWWW       |
| -80 d8m                    |                           |                   |                      |          |           |      |             | - THE WAY     |
| CF 2,412 GHz               |                           | 30001 n           | ts                   | 4        | -0 MHz/   |      |             | ipan 40.0 MHz |
| 2 Marker Table<br>Type Ref | Trc X-Val                 | ue  <br>57 GHz -  | Y-Value<br>22.87 dBm | 1        | Function  | F    | Function Re | sult          |

# Middle Operating Frequency - 802.11g 20MHz / OFDM – MCS=0; 6 MBps / Antenna 2



# Highest Operating Frequency - 802.11g 20MHz / OFDM – MCS=0; 6 MBps / Antenna 2



| Maximum power spectral density<br>802.11g 20MHz / OFDM – MCS=0; 6 MBps / Antenna 2 |      |        |     |        |   |      |  |  |
|------------------------------------------------------------------------------------|------|--------|-----|--------|---|------|--|--|
| ChannelFrequency<br>[MHz]Reading of<br>AnalyzerCable<br>LossPower Spectral<br>     |      |        |     |        |   |      |  |  |
| 1                                                                                  | 2412 | -22.87 | 1.2 | -21.67 | 8 | Pass |  |  |
| 6                                                                                  | 2437 | -24.42 | 1.2 | -23.22 | 8 | Pass |  |  |
| 11                                                                                 | 2462 | -24.28 | 1.2 | -23.08 | 8 | Pass |  |  |

# Lowest operating frequency - 802.11n 20MHz / HT Greenfield - MCS=0; 6.5 MBps / Antenna 1



#### Middle Operating Frequency - 802.11n 20MHz / HT Greenfield – MCS=0; 6.5 MBps / Antenna 1



|  | Test report no.:<br><b>20/01-0030-A</b> | Page 61 of 108 pages |
|--|-----------------------------------------|----------------------|
|--|-----------------------------------------|----------------------|

#### Highest Operating Frequency - 802.11n 20MHz / HT Greenfield - MCS=0; 6.5 MBps / Antenna 1



| Maximum power spectral density<br>802.11n 20MHz / HT Greenfield – MCS=0; 6.5 MBps / Antenna 1                                                                     |      |        |     |        |   |      |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------|-----|--------|---|------|--|--|--|
| Channel     Frequency<br>[MHz]     Reading of<br>Analyzer     Cable<br>Loss     Power Spectral<br>Density     Limit<br>[dBm / 3 kHz]     Reading<br>[dBm / 3 kHz] |      |        |     |        |   |      |  |  |  |
| 1                                                                                                                                                                 | 2412 | -24.33 | 1.2 | -23.13 | 8 | Pass |  |  |  |
| 6                                                                                                                                                                 | 2437 | -24.23 | 1.2 | -23.03 | 8 | Pass |  |  |  |
| 11                                                                                                                                                                | 2462 | -24.54 | 1.2 | -23.34 | 8 | Pass |  |  |  |

# Lowest operating frequency - 802.11n 20MHz / HT Greenfield – MCS=0; 6.5 MBps / Antenna 2

| MultiView                            | Spectrum    | II S               | pectrum 2           | Specta               | rum 3 🔅           | Z)       |     |             |               |
|--------------------------------------|-------------|--------------------|---------------------|----------------------|-------------------|----------|-----|-------------|---------------|
| Ref Level 10.00                      | 18m         | -                  | RBW 3k              | Hz                   |                   |          |     | S           | GL            |
| Att 20                               | DIDE SWI-4. | .19 ms (~46 r      | ns) <b>VBW</b> 10 k | HZ: Mode Auto I      | PE                |          |     | c           | ount 200/200  |
|                                      | 2010        |                    |                     |                      |                   |          |     | M1[1]       | -23,16 dBm    |
| 0 dBm                                |             |                    | -                   |                      |                   |          |     | 2.          | 40980140 GHz  |
| -10 dBm                              |             |                    | -                   |                      |                   |          |     |             |               |
| -20 d8m                              |             |                    |                     | Alg                  | 100 C 100 C 100 C |          |     |             |               |
| +30 d8m                              |             | A                  | www.MWWW            | www.                 | WWW WWW           | AMMMAMA  | M   |             |               |
| -40 dām                              |             | -                  | -                   | -                    | N                 |          |     |             |               |
| -50 d6m                              |             | N                  |                     | -                    |                   |          | Y   |             |               |
| +60 dBm-                             |             | VIN                | -                   | -                    |                   |          | 1.1 |             |               |
| ANAMAMA                              | WWWW        |                    |                     |                      |                   |          | V.  | MMMMM       | WWWWWWW       |
| -80 d8m                              |             |                    |                     |                      |                   |          |     |             |               |
| CF 2.412 GHz                         |             |                    | 30001               | ots                  | 4                 | 1.0 MHz/ |     | 5           | ipan 40.0 MHz |
| 2 Marker Table<br>Type   Ref  <br>M1 | Trc   2.    | X-Value<br>4098014 | GHz                 | Y-Value<br>23.16 dBm | 1                 | Function |     | Function Re | sult          |

#### Middle Operating Frequency - 802.11n 20MHz / HT Greenfield – MCS=0; 6.5 MBps / Antenna 2



| ESTC IN GERMANY | Test report no.:<br><b>20/01-0030-A</b> | Page 63 of 108 pages |
|-----------------|-----------------------------------------|----------------------|
|-----------------|-----------------------------------------|----------------------|

# Highest Operating Frequency - 802.11n 20MHz / HT Greenfield – MCS=0; 6.5 MBps / Antenna 2



| Maximum power spectral density<br>802.11n 20MHz / HT Greenfield – MCS=0; 6.5 MBps / Antenna 2                                                   |      |        |     |        |   |      |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|------|--------|-----|--------|---|------|--|--|--|
| Channel     Frequency<br>[MHz]     Reading of<br>Analyzer     Cable<br>Loss     Power Spectral<br>Density     Limit<br>[dBm / 3 kHz]     Result |      |        |     |        |   |      |  |  |  |
| 1                                                                                                                                               | 2412 | -23.16 | 1.2 | -21.96 | 8 | Pass |  |  |  |
| 6                                                                                                                                               | 2437 | -23.94 | 1.2 | -22.74 | 8 | Pass |  |  |  |
| 11                                                                                                                                              | 2462 | -24.34 | 1.2 | -23.14 | 8 | Pass |  |  |  |

| Maximum power spectral density<br>802.11n 20MHz / HT Greenfield – MCS=0; 6.5 MBps / Antenna 1 + Antenna 2 |                                                                        |                                                |                                                |                  |        |  |  |  |
|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------|--------|--|--|--|
| Channel                                                                                                   | Frequency<br>[MHz]                                                     | Highest PSD<br>of Ant 1 or Ant 2<br>[dBm/3kHz] | PSD calculated *<br>Ant1 + Ant 2<br>[dBm/3kHz] | Limit [dBm/3kHz] | Result |  |  |  |
| 1                                                                                                         | 2412                                                                   | -21.96                                         | -18.95                                         | 8                | Pass   |  |  |  |
| 6                                                                                                         | 2437                                                                   | -22.74                                         | -19.73                                         | 8                | Pass   |  |  |  |
| 11                                                                                                        | 2462                                                                   | -23.14                                         | -20.13                                         | 8                | Pass   |  |  |  |
| *According                                                                                                | *According to KDB 662911 D01, add 10 log (N <sub>ANT</sub> ) dB, N = 2 |                                                |                                                |                  |        |  |  |  |

# Lowest operating frequency - 802.11n 40MHz / HT Greenfield - MCS=0; 15 MBps / Antenna 1



#### Middle Operating Frequency - 802.11n 40MHz / HT Greenfield – MCS=0; 15 MBps / Antenna 1



# Highest Operating Frequency - 802.11n 40MHz / HT Greenfield – MCS=0; 15 MBps / Antenna 1



| Maximum<br>802.11n 4 | n power spec<br>0MHz / HT G | ctral density<br>Greenfield – MCS       | =0; 15 MBps           | s / Antenna 1                              |                        |        |
|----------------------|-----------------------------|-----------------------------------------|-----------------------|--------------------------------------------|------------------------|--------|
| Channel              | Frequency<br>[MHz]          | Reading of<br>Analyzer<br>[dBm / 3 kHz] | Cable<br>Loss<br>[dB] | Power Spectral<br>Density<br>[dBm / 3 kHz] | Limit<br>[dBm / 3 kHz] | Result |
| 3                    | 2422                        | -25.82                                  | 1.2                   | -24.62                                     | 8                      | Pass   |
| 6                    | 2437                        | -25.88                                  | 1.2                   | -24.68                                     | 8                      | Pass   |
| 9                    | 2452                        | -25.66                                  | 1.2                   | -24.46                                     | 8                      | Pass   |

# Lowest operating frequency - 802.11n 40MHz / HT Greenfield – MCS=0; 15 MBps / Antenna 2



#### Middle Operating Frequency - 802.11n 40MHz / HT Greenfield – MCS=0; 15 MBps / Antenna 2



| ESTC TESTED | Test report no.:<br><b>20/01-0030-A</b> | Page 67 of 108 pages |
|-------------|-----------------------------------------|----------------------|
|-------------|-----------------------------------------|----------------------|

# Highest Operating Frequency - 802.11n 40MHz / HT Greenfield – MCS=0; 15 MBps / Antenna 2



| Maximum<br>802.11n 4 | n power spec<br>0MHz / HT C | ctral density<br>Greenfield – MCS | =0; 15 MBps | s / Antenna 2 |   |      |
|----------------------|-----------------------------|-----------------------------------|-------------|---------------|---|------|
| Channel              | Limit<br>[dBm / 3 kHz]      | Result                            |             |               |   |      |
| 3                    | 2422                        | -25.13                            | 1.2         | -23.93        | 8 | Pass |
| 6                    | 2437                        | -25.06                            | 1.2         | -23.86        | 8 | Pass |
| 9                    | 2452                        | -25.20                            | 1.2         | -24.00        | 8 | Pass |

| Maximum<br>802.11n 4 | n power spec<br>0MHz / HT G | ctral density<br>Greenfield – MCS=0; 15 M      | Bps / Antenna 1 + Ante                         | nna 2            |        |
|----------------------|-----------------------------|------------------------------------------------|------------------------------------------------|------------------|--------|
| Channel              | Frequency<br>[MHz]          | Highest PSD<br>of Ant 1 or Ant 2<br>[dBm/3kHz] | PSD calculated *<br>Ant1 + Ant 2<br>[dBm/3kHz] | Limit [dBm/3kHz] | Result |
| 3                    | 2422                        | -23.93                                         | -20.92                                         | 8                | Pass   |
| 6                    | 2437                        | -23.86                                         | -20.85                                         | 8                | Pass   |
| 9                    | 2452                        | -24.00                                         | -20.99                                         | 8                | Pass   |
| *According           | g to KDB 6629               | 911 D01, add 10 log (N <sub>ANT</sub> ) d      | B, N = 2                                       |                  |        |

# Results

From the measurement data obtained, the tested sample was considered to have **COMPLIED** with the requirements for the **Power Spectral Density**.



# 7.4. Band-Edges Measurement

#### Applied standards

-e-CFR Title 47 Chapter I Subchapter A Part 15 Subpart C §15.247 (d) -RSS-247 issue 2 Section 5.5

#### Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Emissions which fall in the restricted bands, as defined in §15.205 Restricted Bands of operation as well as in restricted bands of the RSS-Gen Issue 5 (see Section 8.10 Restricted Frequency Bands) and must also comply with the radiated emission limits specified in §15.209 Radiated emission limits as well as the limits specified in RSS-Gen Table 5.

#### Test equipment and test set up

Test equipment used for Band Edge measurements as given in clause Test equipment of this report. Test setup used for Band Edge measurements as given in clause Test setups of this report.

#### Description

The band edge is measured at an amplitude level reduced from the reference level by a specified ratio. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. In the Restricted Bands defined in § 15.205 the compliance with the §15.209 and RSS-Gen Radiated emission limits is investigate.

#### Detector function selection and bandwidth

For the measurement, an EMI test receiver that have CISPR peak and avearge detector was used.

| Frequency range:      | Bandwidth |         |
|-----------------------|-----------|---------|
| See measurement graph | RBW:      | 100 kHz |
|                       | VBW:      | 300 kHz |

#### Measurement

The Measurement was performed on: 07.04.2020

Lower Band Edge - 802.11b 20MHz / CCK - MCS=0; 1 MBps / both antennas are active

| TESTED<br>IN GERMANY                           | FCC<br>Band edge (<br>accordin<br>247 RSS-247 F | <b>B</b> STC                                                                                                    |                 |
|------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------|
| Def No : 20/01 0030                            | 211,100 211,1                                   | 00 310.200 1100 0                                                                                               |                 |
| RelNo 20/01-0030                               |                                                 |                                                                                                                 |                 |
| Operation mode: WLAN CH.01; BV                 | V = 20MHz; CCł                                  | <; 802.11b; Low edge                                                                                            | 9               |
|                                                |                                                 |                                                                                                                 | Ē               |
| Spectrum Receiver <b>*</b>                     |                                                 |                                                                                                                 |                 |
| RBW (EMI) 1 MHz MT<br>Input 1 AC Att 0 dB Prea | ls<br>mnOFF StenTD                              | IT56-1-7GHz ohn<br>Scan                                                                                         | e AmpTDF        |
| Scan Olav MaxO2Pk Max                          | inpoint occprib                                 | 00011                                                                                                           |                 |
| Limit Check                                    | PASS                                            | D2[2]                                                                                                           | -33.89 dB       |
| 120 UBW/M56-1-6CHZ-AV-WLAN-2-                  |                                                 |                                                                                                                 | -15.750000 MHz  |
| LINE IT SO- 1-OGHZ-PEAK-WLAN-                  | 2-4 PA55                                        | 0.000 s                                                                                                         | 2.414750000 GHz |
| 110 dBµV/m                                     |                                                 |                                                                                                                 |                 |
|                                                |                                                 | The second se |                 |
| 100 dBµV/m                                     |                                                 | / ¥                                                                                                             |                 |
| 80 dBi 4/m                                     |                                                 | <i>µ</i>                                                                                                        |                 |
|                                                |                                                 |                                                                                                                 |                 |
| 80 dBuV/m                                      |                                                 |                                                                                                                 |                 |
| T56-1-6GHZ-PEAK-WLAN-2-4GHZ_FCC.LIN            | 4                                               | D2                                                                                                              |                 |
| 70 dBµV/m                                      |                                                 |                                                                                                                 |                 |
|                                                | ** **                                           |                                                                                                                 |                 |
| 60.dBpV/m                                      |                                                 |                                                                                                                 |                 |
| T56-1-6GHZ-AV-WLAN-2-4GHZ_FCC.LIN              |                                                 |                                                                                                                 | ľ Λ I           |
| 50 dBµý/m                                      | + A                                             | _ <b>∧~</b>                                                                                                     |                 |
|                                                | - how i                                         | V                                                                                                               |                 |
| 40 dBµV/m                                      |                                                 |                                                                                                                 |                 |
|                                                |                                                 |                                                                                                                 |                 |
| 30 dBµV/m                                      |                                                 | F1                                                                                                              |                 |
| Start 2.343 GHz                                |                                                 |                                                                                                                 | Stop 2.443 GHz  |

|                     |                   |                            |                   | Polarisat | ion: V           |                   |                            |                   |        |
|---------------------|-------------------|----------------------------|-------------------|-----------|------------------|-------------------|----------------------------|-------------------|--------|
| Detector<br>Average |                   |                            |                   |           | Detector<br>Peak |                   |                            |                   |        |
| Frequ.<br>[GHz]     | Level<br>[dBµV/m] | Margin<br>to Limit<br>[dB] | Limit<br>[dBµV/m] | Result    | Frequ.<br>[GHz]  | Level<br>[dBµV/m] | Margin<br>to Limit<br>[dB] | Limit<br>[dBµV/m] | Result |
| 2,3870              | 48,05             | -5,95                      | 54,00             | pass      | 2,3883           | 67,11             | -6,89                      | 74,00             | pass   |
| 2,3863              | 44,84             | -9,16                      | 54,00             | pass      | 2,3863           | 66,63             | -7,37                      | 74,00             | pass   |
|                     |                   |                            |                   |           | 2,3823           | 64,92             | -9,08                      | 74,00             | pass   |
|                     |                   |                            |                   |           | 2,3795           | 64,84             | -9,16                      | 74,00             | pass   |
|                     |                   |                            |                   |           |                  |                   |                            |                   |        |
|                     |                   |                            |                   |           |                  |                   |                            |                   |        |

|--|--|



FCC 3 Band edge emission according to



#### according to FCC §15.247, RSS-247, FCC §15.209 RSS-Gen

#### Ref.-No.: 20/01-0030

Operation mode: WLAN CH.01; BW = 20MHz; CCK; 802.11b; Low edge

| Spectrum Receiver 🔆 🛞                |          |              |            |              |      | ſ                           |        |
|--------------------------------------|----------|--------------|------------|--------------|------|-----------------------------|--------|
| RBW (EMI) 1 MHz MT                   | 1 s      | II           | F56-1-7GHz | ohne Amp     | TDF  |                             |        |
| Input 1 AC Att 0 dB Preamp           | OFF Step | TD Scan      |            |              |      |                             |        |
| Scan 🔵 1Av Max 🎯 2Pk Max             |          |              |            |              |      |                             |        |
| Limit Check                          | PASS     |              | M1[2]      |              | 10   | 06.00 dBµV,                 | /m     |
| 120 HB1W/m56-1-6CHZ-AV-WLAN-2-1CH    | PASS     |              | -0.000 s   |              | 2.40 | 09250000 G                  | Hz     |
| Line IT56-1-6GHZ-PEAK-WLAN-2-4       | PASS     |              | D2[2]      |              |      | -31.16                      | dB     |
| 110 dBuV/m                           |          |              | 0.000 s    |              | -1   | 0.250000 M                  | Hz     |
|                                      |          |              | X          | mm           |      |                             |        |
| 100 dBuV/m                           |          |              |            |              |      |                             |        |
|                                      |          |              |            | <b>*</b> _}∖ |      |                             |        |
| 90 dBµV/m                            |          |              | P -        |              |      |                             |        |
|                                      |          |              | Λ          |              |      |                             |        |
| 80 dBµV/m                            |          | D2           |            |              |      |                             |        |
| IT56-1-6GHZ-PEAK-WLAN-2-4GHZ_FCC.LIN |          | A            |            |              |      |                             |        |
| 70 dBµV/m                            |          | ~            |            |              |      |                             |        |
|                                      | ××       |              |            |              |      | ~~~~                        | $\sim$ |
| 60 dBµV/m                            |          |              |            |              |      |                             |        |
| IT56-1-6GHZ-AV-WLAN-2-4GHZ_FCC.LIN   |          | $\sim$       | ~~         |              | ٧Ŋ   |                             |        |
| 50 dBµV/m                            |          | A port       |            |              |      |                             | _      |
|                                      | mont     | $\mathbb{N}$ |            |              | - ~~ | $\mathcal{M}_{\mathcal{M}}$ | 4      |
| 40 dBµV/m                            |          |              |            |              |      |                             |        |
|                                      |          |              |            |              |      |                             |        |
| 30 dBµV/m                            |          | F            | 1          |              | L    |                             |        |
|                                      |          |              |            | Т            | -    | an 0.440.01                 | _      |
| Start 2.343 GHZ                      |          |              |            |              | St   | op 2.443 GF                 | 1Z     |

|                     | Polarisation: H   |                            |                   |        |                 |                   |                            |                   |        |  |  |
|---------------------|-------------------|----------------------------|-------------------|--------|-----------------|-------------------|----------------------------|-------------------|--------|--|--|
| Detector<br>Average |                   |                            |                   |        |                 |                   | Detector<br>Peak           |                   |        |  |  |
| Frequ.<br>[GHz]     | Level<br>[dBµV/m] | Margin<br>to Limit<br>[dB] | Limit<br>[dBµV/m] | Result | Frequ.<br>[GHz] | Level<br>[dBµV/m] | Margin<br>to Limit<br>[dB] | Limit<br>[dBµV/m] | Result |  |  |
| 2,3883              | 45,57             | -8,43                      | 54,00             | pass   | 2,3895          | 68,11             | -5,89                      | 74,00             | pass   |  |  |
|                     |                   |                            |                   |        | 2,3858          | 67,36             | -6,64                      | 74,00             | pass   |  |  |
|                     |                   |                            |                   |        | 2,3828          | 65,96             | -8,04                      | 74,00             | pass   |  |  |
|                     |                   |                            |                   |        | 2,3790          | 65,46             | -8,54                      | 74,00             | pass   |  |  |
|                     |                   |                            |                   |        |                 |                   |                            |                   |        |  |  |

| TESTED |
|--------|
|        |

2,4908

2,5330

2,5220

42,60

42,60

42,28

-11,40

-11,40

-11,72

54,00

54,00

54,00

pass

pass

pass

74,00

74,00

74,00

# Higher Band Edge - 802.11b 20MHz / CCK - MCS=0; 1 MBps / both antennas are active

| TESTE<br>IN GE | D<br>RMANY | ECC &               | Ban<br>15 247 DS        | FCC        | 3<br>nission<br>to | 00 PSS G         |                  | 足ら                | TC                                               |
|----------------|------------|---------------------|-------------------------|------------|--------------------|------------------|------------------|-------------------|--------------------------------------------------|
|                |            | 1003                | 15.247,10               | 0-247,10   | 0 910.20           | <u>55 N00-06</u> |                  |                   |                                                  |
| RefNo.:        | 20/01-     | -0030               |                         |            |                    |                  |                  |                   |                                                  |
| Product:       | Transn     | nitting/Red         | eiving Sys              | tem        |                    |                  |                  |                   |                                                  |
| Sample:        | 01         |                     |                         |            |                    |                  |                  |                   |                                                  |
| Date:          | 07.04.2    | 2020                |                         |            |                    |                  |                  |                   |                                                  |
| Operator:      | BI         |                     |                         |            |                    |                  |                  | pass              | fail                                             |
| Remarks:       | DAC 0      | (ANT1); E           | DAC1 (ANT               | 2) Both A  | ntennas            | ON               | Res              | ult: 🔀            |                                                  |
| Operation i    | mode: WLA  | N CH.11;            | BW = 20M                | Hz; CCK;   | 802.11b;           | High edge        | 9                |                   |                                                  |
| Spectrum       | Rec        | eiver (             | $\overline{\mathbf{x}}$ |            |                    |                  |                  |                   | Ē                                                |
| opoonan        | RBW (EMI)  | )1 MHz MI           | <br>Г 1 s               |            | IT56-              | 1-7GHz ohne      | AmpTDF           |                   | ( <sup>Δ</sup>                                   |
| Input 1 AC     | Att        | OdB Pr              | eamp OFF                | Step TD So | an                 |                  |                  |                   |                                                  |
| IT56-Lifentia  | REAK-WLAN- | viax<br>2-4GHZ_FCC  | PAS                     | 3          |                    |                  |                  |                   |                                                  |
| 120 HBµ/V/M    | 56-1-6CHZ- | AV-WIAN-            | 2-161 PAS               |            |                    |                  |                  |                   |                                                  |
|                | 50-1-0GHZ- | PEAK-WLA            | N-2-4 PAS               | <b>`</b>   |                    |                  |                  |                   |                                                  |
| 110 dBµV/m     |            |                     |                         |            |                    |                  |                  |                   |                                                  |
| 100 dBuV/m     |            |                     | 2                       |            |                    |                  |                  |                   |                                                  |
|                |            |                     |                         |            |                    |                  |                  |                   |                                                  |
| 90 dBµV/m-     |            |                     |                         |            |                    |                  |                  |                   |                                                  |
|                |            |                     | N                       |            |                    |                  |                  |                   |                                                  |
| 80 dBµV/m-     | - 7        | 1                   |                         |            |                    |                  |                  |                   |                                                  |
| 70 dBuV/m-     |            |                     |                         |            |                    |                  |                  |                   |                                                  |
|                |            |                     |                         | $\sim$     | **                 | ×                |                  |                   |                                                  |
| 60 dBµy/m-     | ~          |                     |                         |            |                    | ~~~~~            | <u>~~</u> +      | <del>~~~</del> +~ | <del>~~                                   </del> |
| ~~             | ~          |                     | M                       |            |                    |                  |                  |                   |                                                  |
| 50 dBµV/m-     | N          |                     |                         | MAL A      |                    |                  |                  |                   |                                                  |
| 40 dBuV/m-     | J-         |                     |                         |            | ~**                | ****             | + <b>*</b> ~~    |                   | *+>                                              |
|                |            |                     |                         |            |                    |                  |                  |                   |                                                  |
| 30 dBµV/m-     |            |                     |                         |            |                    |                  | TF               |                   |                                                  |
| Start 2.43     | 3 GHz      | •                   |                         | •          |                    |                  |                  | Stop 2            | 2.533 GHz                                        |
|                |            |                     |                         | Polarisati | on: V              |                  |                  |                   | ]                                                |
|                |            | Detector<br>Average |                         |            |                    |                  | Detector<br>Peak |                   |                                                  |
| Frequ.         | Level      | Margin              | Limit                   | Result     | Frequ.             | Level            | Margin           | Limit             | Result                                           |
| [GHz]          | [dBµV/m]   | to Limit<br>[dB]    | [dBµV/m]                |            | [GHz]              | [dBµV/m]         | to Limit<br>[dB] | [dBµV/m]          |                                                  |
| 2,4888         | 43,39      | -10,61              | 54,00                   | pass       | 2,4845             | 67,86            | -6,14            | 74,00             | pass                                             |
| 2,5095         | 42,64      | -11,36              | 54,00                   | pass       | 2,4878             | 66,73            | -7,27            | 74,00             | pass                                             |
| 2,5098         | 42,61      | -11,39              | 54,00                   | pass       | 2,4898             | 65,26            | -8,74            | 74,00             | pass                                             |

pass

pass

pass

2,4948

2,4965

2,5033

64,24

62,69

62,47

-9,76

-11,31

-11,53

| BSTC | TESTED |
|------|--------|
|------|--------|

| TESTED<br>IN GERMANY | FCC 3<br>Band edge emission | ESTC |
|----------------------|-----------------------------|------|
|                      | according to                |      |

FCC §15.247, RSS-247, FCC §15.209 RSS-Gen

Ref.-No.: 20/01-0030

Operation mode: WLAN CH.11; BW = 20MHz; CCK; 802.11b; High edge

| Spectrum Receiver 🗴             | )           |         |           |                 |                 |              |
|---------------------------------|-------------|---------|-----------|-----------------|-----------------|--------------|
| RBW (EMI) 1 MHz MT              | 1 s         | II      | 56-1-7GHz | ohne Amp        | TDF             |              |
| Input 1 AC Att 0 dB Prea        | mp OFF Step | TD Scan |           |                 |                 |              |
| Scan 🔵 1Av Max 😡 2Pk Max        |             |         |           |                 |                 |              |
| IT56-LINGHOREAK-WLAN-2-4GHZ_FCC | PASS        |         |           |                 |                 |              |
| 120 HBUW/M56-1-66HZ-AV-WLAN-2-  |             |         |           |                 |                 |              |
| Line IT56-1-66HZ-PEAK-WLAN-     | 2-4 PASS    |         |           |                 |                 |              |
| 110 dBµV/m                      |             |         |           |                 |                 |              |
| 100 dBµV/m                      |             |         |           |                 |                 |              |
|                                 | <u>\</u>    |         |           |                 |                 |              |
| 90 dBµV/m                       | 8           |         |           |                 |                 |              |
| 80 dBµV/m                       | <u></u>     |         |           |                 |                 |              |
|                                 |             |         |           |                 |                 |              |
| 70 dBµV/m                       |             | - XXX   |           |                 |                 |              |
| 60 dBµy/m                       |             |         | ~~~×~     | ~ <u>**</u> ~x~ | - <del>**</del> | × .          |
|                                 | L           |         |           |                 | ×               |              |
| 50 dBµV/m                       | - h         |         |           |                 |                 |              |
|                                 | Wh          | m       |           |                 |                 | town         |
| 40 dBμV/m                       |             |         |           |                 |                 |              |
| 20 db. //m                      |             |         |           |                 |                 |              |
|                                 |             |         |           |                 |                 |              |
| Start 2.433 GHz                 |             |         |           |                 | St              | op 2.533 GHz |

|                     | Polarisation: H   |                            |                   |        |                 |                   |                            |                   |        |  |
|---------------------|-------------------|----------------------------|-------------------|--------|-----------------|-------------------|----------------------------|-------------------|--------|--|
| Detector<br>Average |                   |                            |                   |        |                 |                   | Detector<br>Peak           |                   |        |  |
| Frequ.<br>[GHz]     | Level<br>[dBµV/m] | Margin<br>to Limit<br>[dB] | Limit<br>[dBµV/m] | Result | Frequ.<br>[GHz] | Level<br>[dBµV/m] | Margin<br>to Limit<br>[dB] | Limit<br>[dBµV/m] | Result |  |
| 2,5220              | 44,04             | -9,96                      | 54,00             | pass   | 2,4840          | 65,50             | -8,50                      | 74,00             | pass   |  |
| 2,4883              | 43,24             | -10,76                     | 54,00             | pass   | 2,4885          | 64,35             | -9,65                      | 74,00             | pass   |  |
| 2,5330              | 42,68             | -11,32                     | 54,00             | pass   | 2,4903          | 63,27             | -10,73                     | 74,00             | pass   |  |
| 2,5100              | 42,54             | -11,46                     | 54,00             | pass   | 2,4980          | 62,76             | -11,24                     | 74,00             | pass   |  |
| 2,5095              | 42,53             | -11,47                     | 54,00             | pass   | 2,4963          | 61,93             | -12,07                     | 74,00             | pass   |  |
| 2,4898              | 42,53             | -11,47                     | 54,00             | pass   | 2,5033          | 61,72             | -12,28                     | 74,00             | pass   |  |
| ACTC | TESTED     |
|------|------------|
| ESIL | IN GERMANY |

# Lower Band Edge - 802.11g 20MHz / OFDM - MCS=0; 6 MBps / both antennas are active

| TESTED | FCC 3<br>Band edge emission               | 团STC |
|--------|-------------------------------------------|------|
|        | according to                              |      |
|        | FCC §15.247, RSS-247, FCC §15.209 RSS-Gen |      |

Ref.-No.: 20/01-0030

Operation mode: WLAN CH.01; BW = 20MHz; OFDM; 802.11g; Low edge

| Spectrum Receiver 💥 🕱                           |                  |                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------|------------------|-----------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RBW (EMI) 1 MHz MT                              | 1 s              | IT56-1-7GHz o   | hne AmpTDF  | · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Input 1 AC Att 0 dB Preamp                      | OFF Step TD Scan |                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Scan                                            |                  |                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Limit Check                                     | PASS             | D2[2]           |             | -34.55 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 120 HBW/M56-1-6CH7-AV-WI AN-2-4CH               | PASS             | -0.000 s        |             | -15.500000 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Line IT56-1-6GHZ-PEAK-WLAN-2-4                  | PASS             | M1[2]           |             | 105.47 dBµV/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                 |                  | 0.000 s         |             | 2.409250000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 110 dBµV/m-                                     |                  | M               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 100 d0.4/m                                      |                  |                 | $\tilde{v}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                  |                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 90 dBu V/m                                      |                  | A               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 90 dbpv/m                                       |                  |                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                  |                 | N           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                  |                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ITS0-I-00HZ-PEAK-WLAN-2-40HZ_FCC.LIN            | D2               |                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 70 dBµV/m                                       |                  | 7               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 | **               |                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 60 dB#V/m + + + + + + + + + + + + + + + + + + + |                  |                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IT56-1-6GHZ-AV-WLAN-2-4GHZ_FCC.LIN              |                  | $\sqrt{\gamma}$ | - IV        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 50 dBµV/m                                       |                  | + +             | V           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                  |                 |             | mar and a start of the start of |
| 40 dBµV/m                                       |                  | + +             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                  |                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30 dBuV/m                                       |                  | F1              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TF                                              |                  |                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Start 2.343 GHz                                 |                  |                 |             | Stop 2.443 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

|                                    | Polarisation: V   |                            |                   |        |                  |                   |                            |                   |        |
|------------------------------------|-------------------|----------------------------|-------------------|--------|------------------|-------------------|----------------------------|-------------------|--------|
| Detector<br>Average                |                   |                            |                   |        | Detector<br>Peak |                   |                            |                   |        |
| Frequ.<br>[GHz]                    | Level<br>[dBµV/m] | Margin<br>to Limit<br>[dB] | Limit<br>[dBµV/m] | Result | Frequ.<br>[GHz]  | Level<br>[dBµV/m] | Margin<br>to Limit<br>[dB] | Limit<br>[dBµV/m] | Result |
| all emissions are 10dB below limit |                   | pass                       | 2,3895            | 68,04  | -5,96            | 74,00             | pass                       |                   |        |
|                                    |                   |                            |                   |        | 2,3863           | 66,74             | -7,26                      | 74,00             | pass   |
|                                    |                   |                            |                   |        | 2,3828           | 64,03             | -9,97                      | 74,00             | pass   |
|                                    |                   |                            |                   |        |                  |                   |                            |                   |        |
|                                    |                   |                            |                   |        |                  |                   |                            |                   |        |
|                                    |                   |                            |                   |        |                  |                   |                            |                   |        |

Γ





according to FCC §15.247, RSS-247, FCC §15.209 RSS-Gen

Ref.-No.: 20/01-0030

Operation mode: WLAN CH.01; BW = 20MHz; OFDM; 802.11g; Low edge

| Spectrum Receiver 🔆 🖲               |           |             |           |          |          |             |     |
|-------------------------------------|-----------|-------------|-----------|----------|----------|-------------|-----|
| RBW (EMI) 1 MHz MT                  | 1 s       | II          | 56-1-7GHz | ohne Amp | TDF      |             | _   |
| Input 1 AC Att 0 dB Preamp          | OFF Step  | TD Scan     |           |          |          |             |     |
| Scan 🔵 1Av Max 😡 2Pk Max            |           |             |           |          |          |             |     |
| Limit Check                         | PASS      |             | D2[2]     |          |          | -33.13 d    | dВ  |
| 120 HBUN/M56-1-66HZ-AV-WLAN-2-16H   | PASS      |             | -0.000 s  |          | -1       | 0.250000 MH | Ηz  |
| Line IT56-1-66HZ-PEAK-WLAN-2-4      | PASS      |             | M1[2]     |          | 10       | )2.56 dBµV∕ | m   |
| 110 dBuV/m                          |           |             | 0.000 s   |          | 2.4      | 09250000 GH | dz. |
|                                     |           |             | М         |          |          |             |     |
|                                     |           |             | , j       |          |          |             |     |
| 100 dBµV/m                          |           |             | 1         |          |          |             |     |
|                                     |           |             |           | V        |          |             |     |
| 90 dBµV/m                           |           |             | <u> </u>  |          |          |             | _   |
|                                     |           |             | ľ         | ۷        |          |             |     |
| 80.JBuV/m                           |           |             |           |          |          |             |     |
| IT56-1-6GHZ-PEAK-WLAN-2-4GHZ_ECCLIN |           |             | 1         |          |          |             |     |
|                                     |           | 02          |           |          | ~        |             |     |
| 70 dBµV/m                           | ×         |             |           |          |          |             | _   |
|                                     | ×         |             |           |          |          |             | 1   |
|                                     |           |             |           |          | <u> </u> |             | _   |
| IT56-1-6GHZ-AV-WLAN-2-4GHZ_FCC.LIN  |           |             | - N       |          |          |             |     |
| 50 dBu//m                           |           |             | ~~        |          | <u>ч</u> |             |     |
|                                     | I .       | $\sim \sim$ |           |          |          |             |     |
|                                     | $\square$ | $\sim$      |           |          |          |             | 2   |
| 40 dBµV/m                           |           |             |           |          |          |             | _   |
|                                     |           |             |           |          |          |             |     |
| 30 dBµV/m                           |           | F           | 1         |          |          |             | _   |
| Ptart 2 242 CHz                     |           |             |           |          | C+       | on 2 442 CU |     |
|                                     |           |             |           |          | ઠા       | up 2.443 GH | ۷   |

| Polarisation: | Η |
|---------------|---|
|---------------|---|

| Detector<br>Average |                   |                            |                   |        |                 |                   | Detector<br>Peak           |                   |        |
|---------------------|-------------------|----------------------------|-------------------|--------|-----------------|-------------------|----------------------------|-------------------|--------|
| Frequ.<br>[GHz]     | Level<br>[dBµV/m] | Margin<br>to Limit<br>[dB] | Limit<br>[dBµV/m] | Result | Frequ.<br>[GHz] | Level<br>[dBµV/m] | Margin<br>to Limit<br>[dB] | Limit<br>[dBµV/m] | Result |
| 2,3870              | 44,87             | -9,13                      | 54,00             | pass   | 2,3883          | 66,92             | -7,08                      | 74,00             | pass   |
|                     |                   |                            |                   |        | 2,3835          | 65,49             | -8,51                      | 74,00             | pass   |
|                     |                   |                            |                   |        | 2,3828          | 64,83             | -9,17                      | 74,00             | pass   |
|                     |                   |                            |                   |        |                 |                   |                            |                   |        |
|                     |                   |                            |                   |        |                 |                   |                            |                   |        |

Higher Band Edge - 802.11g 20MHz / OFDM – MCS=0; 6 MBps / both antennas are active

| TESTED     | FCC 3                                   | RCTC |
|------------|-----------------------------------------|------|
| IN GERMANY | Band edge emission                      |      |
|            | according to                            |      |
|            | ECC §15 247 RSS-247 ECC §15 209 RSS-Gen |      |

Ref.-No.: 20/01-0030

Operation mode: WLAN CH.11; BW = 20MHz; OFDM; 802.11g; High edge

| Spectrum Receiver 🗵                          |                    |         |           |          |     | [                  |    |
|----------------------------------------------|--------------------|---------|-----------|----------|-----|--------------------|----|
| RBW (EMI) 1 MHz MT                           | 1 5                | IT      | 56-1-7GHz | ohne Amp | TDF |                    |    |
| Input 1 AC Att 0 dB Preamp                   | OFF Step           | TD Scan |           |          |     |                    |    |
| Scan 😑 1Av Max 😑 2Pk Max                     |                    |         |           |          |     |                    |    |
| IT56-LIGGHCREAK-WLAN-2-4GHZ_FCC              | PASS               |         |           |          |     |                    |    |
| 120 出版如/而 <del>56-1-66HZ-AV-WLAN-2-46H</del> | PASS               |         |           |          |     |                    |    |
| Line IT56-1-6GHZ-PEAK-WLAN-2-4               | PASS               |         |           |          |     |                    |    |
| 110 dBuV/m                                   |                    |         |           |          |     |                    |    |
|                                              |                    |         |           |          |     |                    |    |
| 100 dB: ///m                                 |                    |         |           |          |     |                    |    |
|                                              | N .                |         |           |          |     |                    |    |
|                                              |                    |         |           |          |     |                    |    |
| 90 dBµV/m                                    |                    |         |           |          |     |                    |    |
|                                              |                    |         |           |          |     |                    |    |
| 80 dBµý/m                                    |                    |         |           |          |     |                    |    |
|                                              | $\parallel \Sigma$ |         |           |          |     |                    |    |
| 70 dBuV/m                                    | $1 \sim$           |         |           |          |     |                    |    |
|                                              |                    |         |           |          |     |                    |    |
| 50 down                                      | $  \rangle$        |         | ×         |          |     |                    |    |
|                                              | m                  |         | - And     | X        | ~×~ | $\sim$             |    |
|                                              |                    |         |           |          |     | $\sim \times \sim$ | ×- |
| 50 dBµV/m=                                   | -                  | $\sim$  |           |          |     |                    |    |
| ~                                            |                    |         | ~ · ·     |          |     |                    |    |
| 40 dBµV/m                                    |                    |         |           |          |     | +-+                |    |
|                                              |                    |         |           |          |     |                    |    |
| 30 dBµV/m                                    |                    |         |           |          |     |                    |    |
|                                              |                    |         |           | L T      |     |                    |    |
| E Start 2.433 GHZ                            |                    |         |           |          | St  | op 2.533 GI        | ΠZ |

| Polarisation: V     |                   |                            |                   |        |                 |                   |                            |                   |        |
|---------------------|-------------------|----------------------------|-------------------|--------|-----------------|-------------------|----------------------------|-------------------|--------|
| Detector<br>Average |                   |                            |                   |        |                 |                   | Detector<br>Peak           |                   |        |
| Frequ.<br>[GHz]     | Level<br>[dBµV/m] | Margin<br>to Limit<br>[dB] | Limit<br>[dBµV/m] | Result | Frequ.<br>[GHz] | Level<br>[dBµV/m] | Margin<br>to Limit<br>[dB] | Limit<br>[dBµV/m] | Result |
| 2,4865              | 45,88             | -8,12                      | 54,00             | pass   | 2,4878          | 62,44             | -11,56                     | 74,00             | pass   |
| 2,4900              | 44,23             | -9,77                      | 54,00             | pass   | 2,4915          | 62,14             | -11,86                     | 74,00             | pass   |
| 2,5095              | 42,94             | -11,06                     | 54,00             | pass   | 2,4930          | 59,41             | -14,59                     | 74,00             | pass   |
| 2,5098              | 42,90             | -11,10                     | 54,00             | pass   | 2,4978          | 59,22             | -14,78                     | 74,00             | pass   |
| 2,4935              | 42,69             | -11,31                     | 54,00             | pass   | 2,5033          | 59,04             | -14,96                     | 74,00             | pass   |
| 2,5163              | 42,57             | -11,43                     | 54,00             | pass   | 2,5015          | 58,69             | -15,31                     | 74,00             | pass   |

| TESTED<br>IN GERMANY |
|----------------------|
|                      |



FCC 3 Band edge emission according to



according to FCC §15.247, RSS-247, FCC §15.209 RSS-Gen

Ref.-No.: 20/01-0030

Operation mode: WLAN CH.11; BW = 20MHz; OFDM; 802.11g; High edge

| Spectrum Receiver 🗴               |                   |          |           |           |          |             |        |
|-----------------------------------|-------------------|----------|-----------|-----------|----------|-------------|--------|
| RBW (EMI) 1 MHz MT                | 1 5               | IT       | 56 1 7GHz | ohne Amp" | тог      |             | _      |
| Input 1 AC Att 0 dB Preamp        | OFF Step          | TD Scan  |           |           |          |             | _      |
| Scan 🔵 1Av Max 😡 2Pk Max          |                   |          |           |           |          |             | ٦      |
| IT56-LIAGHCREAK-WLAN-2-4GHZ_FCC   | PASS              |          |           |           |          |             | ٦      |
| 120 HB1W/m56-1-66HZ-AV-WLAN-2-46H | PASS              |          |           |           |          |             | $\neg$ |
| Line IT56-1-6GHZ-PEAK-WLAN-2-4    | PASS              |          |           |           |          |             |        |
| 110 dBµV/m                        |                   |          |           |           |          |             | _      |
| m                                 |                   |          |           |           |          |             |        |
| 100 dBµV/m                        |                   |          |           |           |          |             | _      |
|                                   | 1/ 1              |          |           |           |          |             |        |
| 00 dBr0/m                         | N                 |          |           |           |          |             |        |
|                                   | 11                |          |           |           |          |             |        |
| 80 dBu //m                        |                   |          |           |           |          |             |        |
|                                   | $  \zeta $        |          |           |           |          |             |        |
|                                   | $   \setminus   $ |          |           |           |          |             |        |
|                                   | $H^{m}$           |          |           |           |          |             |        |
|                                   |                   | ×€       |           |           |          |             |        |
| 60 dBµV/m                         |                   |          |           | ~         |          |             | -      |
|                                   | ~~~               |          |           | Jon Xy    | <u> </u> | XXX         |        |
| 50 dBuV/m                         |                   | <u> </u> |           |           | m n n    |             | 1      |
|                                   |                   | ~~~      |           |           |          |             |        |
|                                   |                   |          |           |           |          | ++++        | _      |
| 40 ashv/m                         |                   |          |           |           |          |             | _      |
|                                   |                   |          |           |           |          |             |        |
| 30 dBµV/m                         |                   |          |           |           |          |             | $\neg$ |
| Start 2.433 GHz                   |                   |          |           |           | St       | op 2.533 GH | z      |

|                 | Polarisation: H   |                            |                   |        |                 |                   |                            |                   |        |  |  |
|-----------------|-------------------|----------------------------|-------------------|--------|-----------------|-------------------|----------------------------|-------------------|--------|--|--|
|                 |                   | Detector<br>Average        |                   |        |                 |                   | Detector<br>Peak           |                   |        |  |  |
| Frequ.<br>[GHz] | Level<br>[dBµV/m] | Margin<br>to Limit<br>[dB] | Limit<br>[dBµV/m] | Result | Frequ.<br>[GHz] | Level<br>[dBµV/m] | Margin<br>to Limit<br>[dB] | Limit<br>[dBµV/m] | Result |  |  |
| 2,4868          | 44,69             | -9,31                      | 54,00             | pass   | 2,4838          | 65,28             | -8,72                      | 74,00             | pass   |  |  |
| 2,4898          | 43,42             | -10,58                     | 54,00             | pass   | 2,4898          | 61,35             | -12,65                     | 74,00             | pass   |  |  |
| 2,5098          | 42,74             | -11,26                     | 54,00             | pass   | 2,4895          | 61,24             | -12,76                     | 74,00             | pass   |  |  |
| 2,5158          | 42,62             | -11,38                     | 54,00             | pass   | 2,4975          | 59,17             | -14,83                     | 74,00             | pass   |  |  |
| 2,5095          | 42,59             | -11,41                     | 54,00             | pass   | 2,4998          | 58,52             | -15,48                     | 74,00             | pass   |  |  |
| 2,4938          | 42,41             | -11,59                     | 54,00             | pass   | 2,4930          | 58,14             | -15,86                     | 74,00             | pass   |  |  |

|  | BSTC | TESTED |
|--|------|--------|
|--|------|--------|

园STC

Lower Band Edge - 802.11n 20MHz / HT Greenfield - MCS=0; 6.5 MBps / both antennas are active

| TE: | STED    |
|-----|---------|
| IN  | GERMANY |

FCC 3 Band edge emission according to FCC §15.247, RSS-247, FCC §15.209 RSS-Gen

Ref.-No.: 20/01-0030

Operation mode: WLAN CH.01; BW = 20MHz; Greenfield; 802.11n; Low edge

| Spectrum Receiver 🔆 🖲                |            |        |           |                    |             |              |
|--------------------------------------|------------|--------|-----------|--------------------|-------------|--------------|
| RBW (EMI) 1 MHz MT                   | 1 s        | II     | 56-1-7GHz | ohne Amp           | TDF         |              |
| InputIAC Att 0 dB Preamp             | OFF Step T | D Scan |           |                    |             |              |
| Scan                                 |            |        |           |                    |             |              |
| Limit Check                          | PASS       |        | M1[2]     |                    | 1(          | )4.39 dBµV/m |
| Line IT56-1-6GHZ-PEAK-WLAN-2-4       | PASS       |        | D2[2]     |                    | 2.7         | -34.62 dB    |
| 110 dBµV/m                           |            |        | 0.000 S   | M1                 | -1          | 4.230000 MHZ |
| 100 dBuV/m                           |            |        | (ř        |                    |             |              |
|                                      |            |        |           | $  \wedge \rangle$ |             |              |
| 90 dBµV/m                            |            |        | 1         | 4                  |             |              |
| 80 dBµV/m                            |            |        |           |                    |             |              |
| IT56-1-6GHZ-PEAK-WLAN-2-4GHZ_FCC.LIN |            |        | Λ         |                    |             |              |
| 70 dBµV/m                            |            |        |           |                    | ~~~         |              |
| 60 dBuV/m                            | ~~~        | ~      |           |                    |             | $\sim$       |
| IT56-1-6GHZ-AV-WLAN-2-4GHZ_FCC.LIN   |            |        | $\sim$    |                    | $M_{\rm h}$ |              |
| 50 dBµV/m                            |            |        |           |                    | V L         |              |
| 40 dBuV/m                            | from       | 4      |           |                    |             | $\sim$       |
|                                      |            |        |           |                    |             |              |
| 30 dBµV/m-                           |            | TF     | 1         |                    |             |              |
| Start 2.343 GHz                      |            |        |           |                    | St          | op 2.443 GHz |

|                                    |                   |                            |                   | Polarisati | on: V           |                   |                            |                   |        |
|------------------------------------|-------------------|----------------------------|-------------------|------------|-----------------|-------------------|----------------------------|-------------------|--------|
| Detector<br>Average                |                   |                            |                   |            |                 |                   | Detector<br>Peak           |                   |        |
| Frequ.<br>[GHz]                    | Level<br>[dBµV/m] | Margin<br>to Limit<br>[dB] | Limit<br>[dBµV/m] | Result     | Frequ.<br>[GHz] | Level<br>[dBµV/m] | Margin<br>to Limit<br>[dB] | Limit<br>[dBµV/m] | Result |
| all emissions are 10dB below limit |                   |                            |                   | pass       | all             | emissions are     | 10dB belov                 | w limit           | pass   |
|                                    |                   |                            |                   |            |                 |                   |                            |                   |        |
|                                    |                   |                            |                   |            |                 |                   |                            |                   |        |
|                                    |                   |                            |                   |            |                 |                   |                            |                   |        |
|                                    |                   |                            |                   |            |                 |                   |                            |                   |        |

| BSTC | TESTED |
|------|--------|
|------|--------|

| TESTED | FCC 3                                     | RISTC |
|--------|-------------------------------------------|-------|
|        | Band edge emission                        |       |
|        | according to                              |       |
|        | FCC §15.247, RSS-247, FCC §15.209 RSS-Gen |       |

Ref.-No.: 20/01-0030

Operation mode: WLAN CH.01; BW = 20MHz; Greenfield; 802.11n; Low edge

| Spectrum Receiver 🔆 🖲                |                  |                                         |           |          |                | ſ           |        |
|--------------------------------------|------------------|-----------------------------------------|-----------|----------|----------------|-------------|--------|
| RBW (EMI) 1 MHz MT                   | 1 s              | II                                      | 56-1-7GHz | ohne Amp | TDF            |             |        |
| Input 1 AC Att 0 dB Preamp           | OFF Step         | TD Scan                                 |           |          |                |             |        |
| Scan 🔵 1 Av Max 🎯 2 Pk Max           |                  |                                         |           |          |                |             |        |
| Limit Check                          | PASS             |                                         | M1[2]     |          | 10             | )6.22 dBµV, | /m     |
| 120 HBUW/M56-1-6CHZ-AV-WLAN-2-1CH    | PASS             |                                         | -0.000 s  |          | 2.4            | 09250000 G  | Hz     |
| Line IT56-1-66HZ-PEAK-WLAN-2-4       | PASS             |                                         | D2[2]     |          |                | -34.62      | dB     |
| 110 dBuV/m-                          |                  |                                         | 0.000 s   |          | -              | 9.750000 M  | Hz     |
|                                      |                  |                                         |           | 10       |                |             |        |
|                                      |                  |                                         |           |          |                |             |        |
| 90 dBµV/m-                           |                  |                                         | ſ         | 1        |                |             |        |
| 80 dBµV/m                            |                  |                                         | $\Lambda$ |          |                |             | _      |
| IT56-1-6GHZ-PEAK-WLAN-2-4GHZ_FCC.LIN |                  | D2                                      |           |          |                |             |        |
|                                      |                  | مسمر                                    |           |          |                |             |        |
| 60 dBµV/m                            | $\sim \sim \sim$ |                                         | ar        |          | 10.            | $r \sim d$  |        |
| IT56-1-6GHZ-AV-WLAN-2-4GHZ_FCC.LIN-  |                  | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~ *       |          | ۳ <i>ک</i> ړ ۲ |             |        |
| 50 dBµV/m                            |                  | $\bigwedge^{\prime}$                    |           |          |                | M_          |        |
| 40 dBuV/m                            |                  | V                                       |           |          |                | ~~~         | $\sim$ |
|                                      |                  |                                         |           |          |                |             |        |
| .30 dBµV/m                           |                  | F                                       | 1         |          |                |             |        |
| Start 2.343 GHz                      | 1                |                                         |           |          | St             | op 2.443 GF | ١z     |

|                     | Polarisation: H   |                            |                   |        |                                    |                   |                            |                   |        |  |
|---------------------|-------------------|----------------------------|-------------------|--------|------------------------------------|-------------------|----------------------------|-------------------|--------|--|
| Detector<br>Average |                   |                            |                   |        |                                    | Detector<br>Peak  |                            |                   |        |  |
| Frequ.<br>[GHz]     | Level<br>[dBµV/m] | Margin<br>to Limit<br>[dB] | Limit<br>[dBµV/m] | Result | Frequ.<br>[GHz]                    | Level<br>[dBµV/m] | Margin<br>to Limit<br>[dB] | Limit<br>[dBµV/m] | Result |  |
| 2,3883              | 45,17             | -8,83                      | 54,00             | pass   | all emissions are 10dB below limit |                   |                            | pass              |        |  |
|                     |                   |                            |                   |        |                                    |                   |                            |                   |        |  |
|                     |                   |                            |                   |        |                                    |                   |                            |                   |        |  |
|                     |                   |                            |                   |        |                                    |                   |                            |                   |        |  |
|                     |                   |                            |                   |        |                                    |                   |                            |                   |        |  |
|                     |                   |                            |                   |        |                                    |                   |                            |                   |        |  |

| TESTED     | Test report no.: |  |
|------------|------------------|--|
| IN GERMANY | 20/01-0030-A     |  |

Higher Band Edge - 802.11n 20MHz / HT Greenfield – MCS=0; 6.5 MBps / both antennas are active

| TESTED | FCC 3<br>Band edge emission               | 匠STC |
|--------|-------------------------------------------|------|
|        | according to                              |      |
|        | FCC §15.247, RSS-247, FCC §15.209 RSS-Gen |      |

Ref.-No.: 20/01-0030

Operation mode: WLAN CH.11; BW = 20MHz; Greenfield; 802.11n; High edge

| Spectrum Receiver 🙁               |              |              |            |          |                                         |                                        |
|-----------------------------------|--------------|--------------|------------|----------|-----------------------------------------|----------------------------------------|
| RBW (EMI) 1 MHz MT                | 1 s          | II           | [56-1-7GHz | ohne Amp | TDF                                     |                                        |
| Input 1 AC Att 0 dB Preamp        | OFF Step     | TD Scan      |            |          |                                         |                                        |
| Scan 🔵 1Av Max 🎯 2Pk Max          |              |              |            |          |                                         |                                        |
| IT56-LIGGHOREAK-WLAN-2-4GHZ_FCC   | PASS         |              |            |          |                                         |                                        |
| 120 HBUW/M56-1-6CHZ-AV-WLAN-2-1CH | PASS         |              |            |          |                                         |                                        |
| Line IT56-1-66HZ-PEAK-WLAN-2-4    | PASS         |              |            |          |                                         |                                        |
| 110 dBµV/m                        |              |              |            |          |                                         |                                        |
| 100 dBµV/m                        |              |              |            |          |                                         |                                        |
| 90 dBuV/m                         |              |              |            |          |                                         |                                        |
|                                   | $\mathbb{N}$ |              |            |          |                                         |                                        |
|                                   |              |              |            |          |                                         |                                        |
| 70 dBµV/m                         |              |              |            |          |                                         |                                        |
| 60 dBuV/m                         | $\square$    | · 1          |            |          |                                         |                                        |
|                                   | 4            | 🗠 🗠          |            |          |                                         |                                        |
| 50 dBuV/m                         | ~            |              | m          |          | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|                                   |              | - the second | L          |          |                                         |                                        |
| 40 dBµV/m                         |              |              |            | +*       |                                         | ***                                    |
| 30 dBµV/m                         |              |              |            |          |                                         |                                        |
| Start 2.433 GHz                   | I            | 1            | I          | 1        | St                                      | op 2.533 GHz                           |

|                 |                   |                            |                   | Polarisati | on: V           |                   |                            |                   |        |
|-----------------|-------------------|----------------------------|-------------------|------------|-----------------|-------------------|----------------------------|-------------------|--------|
|                 |                   | Detector<br>Average        |                   |            |                 |                   | Detector<br>Peak           |                   |        |
| Frequ.<br>[GHz] | Level<br>[dBµV/m] | Margin<br>to Limit<br>[dB] | Limit<br>[dBµV/m] | Result     | Frequ.<br>[GHz] | Level<br>[dBµV/m] | Margin<br>to Limit<br>[dB] | Limit<br>[dBµV/m] | Result |
| 2,4840          | 45,53             | -8,47                      | 54,00             | pass       | 2,4893          | 55,93             | -18,07                     | 74,00             | pass   |
| 2,4868          | 43,27             | -10,73                     | 54,00             | pass       | 2,4898          | 54,76             | -19,24                     | 74,00             | pass   |
| 2,5098          | 42,68             | -11,32                     | 54,00             | pass       |                 |                   |                            |                   |        |
| 2,5095          | 42,60             | -11,40                     | 54,00             | pass       |                 |                   |                            |                   |        |
| 2,4898          | 42,43             | -11,57                     | 54,00             | pass       |                 |                   |                            |                   |        |
| 2,4950          | 42,41             | -11,59                     | 54,00             | pass       |                 |                   |                            |                   |        |

| TESTED<br>IN GERMANY | FCC 3<br>Band edge emission | 匠STC |
|----------------------|-----------------------------|------|
|                      | according to                |      |

FCC §15.247, RSS-247, FCC §15.209 RSS-Gen

Ref.-No.: 20/01-0030

Operation mode: WLAN CH.11; BW = 20MHz; Greenfield; 802.11n; High edge

| Spectrum Receiver X                                    |                    |          |           |          |         |             |   |
|--------------------------------------------------------|--------------------|----------|-----------|----------|---------|-------------|---|
| RBW (EMI) 1 MHz MT                                     | 1 s                | II       | 56-1-7GHz | ohne Amp | TDF     |             | _ |
| Input 1 AC Att 0 dB Preamp                             | OFF Step           | TD Scan  |           |          |         |             | _ |
| Scan 🕒 1Av Max 🕒 2Pk Max                               |                    |          |           |          |         |             |   |
| IT56-LIAGHCREAK-WLAN-2-4GHZ_FCC                        | PASS               |          |           |          |         |             |   |
| 120 ዘክ/// <del>/////////////////////////////////</del> | PASS               |          |           |          |         |             | — |
| Line IT56-1-66HZ-PEAK-WLAN-2-4                         | PASS               |          |           |          |         |             |   |
| 110 dBµV/m                                             |                    |          |           |          |         |             |   |
| mon                                                    | 1                  |          |           |          |         |             |   |
| 100 dBuV/m                                             | Λ                  |          |           |          |         |             |   |
|                                                        | 11                 |          |           |          |         |             |   |
| 90 dBuV/m                                              | 11                 |          |           |          |         |             | _ |
|                                                        | ]]]                |          |           |          |         |             |   |
| 80 dBµV/m                                              | +11                |          |           |          |         |             | - |
|                                                        | $  _{\mathcal{N}}$ |          |           |          |         |             | _ |
| 70 dBµV/m                                              | $\square$          |          |           |          |         |             |   |
|                                                        |                    |          |           |          |         |             |   |
| SU BBUV/M                                              | 2                  | X        | Xox       | × ×      | X.      |             |   |
| 50 dBuW/m                                              | ~                  | <u> </u> | 1 Jun     | m        | · ····· | man         | 5 |
|                                                        |                    | -        |           |          |         |             |   |
| 40 dBuV/m                                              |                    |          | -+-+-     | k+       | * * *   | ++          | ~ |
|                                                        |                    |          |           |          |         |             |   |
|                                                        |                    |          |           |          |         |             |   |
| TF                                                     |                    |          |           |          |         |             | - |
| Start 2.433 GHz                                        |                    |          |           |          | St      | op 2.533 GH | z |

|                         |                   |                            |                   | Polarisati | on: H           |                   |                            |                   |        |
|-------------------------|-------------------|----------------------------|-------------------|------------|-----------------|-------------------|----------------------------|-------------------|--------|
|                         |                   | Detector<br>Average        |                   |            |                 |                   | Detector<br>Peak           |                   |        |
| <b>Frequ</b> .<br>[GHz] | Level<br>[dBµV/m] | Margin<br>to Limit<br>[dB] | Limit<br>[dBµV/m] | Result     | Frequ.<br>[GHz] | Level<br>[dBµV/m] | Margin<br>to Limit<br>[dB] | Limit<br>[dBµV/m] | Result |
| 2,4865                  | 45,02             | -8,98                      | 54,00             | pass       | 2,4865          | 58,33             | -15,67                     | 74,00             | pass   |
| 2,4900                  | 43,76             | -10,24                     | 54,00             | pass       | 2,5105          | 55,76             | -18,24                     | 74,00             | pass   |
| 2,5105                  | 43,06             | -10,94                     | 54,00             | pass       | 2,4905          | 54,99             | -19,01                     | 74,00             | pass   |
| 2,4930                  | 42,65             | -11,35                     | 54,00             | pass       | 2,4940          | 54,41             | -19,59                     | 74,00             | pass   |
| 2,5095                  | 42,52             | -11,48                     | 54,00             | pass       | 2,5053          | 54,40             | -19,60                     | 74,00             | pass   |
| 2,5135                  | 42,42             | -11,58                     | 54,00             | pass       | 2,5095          | 54,03             | -19,97                     | 74,00             | pass   |

|--|--|

Lower Band Edge - 802.11n 40MHz / HT Greenfield - MCS=0; 6.5 MBps / both antennas are active

| TESTED | FCC 3<br>Band edge emission               | 围STC |
|--------|-------------------------------------------|------|
|        | Duna cage chilission                      |      |
|        | according to                              |      |
|        | FCC §15.247, RSS-247, FCC §15.209 RSS-Gen |      |
|        |                                           |      |

Ref.-No.: 20/01-0030

Operation mode: WLAN CH.03; BW = 40MHz; Greenfield; 802.11n40; Low edge

| RBW (EMI) 1 MHz MT 1 s IT56-1-7GHz ohne AmpTDF       Input 1 AC     Att     0 dB     Preamp OFF     Step TD Scan       Scan     1Av Max@2Pk Max                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Input 1 AC     Att     0 dB     Preamp OFF     Step TD Scan       Scan     1Av Max@2Pk Max                                                                                                                                                                                                   |
| Scan     ● 1Av Max ● 2Pk Max       Linit Check     PASS     D2[2]     -35.80 d       120 HBpv/m556-1-6CH7-AV-VLAN-2-4CL     PASS     0.000 s     -16.750000 MH       Lina     IT56-1-6CHZ-PEAK-WLAN-2-4     PASS     M1[2]     103.66 dBpV/r       110 dBpV/m     0.000 s     2.415750000 GH |
| Linit Check     PASS     D2[2]     -35.80 d       120 HBpv/M556-1-6CH7-AV-VLAN-2-4CE     PASS     0.000 s     -16.750000 MH       Lina IT56-1-6CH7-PEAK-WLAN-2-4     PASS     MI[2]     103.66 dBpV/r       110 dBpV/m     0.000 s     2.415750000 GH       110 dBpV/m     M1     M1         |
| 120 Hbμv/m556-1-6CHZ-AV-3/4 AV-2-4CL     PA88     -0.000 s     -16.750000 MH       Lina IT56-1-6CHZ-PEAR-WLAN-2-4     PASS     MI[2]     103.66 dBμV/r       110 dBμV/m     0.000 s     2.415750000 GH       110 dBμV/m     M1                                                               |
| Line IT56-1-6GHZ-PEAK-WLAN-2-4 PASS M1[2] 103.66 dBµV/r<br>110 dBµV/m<br>100 dBµV/m<br>100 dBµV/m                                                                                                                                                                                            |
| 110 dBµV/m                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                              |
| 100 down white                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                              |
| 90 dBµV/m                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                              |
| IT50-I-0GHZ-PEAK-WLAN-2-4GHZ FCC                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                              |
| 60 dBµV/m                                                                                                                                                                                                                                                                                    |
| 1156-1-66H7-AV-WI AN-2-46H7_FCC-                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                              |
| 40 dBpv/m                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                              |
| 30 dBµý/m                                                                                                                                                                                                                                                                                    |
| Start 2,343 GHz Stor 2,443 GHz                                                                                                                                                                                                                                                               |

|                 |                   |                            |                   | Polaris | ation: V        |                   |                            |                   |        |
|-----------------|-------------------|----------------------------|-------------------|---------|-----------------|-------------------|----------------------------|-------------------|--------|
|                 |                   | Detector<br>Average        |                   |         |                 |                   | Detector<br>Peak           |                   |        |
| Frequ.<br>[GHz] | Level<br>[dBµV/m] | Margin<br>to Limit<br>[dB] | Limit<br>[dBµV/m] | Result  | Frequ.<br>[GHz] | Level<br>[dBµV/m] | Margin<br>to Limit<br>[dB] | Limit<br>[dBµV/m] | Result |
| 2,3883          | 50,87             | -3,13                      | 54,00             | pass    | all e           | missions are      | 10dB below                 | limit             | pass   |
| 2,3863          | 50,30             | -3,70                      | 54,00             | pass    |                 |                   |                            |                   |        |
| 2,3828          | 47,44             | -6,56                      | 54,00             | pass    |                 |                   |                            |                   |        |
| 2,3785          | 45,85             | -8,15                      | 54,00             | pass    |                 |                   |                            |                   |        |
| 2,3760          | 44,44             | -9,56                      | 54,00             | pass    |                 |                   |                            |                   |        |
|                 |                   |                            |                   |         |                 |                   |                            |                   |        |

| BSTC | TESTED |
|------|--------|
|------|--------|



Γ

FCC 3 Band edge emission according to



# FCC §15.247, RSS-247, FCC §15.209 RSS-Gen

Ref.-No.: 20/01-0030

Operation mode: WLAN CH.03; BW = 40MHz; Greenfield; 802.11n40; Low edge

| Spectrum Receiver 🔆 🗵            |            |         |            |          |           |              |
|----------------------------------|------------|---------|------------|----------|-----------|--------------|
| RBW (EMI) 1 MHz MT               | 1 s        | I       | T56-1-7GHz | ohne Amp | TDF       |              |
| Input 1 AC Att 0 dB Preamp       | OFF Step 1 | TD Scan |            |          |           |              |
| Scan 🔵 1Av Max 🕒 2Pk Max         |            |         |            |          |           |              |
| Limit Check                      | PASS       |         | D2[2]      |          |           | -36.23 dB    |
| 120 HBW/M56-1-6CHZ-AV-WLAN-2-4CH | PASS       |         | -0.000 s   |          | -2        | 1.500000 MHz |
| Line IT56-1-6GHZ-PEAK-WLAN-2-4   | PASS       |         | M1[2]      |          | 10        | 04.90 dBµV/m |
| 110 - 0. 47/                     |            |         | 0.000 s    |          | 2.43      | 20500000 GHz |
| 110 dBpV/m                       |            |         |            | 1        | 11        |              |
|                                  |            |         |            | mon      | 1 mm      |              |
| 100 dBµV/m                       |            |         |            |          | $\bigvee$ | man          |
|                                  |            |         |            |          |           | l ì          |
| 00 d8:4//m                       |            |         | m          | ~~~~~    | h         | hann         |
|                                  |            |         |            |          | V         |              |
|                                  |            |         |            |          | V V       |              |
| 80 dBµV/m                        |            |         | +/1        |          |           | \            |
| IT56-1-6GHZ-PEAK-WLAN-2-4GHZ_FCC |            |         | 1/1        |          |           |              |
| 70 dBu 4//m                      |            | na na   |            |          |           |              |
|                                  |            | A       |            |          |           |              |
|                                  | ~~~~       | m       |            |          |           | \            |
| 60 dBµV/m                        | ~~~~       |         | ./         |          |           | $  \rangle$  |
| IT56-1-6GHZ-AV-WLAN-2-4GHZ_FCC   |            | $ \sim$ | ſ          |          |           |              |
| 50 dBuV/m                        |            | ~~~~    |            |          |           |              |
| + + +++                          |            |         |            |          |           |              |
|                                  |            |         |            |          |           |              |
| 40 dBpV/m                        |            |         |            |          |           |              |
|                                  |            |         |            |          |           |              |
| 30 dBuV/m                        |            | F       | 1          |          |           |              |
|                                  |            | TF      |            |          |           |              |
| Start 2.343 GHz                  |            |         |            |          | St        | op 2.443 GHz |

| Po | larisation: | н |
|----|-------------|---|

| Detector<br>Average |                   |                            |                   |        |                 |                   | Detector<br>Peak           |                   |        |
|---------------------|-------------------|----------------------------|-------------------|--------|-----------------|-------------------|----------------------------|-------------------|--------|
| Frequ.<br>[GHz]     | Level<br>[dBµV/m] | Margin<br>to Limit<br>[dB] | Limit<br>[dBµV/m] | Result | Frequ.<br>[GHz] | Level<br>[dBµV/m] | Margin<br>to Limit<br>[dB] | Limit<br>[dBµV/m] | Result |
| 2,3895              | 52,28             | -1,72                      | 54,00             | pass   | all             | emissions are     | e 10dB belov               | w limit           | pass   |
| 2,3860              | 51,61             | -2,39                      | 54,00             | pass   |                 |                   |                            |                   |        |
| 2,3810              | 48,29             | -5,71                      | 54,00             | pass   |                 |                   |                            |                   |        |
| 2,3768              | 47,62             | -6,38                      | 54,00             | pass   |                 |                   |                            |                   |        |
| 2,3758              | 47,49             | -6,51                      | 54,00             | pass   |                 |                   |                            |                   |        |
| 2,3710              | 46,16             | -7,84                      | 54,00             | pass   |                 |                   |                            |                   |        |

| RETC | TESTED     |
|------|------------|
| BOIL | IN GERMANY |

Higher Band Edge - 802.11n 40MHz / HT Greenfield – MCS=0; 6.5 MBps / both antennas are active

TESTED FCC 3 IN GERMANY Band edge emission according to FCC §15.247, RSS-247, FCC §15.209 RSS-Gen

Ref.-No.: 20/01-0030

ſ

Operation mode: WLAN CH.09; BW = 40MHz; Greenfield; 802.11n40; High edge

| Spectrum                   | Receiver       | ×             |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |     | (           |    |
|----------------------------|----------------|---------------|--------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----|-------------|----|
| R                          | BW (EMI) 1 MHz | : MT          | 1 s          | I       | F56-1-7GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ohne Amp                               | TDF |             |    |
| Input 1 AC A               | tt OdB         | Preamp        | OFF Step     | TD Scan |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |     |             | _  |
| 🛾 Scan 😑 1Av M             | lax©2Pk Max    |               |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |     |             |    |
| IT56-LIAGH2AR66            | SK-WLAN-2-4GHZ | FCC           | PASS         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |     |             |    |
| 120 HBp#//m <del>56-</del> | 1-6CHZ-AV-WI   | AN-2-1GF      | PASS         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |     |             |    |
| Line IT56-                 | 1-6GHZ-PEAK-   | WLAN-2-4      | PASS         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |     |             |    |
| 110 dBµV/m                 |                |               |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |     |             |    |
|                            |                |               |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |     |             |    |
| 100 dBuV/m                 |                | ~~~~ <u>~</u> |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |     |             |    |
| /                          |                |               |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |     |             |    |
|                            |                |               | Λ            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |     |             |    |
| 90 dBµV/m                  | V              |               | 1            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |     |             |    |
|                            |                |               |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |     |             |    |
| 80 dBµV/m                  |                |               | $\mathbb{H}$ |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |     |             |    |
|                            |                |               |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |     |             |    |
| 70 dBµý/m                  |                |               | $\square$    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |     |             |    |
|                            |                |               |              |         | × ××                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |     |             |    |
| 60 dBuV/m                  |                |               |              |         | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ~~×~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ××  | × *         |    |
|                            |                |               | M.           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | ľ v | $\sim$      |    |
| E0 d0 Alles                |                |               |              | month.  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |     |             |    |
| 50 uвµv/m——                |                |               |              | · · · · | the second secon |                                        |     |             |    |
|                            |                |               |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | met and                                |     | +++         |    |
| 40 dBµV/m                  |                |               |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |     |             |    |
|                            |                |               |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |     |             |    |
| 20 dBµV/m                  |                |               |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |     |             |    |
| Start 2.433 GI             | Hz             |               | 1            | 1       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                      | St  | op 2.533 Gi | Hz |

| Pol  | aris | atio | n: | v |
|------|------|------|----|---|
| F UI | ans  | auo  |    | v |

| Detector<br>Average |                   |                            |                   |        |                 |                   | Detector<br>Peak           |                   |        |
|---------------------|-------------------|----------------------------|-------------------|--------|-----------------|-------------------|----------------------------|-------------------|--------|
| Frequ.<br>[GHz]     | Level<br>[dBµV/m] | Margin<br>to Limit<br>[dB] | Limit<br>[dBµV/m] | Result | Frequ.<br>[GHz] | Level<br>[dBµV/m] | Margin<br>to Limit<br>[dB] | Limit<br>[dBµV/m] | Result |
| 2,4850              | 51,78             | -2,22                      | 54,00             | pass   | 2,4860          | 67,79             | -6,21                      | 74,00             | pass   |
| 2,4865              | 51,33             | -2,67                      | 54,00             | pass   | 2,4865          | 66,94             | -7,06                      | 74,00             | pass   |
| 2,4898              | 49,68             | -4,32                      | 54,00             | pass   | 2,4950          | 65,32             | -8,68                      | 74,00             | pass   |
| 2,4930              | 48,05             | -5,95                      | 54,00             | pass   | 2,4910          | 65,16             | -8,84                      | 74,00             | pass   |
| 2,4965              | 46,52             | -7,48                      | 54,00             | pass   | 2,4965          | 64,88             | -9,12                      | 74,00             | pass   |
| 2,4998              | 44,75             | -9,25                      | 54,00             | pass   | 2,4998          | 62,85             | -11,15                     | 74,00             | pass   |

| BSTC | TESTED     |
|------|------------|
|      | IN GERMANT |

| TESTED | FCC 3              | RISTC |
|--------|--------------------|-------|
|        | Band edge emission |       |
|        | according to       |       |

FCC §15.247, RSS-247, FCC §15.209 RSS-Gen

Ref.-No.: 20/01-0030

Operation mode: WLAN CH.09; BW = 40MHz; Greenfield; 802.11n40; High edge

| Spectrum Receiver 🗵               |                                   |                      |      |              |                 |         | (          |          |
|-----------------------------------|-----------------------------------|----------------------|------|--------------|-----------------|---------|------------|----------|
| RBW (EMI) 1 MHz MT                | 1 s                               |                      | IT   | 56 1 7GHz    | ohne Amp        | тог     |            |          |
| Input 1 AC Att 0 dB Preamp        | OFF Step                          | TD Scar              | n    |              |                 |         |            |          |
| Scan 🕤 1Av Max 🎯 2Pk Max          |                                   |                      |      |              |                 |         |            |          |
| IT56-LIAGHCREAK-WLAN-2-4GHZ_FCC   | PASS                              |                      |      |              |                 |         |            |          |
| 120 LBMW/M22-1-6CHZ-AV-WLAN-2-1CH | PASS                              |                      |      |              |                 |         |            |          |
| Line IT56-1-6GHZ-PEAK-WLAN-2-4    | PASS                              |                      |      |              |                 |         |            |          |
| 110 dBµV/m                        |                                   |                      | _    |              |                 |         |            | -        |
|                                   |                                   |                      |      |              |                 |         |            |          |
| 180 dBpV/m                        |                                   | +                    |      |              |                 |         |            | $\vdash$ |
|                                   | A l                               |                      |      |              |                 |         |            |          |
| 90 dBuV/m                         | 11                                |                      |      |              |                 |         |            |          |
|                                   | N .                               |                      |      |              |                 |         |            |          |
| 80 dB+4//m                        |                                   |                      |      |              |                 |         |            |          |
|                                   |                                   |                      |      |              |                 |         |            |          |
|                                   | $\mathbb{R} \setminus \mathbb{R}$ |                      |      |              |                 |         |            |          |
| 70 dBµV/m                         | H Mr                              |                      | ~    |              |                 |         |            |          |
|                                   | $  \rangle$                       | $\Gamma \sim \Gamma$ | 1    | MXx          |                 |         |            |          |
| 60 dBµV/m                         | $\neg \gamma$                     |                      |      | ~~``````\~\$ | ← <del>××</del> |         |            |          |
|                                   | 1 ~                               | ┢┈╘╻                 | _    |              | 1               | × marco | X X        |          |
| 50 dBµV/m                         |                                   |                      | **** | -            |                 |         |            |          |
|                                   |                                   |                      |      |              | <u></u>         |         |            |          |
| 40 dBi 0//m                       |                                   |                      |      |              |                 | ++-~    | +++        |          |
| To dep y/m                        |                                   |                      |      |              |                 |         |            |          |
|                                   |                                   |                      |      |              |                 |         |            |          |
| 30 dBµV/m                         |                                   |                      |      |              |                 |         |            |          |
| Start 2.433 GHz                   |                                   |                      |      |              |                 | St      | op 2.533 G | Hz       |

|                 | Polarisation: H     |                            |                   |        |                 |                   |                            |                   |        |
|-----------------|---------------------|----------------------------|-------------------|--------|-----------------|-------------------|----------------------------|-------------------|--------|
|                 | Detector<br>Average |                            |                   |        |                 |                   | Detector<br>Peak           |                   |        |
| Frequ.<br>[GHz] | Level<br>[dBµV/m]   | Margin<br>to Limit<br>[dB] | Limit<br>[dBµV/m] | Result | Frequ.<br>[GHz] | Level<br>[dBµV/m] | Margin<br>to Limit<br>[dB] | Limit<br>[dBµV/m] | Result |
| 2,4858          | 53,54               | -0,46                      | 54,00             | pass   | 2,4863          | 68,54             | -5,46                      | 74,00             | pass   |
| 2,4865          | 52,43               | -1,57                      | 54,00             | pass   | 2,4870          | 68,52             | -5,48                      | 74,00             | pass   |
| 2,4898          | 50,37               | -3,63                      | 54,00             | pass   | 2,4900          | 66,20             | -7,80                      | 74,00             | pass   |
| 2,4930          | 49,20               | -4,80                      | 54,00             | pass   | 2,4918          | 65,53             | -8,47                      | 74,00             | pass   |
| 2,4965          | 48,06               | -5,94                      | 54,00             | pass   | 2,4940          | 63,55             | -10,45                     | 74,00             | pass   |
| 2,4998          | 45,78               | -8,22                      | 54,00             | pass   | 2,4965          | 62,42             | -11,58                     | 74,00             | pass   |

#### Results

From the measurement data obtained, the tested sample was considered to have **COMPLIED** with the requirements for the **Band Edges Emission**.



# 7.5. 99% Power Bandwidth

#### **Applied standards**

-RSS-Gen issue 5 Section 6.7

#### Test equipment and test set up

Test equipment used for conducted measurements as given in clause Test equipment of this report. Test setup used for conducted measurements as given in clause Test setups of this report.

#### Description

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The 99% power bandwidth function of the instrument was used for the measurement.

#### Measurement:

The Measurement was performed on: 01.04.2020 and 02.04.2020

| FACTO | TESTED     |
|-------|------------|
| BSIC  | IN GERMANY |

#### Lowest operating frequency - 802.11b 20MHz / CCK - MCS=0; 1 MBps / Antenna 1



# Middle Operating Frequency - 802.11b 20MHz / CCK - MCS=0; 1 MBps / Antenna 1



| RSTC | TESTED     |
|------|------------|
| BOIL | IN GERMANY |

### Highest Operating Frequency - 802.11b 20MHz / CCK – MCS=0; 1 MBps / Antenna 1



### Lowest operating frequency - 802.11b 20MHz / CCK – MCS=0; 1 MBps / Antenna 2



| Bere | ■ TESTED   |
|------|------------|
| BSIL | IN GERMANY |

#### Middle Operating Frequency - 802.11b 20MHz / CCK - MCS=0; 1 MBps / Antenna 2



# Highest Operating Frequency - 802.11b 20MHz / CCK – MCS=0; 1 MBps / Antenna 2



| ECTC | TESTED     |
|------|------------|
| EDIC | IN GERMANY |

#### Lowest operating frequency - 802.11g 20MHz / OFDM - MCS=0; 6 MBps / Antenna 1



### Middle Operating Frequency - 802.11g 20MHz / OFDM - MCS=0; 6 MBps / Antenna 1



|      | ■ TESTED   |
|------|------------|
| BSIL | IN GERMANY |

### Highest Operating Frequency - 802.11g 20MHz / OFDM – MCS=0; 6 MBps / Antenna 1



#### Lowest operating frequency - 802.11g 20MHz / OFDM - MCS=0; 6 MBps / Antenna 2



| BCTC | TESTED     |
|------|------------|
| ESIL | IN GERMANY |

## Middle Operating Frequency - 802.11g 20MHz / OFDM – MCS=0; 6 MBps / Antenna 2



# Highest Operating Frequency - 802.11g 20MHz / OFDM – MCS=0; 6 MBps / Antenna 2

| MultiView          | Spectrum     | 1 🔳 S(                               | pectrum 2         | Spectr                             | um 3 🤇                          | 22                    |             |                                                       |                  |
|--------------------|--------------|--------------------------------------|-------------------|------------------------------------|---------------------------------|-----------------------|-------------|-------------------------------------------------------|------------------|
| Ref Level 20.0     | 0 dBm        | · RBW                                | / 200 kHz         | 5 0.5                              |                                 |                       |             |                                                       |                  |
| Att<br>Counted Bat | 30 dB SWT:   | 1.01 ms • VBW                        | 1 MHz Mo          | ide: Auto Sweep                    |                                 |                       |             | (P)                                                   | 12.610           |
|                    |              |                                      | 1                 |                                    |                                 |                       |             | M1[1] 1.0<br>2.463239                                 | 16 dBn<br>90 GHs |
| 10 dBm             |              |                                      |                   | -                                  |                                 |                       |             |                                                       | 0800             |
|                    |              |                                      |                   | Contract exercises of              | ML                              |                       |             |                                                       |                  |
| 0 dBm              |              | 7                                    | mount             | MARINA                             | man                             | monimu                | Ne.         |                                                       |                  |
| -10 d8m-           |              |                                      |                   |                                    |                                 |                       | 1           |                                                       |                  |
| -20 dBas-          |              | 1                                    |                   |                                    |                                 |                       | Y           |                                                       |                  |
|                    |              | N                                    |                   |                                    |                                 |                       | 1           |                                                       |                  |
| -30 dām            |              | hart                                 |                   |                                    |                                 |                       | LA          |                                                       |                  |
| -40 cal she        | Wer phopenet |                                      |                   | -                                  |                                 |                       |             | mon Alexand                                           |                  |
| providence -       |              |                                      |                   |                                    |                                 |                       |             |                                                       | my               |
| -S0 dam-           |              |                                      |                   |                                    |                                 |                       |             |                                                       |                  |
| CF 2.462 GHz       |              |                                      | 1001              | pts                                |                                 | 4.0 MHz/              |             | Span 40.                                              | 0 MHz            |
| 2 Marker Table     | Tec          | V. Value                             | 1                 | V. Value                           | -1                              | Euroction             | î.          | Function Deput                                        |                  |
| MI<br>T1<br>T2     | 1 1 1        | 2.463239 0<br>2.4536819<br>2.4702693 | iHz<br>GHz<br>GHz | 1.06 dBm<br>-6.82 dBm<br>-6.58 dBm | Occ Bw<br>Occ Bw C<br>Occ Bw Pr | entroid<br>reg Offset | 16          | 587322824 MHz<br>2.461975599 GHz<br>-24.401310014 kHz | 2                |
| Channel            | Freque       | ncy [MHz]                            | 99                | 9% Power Ba                        | ndwidth [N                      | /Hz]                  | Limit [MHz] | Result                                                |                  |
| 11                 | 2            | 462                                  |                   | 16.587322824                       |                                 |                       | -/-         | Pass                                                  |                  |

| Bere | <b>TESTED</b> |
|------|---------------|
| BSIL | IN GERMANY    |

## Lowest operating frequency - 802.11n 20MHz / HT Greenfield - MCS=0; 6.5 MBps / Antenna 1



#### Middle Operating Frequency - 802.11n 20MHz / HT Greenfield – MCS=0; 6.5 MBps / Antenna 1



| BCTC | <b>TESTED</b> |
|------|---------------|
| BAL  | IN GERMANY    |

#### Highest Operating Frequency - 802.11n 20MHz / HT Greenfield - MCS=0; 6.5 MBps / Antenna 1



## Lowest operating frequency - 802.11n 20MHz / HT Greenfield – MCS=0; 6.5 MBps / Antenna 2

| MultiView                                    | Spectru   | m 🔟 :                                       | Spectrum 2            | Spectr                                        | 'um 3 🤅                        | 22                                |                |                                                |                                             |
|----------------------------------------------|-----------|---------------------------------------------|-----------------------|-----------------------------------------------|--------------------------------|-----------------------------------|----------------|------------------------------------------------|---------------------------------------------|
| Ref Level 20.0                               | i0 dBm    | • RB                                        | W 200 kHz             |                                               |                                |                                   |                |                                                |                                             |
| Att<br>Connoied Bar                          | 30 dB SW1 | 1.01 ms • VB                                | W IMHE M              | ode: Auto:Sweep                               |                                |                                   |                |                                                | IPK Max                                     |
|                                              |           |                                             |                       |                                               |                                |                                   |                | M1[1]                                          | 2.25 dBm<br>2.4132390 GHz                   |
| 10 dBm                                       |           |                                             |                       |                                               | -                              |                                   |                | -                                              | Contracted wa                               |
| 1.00000                                      |           |                                             |                       |                                               | M1.                            |                                   |                |                                                |                                             |
| 0 dBm                                        | -         | -                                           | monorman              | warmand                                       | portanna                       | monum                             | marszz         |                                                |                                             |
| -10 d8m                                      |           |                                             |                       |                                               |                                |                                   | 1              |                                                |                                             |
| -20 dBas-                                    |           |                                             |                       | -                                             |                                |                                   | 1              |                                                | -                                           |
| -30 dbm                                      | Alv       | WAW                                         |                       |                                               |                                |                                   | Mrc            | Mun , Art                                      |                                             |
| Manasamhunty                                 | hall      |                                             |                       |                                               |                                |                                   |                | manny                                          | MM MAN                                      |
| -50 dBm                                      |           |                                             | -                     | -                                             |                                |                                   |                |                                                |                                             |
| CF 2.412 GHz                                 |           |                                             | 1001                  | pts                                           |                                | 4.0 MHz/                          |                |                                                | Span 40.0 MHz                               |
| 2 Marker Table<br>Type Ref<br>MI<br>T1<br>T2 | Trc       | X-Value<br>2.413239<br>2.403182<br>2.420777 | GHz<br>3 GHz<br>6 GHz | Y-Value<br>2.25 dBm<br>-4.76 dBm<br>-5.13 dBm | Occ Bw<br>Occ Bw C<br>Occ Bw F | Function<br>entroid<br>reg Offset | ( <sub>)</sub> | Function F<br>17.5953174<br>2.4119<br>-20.0692 | tesult<br>194 MHz<br>79931 GHz<br>62304 kHz |
| Channel                                      | Freque    | ency [MHz]                                  | 9                     | 9% Power Ba                                   | ndwidth [N                     | MHz]                              | Limit [MH      | z] R                                           | esult                                       |
| 1                                            |           | 2412                                        |                       | 17.595317494                                  |                                |                                   | -/- F          |                                                | Pass                                        |

| RETE | TESTED     |
|------|------------|
| ESIC | IN GERMANY |

## Middle Operating Frequency - 802.11n 20MHz / HT Greenfield – MCS=0; 6.5 MBps / Antenna 2



Highest Operating Frequency - 802.11n 20MHz / HT Greenfield – MCS=0; 6.5 MBps / Antenna 2

| MultiView                  | Spectrum   | n 🗷 Sp                     | ectrum 2     | Spectr                 | um 3        |            |            |                         |                           |
|----------------------------|------------|----------------------------|--------------|------------------------|-------------|------------|------------|-------------------------|---------------------------|
| Ref Level 20.0             | 00 dBm     | • RBW                      | 200 kHz      | 5 73                   |             |            |            |                         |                           |
| Att                        | 30 dB SWT  | 1.01 ms • VBW              | 1 MHz Mo     | de Auto Sweep          |             |            |            |                         | The Max                   |
|                            |            |                            |              |                        |             |            |            | M1[1]                   | 1.88 dBm<br>2.4632390 GHJ |
| 10 dBm                     | -          |                            |              |                        |             |            |            |                         | 10000000000000            |
|                            |            |                            |              |                        | MI          |            |            |                         |                           |
| 0 dBm                      |            | - In                       | - manual and | mound                  | mono        | monorma    | profe      |                         |                           |
| -10 d8m                    |            |                            |              |                        |             | -          |            |                         |                           |
| -20 dBm                    |            |                            |              |                        |             | _          | 1          |                         |                           |
|                            |            | 1                          |              |                        |             |            | 1          |                         |                           |
| -30 dam                    | man        | amp                        |              |                        |             |            | pm         | ministering             | 1                         |
| MAD COM COLOR              | a cartor d |                            |              |                        |             |            |            |                         | - hast from               |
| -50 dam                    |            | -                          |              | 1                      |             |            | -          |                         |                           |
| CF 2.462 GHz               |            |                            | 1001 g       | ots                    |             | 4.0 MHz/   |            |                         | Span 40.0 MHz             |
| 2 Marker Table<br>Type Ref | Trc        | X-Value<br>2.463239 G      | Hz           | Y-Value<br>1.88 dBm    | L<br>Occ Bw | Function   | 1          | Function R<br>7.6183084 | esult<br>97 MHz           |
| 12                         | 1          | 2.4531671 (<br>2.4707854 ( | anz<br>anz   | -5.06 d8m<br>-5,20 d8m | Occ BW C    | reg Offset |            | -23.77087               | 6229 GHz<br>8092 kHz      |
| Channel                    | Freque     | ency [MHz]                 | 99           | % Power Ba             | ndwidth [l  | MHz]       | Limit [MHz | 2] R                    | esult                     |
| 11                         | 2462       |                            | 17.6183      | 17.618308497 -/- Pas   |             |            |            | ass                     |                           |

| BCTC | <b>TESTED</b> |
|------|---------------|
| BAL  | IN GERMANY    |

## Lowest operating frequency - 802.11n 40MHz / HT Greenfield - MCS=0; 6.5 MBps / Antenna 1



Middle Operating Frequency - 802.11n 40MHz / HT Greenfield – MCS=0; 6.5 MBps / Antenna 1

| MultiView                                | Spectrum               | n 🗏 Spec                               | trum 2         | Spectr                          | 'um 3 🔅             |             |                       |                                    |                             |
|------------------------------------------|------------------------|----------------------------------------|----------------|---------------------------------|---------------------|-------------|-----------------------|------------------------------------|-----------------------------|
| Ref Level 20.0                           | 0 dBm                  | · RBW S                                | 00 kHz         | 200 <b>8 - 11</b>               |                     |             |                       |                                    |                             |
| Att                                      | 30 dB SWI              | 1.01 ms . VBW                          | 2 MHZ Mode     | Auto.Sweep                      |                     |             |                       |                                    | TEC Mark                    |
|                                          |                        |                                        |                |                                 |                     |             |                       | M1[1]                              | 2.37 dBm<br>2.4396370 GHz   |
| 10 d8m                                   | -                      |                                        |                |                                 |                     | -           | -                     |                                    |                             |
|                                          |                        | 200                                    | A Arter of All | hauguhara                       | Mr. Jorash          | 8050 U.S. 1 |                       |                                    |                             |
| D dun-                                   |                        | Providence                             |                | 1                               | J                   |             | and the second second |                                    |                             |
| -10 d8m                                  |                        |                                        |                |                                 |                     |             |                       | 1                                  |                             |
| -20 dbm                                  | J.                     | -                                      |                |                                 |                     |             |                       | 1                                  |                             |
| - 30 dam-                                | . I                    |                                        |                |                                 |                     |             |                       | A.                                 | 6.37                        |
| Nor HAMAN MAN                            | 14M                    |                                        |                |                                 |                     |             |                       | o trik                             | alman particular            |
| -40 dbm                                  |                        |                                        |                |                                 |                     |             |                       |                                    |                             |
| CF 2.437 GHz                             |                        |                                        | 1001 pts       |                                 | 6                   | 5.0 MHz/    |                       |                                    | Span 60.0 MHz               |
| 2 Marker Table<br>Type   Ref<br>M1<br>T1 | •<br>  Trc  <br>1<br>1 | X-Value<br>2.439637 GH<br>2.4188429 GH | 2 <b>2</b>     | Y-Value<br>.37 dBm<br>-3.53 dBm | Occ Bw<br>Occ Bw Ce | Function    | 3                     | Function R<br>5.1891819<br>2.43693 | esult<br>31 MHz<br>7471 GHz |
| Channel                                  | Freque                 | 2 4550321 GH                           | 99%            | Power Ba                        | ndwidth [M          | Hz]         | Limit [MHz]           | -62.52868                          | esult                       |
| 6                                        |                        | 2437                                   |                | 36.189                          | 181931              | -           | -/-                   | P                                  | ass                         |

| ПСТС | TESTED     |
|------|------------|
| BOIL | IN GERMANY |

### Highest Operating Frequency - 802.11n 40MHz / HT Greenfield – MCS=0; 6.5 MBps / Antenna 1



Lowest operating frequency - 802.11n 40MHz / HT Greenfield – MCS=0; 6.5 MBps / Antenna 2



| RISTC | TESTED     |
|-------|------------|
|       | IN GERMANY |

### Middle Operating Frequency - 802.11n 40MHz / HT Greenfield – MCS=0; 6.5 MBps / Antenna 2



#### Highest Operating Frequency - 802.11n 40MHz / HT Greenfield - MCS=0; 6.5 MBps / Antenna 2



#### Results

From the measurement data obtained, the tested sample was considered to have **COMPLIED** with the requirements for the **99% Power Bandwidth**.



# 8. Test equipment

# Test equipment used for radiated Measurements:

| Kind of equipment                               | Manufacturer               | Туре                                 | Ident no.     | Serial no.               | Calibrated<br>on (y-m) | Calibration interval |
|-------------------------------------------------|----------------------------|--------------------------------------|---------------|--------------------------|------------------------|----------------------|
| Signal Spectrum<br>Analyzer 2Hz – 26.5<br>GHz   | Rohde &<br>Schwarz         | FSW 26<br>Instrument FW 2.60         | 11571         | 102047                   | 2019-Jan.              | 3 years              |
| ESR7 EMI<br>Testreceiver 7GHz                   | Rohde &<br>Schwarz         | ESR7                                 | 11676         | 101694                   | 2018-March             | 3 years              |
| Test-Receiver                                   | Rohde &<br>Schwarz         | ESVS30                               | 10572         | 833825/010               | 2020-April             | 3 years              |
| Antenna<br>9 kHz – 30 MHz                       | EMCO                       | 6502                                 | 10546         | 2018                     | 2017-Nov.              | 3 years              |
| Antenna<br>30 MHz – 1 GHz                       | Chase                      | CBL6111C                             | 10022         | 1064                     | 2019-Dec.              | 3 years              |
| Antenna<br>1GHz – 18 GHz                        | Electro Metric             | RGA50/60                             | 10273         | 2753                     | 2017-Nov.              | 3 years              |
| Broadband-<br>Hornantenne<br>15 - 26,5 (40) GHz | Schwarzbeck                | BBHA 9170                            | 11580         | BBHA91706<br>21          | 2019-Dec.              | 3 years              |
| Broadband-<br>Preamplifier<br>1-18 GHz          | Schwarzbeck                | BBV9718                              | 11231         | 9718-002                 | 2017-Oct.              | 3 years              |
| Preamplifier<br>18 - 40 GHz                     | CERNEX                     | CBM18403523                          | 11679         | 29711                    | 2019 - July            | 3 years              |
| Cable                                           | el-spec GmbH               | FlexCore-SMA11-<br>SMA11-8000-ARM    | 11625         | -/-                      | 2017-Dec.              | 3 years              |
| Shielded<br>room/Chamber                        | Frankonia                  | SAC3 "SEMI-<br>ANECHOIC-<br>CHAMBER" | 11609         | 004/16                   | 2019-March             | 3 years              |
| Band Reject Filter                              | Telemeter                  | BRF-2450-150-<br>7-N (0441)          | 11243         | -/-                      | -/-                    | -/-                  |
|                                                 |                            | Above 26 GHz Substitu                | ition procedu | ire                      |                        |                      |
| Spectrum Analyzer                               | Rohde &<br>Schwarz         | FSMS 26                              | 10481         | 839014/004               | -/-                    | -/-                  |
| Spectrum-Analyzer<br>Display                    | Rohde &<br>Schwarz         | FSMS 26                              | 10482         | 838509/010               | -/-                    | -/-                  |
| Harmonic Mixer                                  | Rohde &<br>Schwarz         | FS-Z40                               | 10779         | 842529/003               | -/-                    | -/-                  |
| Harmonic Mixer<br>LO-Amp.                       | Rohde &<br>Schwarz         | FS-Z30                               | 10780         | 624413/005               | -/-                    | -/-                  |
| Phase3 Ultra Low<br>Loss Cable<br>Assembley     | TECH-INTER                 | GC12-K1K1-197                        | 11718         | 1GVT4<br>19047702<br>001 | -/-                    | -/-                  |
| Preamplifier<br>18 - 40 GHz                     | CERNEX                     | CBM18403523                          | 11679         | 29711                    | 2019 - July            | 3 years              |
| A-INFO Braodband<br>Horn Antenna                | EMCO<br>Elektronik<br>GmbH | LB-180400-KF                         | 11716         | J211060840               | -/-                    | -/-                  |
| Signal-Generator<br>100 KHz - 40 GHz            | Rohde &<br>Schwarz         | SMB100A                              | 11563         | 177769                   | 2019-Jan.              | 3 years              |
| Broadband-<br>Hornantenne<br>15 - 26,5 (40) GHz | Schwarzbeck                | BBHA 9170                            | 11580         | BBHA91706<br>21          | 2019-Dec.              | 3 years              |

|            | Test report no.: | Page 99 of 108 pages |
|------------|------------------|----------------------|
| IN GERMANY | 20/01-0030-A     | 5 1 5                |

#### Test equipment used for Band Edge Measurements:

| Kind of equipment             | Manufacturer       | Туре                                 | ldent no. | Serial no. | Calibrated on (y-m) | Calibration interval |
|-------------------------------|--------------------|--------------------------------------|-----------|------------|---------------------|----------------------|
| ESR7 EMI<br>Testreceiver 7GHz | Rohde &<br>Schwarz | ESR7                                 | 11676     | 101694     | 2018-March          | 3 years              |
| Antenna<br>1GHz – 18 GHz      | Electro Metric     | RGA50/60                             | 10273     | 2753       | 2017-Nov.           | 3 years              |
| Cable                         | el-spec GmbH       | FlexCore-SMA11-<br>SMA11-8000-ARM    | 11625     | -/-        | 2017-Dec.           | 3 years              |
| Shielded<br>room/Chamber      | Frankonia          | SAC3 "SEMI-<br>ANECHOIC-<br>CHAMBER" | 11609     | 004/16     | 2019-March          | 3 years              |

### Test equipment used for conducted measurements:

| Kind of equipment                                   | Manufacturer       | Туре                              | Ident no. | Serial no. | Calibrated<br>on (y-m) | Calibration interval |
|-----------------------------------------------------|--------------------|-----------------------------------|-----------|------------|------------------------|----------------------|
| Signal Spectrum<br>Analyzer 2Hz – 26.5<br>GHz       | Rohde &<br>Schwarz | FSW 26<br>Instrument FW 2.60      | 11571     | 102047     | 2019 - Jan.            | 3 years              |
| EMI-Test-Receiver                                   | Rohde &<br>Schwarz | ESR7<br>Instrument FW 3.36        | 11505     | 101103     | 2017 - Nov.            | 3 years              |
| Automatisation unit<br>RF switch and power<br>meter | Rohde &<br>Schwarz | OSP120 and<br>OSP B157            | 11573     | 101282     | 2017 - Dec.            | 3 years              |
| Cable                                               | el-spec GmbH       | FlexCore-SMA11-<br>SMA11-8000-ARM | 11625     | -/-        | 2017 - Dec.            | 3 years              |

#### Test equipment used for Conducted Mains emissions:

| Kind of equipment                                 | Manufacturer       | Туре                                              | Ident no. | Serial no. | Calibrated<br>on (y-m) | Calibration interval |
|---------------------------------------------------|--------------------|---------------------------------------------------|-----------|------------|------------------------|----------------------|
| Test-Receiver                                     | Rohde &<br>Schwarz | ESHS30                                            | 10571     | 842053/008 | 2019 – Mar.            | 3 years              |
| Software                                          | PKM                | PKM U5/6                                          | -/-       | V1.01.03   | -/-                    | -/-                  |
| Line impedance<br>stabilisation network<br>(LISN) | Rohde &<br>Schwarz | ESH2-Z5                                           | 10139     | 879675/028 | 2019 – Jan.            | 3 years              |
| Shielded room                                     | Siemens            | (6,2 x 4,7 x 3,3) m<br>(I x w x h)<br>DC – 10 GHz | 10113     | 1          | -/-                    | -/-                  |

All measurements were made with measuring instruments, including any accessories that may affect test results, calibrated according to the requests of ISO/IEC 17025 according to which the test site is accredited from DAkkS. Measurement of conducted mains emissions was made with instruments conforming to American National Standard Specification, ANSI C63.4-2014.

#### Test equipment to support EUT functions:

| Kind of equipment       | Manufacturer                | Туре            | Ident no.     |
|-------------------------|-----------------------------|-----------------|---------------|
| Laptop                  | DELL                        | Inspiron        | 11488         |
| AC-Adaptor [Laptop/EUT] | DELL                        | DA130PE1-00     | Part of 11488 |
| Test Adaptor Board      | Vestel (Client)             | 17TEST02        | Client        |
| Software                | Provided by Vestel (Client) | MT7662U QA Tool | -/-           |

# 9. Test Setups

# Block diagram Conducted Mains emissions



Groundplane



# **Block diagram Radiated emissions**



tested frequency range 9 kHz - 30 MHz



Semi anechoic chamber with absorber and ferrite tiles

Test receiver



tested frequency range 30 MHz - 1000 MHz



tested frequency range > 1000 MHz

Block diagram Band Edge emisions



G

| Image: Stoc Instrumentation Test report no.:   Instrumentation 20/01-0030-A | Page 103 of 108 pages |
|-----------------------------------------------------------------------------|-----------------------|
|-----------------------------------------------------------------------------|-----------------------|

# Block diagram for conducted measurements





## **10. Measurement uncertainty**

according to CISPR 16-4-2 Edition 2.0 2011-06

| Measurement                          | calculated uncertainty<br>U <sub>lab</sub> | Specified CISPR uncertainty<br>according CISPR 16-4-2<br>Edition 2.0 2011-06, table 1<br>U <sub>CISPR</sub> |
|--------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Conducted disturbance at mains       |                                            |                                                                                                             |
| port using AMN                       | 3.6 dB                                     | 3.8 dB                                                                                                      |
| 9 kHz – 150 kHz                      |                                            |                                                                                                             |
| Conducted disturbance at mains       |                                            |                                                                                                             |
| port using AMN                       | 3.2 dB                                     | 3.4 dB                                                                                                      |
| 150 kHz – 30 MHz                     |                                            |                                                                                                             |
| Magn. fieldstrength                  | 3.4 dB                                     | -/-                                                                                                         |
| 9kHz - 30MHz                         | 3:4 dB                                     | -7-                                                                                                         |
| Radiated disturbance (electric field |                                            |                                                                                                             |
| strength in the SAC)                 | 4.7 dB                                     | 6.3 dB                                                                                                      |
| 30 MHz to 1 000 MHz                  |                                            |                                                                                                             |
| Radiated disturbance (electric field |                                            |                                                                                                             |
| strength in the SAC)                 | 4.1 dB                                     | -/-                                                                                                         |
| 1 GHz to 26.5 GHz                    |                                            |                                                                                                             |
| Radiated disturbance (electric field |                                            |                                                                                                             |
| strength in the SAC)                 | 3.1 dB                                     | -/-                                                                                                         |
| 26.5 GHz to 40 GHz                   |                                            |                                                                                                             |

| Measurement                       | calculated uncertainty<br>U <sub>lab</sub> | Maximum measurement<br>uncertainty |
|-----------------------------------|--------------------------------------------|------------------------------------|
| Channel Bandwidth                 | ±1.17 %                                    | ±5 %                               |
| RF output power, conducted        | ±1.36 dB                                   | ±1.5 dB                            |
| Power Spectral Density, conducted | ±1.99 dB                                   | ±3 dB                              |
| Unwanted Emissions, conducted     | ±1.71 dB                                   | ±3 dB                              |
| All emissions, radiated           | ±4.8 dB                                    | ±6 dB                              |
| Temperature                       | ±0.72 °C                                   | ±3 °C                              |
|                                   | ±0.76 % (DC up to 40V)                     |                                    |
| Supply voltages                   |                                            | ±3 %                               |
|                                   | ±1.74 % (AC 50Hz up to 400V)               |                                    |
| Time                              | ±0.012 %                                   | ±5 %                               |

The measurement uncertainty describes the overall uncertainty of the given measured value during the operation of the EUT in the above mentioned way.

The measurements uncertainty was calculated in accordance with CISPR 16-4-2 Edition 2.0 2011-06.

The measurement uncertainty was given with a confidence of 95 % (k = 2).

|  | Test report no.: | Page 105 of 108 pages |
|--|------------------|-----------------------|
|  | 20/01-0030-A     |                       |



# 11. Photos setup

Refer to "0030-fcc-ised-photos test setup.pdf" file

# 12. Conclusions

From the measurement data obtained, the tested sample was considered to have **COMPLIED** with the requirements for the relevant §15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

From the measurement data obtained, the tested sample was considered to have **COMPLIED** with the requirements for the relevant RSS-247 issue 02 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network

Following specific modifications and/or special attributes are necessary to pass the above mentioned requirements:

none

This test report replaces the test report no. 20/01-0030 dated 10.04.2020.

21.10.2020 Erstellt am/prepared on M. Beindl, Laboratory Engineer (Name/name / Stellung/position)

(Unterschrift/signature)

21.10.2020 Freigabe am/released on A. Tropmann, Head of Laboratory (Name/name / Stellung/position)

(Unterschrift/signature)



# 13. Photos of tested sample

Refer to "0030-fcc-ised-ext-photos.pdf" file

# End of test report