

Please Contact with WSCT

TEST REPORT

FCC ID: 2ADYY-T16RA

Product: Laptop Computer

Model No.: T16RA

Trade Mark: TECNO

Report No.: WSCT-A2LA-R&E240300010A-LE

Issued Date: 03 April 2024

Issued for:

TECNO MOBILE LIMITED FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG

Issued By:

World Standardization Certification & Testing Group(Shenzhen) Co.,Ltd. Building A-B, Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China

TEL: +86-755-26996192 FAX: +86-755-86376605

Note: The results contained in this report pertain only to the tested sample. This report shall not be reproduced, except in full, without written approval of World Standardization Certification & Testing Group(Shenzhen) Co., Ltd. This report must not be used by the client to claim product certification, approval, or any agency of the U.S. Government.

WSE1

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Certificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

TABLE OF CONTENTS

/1.	Test Certification				. 3
2.	Test Result Summary				. 4
3.	EUT Description	5/17	AV/SET	AVA TOTAL	. 5
4.	Genera Information				.6
	4.1. TEST ENVIRONMENT AND MODE				6
-/	4.2. DESCRIPTION OF SUPPORT UNITS	AW512	7 W/5		6
5.	Facilities and Accreditation	s			. 7
1	5.1. FACILITIES				7
LT	5.2. ACCREDITATIONS			AWATA	7
	5.3. MEASUREMENT UNCERTAINTY			<u> </u>	8
	5.4. MEASUREMENT INSTRUMENTS.				9
6.	Test Results and Measuren	nent Data	ATTS		10
	6.1. ANTENNA REQUIREMENT				. 10
7	6.2. CONDUCTED EMISSION				. 11
	6.3. CONDUCTED OUTPUT POWER	SEE	AMERICA		. 14
	6.4. EMISSION BANDWIDTH	V			. 20
	6.5. POWER SPECTRAL DENSITY				. 26
1	6.6. CONDUCTED BAND EDGE AND SPURIO	- Joseph A. R. A.			JAEL
/	6.7. RADIATED SPURIOUS EMISSION MEAS	UREMENT			. 43

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-86-755-86376605 E-mail: Fengbing.Wang@wsci-cert.com Http://www.wsci-cert.com

For Question,
Please Contact with WSCT
www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300010A-LE

1. Test Certification

Product: Laptop Computer

Model No.: T16RA

Trade Mark: TECNO

Applicant: TECNO MOBILE LIMITED

Address: FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25

SHAN MEI STREET FOTAN NT HONGKONG

Manufacturer: TECNO MOBILE LIMITED

Address: FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25

SHAN MEI STREET FOTAN NT HONGKONG

Date of Test: 22 February 2024 to 02 April 2024

Applicable FCC CFR Title 47 Part 15 Subpart C Section 15.247

Standards: KDB 558074 D01 DTS Meas Guidance v04

The above equipment has been tested by World Standardization Certification & Testing Group(Shenzhen)Co., Ltd. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By: Wang Xiang)

Checked By:

(Mo Peiyun)

Approved By:

(Liu Fuxin)

Date:

03

N 2014

SO WOW # WIL

VSET

AWSET D

WSE

4W5L1

ation & Testing Goup (Spa

dawbatton Certification & Testin

21619

世标检测认证股份 iroup (Shenzhen) Co., Ltd. 1774

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

2. Test Result Summary

	/\'\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		Z L L T H H
	Requirement	CFR 47 Section	Result
	Antenna requirement	§15.203/§15.247 (c)	PASS
0	AC Power Line Conducted Emission	§15,207	PASS
	Conducted Peak Output Power	§15.247 (b)(3) §2.1046	PASS
	6dB Emission Bandwidth	§15.247 (a)(2) §2.1049	PASS
	Power Spectral Density	§15.247 (e)	PASS
	Band Edge	1§5.247(d) §2.1051, §2.1057	PASS
	Spurious Emission	§15.205/§15.209 §2.1053, §2.1057	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

WESTER WESTER WESTER WESTER WESTER

WSCT ON STORY OF STOR

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

3. **EUT Description**

			F
	Product:	Laptop Computer	
	Model No.:	T16RA	
	Trade Mark:	TECNO	
7	Operation Frequency:	2402MHz~2480MHz	
	Channel Separation:	2MHz	,
	Number of Channel:	40 W5	7
	Modulation Technology:	GFSK	
7	Antenna Type:	Integral Antenna	
	Antenna Gain:	2.40dBi	
	Packarasphia //	Model: 528282-3S1P Rated Voltage: 11.61V	/
	Rechargeable Li-Polymer Battery:	Rated Capacity: 6460mAh/75Wh Typical Capacity: 6550mAh/76.04Wh Limited Charge Voltage: 13.35V	4
	WESTER	Adapter: TCW-A61S-65W	
	Adapter:	Input: 100-240V~50/60Hz 1.5A Max Output:PD:5V === 3A 9V === 3A 12V === 3A 15V === 3A 20V===3.25A	1
	free for	PPS:3.3-11V===5A Max	7
/	Remark:	N/A.	2

Operation Frequency each of channel

operation i requestey each or ename.									
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz		
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz		
							/		
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz		
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz		
Remark:	Remark: Channel 0, 19 & 39 have been tested.								

证股份 ADI

Certificate #5768.01

Please Contact with WSCT

4. Genera Information

4.1. Test environment and mode

Operating Environment:	
Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar
Test Mode:	
Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations(The value of duty cycle is 98.46%) with Fully-charged battery.

The sample was placed (0.1m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	Adapter1	1	1	ADAPTER

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX 86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

5. Facilities and Accreditations

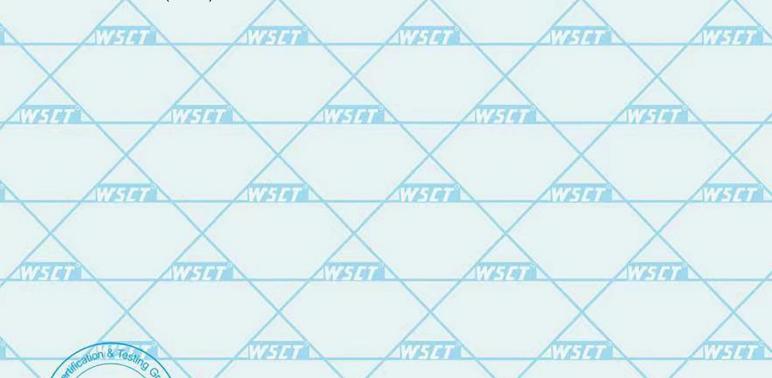
5.1. Facilities

All measurement facilities used to collect the measurement data are located at Building A-B, Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China of the World Standardization Certification & Testing Group(Shenzhen) CO., LTD

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 32. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.2. ACCREDITATIONS

CNAS - Registration Number: L3732


China National Accreditation Service for Conformity Assessment, The test firm Registration Number: L3732

FCC - Designation Number: CN1303

World Standardization Certification & Testing Group(Shenzhen) CO., LTD. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Designation Number: CN1303.

A2LA - Certificate Number: 5768.01

The EMC Laboratory has been accredited by the American Association for Laboratory Accreditation (A2LA). Certification Number: 5768.01

世标检测认证股份 Group (Shenzhen) Co., Ltd.

MOM * PI

DUOM * PIT

Report No.: WSCT-A2LA-R&E240300010A-LE

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

5.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

	cormac	nice of approximately 35 %.	X
1	No.	Item	MU
	1	Conducted Emission Test	±3.2dB
	2	RF power, conducted	±0.16dB
	3//5/	Spurious emissions, conducted	±0.21dB
	4	All emissions, radiated(<1GHz)	±4.7dB
/	5	All emissions, radiated(>1GHz)	±4.7dB
	6	Temperature	±0.5°C
	7 X	Humidity	±2.0%

WESTER	WETG	WHITE	Wester	WETER	
	Y AVE				V-14 A
WSI	NV-51-01	WEIGH	W519	1/5/97	
	STOP AVE				75798
WHI	WHAT	WEIGH	WEIGH	1165197	,
	\times	AVIS			(J-514)
dization &	Group (Shee				

Page 8 of 49

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992308 FAX-66-755-86376605 E-mail: Fengbing Wang@wscl-cert.com Http://www.wscl-cert.com

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

5.4.MEASUREMENT INSTRUMENTS

/	NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	Calibration Date	Calibration Due.	
ğ	Test software	4	EZ-EMC	CON-03A		6144	L
	Test software	\vee	MTS8310		V	-	
	EMI Test Receiver	R&S	ESCI	100005	11/05/2023	11/04/2024	_
	LISN	AFJ	LS16	16010222119	11/05/2023	11/04/2024	E
1	LISN(EUT)	Mestec	AN3016	04/10040	11/05/2023	11/04/2024	
1	Universal Radio Communication Tester	R&S	CMU 200	1100.0008.02	11/05/2023	11/04/2024	
	Coaxial cable	Megalon	LMR400	N/A	11/05/2023	11/04/2024	١
	GPIB cable	Megalon	GPIB	N/A	11/05/2023	11/04/2024	
	Spectrum Analyzer	R&S	FSU	100114	11/05/2023	11/04/2024	2
	Pre Amplifier	H.P.	HP8447E	2945A02715	11/05/2023	11/04/2024	
_	Pre-Amplifier	CDSI	PAP-1G18-38		11/05/2023	11/04/2024	
ij	Bi-log Antenna	SUNOL Sciences	JB3	A021907	11/05/2023	11/04/2024	H
	9*6*6 Anechoic	- X	X		11/05/2023	11/04/2024	
	Horn Antenna	COMPLIANCE ENGINEERING	CE18000	-	11/05/2023	11/04/2024	
/	Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-631	11/05/2023	11/04/2024	
1	Cable	TIME MICROWAVE	LMR-400	N-TYPE04	11/05/2023	11/04/2024	
4	System-Controller	ccs	N/A	N/A	N.C.R	N.C.R	
	Turn Table	ccs	N/A	N/A	N.C.R	N.C.R	\
	Antenna Tower	ccs	N/A	N/A	N.C.R	N.C.R	1
	RF cable	Murata	MXHQ87WA300 0		11/05/2023	11/04/2024	3 Valle
1	Loop Antenna	EMCO	6502	00042960	11/05/2023	11/04/2024	
	Horn Antenna	SCHWARZBECK	BBHA 9170	1123	11/05/2023	11/04/2024	
4	Power meter	Anritsu	ML2487A	6K00003613	11/05/2023	11/04/2024	
	Power sensor	Anritsu	MX248XD		11/05/2023	11/04/2024	
	Spectrum Analyzer	Keysight	N9010B	MY60241089	11/05/2023	11/04/2024	-
	1 2 2 7			W MILES	0.00		10

WSET

DUOM * PIT

oup (Shenz)

证款份 Co. Ltd.

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

6. Test Results and Measurement Data

6.1. Antenna requirement

Standard requirement:

FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is a Integral Antenna. it meets the standards, and the best case gain of the antenna is 2.40dBi.

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.2. Conducted Emission

6.2.1. Test Specification

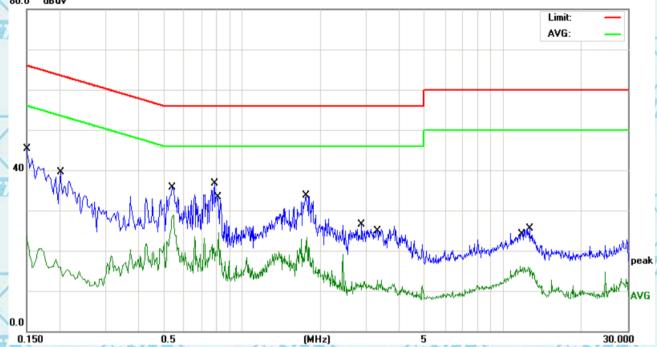
3.2.1. Test Specification	
Test Requirement:	FCC Part15 C Section 15.207
Test Method:	ANSI C63.10:2014
Frequency Range:	150 kHz to 30 MHz
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto
Limits:	Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50
X	Reference Plane
NV214 10 10 10 10 10 10 10 10 10 10 10 10 10	Filter — AC power
Test Setup:	Test table/Insulation plane Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network
Test Mode:	Test table height=0.8m Charging + Transmitting Mode
W5191	The E.U.T is connected to an adapter through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH.
Test Procedure:	refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2014 on conducted measurement.
Test Result:	PASS
18/	

WSET

DuoM * PIT

世标检测认证股份 ap(Shenzhen)Co.,Ltd. ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26998192 26992308 FAX 86-755-86376605. E-mail: Fengbing Wang@wscl-cert.com Http://www.wscl-cert.com

Certificate #5768.01


Please Contact with WSCT www.wsct-cert.com

6.2.2. Test data

Please refer to following diagram for individual

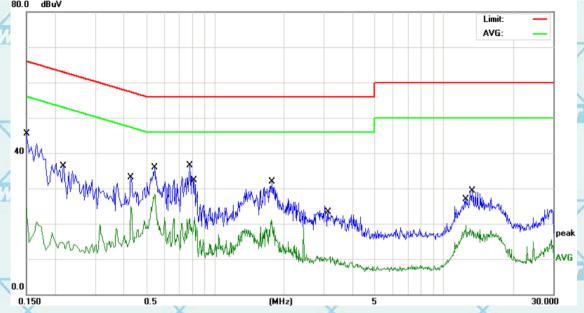
Adapter1 (the worst case)

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

/	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
_			MHz	dBuV	dB	dBuV	dBuV	dB	Detector
V	1		0.1500	34.82	10.45	45.27	65.99	-20.72	QP
	2		0.1500	13.10	10.45	23.55	55.99	-32.44	AVG
	3		0.2020	29.11	10.45	39.56	63.52	-23.96	QP
	4	*	0.5460	18.45	10.52	28.97	46.00	-17.03	AVG
/	5		0.7860	26.11	10.54	36.65	56.00	-19.35	QP
)	6		0.8139	14.01	10.54	24.55	46.00	-21.45	AVG
9	7		1.7540	23.05	10.67	33.72	56.00	-22.28	QP
	8		1.7740	12.60	10.67	23.27	46.00	-22.73	AVG
	9		2.8699	15.79	10.72	26.51	56.00	-29.49	QP
	10		3.2980	1.94	10.72	12.66	46.00	-33.34	AVG
/	11		11.6660	5.07	10.95	16.02	50.00	-33.98	AVG
1	12		12.6059	14.47	11.02	25.49	60.00	-34.51	QP

WSC7 Shepping

世标检测认证股份 oun (Shearben) Co. US



Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

`									
T.	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV	dBuV	dB	Detector
	1		0.1500	34.96	10.45	45.41	65.99	-20.58	QP
	2		0.1500	13.77	10.45	24.22	55.99	-31.77	AVG
/	3		0.2180	25.88	10.45	36.33	62.89	-26.56	QP
	4		0.4300	14.43	10.50	24.93	47.25	-22.32	AVG
	5	*	0.5460	17.84	10.52	28.36	46.00	-17.64	AVG
20	6		0.7780	25.95	10.54	36.49	56.00	-19.51	QP
	7		0.8139	11.29	10.54	21.83	46.00	-24.17	AVG
	8		1.7700	10.36	10.67	21.03	46.00	-24.97	AVG
,	9		1.7740	21.28	10.67	31.95	56.00	-24.05	QP
	10		3.1180	12.60	10.72	23.32	56.00	-32.68	QP
	11		12.5140	8.52	11.02	19.54	50.00	-30.46	AVG
Ż	12		13.2980	18.30	11.07	29.37	60.00	-30.63	QP

Note1:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = Antenna factor + Cable loss

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

W5ET

S DUOM * PIT

游认证股份

Signal Comments

Report No.: WSCT-A2LA-R&E240300010A-LE

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.3. Conducted Output Power

6.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB558074
Limit:	30dBm
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Refer to item 4.1
Test Procedure:	 The testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas. Guidance v04. Set spectrum analyzer as following: a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 x RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level.
Test Result:	PASS

Report No.: WSCT-A2LA-R&E240300010A-LE

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

6.3.2. Test Data

,		BLE 1M				
	Test channel	Maximum Conducted Output Power (dBm)	Limit (dBm)	Result		
0	Lowest	7.2	30.00	PASS		
	Middle	7.15	30.00	PASS		
	Highest	6.81	30.00	PASS		

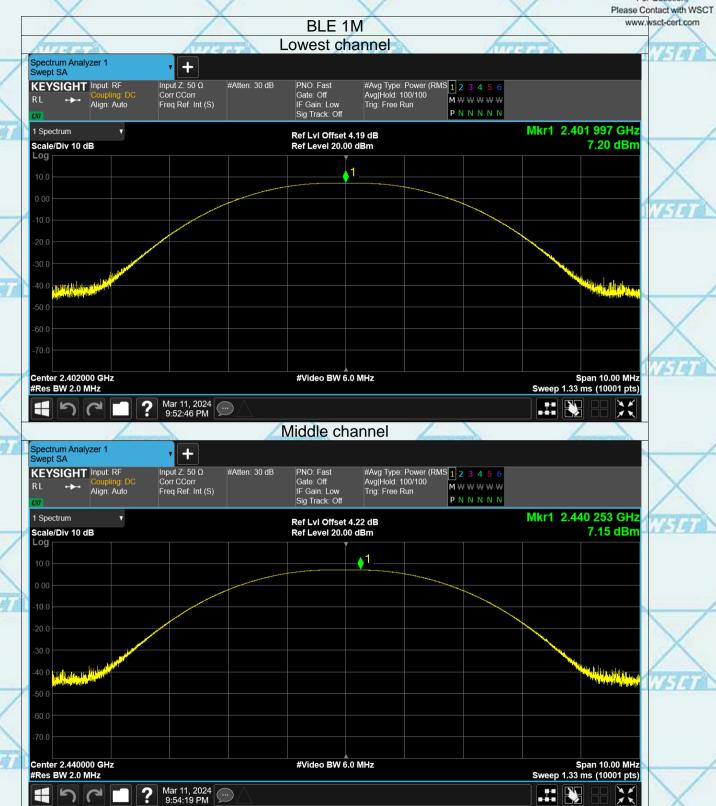
ATTEN	ATTENDED ATT	7-			
BLE 2M					
Test channel	Maximum Conducted Output Power (dBm)	Limit (dBm)	Result		
Lowest	7.3 5.7	30.00	PASS		
Middle	7.19	30.00	PASS		
Highest	6.8	30.00	PASS		

Test plots as follows:

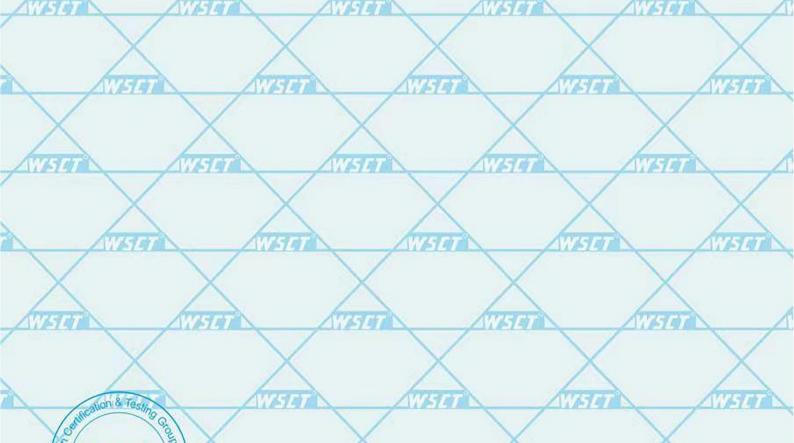
Duom * PIT

WEIGH	WHAT	WETER	NIE I I	WETER	
	\times		$\langle $	194	17/2-1-01
WASTAT	WSIN	Wester	W5101	W/5197	
	STOP AVE			5740	WESTER
NVF141	WSTO	WHIT	AVISTA A	N/STO	
	\times			5141	WESTER
wife alion &	- Comp				

世际检测认证数例
ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China p(Shenzhen) Co. Ltd. TEL:86,755-26998192 26992306 FAX:86-759-86376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com



Report No.: WSCT-A2LA-R&E240300010A-LE


Report No.: WSCT-A2LA-R&E240300010A-LE

(Shenz

世标检测认证股份

Elis World * DIT

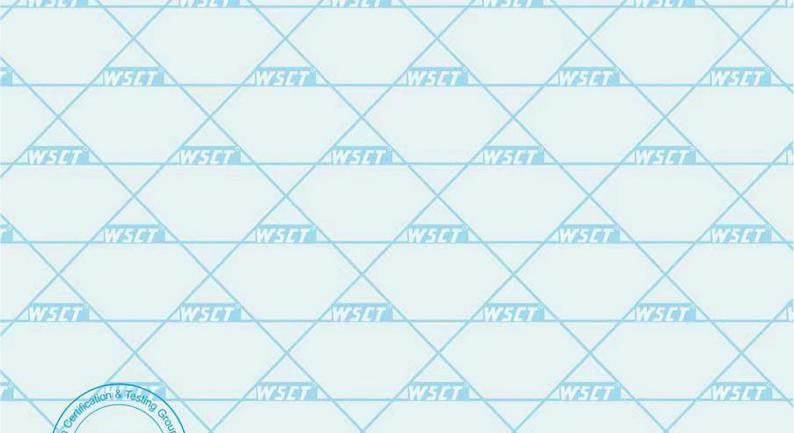


Report No.: WSCT-A2LA-R&E240300010A-LE

Certificate #5768.01 For Question,

Report No.: WSCT-A2LA-R&E240300010A-LE

(Shenz


世标检测认证股份

Elis World * DIT

Certificate #5768.01

For Question,
Please Contact with WSCT

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Certificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

Member of the WSCT INC.

6.4. Emission Bandwidth

6.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	KDB558074
Limit:	>500kHz
Test Setup:	EUT.
	Spectrum Analyzer
Test Mode:	Refer to item 4.1
Test Procedure:	 The testing follows FCC KDB Publication No. 558074 DTS D01 Meas. Guidance v04. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Test Result:	PASS

Page 20 of 49

Report No.: WSCT-A2LA-R&E240300010A-LE

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.4.2. Test data

BLE 1M

-		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A 11 A A 11 A	
	Test channel	Bandwidth (kHz)		
	rest chamilei	BT LE mode	Limit	Result
0	Lowest	0.627	>500k	NATH A
	Middle	0.636	>500k	PASS
	Highest	0.639	>500k	

BLE 2M

	Test channel	6dB Emission I	Bandwidth (kHz)		
>	rest charmer	BT LE mode	Limit	Result	
1	Lowest	0.628	>500k	1101311	
	Middle	0.63	>500k	PASS	
	Highest	0.645	>500k	-	

Test plots as follows:

WETGE	W639	WETER	WETGE	WHAT	
	THE NY E			7/3/41	WEST OF THE STATE
W-141	W5191	Wiston	AW5191	W/5191	
	TO AVE		700	NA-TOTAL	NIFT OF
WEIGH	WATER	WESTER	WATER	WEST OF	
	$\langle \ \rangle$			W5141	WHI
estification & 7	ON CEL				

世标检测认证股份 aroup (Shenzhen) Co., Ltd.

S BUOM * PIT

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86.755-28998192 26992308 FAX-86-755-88376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300010A-LE

Occupied Bandwidth

Transmit Freq Error

x dB Bandwidth

1.0521 MHz

Mar 11, 2024 9:54:27 PM

1.079 kHz

636.4 kHz

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992300 FAX-66-755-86376605 E-mail: Fengbing.Wang@wsci-cert.com Http://www.wsci-cert.com

Total Power % of OBW Power 13.1 dBm

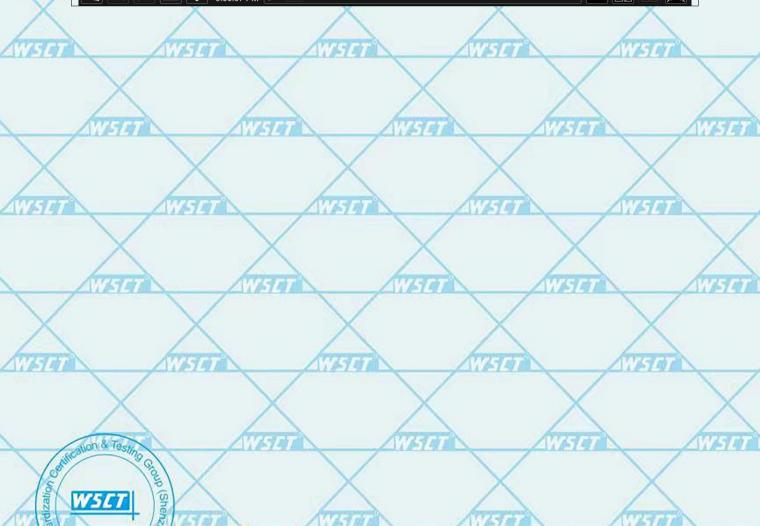
99.00 %

-6.00 dB

TIG * MOULD WATER

世标检测认证股份

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.


For Question,

Report No.: WSCT-A2LA-R&E240300010A-LE

Certificate #5768.01

Page 23 of 49

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Member of the WSCT INC.

Report No.: WSCT-A2LA-R&E240300010A-LE



Member of the WSCT INC

Page 25 of 49

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

6.5. Power Spectral Density

6.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB558074
Limit:	The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Refer to item 4.1
Test Procedure:	 The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No.558074 D01 DTS Meas. Guidance v04 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW) Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report.
Test Result:	PASS
	Test Method: Limit: Test Setup: Test Mode: Test Procedure:

6.5.2. Test Instruments

RF Test Room						
Equipment	Manufacturer	Model	Serial Number	Calibration Due		
Spectrum Analyzer	R&S	FSU	200054	Sep. 27, 2018		
RF cable (9kHz-26.5GHz)	тст	RE-06	N/A	Sep. 27, 2018		
Antenna Connector	TCT	RFC-01	N/A W	Sep. 27, 2018		

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

世标检测认证股份 Group (Shenzhen) Co., Ltd.

Report No.: WSCT-A2LA-R&E240300010A-LE

6.5.3. Test data

Certificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

	Test channel	Power Spectral D	ensity (dBm/3kl	Hz)
	rest channel	BLE 1M	Limit	Result
	Lowest	-7.82	8 dBm/3kHz	
0	Middle	-7.88	8 dBm/3kHz	PASS
	Highest	-8.18	8 dBm/3kHz	

Test channel	Power Spectral Density (dBm/3kHz)			
rest channel	BLE 2M	Limit	Result	
Lowest	-7.72	8 dBm/3kHz		
Middle	-7.75	8 dBm/3kHz	PASS	
Highest	-8.05	8 dBm/3kHz		

Test plots as follows:

oup (Shenz

DUOM * PIT

世标检测认证股份

WHAT	WSI	WHITE	WEIGH	WSI	
	ET A STEEL	$\langle \hspace{0.1cm} \rangle$	$\langle \ \ \rangle$		F14.0
NVE 14	Wister	WETA	W-5191	IV-7.00	
	NI STORY	AVIS	W.S		F144
WETER	WATER	WEI W	WASTER	WSTO	
	& Testing G				15100
diffico	OG				

Page 27 of 49

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-86-755-86376605 E-mail: Fengbing.Wang@wsci-cert.com Http://www.wsci-cert.com



Report No.: WSCT-A2LA-R&E240300010A-LE

Certificate #5768.01

Report No.: WSCT-A2LA-R&E240300010A-LE

(Shenz

世标检测认证股份

MONON * DIT

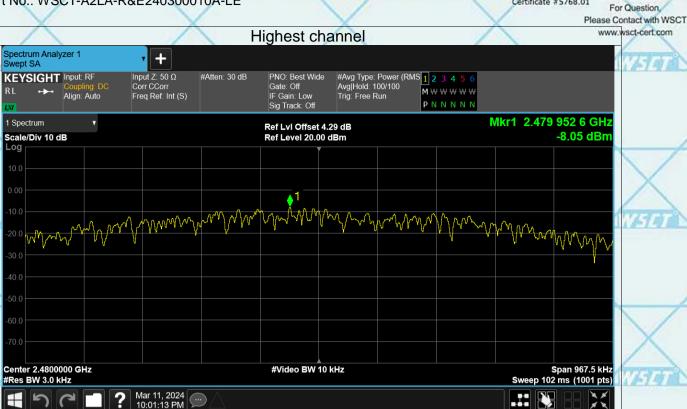
Spilication & Testing

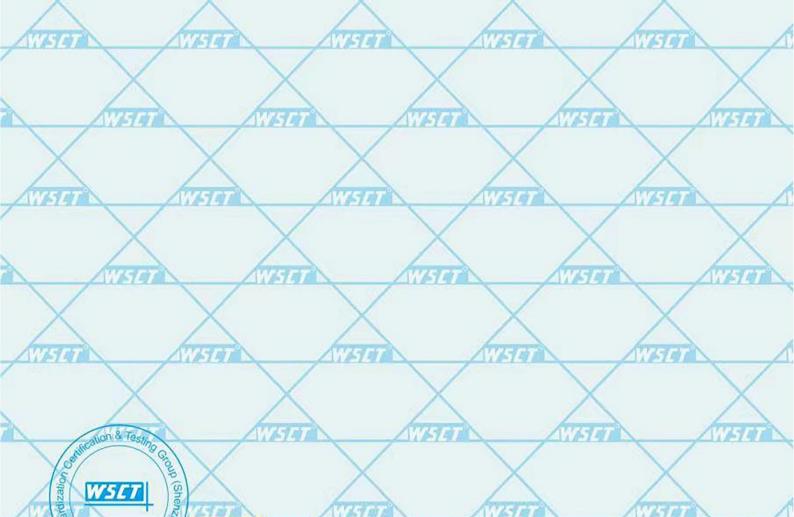
Report No.: WSCT-A2LA-R&E240300010A-LE

MONON * DIT

世标检测认证股份

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.





Report No.: WSCT-A2LA-R&E240300010A-LE

Certificate #5768.01

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

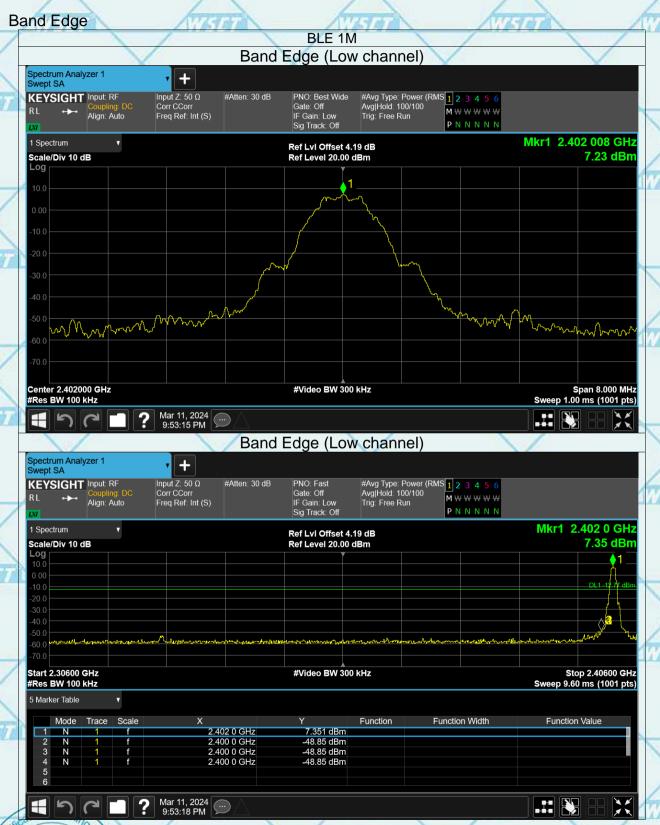
Please Contact with WSCT www.wsct-cert.com

6.6. Conducted Band Edge and Spurious Emission Measurement

6.6.1. Test Specification FCC Part15 C Section 15.247 (d) **Test Requirement:** KDB558074 **Test Method:** In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by Limit: RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a). Test Setup: **EUT** Spectrum Analyzer Test Mode: Refer to item 4.1 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously.

- Test Procedure:
- 3. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d).
- 4. Measure and record the results in the test report.
- 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

PASS Test Result:



Certificate #5768.01

For Question,
Please Contact with WSCT

6.6.2. Test Data

MONOW * PIT

S

世标检测认证股份

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992300 FAX-66-755-86376605 E-mail: Fengbing.Wang@wsci-cert.com Http://www.wsci-cert.com

1 Spectrum

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

Report No.: WSCT-A2LA-R&E240300010A-LE

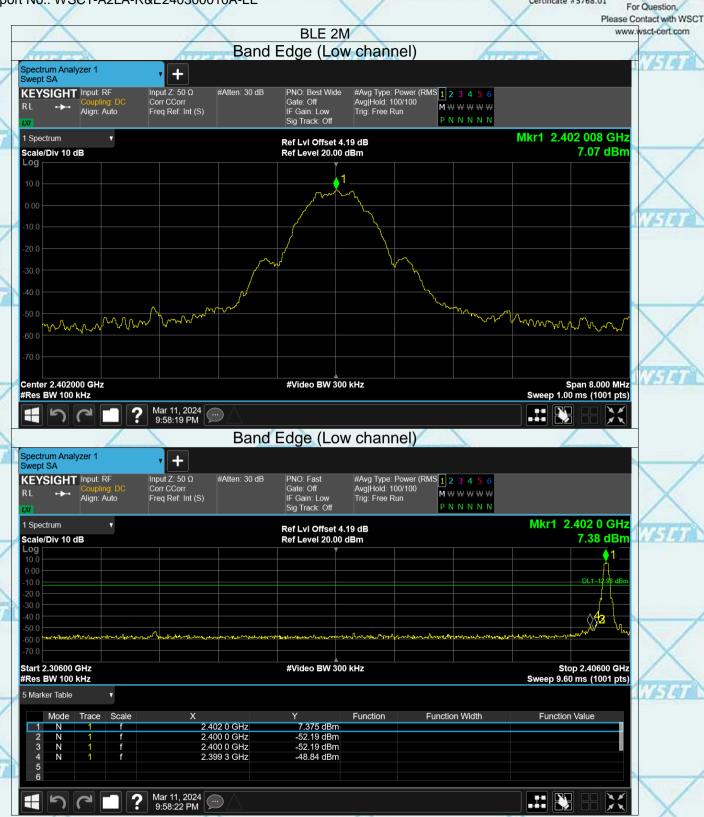
Certificate #5768.01 For Question, Please Contact with WSCT www.wsct-cert.com Band Edge (High channel) Spectrum Analyzer 1 + Input Z: 50 Ω Corr CCorr #Atten: 30 dB PNO: Best Wide Gate: Off #Avg Type: Power (RMS 1 2 3 4 5 Avg|Hold: 100/100 KEYSIGHT Input: RF M W W W W IF Gain: Low Sig Track: Off Align: Auto Freq Ref: Int (S) Trig: Free Run Mkr1 2.480 024 GHz Ref LvI Offset 4.29 dB Ref Level 20.00 dBm Scale/Div 10 dB 6.14 dBm when the whow he Span 8.000 MHz Sweep 1.00 ms (1001 pts) Center 2.480000 GHz #Res BW 100 kHz #Video BW 300 kHz Mar 11, 2024 9:56:27 PM Band Edge (High channel) Spectrum Analyzer 1 Swept SA + #Avg Type: Power (RMS 1 2 3 4 5 6 Avg|Hold: 100/100 Input Z: 50 Ω #Atten: 30 dB PNO: Fast KEYSIGHT Input: RF Corr CCorr Freq Ref: Int (S) Gate: Off IF Gain: Low Sig Track: Off M ₩ ₩ ₩ ₩ Align: Auto Trig: Free Run Mkr1 2.479 8 GHz Ref Lvl Offset 4.29 dB 6.28 dBm Scale/Div 10 dB Ref Level 20.00 dBm **∂**3 Start 2.47600 GHz #Video BW 300 kHz Stop 2.57600 GHz #Res BW 100 kHz Sweep 9.60 ms (1001 pts) 5 Marker Table Function Width Function Value Mode Scale Function 2.479 8 GHz 6.282 dBm 2.483 5 GHz 2.500 0 GHz -53.53 dBm -56.25 dBm 2.489 6 GHz -41.83 dBm

Ν

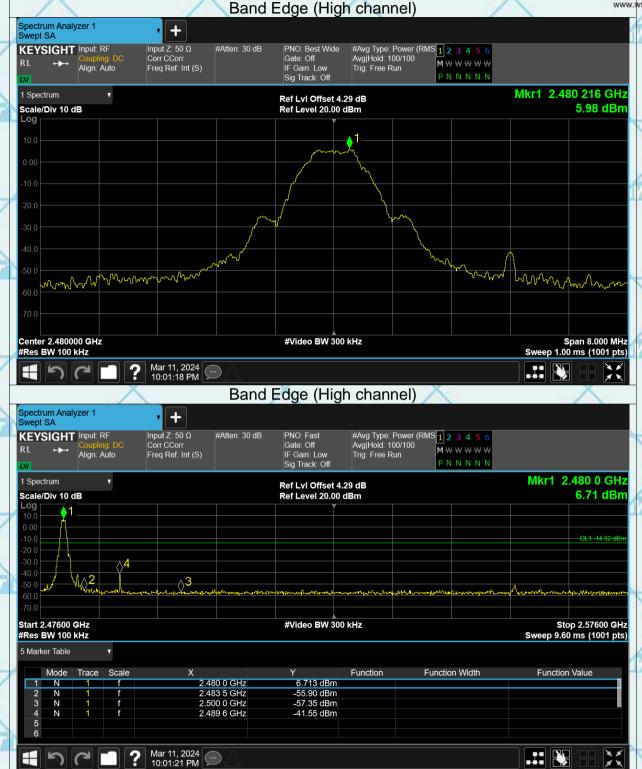
Mar 11, 2024 9:56:30 PM

5

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com



Report No.: WSCT-A2LA-R&E240300010A-LE



Report No.: WSCT-A2LA-R&E240300010A-LE

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-66-755-86376605 E-mail: Fengbing Wang@wscl-cert.com Http://www.wscl-cert.com



Report No.: WSCT-A2LA-R&E240300010A-LE

Certificate #5768.01 For Question, Please Contact with WSCT www.wsct-cert.com

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300010A-LE

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992308 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300010A-LE

Certificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

N

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-66-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

-52.67 dBm -52.53 dBm

7.201 6 GHz 9.722 4 GHz

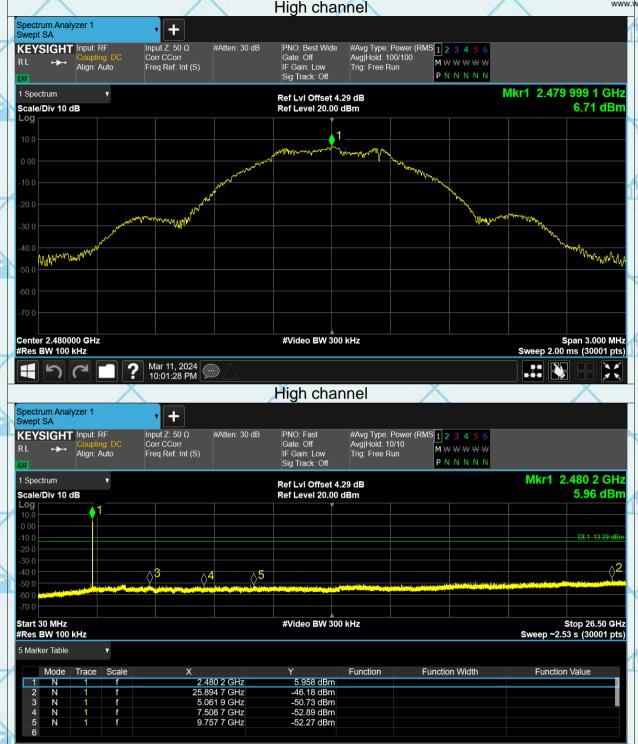
Mar 11, 2024 9:59:01 PM

... 💸

Report No.: WSCT-A2LA-R&E240300010A-LE

Mar 11, 2024 10:00:30 PM

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com



Report No.: WSCT-A2LA-R&E240300010A-LE

Mar 11, 2024 10:02:00 PM

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86.755-26996192 26992306 FAX-86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300010A-LE

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.7. Radiated Spurious Emission Measurement

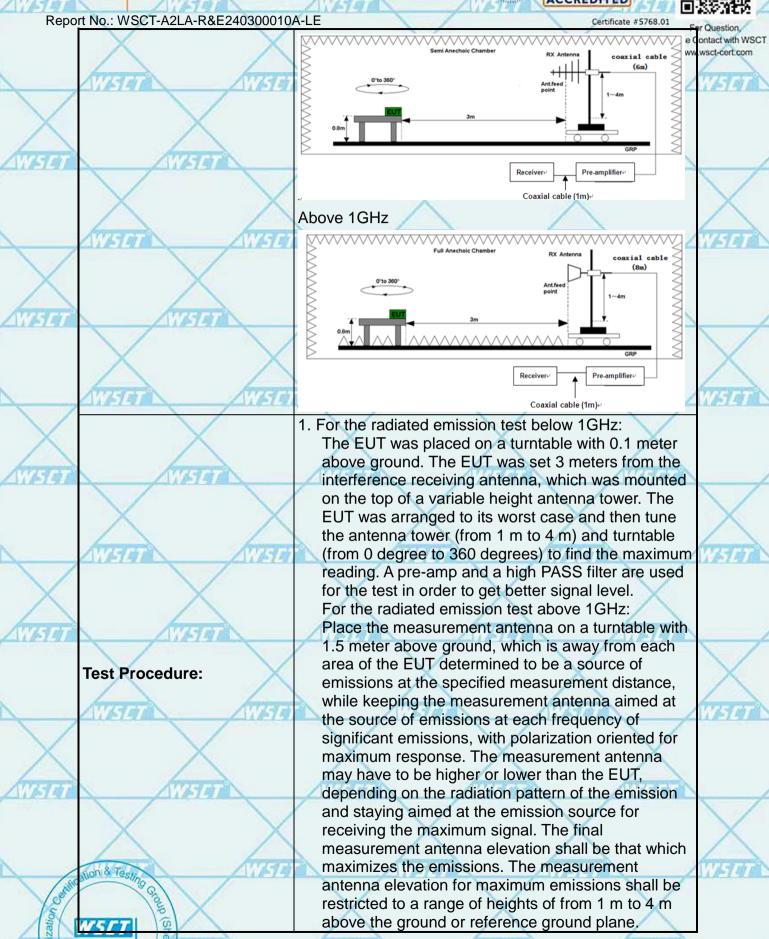
6.7.1. Test Specification

7.1. Test Specification			/				
Test Requirement:	FCC Part15	FCC Part15 C Section 15.209					
Test Method:	ANSI C63.10	0:2014	1779		1	7514	
Frequency Range:	9 kHz to 25	GHz			/		
Measurement Distance:	3 m						
Antenna Polarization:	Horizontal &	Vertical		AVIT	41		
Operation mode:	Refer to item	n 4.1					
	Frequency	Detector	RBW	VBW	Re	emark	
W5141	9kHz- 150kHz	Quasi-peak	200Hz	1kHz	Quasi-	oeak Value	
Receiver Setup:	150kHz- 30MHz	Quasi-peak	9kHz	30kHz	Quasi- _l	oeak Value	
X	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-	oeak Value	
	Above 1CHz	Peak	1MHz	3MHz	Pea	k Value	
AW-TET AW-TE	Above 1GHz	Peak	1MHz	10Hz	Avera	ge Value	
			Field Stre	enath	Meas	urement	
X	Frequer	ncy	(microvolts/meter) 2400/F(KHz)		Distance (meters)		
	0.009-0.	490					
WST	0.490-1.	705	24000/F(KHz)		30		
	1.705-3	30	30			30	
X	30-88	_	100			3	
	88-21		150			3	
Limit:	216-96	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	200		3		
THE STATE OF THE S	Above 9	160	500	LIE	7.1	3	
X	Frequency		d Strength volts/meter)	Measurei Distan	се	Detector	
175791	A11-19-1		500	3	3)	Average	
	Above 1GH	z	5000	3		Peak	
	For radiated	emissions	below 30	MHz	1		
TIET TENT	Distance = 3m						
X	Computer Pre -Amplifier						
Test setup:	EUT	'($\gamma = 0$	rie-	- impiriter	1	
X		. Turn table			1		

W5CT

S DUOM * PIT

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com


Ground Plane

30MHz to 1GHz

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:66-755-86376605 E-mail: Fengbing, Wang@wsci-cert.com Http://www.wsci-cert.com

111574	17-7-9-11	ACCREDITED	1
Repo	rt No.: WSCT-A2LA-R&E240300010	For Question,	
	X	2. Corrected Reading: Antenna Factor + Cable Loss Hose Contact with WSCI	Ē.
		Read Level - Preamp Factor = Level	
	ATTENDED TOTAL	3. For measurement below 1GHz, If the emission level	
	CIFIAR CIRIA	of the EUT measured by the peak detector is 3 dB	-
		lower than the applicable limit, the peak emission	
X	X	level will be reported. Otherwise, the emission	
		measurement will be repeated using the quasi-peak	
1175197	11/5/9/	detector and reported.	
		4. Use the following spectrum analyzer settings:	
	X	(1) Span shall wide enough to fully capture the	
		emission being measured;	
	AULTE AULTE	Average Average Average	
	11-13	(2) Set RBW=100 kHz for f < 1 GHz; VBW ≥RBW;	_
		Sweep = auto; Detector function = peak; Trace =	
		max hold;	
		(3) Set RBW = 1 MHz, VBW= 3MHz for f 1 GHz	
11114	1674	for peak measurement.	
		For average measurement: VBW = 10 Hz, when	
	X	duty cycle is no less than 98 percent. VBW ≥ 1/T,	
	Array Array	when duty cycle is less than 98 percent where T is	8
	A1619	the minimum transmission duration over which the	7
1/		transmitter is on and is transmitting at its maximum	
X	X	power control level for the tested mode of operation.	
	Test mode:	Refer to section 4.1 for details	
ZYATA B		7127	
	Test results:	PASS	
	Note: Freq. = Emission frequency in MH		
	Reading level (dBµV) = Receiver reading		
	Corr. Factor (dB) = Attenuation factor +	Cable loss	5

Note: Freq. = Emission frequency in MHz Reading level (dB μ V) = Receiver reading Corr. Factor (dB) = Attenuation factor + Cable loss Level (dB μ V) = Reading level (dB μ V) + Corr. Factor (dB) Limit (dB μ V) = Limit stated in standard Margin (dB) = Level (dB μ V) - Limits (dB μ V)

World Stank in State Cermination (20 propries (Shenzhen) Co. Ltd.

VISTO AVISTO

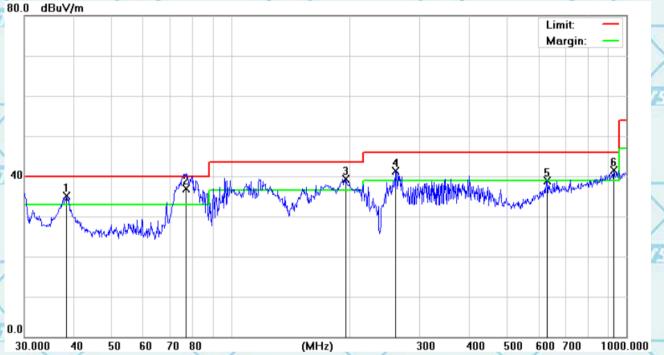
7614 M

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300010A-LE

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com


6.7.2. Test Data

Please refer to following diagram for individual

Below 1GHz

Adapter1 (the worst case)

Horizontal:

4	No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	744	
A.A			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	,
	1	!	38.3462	35.80	-0.73	35.07	40.00	-4.93	QP	
	2	*	76.7808	41.33	-4.51	36.82	40.00	-3.18	QP	3
/	3	!	195.1365	43.04	-3.81	39.23	43.50	-4.27	QP	2.
	4	!	260.1444	42.80	-1.42	41.38	46.00	-4.62	QP	
1	5		631.6884	30.45	8.51	38.96	46.00	-7.04	QP	
	6	!	929.0082	27.93	13.54	41.47	46.00	-4.53	QP	/

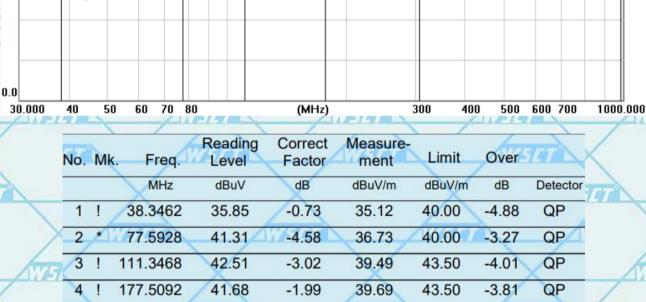
World Stark in Styling Communities (1907) Stroup (St

MA MATERIAL

AWSET

ZVF74

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com



Report No.: WSCT-A2LA-R&E240300010A-LE
Vertical:
80.0 dBuV/m

Limit:
Margin:

0.23

14.35

40.21

43.43

46.00

54.00

-5.79

-10.57

QP

QP

Note1:

Freq. = Emission frequency in MHz

5 !

6

Reading level (dBµV) = Receiver reading

306.7537

989.5355

Corr. Factor (dB) = Antenna factor + Cable loss - Amplifier factor.

39.98

29.08

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Warld Stands Organication of Stands of Stands

Report No.: WSCT-A2LA-R&E240300010A-LE

Certificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

Above 1GHz

4	Erog		Low channel: 2402MHz							
	Freq. (MHz)	Ant.Pol	Emission Level(dBuV)		Limit 3m(dBuV/m)		Over(dB)			
		H/V	PK	AV	PK	AV	PK	AV		
	4804	V	60.96	41.07	74	54	-13.04	-12.93		
X	7206	\ \ \	58.63	39.72	74	54	-15.37	-14.28		
	4804	TETAME	58.68	39.10	74	54	-15.32	-14.90		
	7206	Н	59.95	40.95	74	54	-14.05	-13.05		

	Eroa	Middle channel: 2440MHz								
7	Freq. (MHz)	Ant.Pol	Emission L	_evel(dBuV)	V) Limit 3m(dBuV/m)		Over(dB)			
	(IVIIIZ)	H/V	PK	AV	PK	AV	PK	AV		
	4880	V	59.85	41.01	74	54	-14.15	-12.99		
	7320	V	58.57	39.91	74	54	-15.43	-14.09		
	4880	WSHT	59.77	39.76	74	54	-14.23	-14.24		
	7320	H	59.53	40.53	74	54	-14.47	-13.47		

	Eroa	High channel: 2480 MHz							
3	Freq. (MHz)	Ant.Pol	Emission L	_evel(dBuV)	Limit 3m	(dBuV/m)	Ove	r(dB)	
*	(IVIIIZ)	H/V	PK	AV	PK	AV	PK	AV	
	4960	V	59.08	41.02	74	54	-14.92	-12.98	
	7440	>	58.85	40.53	74	54	-15.15	-13.47	
X	4960		60.00	40.16	74	54	-14.00	-13.84	
L	7440		58.85	39.85	74	54	-15.15	-14.15	

Note:

- 1. All emissions not reported were more than 20dB below the specified limit or in the noise floor.
- Emission Level= Reading Level+ Probe Factor +Cable Loss.
 Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

N/514	WATER	WSI	W519	WATER	
		\times	X	X	X
NVS	W.	777	1501	WSI	AVSTOR
WHI	NV-10	WEIGH	Wester	17679	
		X	X III	V I I I I	
1/85	for	1	71333	MIZE AND	W1344

(Shen

DUOM * PT

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992300 FAX-66-755-86376605 E-mail: Fengbing.Wang@wsci-cert.com Http://www.wsci-cert.com

Report No.: WSCT-A2LA-R&E240300010A-LE

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

Restricted Bands Requirements

Test result for GFSK Mode (the worst case)

TOST TOSUIT	IOI OI OIL IVI	ouc the	WOISt Casc			111111111111111111111111111111111111111	ni nil
Frequency	Reading	Correct Factor	Emission Level	Limit	Margin	Polar	Detector
(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	H/V	
	AVE TO BE	1	Low Cha	nnel	1777		11125
2390	67.37	-8.73	58.64	74	-15.36	£	PK
2390	50.29	-8.73	41.56	54	-12.44	нХ	AV
2390	69.56	-8.73	60.83	74	-13.17	V	PK
2390	46.48	-8.73	37.75	54	-16.25	V	AV
			High Cha	innel		9	
2483.5	66.75	-8.17	58.58	74	-15.42	н	PK
2483.5	49.77	-8.17	41.60	54	-12.40	Ŧ	AV
2483.5	66.41	-8.17	58.24	74	-15.76	V	PK
2483.5	47.32	-8.17	39.15	54	-14.85	V	AV

1679	*****END OF REPORT****	11-7-9	AWS/CI D
WEST WEST OF THE STREET	\times	$\langle \times $	
WEIGH	NVETER AVETER	MEIGH	NETH O
NVE-141	$\langle \times \rangle$		
WE TO	WESTER	WSET	AVEIGE
WET 41			
illication & Testino	Wister	WSIII	NISTER OF
Milicon			

Page 49 of 49

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-86-755-86376605 E-mail: Fengbing.Wang@wscl-cert.com Http://www.wscl-cert.com

Member of the WSCT INC.