

FCC Radio Test Report FCC ID: 2AZUJ-SYS-C60-LMC2

Report No. : BTL-FCCP-1-2404T114 Equipment : Wireless Network Device

Model Name : E.8.006.03

Brand Name : N/A

Applicant: La Marzocco S.R.L

Address : Via La Torre 14/H Scarperia e San Piero Italy 50038

Radio Function : Bluetooth

FCC Rule Part(s) : FCC CFR Title 47, Part 15, Subpart C (15.247)

Measurement: ANSI C63.10-2013

Procedure(s)

Date of Receipt : 2024/4/24

Date of Test : 2024/5/13 ~ 2024/6/3

Issued Date : 2024/7/17

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by : Eddie Lee Engineer

Approved by : Jerry Chuang, Supervisor

Taf

Testing Laboratory
0659

BTL Inc.

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan

Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com Service mail: btl_qa@newbtl.com

Project No.: 2404T114 Page 1 of 46 Report Version: R00

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. BTL assumes no responsibility for the data provided by the Customer, any statements, inferences or generalizations drawn by the customer or others from the reports issued by BTL.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Project No.: 2404T114 Page 2 of 46 Report Version: R00

CONTENTS

1	SUMMA	RY OF TEST RESULTS	5			
1.1	TEST	FACILITY	6			
1.2	MEAS	SUREMENT UNCERTAINTY	6			
1.3	TEST	ENVIRONMENT CONDITIONS	6			
2	GENER/	AL INFORMATION	7			
2.1	DESC	CRIPTION OF EUT	7			
2.2	TEST	MODES	9			
2.3	BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED					
2.4	SUPF	PORT UNITS	10			
3	RADIATI	ED EMISSIONS TEST	11			
3.1	LIMIT		11			
3.2	TEST	PROCEDURE	12			
3.3	DEVI	ATION FROM TEST STANDARD	12			
3.4	TEST	SETUP	12			
3.5	EUT (OPERATING CONDITIONS	14			
3.6	TEST	RESULT – 9KHZ TO 30 MHZ	14			
3.7	TEST	RESULT – 30 MHZ TO 1 GHZ	14			
3.8	TEST	RESULT – ABOVE 1 GHZ	14			
4	OUTPUT	FPOWER TEST	15			
4.1	LIMIT		15			
4.2	TEST	PROCEDURE	15			
4.3	DEVI	ATION FROM STANDARD	15			
4.4	TEST	SETUP	15			
4.5	EUT (OPERATION CONDITIONS	15			
4.6	TEST	RESULTS	15			
5	LIST OF	MEASURING EQUIPMENTS	16			
6	EUT TES	ST PHOTO	17			
7	EUT PH	OTOS	17			
APPEN	DIX A	RADIATED EMISSIONS - 9 KHZ TO 30 MHZ	18			
APPEN	DIX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	23			
APPEN	DIX C	RADIATED EMISSIONS - ABOVE 1 GHZ	26			
APPEN	DIX D	OUTPUT POWER	45			

REVISION HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-1-2404T114	R00	Original Report.	2024/7/17	Valid

Project No.: 2404T114 Page 4 of 46 Report Version: R00

1 SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

Standard(s) Section	Description	Test Result	Judgement	Remark
15.207	AC Power Line Conducted Emissions		N/A	NOTE (3)
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX A APPENDIX B APPENDIX C	Pass	
15.247 (a)(1)(iii)	Number of Hopping Frequency	NOTE (4)	Pass	
15.247 (a)(1)(iii)	Average Time of Occupancy	NOTE (4)	Pass	
15.247 (a)(1)	Hopping Channel Separation	NOTE (4)	Pass	
15.247 (a)(1)	Bandwidth	NOTE (4)	Pass	
15.247 (b)(1)	Output Power	APPENDIX D	Pass	
15.247(d)	Antenna conducted Spurious Emission	NOTE (4)	Pass	
15.203	Antenna Requirement		Pass	

NOTE:

- (1) "N/A" denotes test is not applicable in this Test Report.
- (2) The report format version is TP.1.1.1.
- (3) This is a DC input device.
- (4) This item is demonstrated to full compliance referring to the test report number FR4O0971A of the integrated module (model name: WL18MODGI, FCC ID: Z64-WL18DBMOD), according to KDB 996369 D02 Q1 a) 2).
- (5) The radiated emissions are tested to demonstrate full compliance of both module integrated into the host and host itself.
- (6) The output power of integrated module have been reduced, therefore, the full output power tests are performed and recorded.

Project No.: 2404T114 Page 5 of 46 Report Version: R00

Report No.: BTL-FCCP-1-2404T114

1.1 TEST FACILITY

The test locations stated below are under the TAF Accreditation Number 0659. The test location(s) used to collect the test data in this report are: No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

(FCC DN: TW0659)

C05 □ CB08 □ CB11 SR11 \boxtimes

No. 72, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

(FCC DN: TW0659)

□ C06 □ CB22

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of k = 2, providing a level of confidence of approximately 95 %.

A. Radiated emissions test:

Test Site	Measurement Frequency Range	U (dB)
	0.03 GHz ~ 0.2 GHz	4.17
	0.2 GHz ~ 1 GHz	4.72
CB21	1 GHz ~ 6 GHz	5.21
CBZT	6 GHz ~ 18 GHz	5.51
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23

B. Conducted test:

Test Item	U (dB)
Output Power	0.3659

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
Radiated emissions below 1 GHz	Refer to data	DC 24V	Mark Wang
Radiated emissions above 1 GHz	Refer to data	DC 24V	Mark Wang, Sean Huang
Output Power	23 °C, 54 %	DC 24V	Easton Tsai

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment	Wireless Network Device	
Model Name	E.8.006.03	
Brand Name	N/A	
Model Difference	N/A	
Power Source	DC voltage supplied from DC source.	
Power Rating	DC 24V, 0.5A	
Products Covered	1* Antenna	
Floducis Covered	1* Power cord	
WIFI+BT Module	Texas Instruments / WL18MODGI	
Operation Band	2400 MHz ~ 2483.5 MHz	
Operation Frequency	2402 MHz ~ 2480 MHz	
	1 Mbps: 10.42 dBm (0.0110 W)	
Maximum Output Power	2 Mbps: 8.77 dBm (0.0075 W)	
	3 Mbps: 9.04 dBm (0.0080 W)	
Operating Software	PuTTY 0.62	
Test Model	E.8.006.03	
Sample Status Engineering Sample		
EUT Modification(s) N/A		

NOTE:

(1) The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

(2) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
80	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

Project No.: 2404T114 Page 7 of 46 Report Version: R00

(3) Table for Filed Antenna:

Antenna	Manufacture	Part Number	Туре	Connector	Frequency Range (MHz)	Gain (dBi)
				2400-2480	2.7	
	DF	014D 1000D316	OEM MULTIFUNCTION	SMA MALE RP	5150-5250	0.75
Red	dynaflex*	814B_1000R316 _SMMRP			5250-5350	0.60
					5470-5725	0.42
					5725-5850	0.20
				2400-2480	2.1	
	dynaflex 814B_1000R316 MUL	014D 1000D316	O D D		5150-5250	1.74
Blue		OEM MULTIFUNCTION	SMA MALE RP	5250-5350	1.76	
		_OIVIIVIIXF	MOLTIFONCTION		5470-5725	1.12
					5725-5850	-0.37

The above Antenna information are derived from the antenna data sheet provided by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

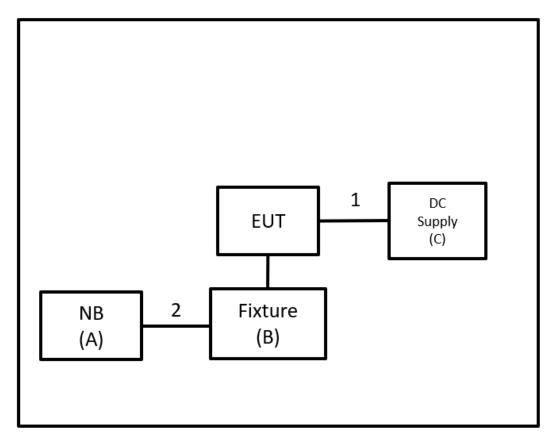
Project No.: 2404T114 Page 8 of 46 Report Version: R00

Report No.: BTL-FCCP-1-2404T114

2.2 TEST MODES

Test Items	Test mode	Channel	Note
Transmitter Radiated Emissions (below 1GHz)	1 Mbps	39	-
Transmitter Radiated Emissions	1/3 Mbps	00/78	Bandedge
(above 1GHz)	1/3 Mbps	00/39/78	Harmonic
Transmitter Radiated Emissions (above 18GHz)	1 Mbps	39	-
Output Power	1/2/3 Mbps	00/39/78	-

NOTE:


- (1) The Radiated emissions test was verified based on the worst conducted power and Bandwidth test results reported in the original report.
- (2) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Horizontal) is recorded.
- (3) All X, Y and Z axes are evaluated, but only the worst case (X axis) is recorded.

Project No.: 2404T114 Page 9 of 46 Report Version: R00

2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
Α	NB	HP	TPN-I119	N/A	Furnished by test lab.
В	Fixture	N/A	N/A	N/A	Supplied by test requester.
С	DC Power Supply	UP-BEST	TDS-60-15	N/A	Furnished by test lab.

Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	N/A	N/A	1.3m	Power Code	Furnished by test lab.
2	N/A	N/A	2.4m	Console cable	Supplied by test requester.

Project No.: 2404T114 Page 10 of 46 Report Version: R00

Report No.: BTL-FCCP-1-2404T114

3 RADIATED EMISSIONS TEST

3.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency	Radiated (dBu	Measurement Distance	
(MHz)	Peak	Average	(meters)
Above 1000	74	54	3

NOTE:

- (1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
(dBµV)		(dB/m)		(dBµV/m)
19.11	+	2.11	=	21.22

Measurement Value (dBµV/m)		Limit Value (dBµV/m)		Margin Level (dB)
21.22	-	54	=	-32.78

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1MHz / 3MHz for Peak,
(Emission in restricted band)	1MHz / 1/T for Average

Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

Project No.: 2404T114 Page 11 of 46 Report Version: R00

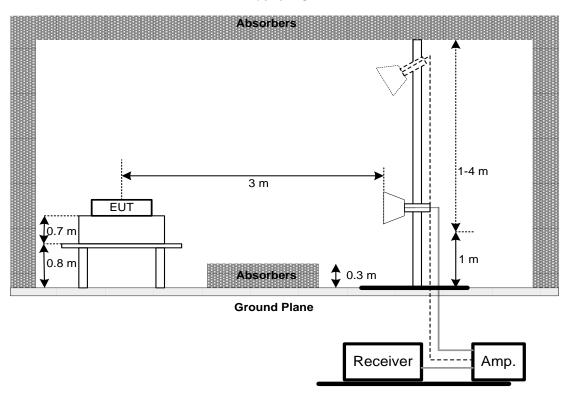
3.2 TEST PROCEDURE

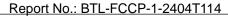
- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

3.3 DEVIATION FROM TEST STANDARD


No deviation.

3.4 TEST SETUP


Project No.: 2404T114 Page 12 of 46 Report Version: R00


30 MHz to 1 GHz

Above 1 GHz

3TL

3.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

3.6 TEST RESULT - 9kHz TO 30 MHz

Please refer to the APPENDIX A.

3.7 TEST RESULT - 30 MHZ TO 1 GHZ

Please refer to the APPENDIX B.

3.8 TEST RESULT - ABOVE 1 GHZ

Please refer to the APPENDIX C.

NOTE:

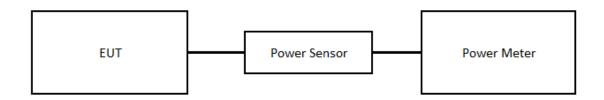
(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

Project No.: 2404T114 Page 14 of 46 Report Version: R00

4 OUTPUT POWER TEST

4.1 LIMIT

Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(1)	Maximum peak conducted output power	0.125 Watts (20.97 dBm)	2400-2483.5	PASS


4.2 TEST PROCEDURE

- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW= 1/3MHz, VBW= 1/3MHz, Sweep time = Auto.

4.3 DEVIATION FROM STANDARD

No deviation.

4.4 TEST SETUP

4.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULTS

Please refer to the APPENDIX D.

Project No.: 2404T114 Page 15 of 46 Report Version: R00

5 LIST OF MEASURING EQUIPMENTS

			Radiated Emission	ons		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Preamplifier	EMCI	EMC330N 980850		2023/9/6	2024/9/5
2	Preamplifier	EMCI	EMC118A45SE	980819	2024/3/6	2025/3/5
3	Pre-Amplifier	EMCI	EMC184045SE	980907	2023/9/21	2024/9/20
4	Preamplifier	EMCI	EMC001340	980579	2023/9/6	2024/9/5
5	Test Cable	EMCI	EMC104-SM-100 0	180809	2024/3/8	2025/3/7
6	Test Cable	EMCI	EMC104-SM-SM- 3000	220322	2024/3/8	2025/3/7
7	Test Cable	EMCI	EMC104-SM-SM- 7000	220324	2024/3/8	2025/3/7
8	EXA Signal Analyzer	keysight	N9020B	MY57120120	2024/2/23	2025/2/22
9	Loop Ant	Electro-Metrics	EMCI-LPA600	291	2023/9/12	2024/9/11
10	Horn Antenna	RFSPIN	DRH18-E	211202A18EN	2023/5/12	2024/5/11
10	TIOTT AIRCITIA	IXI OF IIV	DIXITIO-L		2024/5/9	2025/5/8
11	Horn Ant	Schwarzbeck	BBHA 9170	1136	2023/6/28	2024/6/27
12	TRILOG		2023/8/8	2024/8/7		
13	6dB Attenuator	EMCI	EMCI-N-6-06	AT-N0625	2023/8/8	2024/8/7
14	Test Cable	EMCI	EMC101G-KM-K M-3000	220329	2024/3/13	2025/3/12
15	Test Cable	EMCI	EMC102-KM-KM- 1000 220327		2024/3/13	2025/3/12
16	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A

			Output Power			
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Power Meter	Anritsu	ML2495A	1128008	2024/5/11	2025/5/10
2	Power Sensor	Anritsu	MA2411B	1126001	2024/5/11	2025/5/10

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

Project No.: 2404T114 Page 16 of 46 Report Version: R00

	<u>LL</u>	Report No.: BTL-FCCP-1-2404T114
6	EUT TEST PHOTO	
	se refer to document Appendix No.: TP-2404T114-FCCP-1 (APPE	NDIX-TEST PHOTOS).
7	EUT PHOTOS	
Ple	se refer to document Appendix No.: EP-2404T114-2 (APPENDIX-E	EUT PHOTOS).

APPENDIX A	RADIATED EMISSIONS - 9 KHZ TO 30 MHZ

Project No.: 2404T114 Page 18 of 46 Report Version: R00

,	Test Mod	de	BT (1 Mbps)		Test Date		2024	1-5-13	
Te	st Freque	ency		40MHz		Polarization			rtical	
	Temp		2	23°C		Hum.		6	6%	
50.0 dE	BuV/m									_
40										1
30										-
20					<u> </u>					_
										7
10										1
00										+
o										4
o										
0		1								\dashv
0		X								4
o										
0										
0										+
0.0										
0.009	0.02	0.04	0.05	0.07	0.08 0.	09 0.11	0.12		0.15	_ MH
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over			
			Level	Factor	ment					
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comm	ent
1	*	0.0393	37.23	26.00	63.23	134.80	-71.57	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

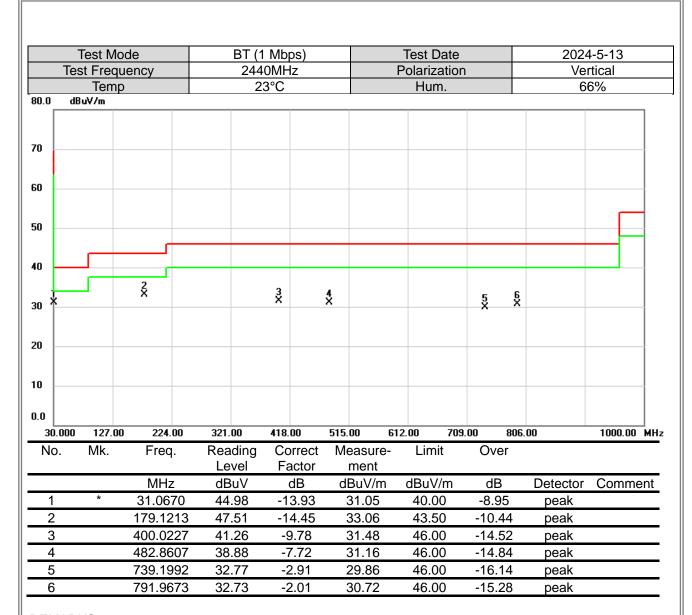
	_	Test Mo	do		BT (1 N/h	na)			Too	t Date			202	4-5-13	
		st Frequ				I WID					rization	า			rtical	
		Temp				3°C	<u></u>				um.	-			6%	
130.	O dB	uV/m														_
120 110 100 90 80																
70 60 50	1 X	2 X		3 X		4 ×					5 X	6 X				
40 30 20																
10 0.0																
	.150	3.1 4 Mk.	6.12	9.10		12.0		15.0		8.06	21.		.03		30.00	MHz
N	0.	IVIK.	Freq.		iding vel		orrect actor		easure- ment	LI	mit	Over				
			MHz		suV		dB		BuV/m	dBı	ıV/m	dB	D	etector	Comr	nent
1	1		0.3948		.82		6.68		73.50		4.76	-41.26		QP		
_ 2	2	*	2.9997		.98		3.75		64.23		3.62	-24.39		QP		
3	3		8.0006	65	.33	-;	3.66		61.67	88	3.62	-26.95		QP		
	4		11.0004	61	.53	-(3.26	,	58.27	88	3.62	-30.35		QP		
- 5			20.5714	58	.29	-(3.83	;	54.46	88	3.62	-34.16		QP		
- 6	3		22.8580	57	.18	-2	2.73		54.45	88	3.62	-34.17		QP		. <u></u> _

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mod	de	BT (1 Mbps)		Test Date		2024	1-5-13	
Te	st Frequ	ency		40MHz		Polarization			zontal	
	Temp		2	23°C		Hum.		6	6%	
50.0 dE	BuV/m									_
<u> </u>	_									
40										1
30										-
20										_
										┪
10										1
00										+
o										4
o										
0				1 X						+
0				^						\dashv
o 🗀										_
_										
0										1
0 -										+
20.0										
0.009	0.02	0.04	0.05	0.07	0.08 0.	09 0.11	0.12		0.15	_ MH
No.	Mk.	Freq.	Reading		Measure-	Limit	Over			
			Level	Factor	ment					
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comm	ent
1	*	0.0610	44.32	21.90	66.22	130.98	-64.76	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo	de		BT (1	Mbps)			Test Date		2024	1-5-13	
Te	est Frequ				0MHz			Polarization	ı	Horiz	zontal	
	Temp			2	3°C			Hum.		60	6%	
130.0 d	BuV/m											_
120 110 100 90 80 70 60 50 40 30 20	2 X	3 X	4 ×						5 X	6 X		
10												_
0.0												
0.0	3.14	6.12	9.10		12.09	1	15.08 1	8.06 21.	04 24.0	03	30.00	 MHz
No.	Mk.	Freq.	Rea		Corre	ct	Measure-	Limit	Over			
			Le		Facto	r	ment					
		MHz	dB		dB		dBuV/m	dBuV/m	dB	Detector	Comm	nent
1		0.2365	64.		10.7		74.96	119.21	-44.25	QP		
2	*	1.8395	71.		-1.33		70.17	88.62	-18.45	QP		
3		4.9350	54.		-4.38		49.67	88.62	-38.95	QP		
4		7.6055	53.		-3.76		49.37	88.62	-39.25	QP		
5		22.8510			-2.73		39.59	88.62	-49.03	QP		
6		25.6478	40.	71	-1.4		39.30	88.62	-49.32	QP	·	_


- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

APPENDIX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ

Project No.: 2404T114 Page 23 of 46 Report Version: R00

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

	Test Mo				(1 Mb				Test Dat			1-5-13	
Te	st Frequ				40MF	lz			Polarizati	on		zontal	
80.0 d	Temp BuV/m				23°C				Hum.		6	6%	
70	Батин												
60													
50													
30	, ×	<u>`</u>	3 3		4 ×		5 X			Š Š			
20													
10													
0.0													
30.000	127.00			321.00	418.	00	515.	.00 6		09.00 806	.00	1000.00	МН
No.	Mk.	Freq	•	Reading Level		orrect actor		easure- ment	Limit	Over			
		MHz		dBuV		dB	d	BuV/m	dBuV/m	dB	Detector	Comm	ent
1		112.61	16	52.65	-1	5.84	,	36.81	43.50	-6.69	peak		
2	*	211.77	'80	56.41	-1	6.19		40.22	43.50	-3.28	QP		
3		250.02		47.48		4.17		33.31	46.00	-12.69	peak		
4		401.57	'46	45.29	-(9.74		35.55	46.00	-10.45	peak		
5		480.11	23	40.75	-	7.76		32.99	46.00	-13.01	peak		
6		791.99	196	34.58	-:	2.01		32.57	46.00	-13.43	peak		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

APPENDIX C RADIATED EMISSIONS - ABOVE 1 GHZ

Project No.: 2404T114 Page 26 of 46 Report Version: R00

T	est Mod	de		Mbps)		Test Date			1/5/13
Tes	t Freque	ency		2MHz		Polarizatio	n		zontal
	Temp		2	3°C		Hum.		60	6%
130.0 dB	uV/m								
120									
110					3				
100									
90									
80									
70					3 X				
60				1 *					
50	1.1.1				Mary Marine			World Harrison de Marie	6 X
40	ringer (* 1944) et stad	typyta.somerdydsiddiodd	entral de la company	#ለሃ ((አላላ አ _ማ ስተ 2 	Care Hallowhyler	province the province of the contract of the c	Marie M Marie Marie Ma	Walletta filosofia and to say	7
30				^					×
20									
10.0									
2302.000	2322.00	2342.00	2362.00	2382.00	2402.00 24	122.00 24	42.00 246	2.00	2502.00 MI
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2376.720	63.13	-3.68	59.45	74.00	-14.55	peak	
2		2376.720	44.24	-3.68	40.56	54.00	-13.44	AVG	
3		2400.000	72.62	-3.71	68.91	74.00	-5.09	peak	No Limit
4	Χ	2402.000	108.05	-3.72	104.33	74.00	30.33	peak	No Limit
5	*	2402.000	107.54	-3.72	103.82	54.00	49.82	AVG	No Limit
6		2494.360	55.78	-3.85	51.93	74.00	-22.07	peak	
7		2494.360	43.09	-3.85	39.24	54.00	-14.76	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test M	lodo	DT /·	1 Mbps)		Test Date		202/	4/5/13	
	Test Freq			30MHz		Polarization	1		zontal	
	Tem			23°C		Hum.			6%	
130.0	dBuV/m									
120										
110										
100					.					
90					$ \parallel$					
80										
70										1
70										
60	1		.M. J.		5					
60 50		wipe the standard and the standard	was the desired approximately	notheraphy project a series		ordered sold and the requirement of the sold and the sold	ny laka bifipipana bilanaka	shine of a specification	washiran walkala	
60	1 2 X	anger de programment gan de la desqui	was 18/Nach Harrestop	mbando, propilismo	5 Millionshipsed 6 X	odka dalika dalika oqordi qordishi	might have before the second	adisser dha darabiyan	Arphilase _{th} philast _{ri}	
60 50 40		anger dan Parkera da da Labara	May 184 Page Hay restrage.	mtsensterne regelenne		ordered deliberation of the state of	magnetic and the second se	adamentha dan diren	, Ar philosophy or head, a	
60 50 40 30		wycodu Porgwood Age Al Washage	May 18 Mark day ne dagar	ndunder practima		order della conference	and the second second	odesoco dia daribisa	at ophilosopy production	
60 - 50 - 40 - 30 - 20 - 10.0			2440.00	2460.00	×					
60 - 50 - 40 - 30 - 20 - 10.0	2 X 30.000 2400.				×					
50	2 X 80.000 2400.	.00 2420.00	2440.00 Reading	2460.00 Correct	2480.00 25 Measure-	500.00 252	20.00 254			MHz
50	2 X 80.000 2400.	.00 2420.00 Freq.	2440.00 Reading Level	2460.00 Correct Factor	2480.00 25 Measure- ment	500.00 252 Limit	20.00 254 Over	0.00	2580.00	MHz
50	2 X 80.000 2400.	.00 2420.00 Freq.	2440.00 Reading Level dBuV 54.67 42.90	2460.00 Correct Factor dB	2480.00 25 Measure- ment dBuV/m	500.00 252 Limit dBuV/m	0.00 254 Over dB	0.00 Detector	2580.00	MHz
50	2 X 80.000 2400. . Mk.	.00 2420.00 Freq. MHz 2389.100 2389.100 2480.000	2440.00 Reading Level dBuV 54.67 42.90 102.46	2460.00 Correct Factor dB -3.69 -3.69 -3.83	2480.00 25 Measure- ment dBuV/m 50.98 39.21 98.63	500.00 252 Limit dBuV/m 74.00 54.00 74.00	0.00 254 Over dB -23.02 -14.79 24.63	Detector peak AVG peak	2580.00 Comme	MHz nt
50	2 X 80.000 2400. . Mk.	.00 2420.00 Freq. MHz 2389.100 2389.100	2440.00 Reading Level dBuV 54.67 42.90	2460.00 Correct Factor dB -3.69 -3.69	2480.00 25 Measure- ment dBuV/m 50.98 39.21	500.00 252 Limit dBuV/m 74.00 54.00	0.00 254 Over dB -23.02 -14.79	Detector peak AVG	2580.00 Comme	MHz nt
50 40 30 20 10.0 238 No.	2 X 80.000 2400. . Mk.	.00 2420.00 Freq. MHz 2389.100 2389.100 2480.000	2440.00 Reading Level dBuV 54.67 42.90 102.46	2460.00 Correct Factor dB -3.69 -3.69 -3.83	2480.00 25 Measure- ment dBuV/m 50.98 39.21 98.63	500.00 252 Limit dBuV/m 74.00 54.00 74.00	0.00 254 Over dB -23.02 -14.79 24.63	Detector peak AVG peak	2580.00 Comme	MHz nt

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

1	est Mod	de			BT (3	3 Mbps	3)			Test D	Date			202	4/5/31	
Tes	t Frequ	ency				2MHz				Polariz	ation			Hori	zontal	
	Temp				2	1°C				Hur	n.			6	0%	
130.0 dB	uV/m															_
120																
110																
100								4								4
90								$-\mathbb{A}$								4
во								3								4
70								X								-
60																-
50 Musik	den motor/hor	turnes/entro/New	Approach(s)	المديدة	أسردادوسا	Mark Maran	w//ww	Author	hand hoped	Andrewan	Hopping and the state of the st	handerham prepar	When I strate	arustalas kalandas adala	radicipani jenjekadnije, diske	6 N
40																
•							2 X									7 X
							~									7
30							~									7
30 20 10.0	2322 00						×					2.00				7 X
30 20 10.0	0 2322.00 Mk.			2362. Read	.00	2382.0 Corr	v ect	2402.0 Mea	00 2	2422.00 Lim	244	2.00 Over	2462.00			7 X
30 20 10.0 2302.000		2342. Freq.		2362. Read Lev	.oo ding vel	2382.0 Corr Fac	ect	2402.0 Mea	00 2 asure- aent	2422.00 Lim	244 2	Ove	2462.00		2502.00	7 X
20 20.0 2302.000 No.		2342. Freq.	00	2362. Read Lev	oo ding /el	2382.0 Corr Fac	ect tor	2402.0 Mea m	oo 2 asure- nent uV/m	2422.00 Lim dBuV	244; it //m	Ove	2462.000	etector		7 X
20 2302.000 No.		2342. Freq. MHz 2389.01	00	2362. Read Lev dBu	oo ding vel uV 83	2382.0 Corr Fac dE -5.0	ect tor 3	2402.0 Mea m dB	oo 2 asure- nent uV/m 2.82	422.00 Lim dBuV 74.0	2 44 2 it //m	Over dB -21.1	2462.00 T	etector peak	2502.00	7 X
2302.000 No.	Mk.	2342. Freq. MHz 2389.01 2389.01	00 13 13	2362. Read Lev dBu 57.44.	00 ding /el uV 83	2382.0 Corr Fac dE -5.0	ect tor 3	2402.0 Mea m dBi 522	200 2 asure- nent uV/m 2.82	2422.00 Lim dBuV 74.0 54.0	244: it //m 00	Over dB -21.1 -14.6	2462.000 f D 8	etector peak AVG	2502.00 Comm	7 ×
2302.000 No.	Mk.	MHz 2389.01 2389.01 2400.00	13 13 00	2362. Read Lev dBu 57.44	00 ding /el uV 83 36	2382.0 Corr Fac dE -5.0 -5.0	ect tor 3 01 01	2402.0 Mea m dBi 52	200 2 asure- eent uV/m 2.82 0.35 5.05	2422.00 Lim dBuV 74.0 54.0 74.0	244: it //m 00 00	Over dB -21.1 -14.6 1.05	2462.000 f D 8	etector peak AVG peak	2502.00 Comm	7 X MI
200 2302.000 No.	Mk.	MHz 2389.01 2389.01 2400.00 2402.00	13 13 00 00	2362 Read Lev dBu 57.44 80.1	.00 ding /el uV 83 36 04	2382.0 Corr Fac dE -5.0 -4.9	x ect tor 33 301 301 399 300	2402.0 Mea m dBi 52 39 75	00 2 asure- nent uV/m 2.82 9.35 5.05 1.78	2422.00 Lim dBuV 74.0 54.0 74.0 74.0	2442 it //m 00 00 00	Over dB -21.1 -14.6 1.05 27.78	2462.00 T D 8 5	etector peak AVG peak peak	2502.00 Comm No Lii No Lii	7 X I MH
20 2302.000 No.	Mk. X X	MHz 2389.01 2389.01 2400.00	13 13 00 00	2362. Read Lev dBu 57.44	00 ding /el JV 83 36 04 .78	2382.0 Corr Fac dE -5.0 -5.0	ect ttor 3 01 01 01 00 00	2402.0 Mea m dBr 52 39 75 10	200 2 asure- eent uV/m 2.82 0.35 5.05	2422.00 Lim dBuV 74.0 54.0 74.0	2443 it //m 00 00 00 00	Over dB -21.1 -14.6 1.05	2462.00 f D 8 5 3	etector peak AVG peak	2502.00 Comm	7 X I MH

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo	de	BT (3	3 Mbps)		Test Date		2024	4/5/31	
Τe	est Frequ			0MHz		Polarization	1		zontal	
	Temp		2	1°C		Hum.		60	0%	
130.0 d	dBuV/m									
120										
110										
					3					
00					× X					
00										
					[]					
30										
70 <u> </u>										
					- / \					
60					- / I -					
					(15					
50 🕹				Jacob ladina	WAN AMPONING	ht at	let too the	Lad total	10	
	respondent essential	nternostrukaren kestekan	demonstration of the constitution of the	de la	WAN AMPARAM	h him have a second	a graphic harmonia de la Calegoria	hadadaharanahara	Mariana	
	responsable to the second	reprovident model from the second	deren produkteren bler	desperational and the second	WANNING HAND	Market Market September 1844 April 1844 Apri	aggler/arandor/depa	Hadhad Marine A. Aprille	ah Marandon adah aran sara	
40 2 X	respersive and residence	nturnisty where the thickness of the second	deren trock deren the	duryan firafiaha	WAN AMPARAM	Marine	a galler la pracerto de la Calegoria	hadbudi New Asses	dilderatradplenera	
40 2 X 30	reason de la composição d	n francisky och and god de syn	dente de solution de la constitución de la constitu	Mary Mary Mary Mary Mary Mary Mary Mary	× XMMpythin	Not the many or early by	halpertenanter Magha	hadada karan karan	Alders Madeller May	
40 2 X	rayengrabaser, aybasen, y	n.berousky orbeitely orbeitely o	han mila	Mary Area (Marketer	× XMM/hulpina	N. H. W.	a gaphor le provinción y l'est apara	hadhed Menne Adasse	Mikerinenielekerinis	
2 X 80 20										
2 X 80 20 0.0 2380.0	000 2400.00	0 2420.00	2440.00	2460.00	2480.00 25	500.00 252	20.00 254	0.00	ahhiramadikana	мн
10 2 × 80 20 10.0			2440.00 Reading	2460.00 Correct	2480.00 25 Measure-					4H
2 X 80 20 10.0 2380.0	000 2400.00	0 2420.00 Freq.	2440.00 Reading Level	2460.00 Correct Factor	2480.00 25 Measure- ment	500.00 252 Limit	20.00 254 Over	0.00	2580.00 M	
2 X 80 20 0.0 2380.0 No.	000 2400.00	0 2420.00 Freq.	2440.00 Reading Level dBuV	2460.00 Correct Factor dB	2480.00 25 Measure- ment dBuV/m	Limit	20.00 254 Over dB	0.00 Detector		
20 2 X 80 0 0.0 0.0 0.0 No.	000 2400.00	0 2420.00 Freq. MHz 2383.913	2440.00 Reading Level dBuV 54.56	2460.00 Correct Factor dB -5.01	2480.00 25 Measure- ment dBuV/m 49.55	500.00 252 Limit dBuV/m 74.00	20.00 254 Over dB -24.45	0.00 Detector peak	2580.00 M	
0 2 X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000 2400.00 Mk.	0 2420.00 Freq. MHz 2383.913 2383.913	2440.00 Reading Level dBuV 54.56 43.22	2460.00 Correct Factor dB -5.01 -5.01	2480.00 25 Measure- ment dBuV/m 49.55 38.21	00.00 252 Limit dBuV/m 74.00 54.00	20.00 254 Over dB -24.45 -15.79	Detector peak AVG	2580.00 M	nt
0 2 X 0 0 0.0 2380.0 No.	000 2400.00 Mk.	0 2420.00 Freq. MHz 2383.913 2383.913 2480.000	2440.00 Reading Level dBuV 54.56 43.22 106.05	2460.00 Correct Factor dB -5.01 -5.01 -4.89	2480.00 25 Measurement dBuV/m 49.55 38.21 101.16	dBuV/m 74.00 54.00 74.00	20.00 254 Over dB -24.45 -15.79 27.16	Detector peak AVG peak	2580.00 M	nt t
2 X 80	000 2400.00 Mk.	0 2420.00 Freq. MHz 2383.913 2383.913 2480.000 2480.000	2440.00 Reading Level dBuV 54.56 43.22 106.05 102.57	2460.00 Correct Factor dB -5.01 -5.01 -4.89 -4.89	2480.00 25 Measurement dBuV/m 49.55 38.21 101.16 97.68	dBuV/m 74.00 54.00 74.00 54.00	20.00 254 Over dB -24.45 -15.79 27.16 43.68	Detector peak AVG peak AVG	2580.00 M	nt t
2 X 80 0 0.0 2380.0 No.	000 2400.00 Mk.	0 2420.00 Freq. MHz 2383.913 2383.913 2480.000	2440.00 Reading Level dBuV 54.56 43.22 106.05	2460.00 Correct Factor dB -5.01 -5.01 -4.89	2480.00 25 Measurement dBuV/m 49.55 38.21 101.16	dBuV/m 74.00 54.00 74.00	20.00 254 Over dB -24.45 -15.79 27.16	Detector peak AVG peak	2580.00 M	nt t

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo				1 Mbps)		Test Date			4/6/1
Te	est Frequ				02MHz		Polarizatio	n		rtical
20.0	Temp)			21°C		Hum.		6	0%
30.0	dBuV/m									
20										
10										
100										
90 <u> </u>										
30										
70 <u> </u>										
50										
50			1 Ž							
ю			x							
30										
20										
10.0										
	000 2700.0			6100.00	7800.00				00.00	18000.00 MH
No.	Mk.	Freq.		Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.00	00	48.04	0.88	48.92	74.00	-25.08	peak	
2	*	4804.00	00	41.99	0.88	42.87	54.00	-11.13	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			Mbps)		Test Date			4/6/1
T	est Frequ			2MHz		Polarization	า		zontal
	Temp)	2	1°C		Hum.		6	0%
130.0	dBuV/m								
120									
110									
100									
90									
80									
70									
60									
50		\$ ×							
40		^							
30									
20									
10.0									
	000 2700.0		6100.00	7800.00				00.00	18000.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.000	49.31	0.88	50.19	74.00	-23.81	peak	
2	*	4804.000	45.46	0.88	46.34	54.00	-7.66	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			Mbps)		Test Date			4/6/1
Te	est Frequ			0MHz		Polarization	n		rtical
	Temp)	2	1°C		Hum.		6	0%
130.0	dBuV/m								
120									
110									
100									
90									
80									
70									
60		1							
50		* *							
40									
30									
20									
10.0									
	000 2700.0	0 4400.00	6100.00	7800.00	9500.00 1	11200.00 129	300.00 146	00.00	18000.00 MHz
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over		
		MHz	Level dBuV	Factor dB	ment dBuV/m	dBuV/m	dB	Detector	Comment
1		4880.000	50.91	1.03	51.94	74.00	-22.06	peak	Comment
2	*	4880.000	48.35	1.03	49.38	54.00	-4.62	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo					Mbps)				Test Da				4/6/1
Tes	st Frequ					0MHz			Р	olariza				zontal
	Temp)			2	1°C				Hum.			6	0%
130.0 dE	BuV/m													
120														
110														
100														
90														
30														
о														
50			2											
0			2 ¥ X											
o														
io														
20														
0.0	0													
	000.000 2700.00 4400.00		6100.0		7800.00	9500				1290		00.00	18000.00 M	
No.	Mk.	Freq.		Readi Leve		Correct Factor		easure- ment	•	Limit		Over		
		MHz		dBu	V	dB	dl	BuV/m		dBuV/r	m	dB	Detector	Commen
1		4880.00		47.6		1.03	4	48.66		74.00		-25.34	peak	
2	*	4880.00	OC	50.9	2	1.03	Ę	51.95		54.00)	-2.05	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			1 Mbps)		Test Date			4/6/1
Te	est Frequ			80MHz		Polarization	n .		rtical
	Temp)	2	1°C		Hum.		6	0%
130.0	dBuV/m								
120									
110									
100									
90									
80									
70									
60									
50		3							
40		,							
30									
20									
10.0									
	000 2700.0	0 4400.00	6100.00	7800.00	9500.00	11200.00 129	300.00 146	00.00	18000.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.000	49.22	1.21	50.43	74.00	-23.57	peak	
2	*	4960.000	46.36	1.21	47.57	54.00	-6.43	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo	ode		Mbps)		Test Date		202	4/6/1
Te	est Frequ			0MHz		Polarization	า		zontal
	Temp)	2	1°C		Hum.		6	0%
130.0	dBuV/m								
120									
110									
100									
90									
80									
00									
70									
60		1							
50		Š							
40									
30									
20									
10.0									
	000 2700.0		6100.00	7800.00				00.00	18000.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.000	50.90	1.21	52.11	74.00	-21.89	peak	
2	*	4960.000	48.33	1.21	49.54	54.00	-4.46	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			B Mbps)		Test Date			4/6/3
Te	est Frequ			2MHz		Polarization	า		rtical
	Temp		2	0°C		Hum.		69	9%
130.0	dBuV/m								
120									
110									
100									
90									
80									
70									
60									
50		1 2							
40		X							
30									
20									
10.0									
1000.0	000 2700.0	00 4400.00	6100.00	7800.00			000.00 146	00.00	18000.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1_		4804.000	47.97	0.88	48.85	74.00	-25.15	peak	
2	*	4804.000	42.02	0.88	42.90	54.00	-11.10	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test M				3 Mbps)		Test Date			4/6/3
T	est Freq				2MHz		Polarizatio	n		zontal
	Tem	р		2	0°C		Hum.		6	9%
130.0	dBuV/m									
120										
110										
100										
90 —										
80										
70										
60										
50			Į Ž							
40			×							
30										
20										
10.0										
	000 2700.			6100.00	7800.00	9500.00			00.00	18000.00 MHz
No.	Mk.	Freq		Reading Level	Correct Factor	Measure ment	- Limit	Over		
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.0	00	47.55	0.88	48.43	74.00	-25.57	peak	
2	*	4804.0	00	42.47	0.88	43.35	54.00	-10.65	AVG	_

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			E		Mbps)				Test Da				4/6/3
<u>le</u>	est Frequ					1MHz				Polariza				rtical
30.0	Temp dBuV/m)			20	0°C				Hum.	•		б	9%
30.0	abuy/m													
20														
10														
00														
10														
:0														
o														
0														
io			1											
יי			1 X 2											
0			×											
:0														
20														
0.0														
	000 2700.0	00 4400	.00	6100.00 7		7800.00	95	00.00	11	200.00	12900.0	0 146	500.00	18000.00 MH
No.	Mk.	Freq.		Read Lev		Corre		leasur ment	e-	Limit	(Over		
		MHz		dBu		dB		dBuV/n	n	dBuV/r	m	dB	Detector	Comment
1		4882.0		46.8		1.04		47.89		74.00		26.11	peak	
2	*	4882.0	00	39.0)2	1.04		40.06		54.00) -1	3.94	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			3 Mbps)		Test Date			4/6/3
Te	est Frequ			1MHz		Polarization	า		zontal
	Temp)	2	0°C		Hum.		69	9%
130.0	dBuV/m								
120									
110									
100									
90									
80									
70									
60									
50		1 2 X							
40		X							
30									
20									
10.0									
	000 2700.0		6100.00	7800.00				00.00	18000.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4882.000	46.82	1.04	47.86	74.00	-26.14	peak	
2	*	4882.000	41.27	1.04	42.31	54.00	-11.69	AVG	

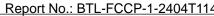
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			3 Mbps)		Test Date			4/6/3
T	est Frequ			0MHz		Polarization	n		rtical
	Temp)	2	0°C		Hum.		69	9%
130.0	dBuV/m								
120									
110									
100									
90									
80									
70									
60									
50		**************************************							
40									
30									
30									
20									
10.0									
	000 2700.0		6100.00	7800.00				00.00	18000.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.000	50.59	1.21	51.80	74.00	-22.20	peak	
2	*	4960.000	48.07	1.21	49.28	54.00	-4.72	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo	ode		3 Mbps)		Test Date			4/6/3
Te	est Frequ			0MHz		Polarization	n		zontal
	Temp)	2	0°C		Hum.		6	9%
130.0	dBuV/m								
120									
110									
100									
90									
80									
70									
60									
50		1 X X							
40									
30									
20									
10.0									
1000.0	000 2700.0	0 4400.00	6100.00	7800.00	9500.00	11200.00 129	900.00 146	00.00	18000.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.000	50.56	1.21	51.77	74.00	-22.23	peak	
2	*	4960.000	47.13	1.21	48.34	54.00	-5.66	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.


	Test M				BT (1						Test D					4/5/13	
Te	est Freq					·OMH	Z			F	Polariza					rtical	
100.0	Tem	p			2	3°C					Hum	١.			6	6%	
130.0	dBuV/m																
120																	
110																	
100																	
90																	
80																	
70																	
60																	
50		1															
40		X X															
30		2 X															
20																	
10.0																	
18000	0.000 1885	0.00	9700.00	205	50.00	2140	0.00	2225	0.00	23	00.00	2395	50.00 2	24800.00		26500.00 M	lHz
No.	Mk.	F	req.		iding vel		rrect ctor		easur ment	e-	Limi	t	Over	,			
		N	lHz		suV		B		3uV/r	n	dBuV/	/m	dB	De	tector	Commen	t
1			16.00		.27		.96		14.31		74.00		-29.69		eak		_
2	*	192	16.00	38	.79	-6	.96	(31.83		54.00	0	-22.17	7 A	١VG		_

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test M					BT (1						Test D					4/5/13	
Te	est Fred		СУ				0MH	Z			P	olariza					zontal	
	Tem	np				2	3°C					Hum	١.			6	6%	
30.0	dBuV/m																	\neg
20																		4
10																	4	
00 -																	-	
0																	4	
:0																	\perp	
0																		
0																	-	
0 🗀																		
o		X X																4
o		2 X																4
o																	4	
0.0																		
	.000 1885	0.00		00.00		50.00		0.00		0.00		00.00		50.00	2480	0.00	26500.0	00 MI
No.	Mk.		Freq	-		ding vel		rrect		easur ment	- -	Limi	t	Ove	er			
			MHz	<u> </u>		uV		dB		3uV/n	n	dBuV/	/m	dB	3	Detector	Comm	ent
1		19	9216	.00	49	.30	-6	6.96		12.34		74.00	0	-31.0	66	peak		
2	*	19	9216	.00	37	.65	-6	6.96	- (30.69		54.00	0	-23.	31	AVG	·	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Report No.: BTL-FCCP-1-2404T114
APPENDIX D	OUTPUT POWER

Project No.: 2404T114 Page 45 of 46 Report Version: R00

Report No.: BTL-FCCP-1-2404T114

Test Mode :	BT(1 Mbps)	Tested Date	2024/5/20

Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	10.42	0.0110	20.97	0.1250	Pass
2441	9.96	0.0099	20.97	0.1250	Pass
2480	9.79	0.0095	20.97	0.1250	Pass

Test Mode :	BT(2 Mbps)	Tested Date	2024/5/20
rest wode.	DT(Z IVIDPS)	resied Date	2024/3/20

Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	8.77	0.0075	20.97	0.1250	Pass
2441	8.46	0.0070	20.97	0.1250	Pass
2480	8.11	0.0065	20.97	0.1250	Pass

Test Mode :	BT(3 Mbps)	Tested Date	2024/5/20
-------------	------------	-------------	-----------

Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	9.04	0.0080	20.97	0.1250	Pass
2441	8.73	0.0075	20.97	0.1250	Pass
2480	8.44	0.0070	20.97	0.1250	Pass

End of Test Report