



# Radio Test Report

Salunda Ltd

1701E-HMS (Hawk Maintenance Station)

В

47 CFR Part 15.225 Effective Date 1st October 2022 DXX: Part 15 Low Power Communication Device Transmitter Test Date: 7th February 2024 to 14th February 2024 Report Number: 02-14468-3-24 Issue 01

The testing was carried out by Kiwa Ltd t/a Kiwa Electrical Compliance, an independent test house, at their test facility located at:

Kiwa Electrical Compliance Arnolds Court Arnolds Farm Lane Mountnessing Essex CM13 1UT

U.K.

www.kiwa.com

Telephone: +44 (0) 1277 352219 Email: uk.rnenquiries@kiwa.com

This laboratory is accredited in accordance with the recognised International Standard ISO/IEC 17025. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer joint ISO-ILAC-IAF communiqué dated April 2017).

This report is not to be reproduced by any means except in full and in any case not without the written approval of Kiwa Electrical Compliance.



# Arnolds Court, Arnolds Farm Lane, Mountnessing, Brentwood Essex, CM13 1UT Certificate of Test 14468-3

The equipment noted below has been fully tested by Kiwa Electrical Compliance and, where appropriate, conforms to the relevant subpart of 47 CFR Part 15C. This is a certificate of test only and should not be confused with an equipment authorisation. Other standards may also apply.

| Equipment:                                                     | 1701E-HMS (Hawk Maintenance Station)                                                                            |
|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Model Number:                                                  | В                                                                                                               |
| Unique Serial Number:                                          | HMS_000006                                                                                                      |
| Applicant:<br>Proposed FCC ID:<br>Full measurement results are | Salunda Ltd<br>Unit 6 Avonbury Business Park<br>Howes Lane<br>Bicester, Oxfordshire<br>OX26 2UA<br>2ALTW1701HMS |
| detailed in Report Number:                                     | 02-14468-3-24 Issue 01                                                                                          |
| Test Standards:                                                | 47 CFR Part 15.225 Effective Date 1st October 2022<br>DXX: Part 15 Low Power Communication Device Transmitter   |

#### DEVIATIONS:

No deviations have been applied.

This certificate relates only to the unit tested as identified by a unique serial number and in the condition at the time it was tested. It does not relate to any other similar equipment and performance of the product before or after the test cannot be guaranteed. Whilst every effort is made to assure quality of testing, type tests are not exhaustive and although no non-conformances may be found, this doesn't exclude the possibility of unit not meeting the intentions of the standard or the requirements of the Federal Regulations, particularly under different conditions to those during testing. Any compliance statements are made reliant on (a) the application of the product and use of the assigned band being acceptable to the FCC and (b) the modes of operation as instructed to us by the Customer based on their specific knowledge of the application and functionality of the EUT. Statements of compliance, where measurements were made, do not include the measurement uncertainty. The measurement uncertainty, where stated, is the expanded uncertainty based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

| Date of Test:                              | 7th February 2024 to 14th February 2024 |                                                                                                                 |                         |
|--------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------|
| Test Engineer:<br>Jack Chilvers            |                                         |                                                                                                                 |                         |
| Approved By:<br>Radio Approvals<br>Manager |                                         | Iac-MRA                                                                                                         | ±<br>€<br>€             |
| Customer<br>Representative:                |                                         | The had a | UKAS<br>TESTING<br>2360 |

# **1** Contents

| 1  | Contents                                                             | 3  |
|----|----------------------------------------------------------------------|----|
| 2  | Equipment under test (EUT)                                           | 4  |
|    | 2.1 Equipment specification                                          | 4  |
|    | 2.2 Configurations for testing                                       | 5  |
|    | 2.3 Functional description                                           | 5  |
|    | 2.4 Modes of operation                                               | 5  |
|    | 2.5 Emissions configuration                                          | 6  |
| 3  | Summary of test results                                              | 7  |
| 4  | Specifications                                                       | 8  |
|    | 4.1 Relevant standards                                               | 8  |
|    | 4.2 Deviations                                                       |    |
|    | 4.3 Tests at extremes of temperature & voltage                       | 8  |
|    | 4.4 Test fixtures                                                    | 8  |
| 5  | Tests, methods and results                                           | 9  |
|    | 5.1 AC power line conducted emissions                                | 9  |
|    | 5.2 Radiated emissions 9 - 150 kHz                                   |    |
|    | 5.3 Radiated emissions 150 kHz - 30 MHz                              | 11 |
|    | 5.4 Radiated emissions 30 MHz -1 GHz                                 | 12 |
|    | 5.5 Radiated emissions above 1 GHz                                   | 15 |
|    | 5.6 Intentional radiator field strength                              | 16 |
|    | 5.7 Occupied bandwidth                                               | 18 |
|    | 5.8 Spectrum mask                                                    | 19 |
|    | 5.9 Frequency stability                                              | 20 |
| 6  | Plots/Graphical results                                              | 22 |
|    | 6.1 Radiated emissions 9 - 150 kHz                                   |    |
|    | 6.2 Radiated emissions 150 kHz - 30 MHz                              | 23 |
|    | 6.3 Radiated emissions 30 MHz -1 GHz                                 | 24 |
|    | 6.4 Intentional radiator field strength                              | 26 |
|    | 6.5 Occupied bandwidth                                               | 27 |
|    | 6.6 Spectrum mask                                                    | 28 |
|    | 6.7 AC powerline conducted emission                                  | 29 |
| 7  | Explanatory Notes                                                    | 34 |
|    | 7.1 Explanation of Table of Signals Measured                         | 34 |
|    | 7.2 Explanation of limit line calculations for radiated measurements | 34 |
| 8  | Photographs                                                          | 36 |
|    | 8.12 Radiated emission diagrams                                      | 36 |
|    | 8.13 AC powerline conducted emission diagram                         | 37 |
| 9  | Test equipment calibration list                                      | 38 |
| 10 | Auxiliary and peripheral equipment                                   | 39 |
|    | 10.1 Customer supplied equipment                                     | 39 |
|    | 10.2 Kiwa Electrical Compliance supplied equipment                   | 39 |
| 11 | Condition of the equipment tested                                    | 40 |
|    | 11.1 Modifications before test                                       | 40 |
|    | 11.2 Modifications during test                                       | 40 |
| 12 | Description of test sites                                            | 41 |
| 13 | Abbreviations and units                                              | 42 |

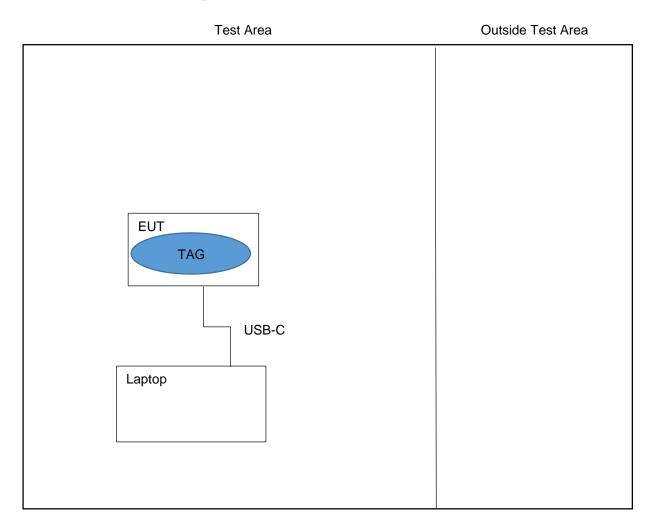
# 2 Equipment under test (EUT)

# 2.1 Equipment specification

| Applicant                 | Salunda Limited                                 |                                                                 |
|---------------------------|-------------------------------------------------|-----------------------------------------------------------------|
|                           | Unit 6 Avonbury Busine                          | ess Park                                                        |
|                           | Howes Lane                                      |                                                                 |
|                           | Bicester                                        |                                                                 |
|                           | Oxfordshire                                     |                                                                 |
|                           | OX26 2UA                                        |                                                                 |
|                           |                                                 |                                                                 |
| Manufacturer of EUT       | Salunda Limited                                 |                                                                 |
| Full Name of EUT          | 1701E-HMS (Hawk Ma                              | intenance Station)                                              |
| Model Number of EUT       | В                                               |                                                                 |
| Serial Number of EUT      | HMS_000006                                      |                                                                 |
| Date Received             | 7th February 2024                               |                                                                 |
| Date of Test:             | 7th February 2024 to 1                          | 4th February 2024                                               |
| Purpose of Test           | To demonstrate design<br>the Code of Federal Re | a compliance to the relevant rules of Chapter 47 of egulations. |
| Date Report Issued        | 24th April 2024                                 |                                                                 |
|                           |                                                 |                                                                 |
| Main Function             | To provide functionality                        | to read NFC from other Salunda products via USB                 |
| Information Specification | Height                                          | 20 mm                                                           |
|                           | Width                                           | 100 mm                                                          |
|                           | Depth                                           | 130 mm                                                          |
|                           | Weight                                          | 0.3 kg                                                          |
|                           | Voltage                                         | 5VDC                                                            |
|                           | Current                                         | 0.5A                                                            |

# 2.2 Configurations for testing

| General Parameters                 |                                                         |
|------------------------------------|---------------------------------------------------------|
| EUT Normal use position            | Desk Top                                                |
| Choice of model(s) for type tests  | Production sample                                       |
| Antenna details                    | Integral                                                |
| Antenna port                       | No                                                      |
| Baseband Data port (yes/no)?       | No                                                      |
| Highest Signal generated in EUT    | 48 MHz                                                  |
| Lowest Signal generated in EUT     | 6 MHz                                                   |
| Hardware Version (HVIN)            | B2                                                      |
| Software Version                   | 1.0.9.243                                               |
| Firmware Version (FVIN)            | 1.8                                                     |
| Type of Equipment                  | NFC                                                     |
| Technology Type                    | NFC/ RFID                                               |
| Geo-location (yes/no)              | No                                                      |
| TX Parameters                      |                                                         |
| Alignment range – transmitter      | 13.56 MHz (Single Frequency)                            |
| EUT Declared Modulation Parameters | ASK (ISO 14443A)                                        |
| EUT Declared Power level           | Not Declared                                            |
| EUT Declared Signal Bandwidths     | 7 kHz                                                   |
| EUT Declared Channel Spacing's     | 7 kHz                                                   |
| EUT Declared Duty Cycle            | 100%                                                    |
| Unmodulated carrier available?     | No                                                      |
| Declared frequency stability       | Not Declared                                            |
| FCC Parameters                     |                                                         |
| FCC Transmitter Class              | DXX: Part 15 Low Power Communication Device Transmitter |


# 2.3 Functional description

Read / Write NFC from the USB.

# 2.4 Modes of operation

| Mode Reference | Description                                                      | Used for testing |
|----------------|------------------------------------------------------------------|------------------|
| Mode 1         | Continuously Reading and writing over 13.56 MHz Tag in field     | Yes              |
| Mode 2         | Continuously Reading and writing over 13.56 MHz Tag out of field | Yes              |

# 2.5 Emissions configuration



The unit was powered via USB-C from the ancillary laptop. For conducted tests a test fixture was used.

The unit had two modes; one with tag presented and one with the tag removed from the field. In a pre-test each mode was assessed for 'worst-case' emissions. The EUT had a 100% duty cycle with modulation.

Channel Frequency 13.56 MHz

The ancillary laptop was powered by its internal battery except for AC conducted emissions tests where the laptop was powered by its dedicated mains adapter

For tests performed at extremes of temperature and voltage the EUT was connected using a specialist USB 'break out' lead. This allowed the EUT to be powered by a bench power supply and for the supply voltage to be varied to the extreme voltages stated in section 4.3.

## 2.5.1 Signal leads

| Port Name | Cable Type | Connected |
|-----------|------------|-----------|
| USB       | USB-C      | Yes       |

# 3 Summary of test results

The Hawk Maintenance Station, B was tested for compliance to the following standard:

#### 47 CFR Part 15.225 Effective Date 1st October 2022 DXX: Part 15 Low Power Communication Device Transmitter

Any compliance statements are made reliant on (a) the application of the product and use of the assigned band being acceptable to the FCC and (b) the modes of operation as instructed to us by the Customer based on their specific knowledge of the application and functionality of the EUT. Whilst every effort is made to assure quality of testing, type tests are not exhaustive and although no non-conformances may be found, this doesn't exclude the possibility of equipment not meeting the intentions of the standard or the essential requirements of the directive, particularly under different conditions to those during testing. Statements of compliance, where measurements were made, do not include the measurement uncertainty. The measurement uncertainty, where stated, is the expanded uncertainty based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

| Title                                  | References                     | Results                     |
|----------------------------------------|--------------------------------|-----------------------------|
| Transmitter Tests                      |                                |                             |
| 1. AC power line conducted emissions   | 47 CFR Part 15C Part 15.207    | PASSED                      |
| 2. Radiated emissions 9 - 150 kHz      | 47 CFR Part 15C Part 15.209    | PASSED                      |
| 3. Radiated emissions 150 kHz - 30 MHz | 47 CFR Part 15C Part 15.209    | PASSED                      |
| 4. Radiated emissions 30 MHz -1 GHz    | 47 CFR Part 15C Part 15.225(d) | PASSED                      |
| 5. Radiated emissions above 1 GHz      | 47 CFR Part 15C Part 15.209    | NOT APPLICABLE <sup>1</sup> |
| 6. Intentional radiator field strength | 47 CFR Part 15C Part 15.225(a) | PASSED                      |
| 7. Occupied bandwidth                  | 47 CFR Part 15C Part 15.215    | PASSED                      |
| 8. Spectrum mask                       | 47 CFR Part 15C Part 15.225    | PASSED                      |
| 9. Frequency stability                 | 47 CFR Part 15C Part 15.225(e) | PASSED                      |

<sup>1</sup> Radiated emissions measurements above 1 GHz are not required. The highest frequency generated or used within the equipment is 48MHz.

# 4 **Specifications**

The tests were performed and operated in accordance with Kiwa Electrical Compliance procedures and the relevant standards listed below.

## 4.1 Relevant standards

| Ref.  | Standard Number | Version | Description                                                                                                                                                               |
|-------|-----------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.1.1 | 47 CFR Part 15C | 2022    | Federal Communications Commission PART 15 – RADIO<br>FREQUENCY DEVICES                                                                                                    |
| 4.1.2 | ANSI C63.10     | 2020    | American National Standard of Procedures for Compliance<br>Testing of Unlicensed Wireless Devices                                                                         |
| 4.1.3 | ANSI C63.4      | 2014    | American National Standard for Methods of Measurement of<br>Radio-Noise Emissions from Low-Voltage Electrical and<br>Electronic Equipment in the Range of 9 kHz to 40 GHz |

## 4.2 **Deviations**

No deviations were applied.

## 4.3 Tests at extremes of temperature & voltage

The following test conditions were used to simulate testing at nominal or extremes.

| Temperature Test Conditions |        | Voltage Test Conditions |          |
|-----------------------------|--------|-------------------------|----------|
| T nominal                   | 20 °C  | V nominal               | 5V DC    |
| T minimum                   | -20 °C | V minimum               | 4.75V DC |
| T maximum                   | 50 °C  | V maximum               | 5.25V DC |

Extremes of temperature are based upon the requirements of FCC 47CFR 15.225

Extremes of voltage are based on the standard voltage range of USB powered equipment. The ambient test conditions of humidity and pressure in the laboratory were as specified in each specific test section within this report

# 4.4 **Test fixtures**

In order to measure RF parameters at temperature extremes, the EUT was tested in a temperature controlled chamber as follows:

A test fixture was used for testing.

## 5 Tests, methods and results

## 5.1 AC power line conducted emissions

### 5.1.1 Test methods

Test Requirements: Test Method: Limits: 47 CFR Part 15C Part 15.207 [Reference 4.1.1 of this report] ANSI C63.10 Clause 6.2 [Reference 4.1.2 of this report] 47 CFR Part 15C Part 15.207 [Reference 4.1.1 of this report]

#### 5.1.2 Configuration of EUT

The EUT was placed on a wooden table 0.8m above the ground plane and connected to a LISN via a 1m mains cable.

Details of the Peripheral and Ancillary Equipment connected for this test are listed in section 10.

During the initial scan, Mode 1 was found to be worst case mode of operation and was used for final test.

#### 5.1.3 Test procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment noted in the 'Test Equipment' Section. Measurements were made on the live and neutral conductors using both average and quasi-peak detection.

All signals within 10dB of the limit were investigated. Tests were performed in Test Site F.

# 5.1.4 Test equipment

E035, E150, E411, E624, ZSW1

See Section 9 for more details

#### 5.1.5 Test results

| Temperature of test environment | 20°C   |
|---------------------------------|--------|
| Humidity of test environment    | 50%    |
| Pressure of test environment    | 102kPa |

| Band            | 13.110-14.010 MHz |
|-----------------|-------------------|
| Power Level     | Default           |
| Channel Spacing | Single Channel    |
| Mod Scheme      | ASK               |
| Single channel  | 13.56 MHz         |

| Plot refs                            |
|--------------------------------------|
| 14468-3 Cond 1 AC Live 9k-150kHz     |
| 14468-3 Cond 1 AC Neutral 9k-150kHz  |
| 14468-3 Cond 1 AC Live 150k-30MHz    |
| 14468-3 Cond 1 AC Neutral 150k-30MHz |

Peak detector "Max held" Analyser plots against the Quasi-Peak / Average limit line(s) can be found in Section 6 of this report./ Only results within 20dB of limits have been reported.

#### LIMITS:

15.207: as given in the above tables / drawn on the respective plots.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows:

UE70 9kHz to 150kHz ±3.76dB, UE71 150kHz to 30MHz ±3.4dB

## 5.2 Radiated emissions 9 - 150 kHz

#### 5.2.1 Test methods

Test Requirements: Test Method: Limits: 47 CFR Part 15C Part 15.209 [Reference 4.1.1 of this report] ANSI C63.10 Clause 6.4 [Reference 4.1.2 of this report] 47 CFR Part 15C Part 15.225(d) [Reference 4.1.1 of this report]

### 5.2.2 Configuration of EUT

The EUT was placed on a 0.8 metres high turntable. The front edge of the EUT was initially positioned facing the antenna. The EUT was measured at a distance of 3 metres. The antenna was orientated in both Parallel and Perpendicular polarisations. The EUT was rotated in all three orthogonal planes The EUT was powered via an ancillary laptop. The EUT was operated in Mode 1.

#### 5.2.3 Test procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment noted below.

Measurements were made in a semi-anechoic chamber (pre-scan) with any final measurements required performed on an OATS without a ground plane. The antenna was placed 1m above the ground. The equipment was rotated 360 degrees to record the worst case emissions.

All signals within 10dB of the limit were investigated.

Tests were performed using Test Site H and OATS.

#### 5.2.4 Test equipment

TMS81, ZSW1, E642, F238

See Section 9 for more details

#### 5.2.5 Test results

| Temperature of test environment | 20°C    |
|---------------------------------|---------|
| Humidity of test environment    | 50%     |
| Pressure of test environment    | 102 kPa |

| Band            | 13.110-14.010 MHz |
|-----------------|-------------------|
| Power Level     | Default           |
| Channel Spacing | Single Channel    |
| Mod Scheme      | ASK               |
| Single channel  | 13.56 MHz         |

| Plot refs                    |  |
|------------------------------|--|
| 14468-3 Rad 1 9k-150kHz Para |  |
| 14468-3 Rad 1 9k-150kHz Perp |  |

Peak detector "Max held" Analyser plots against the Quasi-Peak / Average limit line(s) can be found in Section 6 of this report.

#### LIMITS:

15.209 limits are applicable in the restricted bands of 15.205 with the relevant detector.

n.b. the general limits of 15.209 are as drawn on the respective plots.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows: 9kHz - 30MHz ±3.9dB

## 5.3 Radiated emissions 150 kHz - 30 MHz

#### 5.3.1 Test methods

| Test Requirements: | 47 CFR Part 15C Part 15.209 [Reference 4.1.1 of this report]    |
|--------------------|-----------------------------------------------------------------|
| Test Method:       | ANSI C63.10 Clause 6.4 [Reference 4.1.2 of this report]         |
| Limits:            | 47 CFR Part 15C Part 15.225(d) [Reference 4.1.1 of this report] |

### 5.3.2 Configuration of EUT

The EUT was placed on a 0.8 metres high turntable. The front edge of the EUT was initially positioned facing the antenna. The EUT was measured at a distance of 3 metres. The antenna was orientated in both Parallel and Perpendicular polarisations. The EUT was rotated in all three orthogonal planes The EUT was powered via an ancillary laptop. The EUT was operated in Mode 1.

#### 5.3.3 Test procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment noted below.

Measurements were made in a semi-anechoic chamber (pre-scan) with any final measurements required performed on an OATS without a ground plane. The antenna was placed 1m above the ground. The equipment was rotated 360 degrees to record the worst case emissions.

All signals within 10dB of the limit were investigated.

Tests were performed using Test Site H and OATS.

#### 5.3.4 Test equipment

TMS81, ZSW1, E642, F238

See Section 9 for more details

#### 5.3.5 Test results

| Temperature of test environment | 20°C    |
|---------------------------------|---------|
| Humidity of test environment    | 50%     |
| Pressure of test environment    | 102 kPa |

| Band            | 13.110-14.010 MHz |
|-----------------|-------------------|
| Power Level     | Default           |
| Channel Spacing | Single Channel    |
| Mod Scheme      | ASK               |
| Single channel  | 13.56 MHz         |

| Plot refs                     |
|-------------------------------|
| 14468-3 Rad 1 150k-30MHz Para |
| 14468-3 Rad 1 150k-30MHz Perp |

Peak detector "Max held" Analyser plots against the Quasi-Peak / Average limit line(s) can be found in Section 6 of this report.

#### LIMITS:

15.209 limits are applicable in the restricted bands of 15.205 with the relevant detector.

n.b. the general limits of 15.209 are as drawn on the respective plots.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows: 9kHz - 30MHz ±3.9dB

## 5.4 Radiated emissions 30 MHz -1 GHz

#### 5.4.1 Test methods

Test Requirements: Test Method: Limits: 47 CFR Part 15C Part 15.225(d) [Reference 4.1.1 of this report] ANSI C63.10 Clause 6.4 [Reference 4.1.2 of this report] 47 CFR Part 15C Part 15.225(d) [Reference 4.1.1 of this report]

### 5.4.2 Configuration of EUT

The EUT was placed on a 0.8 metres high turntable. The front edge of the EUT was initially positioned facing the antenna. The EUT was measured at a distance of 3 metres. The EUT was rotated in all three orthogonal planes The EUT was powered via an ancillary laptop. The EUT was operated in Mode 1.

### 5.4.3 Test procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment noted below. Measurements were made in a semi-anechoic chamber. The antenna was height scanned between 1 and 4 metres and the equipment was rotated 360 degrees to record the worst case emissions. Both Horizontal and vertical polarisations of measuring antenna were tested. Tests were performed in Test Site H

## 5.4.4 Test equipment

E914, E745, NSA-H, ZSW1, E642, F238

See Section 9 for more details

#### 5.4.5 Test results

| Temperature of test environment | 20°C    |
|---------------------------------|---------|
| Humidity of test environment    | 50%     |
| Pressure of test environment    | 102 kPa |

| Band            | 13.110-14.010 MHz |
|-----------------|-------------------|
| Power Level     | Default           |
| Channel Spacing | Single Channel    |
| Mod Scheme      | ASK               |
| Single channel  | 13.56 MHz         |

| Plot refs               |
|-------------------------|
| 14468-3 Rad 1 VHF Horiz |
| 14468-3 Rad 1 VHF Vert  |
| 14468-3 Rad 1 UHF Horiz |
| 14468-3 Rad 1 UHF Vert  |

| Signal No. | Freq (MHz) | Peak Amp<br>(dBuV/m) | QP Amp (dBuV/m) | QP -Lim (dB) |
|------------|------------|----------------------|-----------------|--------------|
| 1          | 52.674     | 30.9                 | 25.0            | -15.0        |
| 2          | 72.904     | 29.4                 | 24.5            | -15.5        |
| 3          | 81.374     | 25.9                 | 23.0            | -17.0        |
| 4          | 103.134    | 28.2                 | 22.1            | -21.4        |
| 5          | 119.347    | 26.2                 | 20.5            | -23.0        |
| 6          | 162.747    | 30.0                 | 26.8            | -16.7        |
| 7          | 176.309    | 32.2                 | 29.2            | -14.3        |
| 8          | 189.872    | 39.3                 | 37.9            | -5.6         |
| 9          | 216.996    | 36.8                 | 35.0            | -11.0        |
| 10         | 244.121    | 37.3                 | 35.4            | -10.6        |
| 11         | 271.245    | 37.2                 | 34.9            | -11.1        |
| 12         | 298.370    | 37.0                 | 34.8            | -11.2        |
| 13         | 332.289    | 35.8                 | 26.5            | -19.5        |
| 14         | 333.091    | 36.1                 | 26.0            | -20.0        |
| 15         | 342.030    | 31.4                 | 25.6            | -20.4        |
| 16         | 349.865    | 32.2                 | 26.3            | -19.7        |
| 17         | 352.627    | 32.8                 | 28.7            | -17.3        |
| 18         | 379.743    | 37.8                 | 34.3            | -11.7        |
| 19         | 406.868    | 41.1                 | 39.3            | -6.7         |
| 20         | 433.992    | 39.0                 | 36.4            | -9.6         |
| 21         | 477.792    | 33.8                 | 28.4            | -17.6        |
| 22         | 651.531    | 42.3                 | 37.0            | -9.0         |
| 23         | 753.583    | 38.0                 | 32.8            | -13.2        |
| 24         | 912.174    | 41.9                 | 37.4            | -8.6         |

# Table of signals measured for Rad 1 Horizontal Signal List

# Table of signals measured for Rad 1 Vertical Signal List

| Signal No. | Freq (MHz) | Peak Amp<br>(dBuV/m) | QP Amp (dBuV/m) | QP -Lim (dB) |
|------------|------------|----------------------|-----------------|--------------|
| 1          | 53.676     | 31.2                 | 25.7            | -14.3        |
| 2          | 72.881     | 29.0                 | 23.3            | -16.7        |
| 3          | 81.374     | 26.8                 | 24.3            | -15.7        |
| 4          | 103.448    | 27.8                 | 22.1            | -21.4        |
| 5          | 162.747    | 31.3                 | 28.6            | -14.9        |
| 6          | 176.309    | 29.5                 | 25.8            | -17.7        |
| 7          | 189.872    | 34.0                 | 31.1            | -12.4        |
| 8          | 332.619    | 32.4                 | 25.2            | -20.8        |
| 9          | 406.867    | 36.2                 | 32.9            | -13.1        |
| 10         | 497.787    | 42.8                 | 32.2            | -13.8        |
| 11         | 499.102    | 40.7                 | 31.5            | -14.5        |
| 12         | 627.817    | 36.3                 | 31.3            | -14.7        |
| 13         | 651.533    | 42.0                 | 37.0            | -9.0         |
| 14         | 663.281    | 37.1                 | 31.6            | -14.4        |
| 15         | 683.636    | 37.9                 | 31.8            | -14.2        |
| 16         | 698.602    | 36.7                 | 31.6            | -14.4        |

Peak detector "Max held" Analyser plots against the Quasi-Peak / Average limit line(s) can be found in Section 6 of this report.

### ©2024 Kiwa Electrical Compliance ALL RIGHTS RESERVED

### LIMITS:

15.209 limits are applicable in the restricted bands of 15.205 with the relevant detector.

n.b. the general limits of 15.209 are as drawn on the respective plots.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows:  $30MHz - 1000MHz \pm 6.1dB$ 

# 5.5 Radiated emissions above 1 GHz

NOT APPLICABLE: Radiated emissions measurements above 1 GHz are not required. The highest frequency generated or used within the equipment is 48MHz.

## 5.6 Intentional radiator field strength

#### 5.6.1 Test methods

Test Requirements: Test Method: Limits: 47 CFR Part 15C Part 15.225(a) [Reference 4.1.1 of this report]
ANSI C63.10 Clause 6.4 [Reference 4.1.2 of this report]
47 CFR Part 15C Part 15.225(a)/(b)/(c)/(d) [Reference 4.1.1 of this report]

### 5.6.2 Configuration of EUT

The EUT was placed on a 0.8 metres high turntable. The front edge of the EUT was initially positioned facing the antenna. The EUT was measured at a distance of 3 metres. The EUT was rotated in all three orthogonal planes The EUT was powered via an ancillary laptop. The EUT was operated in Mode 1.

#### 5.6.3 Test procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment noted below.

Measurements were made in a semi-anechoic chamber (pre-scan) with final measurements performed on an OATS without a ground plane. The antenna was placed 1m above the ground. Both the equipment and the antenna were rotated 360 degrees to record the maximised emission.

Measurements were made at Site H and OATS.

#### 5.6.4 Test equipment

TMS81, ZSW1, E642, F238

See Section 9 for more details

#### 5.6.5 Test results

| Temperature of test environment | 20°C   |
|---------------------------------|--------|
| Humidity of test environment    | 50%    |
| Pressure of test environment    | 102kPa |

| Band            | 13.110-14.010 MHz |
|-----------------|-------------------|
| Power Level     | Default           |
| Channel Spacing | Single Channel    |
| Mod Scheme      | ASK               |
| Single channel  | 13.56 MHz         |

|                       | Single channel |
|-----------------------|----------------|
| Duty Cycle (%)        | 100%           |
| Duty Cycle correction | 0.00           |

|                                | Single channel      |
|--------------------------------|---------------------|
| Peak Level @ 3 metres (dBµV/m) | 66.59               |
| Plot reference                 | Para Upright Tag in |
| Antenna Polarisation           | Parallel            |
| EUT Polarisation               | Upright             |

Analyser plots can be found in Section 6 of this report.

An extrapolation factor of 40dB/decade per ANSI C63.10:2013 clause 6.4 is applied to the 3m results to give the following field strengths at 30m for comparison to the limits:

| Peak Level (dBµV/m) @ 30m | 26.59 |  |
|---------------------------|-------|--|
|---------------------------|-------|--|

# ©2024 Kiwa Electrical Compliance

ALL RIGHTS RESERVED

#### LIMITS:

15.225(a) QP/Peak = the field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848  $\mu$ V/m @ 30m = 84 dB $\mu$ V/m @ 30m.

15.225(b) QP/Peak = within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334  $\mu$ V/m @ 30m = 50.5 dB $\mu$ V/m @ 30m.

15.225(c) QP/Peak = within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106  $\mu$ V/m @ 30m = 40.5 dB $\mu$ V/m @ 30m.

15.225(d) QP/Peak = outside of the 13.110-14.010 MHz band shall not exceed the general radiated emissions limits of 15.209.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows:  $<\pm 3.9 \text{ dB}$ 

## 5.7 Occupied bandwidth

#### 5.7.1 Test methods

Test Requirements:47 CFR Part 15C Part 15.215 [Reference 4.1.1 of this report]Test Method:ANSI C63.10 Clause 6.9 [Reference 4.1.2 of this report]Limits:47 CFR Part 15C Part 15.215 [Reference 4.1.1 of this report]

### 5.7.2 Configuration of EUT

The EUT was placed on a 0.8 metres high turntable. The front edge of the EUT was initially positioned facing the antenna. The EUT was measured at a distance of 3 metres. The EUT was operated in Mode 1.

#### 5.7.3 Test procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment noted below. Analyser settings can be seen on plot in section 6 of this report.

Measurements were made in a semi-anechoic chamber. Tests were performed using Test Site H.

#### 5.7.4 Test equipment

TMS81, ZSW1, E642, F238

See Section 9 for more details

#### 5.7.5 Test results

| Temperature of test environment | 20°C    |
|---------------------------------|---------|
| Humidity of test environment    | 50%     |
| Pressure of test environment    | 102 kPa |

| Band            | 13.110-14.010 MHz |
|-----------------|-------------------|
| Power Level     | Default           |
| Channel Spacing | Single Channel    |
| Mod Scheme      | ASK               |
| Single channel  | 13.56 MHz         |

|                          | Single channel |
|--------------------------|----------------|
| 20 dB Bandwidth (kHz)    | 436.0          |
| Plot for 20 dB Bandwidth | 14468-3 tag in |
|                          |                |
| FLOW Worst case (MHz)    | 13.342         |
| FHIGH Worst case (MHz)   | 13.778         |

Analyser plots can be found in Section 6 of this report.

#### LIMITS:

No limits apply however, per 15.215, the 20dB bandwidth of the emission is to remain within the band over expected variations in temperature and supply voltage. It is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimise the possibility of out-of-band operation.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows:  $<\pm 1.9$  %

### 5.8 Spectrum mask

#### 5.8.1 Test methods

| Test Requirements: | 47 CFR Part 15C Part 15.225 [Reference 4.1.1 of this report]                |
|--------------------|-----------------------------------------------------------------------------|
| Test Method:       | ANSI C63.10 Clause 6.4 [Reference 4.1.2 of this report]                     |
| Limits:            | 47 CFR Part 15C Part 15.225(a)/(b)/(c)/(d) [Reference 4.1.1 of this report] |

#### 5.8.2 Configuration of EUT

The EUT was placed on a 0.8 metres high turntable. The EUT was measured at a distance of 3 metres. The EUT and antenna were positioned for maximum field strength and referenced to the field strength measured on the OATS. The EUT was operated in Mode 1.

#### 5.8.3 Test procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment noted below.

Plots were taken and results were referenced to limits at 30m by using the extrapolation factor of 40dB/decade, per ANSI C63.10 clause 6.4

Measurements were made at Site H.

#### 5.8.4 Test equipment

TMS81, ZSW1, E642, F238

See Section 9 for more details

#### 5.8.5 Test results

| Temperature of test environment | 20°C    |
|---------------------------------|---------|
| Humidity of test environment    | 50%     |
| Pressure of test environment    | 102 kPa |

| Band            | 13.110-14.010 MHz |
|-----------------|-------------------|
| Power Level     | Default           |
| Channel Spacing | Single Channel    |
| Mod Scheme      | ASK               |
| Channel         | 13.56MHz          |

|                                                           | Single channel             |
|-----------------------------------------------------------|----------------------------|
| Nominal, Maximised RF Output / field strength @ 3 metres  | 66.59                      |
| Nominal, Maximised RF Output / field strength @ 30 metres | 26.59                      |
| Nominal plot reference                                    | 14468-3 Spectrum mask @30m |

3m result converted to 30m is 26.59 dBuV/m @30m. Analyser plots can be found in Section 6 of this report.

#### LIMITS:

15.225(a) QP/Peak = the field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848  $\mu$ V/m @ 30m = 84 dB $\mu$ V/m @ 30m.

15.225(b) QP/Peak = within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334  $\mu$ V/m @ 30m = 50.5 dB $\mu$ V/m @ 30m.

15.225(c) QP/Peak = within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106  $\mu$ V/m @ 30m = 40.5 dB $\mu$ V/m @ 30m.

15.225(d) QP/Peak = outside of the 13.110-14.010 MHz band shall not exceed the general radiated emissions limits of 15.209.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows:  $<\pm 4.1 \text{ dB}$ 

## 5.9 **Frequency stability**

#### 5.9.1 Test methods

Test Requirements: Test Method: Limits: 47 CFR Part 15C Part 15.225(e) [Reference 4.1.1 of this report] ANSI C63.10 Clause 6.8 [Reference 4.1.2 of this report] 47 CFR Part 15C Part 15.225(e) [Reference 4.1.1 of this report]

#### 5.9.2 Configuration of EUT

The EUT was placed in a temperature controlled chamber. The EUT emissions were observed by means of a test fixture. The EUTs' power was varied by using a USB breakout lead connected to a bench PSU. This allowed the voltage end points as stated in section 2.4. The EUT was operated in Mode 1 mode.

#### 5.9.3 Test procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment noted below.

Temperature stability was achieved at each test level before taking measurements. At nominal temperature the EUT supply was varied.

A spectrum analyser was used and connected to an off-air frequency standard. The Analyser's frequency counter function was used to monitor the frequency of the carrier. The analyser was set with a suitable span, RBW and VBW to allow for a measurement resolution of 1Hz.

Tests were performed using Test Site A.

#### 5.9.4 Test equipment

E227, E813, H071, TMS38, TMS80

See Section 9 for more details

# 5.9.5 Test results

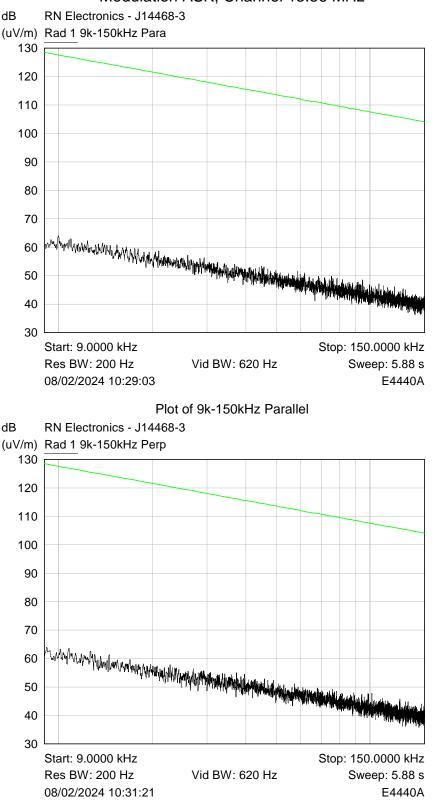
| Temperature of test environment | 20°C   |
|---------------------------------|--------|
| Humidity of test environment    | 48%    |
| Pressure of test environment    | 102kPa |

| Band            | 13.110-14.010 MHz |
|-----------------|-------------------|
| Power Level     | Default           |
| Channel Spacing | Single Channel    |
| Mod Scheme      | ASK               |
| Single channel  | 13.56 MHz         |

|                    | Test conditions      | Frequency Error (MHz)<br>Single channel |
|--------------------|----------------------|-----------------------------------------|
| -20°C              | Volts Nominal (5)    | 13.562319                               |
| -10°C              | Volts Nominal (5)    | 13.562317                               |
| 0°C                | Volts Nominal (5)    | 13.562283                               |
| 10°C               | Volts Nominal (5)    | 13.562282                               |
| 20°C               | Volts Minimum (4.75) | 13.562214                               |
|                    | Volts Nominal (5)    | 13.562214                               |
|                    | Volts Maximum (5.25) | 13.562214                               |
| 30°C               | Volts Nominal (5)    | 13.562272                               |
| 40°C               | Volts Nominal (5)    | 13.562217                               |
| 55°C               | Volts Nominal (5)    | 13.562163                               |
| Max Frequency Erro | r per chan (Hz)      | +104.5                                  |
| Max Frequency Erro | r observed (MHz)     | 0.0001045                               |

### LIMITS:

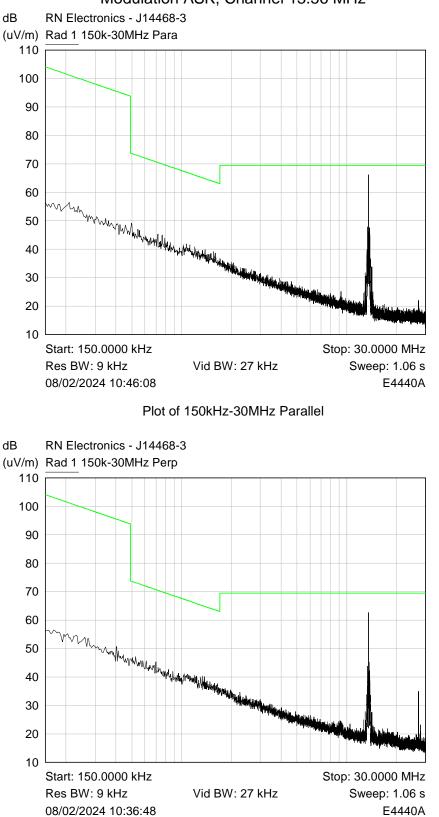
+/- 0.01%. (+/- 1.356kHz)


These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows:  $<\pm 0.0002$  ppm (PSA Ext Ref)

## 6 **Plots/Graphical results**

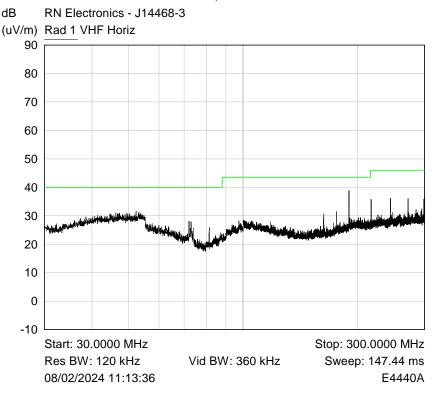
## 6.1 Radiated emissions 9 - 150 kHz


RF Parameters: Band 13.110-14.010 MHz, Power Default, Channel Spacing Single Channel, Modulation ASK, Channel 13.56 MHz

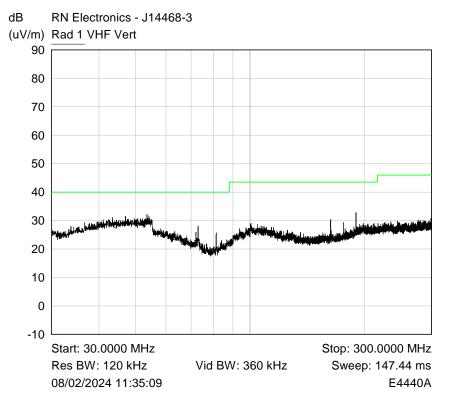


Plot of 9k-150kHz Perpendicular

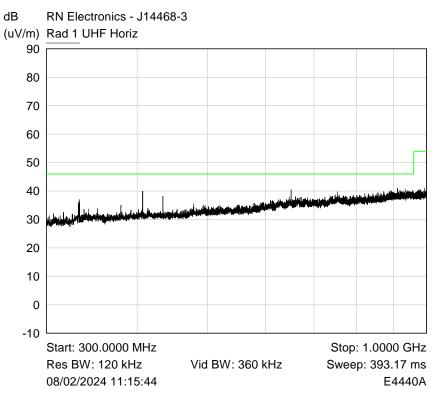
## 6.2 Radiated emissions 150 kHz - 30 MHz


RF Parameters: Band 13.110-14.010 MHz, Power Default, Channel Spacing Single Channel, Modulation ASK, Channel 13.56 MHz

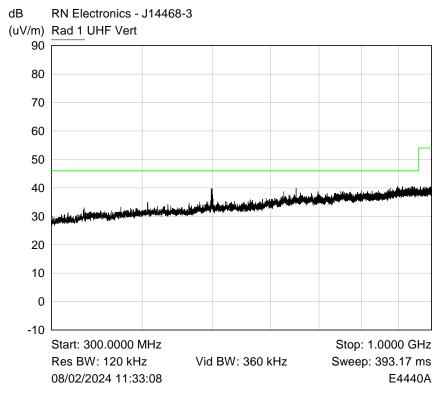



Plot of 150kHz-30MHz Perpendicular

## 6.3 Radiated emissions 30 MHz -1 GHz


RF Parameters: Band 13.110-14.010 MHz, Power Default, Channel Spacing Single Channel, Modulation ASK, Channel 13.56 MHz

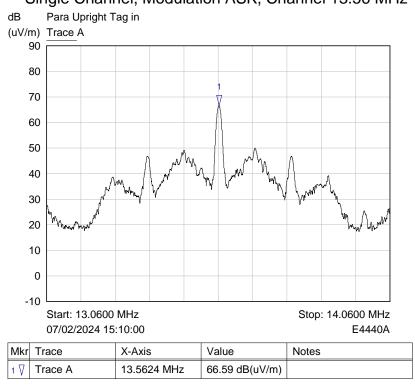



Plot of Peak emissions for VHF Horizontal against the QP limit line.



Plot of Peak emissions for VHF Vertical against the QP limit line.

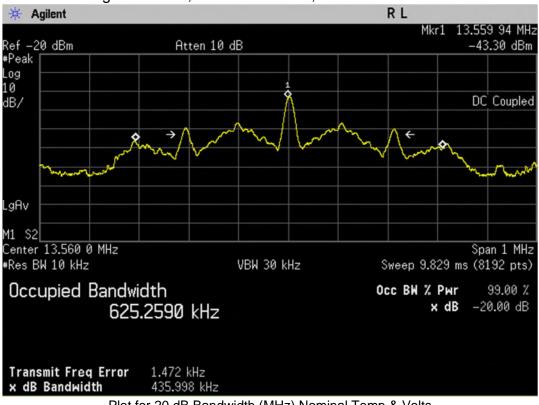



Plot of Peak emissions for UHF Horizontal against the QP limit line.



Plot of Peak emissions for UHF Vertical against the QP limit line.

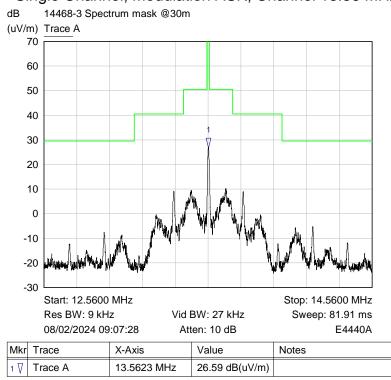
## 6.4 Intentional radiator field strength


RF Parameters: Band 13.110-14.010 MHz, Power Default (Not Declared), Channel Spacing Single Channel, Modulation ASK, Channel 13.56 MHz



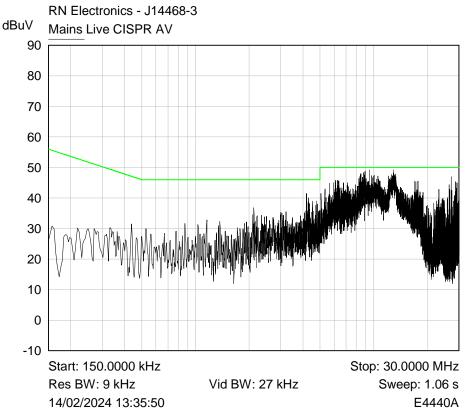
Plot of Parallel polarisation and EUT in Upright position

#### **Occupied bandwidth** 6.5

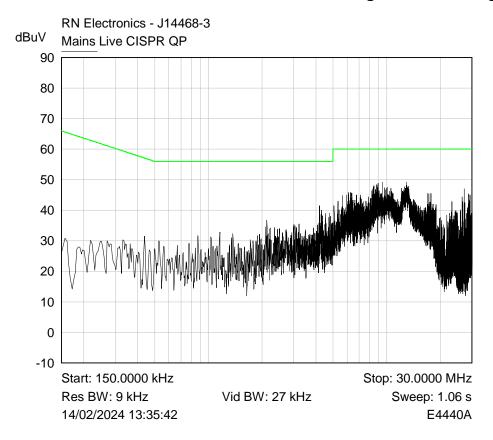

RF Parameters: Band 13.110-14.010 MHz, Power Default (Not Declared), Channel Spacing Single Channel, Modulation ASK, Channel 13.56 MHz



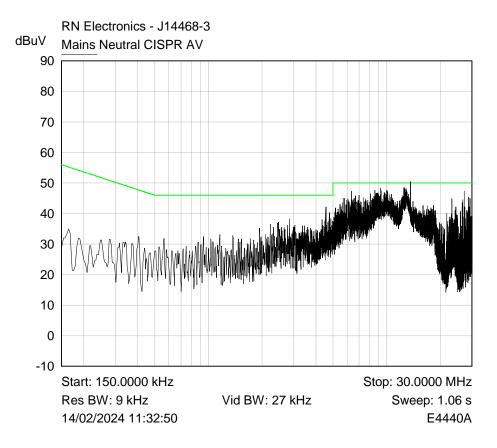
Plot for 20 dB Bandwidth (MHz) Nominal Temp & Volts


## 6.6 Spectrum mask

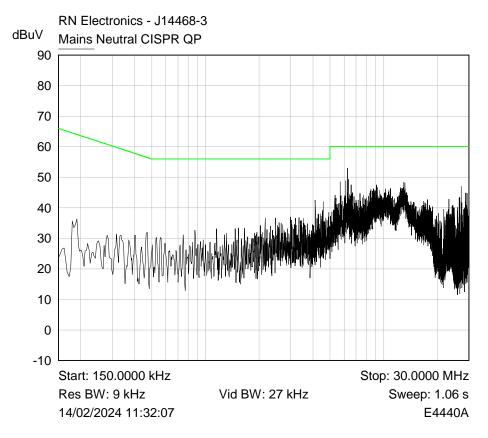
RF Parameters: Band 13.110-14.010 MHz, Power Default (Not Declared), Channel Spacing Single Channel, Modulation ASK, Channel 13.56 MHz




Nominal Temperature, Nominal Voltage


# 6.7 AC powerline conducted emission




## Peak emissions 150 kHz - 30 MHz on the live terminal against the average limit line.



## Peak emissions 150 kHz - 30 MHz on the live terminal against the quasi-peak limit line.



## Peak emissions 150 kHz - 30 MHz on the neutral terminal against the average limit line.



Peak emissions 150 kHz - 30 MHz on the neutral terminal against the quasi-peak limit line.

## Table of signals measured for Live 150kHz - 30MHz

### ©2024 Kiwa Electrical Compliance ALL RIGHTS RESERVED

| Signal No. | Freq (MHz) | Peak Amp<br>(dBuV) | QP Amp<br>(dBuV) | QP -Lim (dB) | AV Amp<br>(dBuV) | AV -Lim (dB) |
|------------|------------|--------------------|------------------|--------------|------------------|--------------|
| 1          | 0.157      | 38.8               | 32.6             | -33.0        | 24.7             | -30.9        |
| 2          | 1.031      | 34.1               | 30.6             | -25.4        | 21.9             | -24.1        |
| 3          | 2.250      | 37.3               | 34.2             | -21.8        | 22.2             | -23.8        |
| 4          | 3.000      | 38.8               | 36.1             | -19.9        | 28.5             | -17.5        |
| 5          | 3.526      | 36.8               | 29.8             | -26.2        | 22.0             | -24.0        |
| 6          | 4.750      | 40.9               | 36.5             | -19.5        | 27.0             | -19.0        |
| 7          | 5.255      | 40.7               | 34.6             | -25.4        | 24.5             | -25.5        |
| 8          | 5.500      | 45.1               | 41.3             | -18.7        | 28.5             | -21.5        |
| 9          | 5.688      | 47.1               | 44.0             | -16.0        | 30.3             | -19.7        |
| 10         | 6.062      | 47.1               | 42.8             | -17.2        | 32.2             | -17.8        |
| 11         | 7.063      | 43.4               | 40.0             | -20.0        | 33.3             | -16.7        |
| 12         | 7.719      | 47.8               | 44.0             | -16.0        | 36.3             | -13.7        |
| 13         | 8.156      | 48.0               | 43.8             | -16.2        | 32.3             | -17.7        |
| 14         | 8.874      | 46.0               | 42.8             | -17.2        | 33.2             | -16.8        |
| 15         | 9.406      | 45.9               | 41.2             | -18.8        | 32.4             | -17.6        |
| 16         | 9.812      | 45.3               | 40.9             | -19.1        | 32.8             | -17.2        |
| 17         | 10.248     | 43.8               | 39.6             | -20.4        | 30.9             | -19.1        |
| 18         | 10.758     | 41.9               | 37.6             | -22.4        | 29.4             | -20.6        |
| 19         | 12.792     | 46.1               | 45.2             | -14.8        | 38.4             | -11.6        |
| 20         | 14.450     | 36.5               | 32.1             | -27.9        | 24.8             | -25.2        |
| 21         | 14.967     | 34.4               | 30.1             | -29.9        | 23.1             | -26.9        |
| 22         | 16.126     | 37.4               | 34.5             | -25.5        | 27.9             | -22.1        |
| 23         | 17.188     | 39.4               | 36.2             | -23.8        | 28.2             | -21.8        |
| 24         | 18.230     | 40.0               | 34.0             | -26.0        | 25.0             | -25.0        |
| 25         | 18.906     | 38.0               | 34.3             | -25.7        | 26.2             | -23.8        |
| 26         | 19.708     | 37.8               | 35.4             | -24.6        | 33.4             | -16.6        |
| 27         | 20.001     | 38.8               | 37.2             | -22.8        | 34.8             | -15.2        |
| 28         | 20.258     | 38.6               | 36.8             | -23.2        | 34.3             | -15.7        |
| 29         | 20.808     | 37.5               | 35.9             | -24.1        | 33.4             | -16.6        |
| 30         | 21.052     | 36.2               | 35.0             | -25.0        | 32.6             | -17.4        |
| 31         | 21.663     | 40.3               | 39.2             | -20.8        | 36.6             | -13.4        |
| 32         | 21.907     | 38.9               | 37.2             | -22.8        | 34.3             | -15.7        |
| 33         | 22.212     | 38.0               | 36.4             | -23.6        | 32.9             | -17.1        |
| 34         | 22.579     | 39.4               | 37.9             | -22.1        | 34.5             | -15.5        |
| 35         | 22.884     | 40.0               | 38.6             | -21.4        | 35.2             | -14.8        |
| 36         | 23.128     | 45.6               | 44.4             | -15.6        | 41.0             | -9.0         |
| 37         | 23.739     | 39.6               | 37.7             | -22.3        | 34.5             | -15.5        |
| 38         | 24.044     | 41.2               | 39.8             | -20.2        | 36.9             | -13.1        |
| 39         | 24.349     | 42.2               | 41.4             | -18.6        | 39.1             | -10.9        |
| 40         | 24.533     | 41.2               | 40.3             | -19.7        | 38.0             | -12.0        |
| 41         | 24.899     | 40.3               | 39.3             | -20.7        | 37.4             | -12.6        |
| 42         | 25.693     | 41.7               | 40.5             | -19.5        | 38.8             | -11.2        |
| 43         | 25.876     | 41.5               | 40.8             | -19.2        | 39.4             | -10.6        |
| 44         | 25.998     | 40.7               | 39.8             | -20.2        | 38.2             | -11.8        |
| 45         | 26.487     | 44.3               | 43.6             | -16.4        | 42.1             | -7.9         |
| 46         | 27.158     | 45.2               | 44.4             | -15.6        | 42.7             | -7.3         |
| 47         | 27.342     | 43.4               | 42.4             | -17.6        | 40.5             | -9.5         |
| 48         | 27.891     | 40.8               | 40.0             | -20.0        | 38.2             | -11.8        |
| 49         | 28.563     | 43.8               | 42.8             | -17.2        | 40.5             | -9.5         |
| 50         | 28.685     | 46.7               | 45.4             | -14.6        | 43.0             | -7.0         |
| 51         | 29.112     | 44.3               | 43.0             | -17.0        | 40.5             | -9.5         |
| 52         | 29.235     | 45.8               | 44.7             | -15.3        | 42.7             | -7.3         |

| Signal No. | Freq (MHz) | Peak Amp<br>(dBuV) | QP Amp<br>(dBuV) | QP -Lim (dB) | AV Amp<br>(dBuV) | AV -Lim (dB) |
|------------|------------|--------------------|------------------|--------------|------------------|--------------|
| 1          | 4.687      | 37.2               | 33.3             | -22.7        | 24.0             | -22.0        |
| 2          | 4.750      | 40.8               | 37.3             | -18.7        | 27.4             | -18.6        |
| 3          | 4.938      | 43.6               | 39.5             | -16.5        | 25.1             | -20.9        |
| 4          | 4.968      | 43.3               | 39.6             | -16.4        | 24.2             | -21.8        |
| 5          | 5.375      | 47.9               | 43.4             | -16.6        | 30.7             | -19.3        |
| 6          | 5.688      | 48.3               | 45.3             | -14.7        | 31.2             | -18.8        |
| 7          | 5.781      | 47.7               | 43.0             | -17.0        | 30.7             | -19.3        |
| 8          | 5.875      | 43.8               | 40.6             | -19.4        | 31.4             | -18.6        |
| 9          | 6.061      | 46.5               | 43.0             | -17.0        | 32.5             | -17.5        |
| 10         | 6.125      | 47.4               | 44.8             | -15.2        | 34.9             | -15.1        |
| 11         | 6.156      | 45.7               | 43.0             | -17.0        | 35.2             | -14.8        |
| 12         | 6.220      | 47.1               | 42.6             | -17.4        | 31.8             | -18.2        |
| 13         | 6.281      | 46.6               | 42.2             | -17.8        | 30.2             | -19.8        |
| 14         | 6.281      | 46.8               | 42.2             | -17.8        | 30.2             | -19.8        |
| 15         | 6.313      | 47.5               | 43.3             | -16.7        | 35.8             | -14.2        |
| 16         | 6.342      | 46.3               | 43.4             | -16.6        | 35.5             | -14.5        |
| 17         | 6.407      | 46.7               | 43.2             | -16.8        | 32.6             | -17.4        |
| 18         | 7.313      | 46.9               | 42.6             | -17.4        | 31.7             | -18.3        |
| 19         | 7.375      | 48.4               | 45.0             | -15.0        | 35.9             | -14.1        |
| 20         | 7.719      | 44.0               | 40.8             | -19.2        | 35.9             | -14.1        |
| 20         | 8.749      | 51.4               | 47.6             | -12.4        | 35.6             | -14.4        |
| 22         | 8.782      | 47.7               | 44.8             | -15.2        | 37.2             | -12.8        |
| 22         | 8.968      | 48.7               | 44.6             | -15.4        | 34.6             | -15.4        |
| 23         | 9.060      | 51.5               | 44.0             | -14.3        | 34.0             | -15.0        |
| 24         | 9.000      | 50.9               | 46.3             | -14.3        | 35.8             | -14.2        |
| 25         | 9.503      | 48.6               | 40.3             | -15.9        | 35.8             | -14.2        |
| 20         | 9.625      | 40.0               | 44.1             | -18.2        | 34.9             | -15.6        |
| 27         |            | 45.5<br>46.5       |                  | -16.2        | 34.4             |              |
|            | 9.689      |                    | 42.9             |              |                  | -15.1        |
| 29         | 9.813      | 48.8               | 43.2             | -16.8        | 34.8             | -15.2        |
| 30         | 10.032     | 48.4               | 45.6             | -14.4        | 37.0             | -13.0        |
| 31         | 12.405     | 46.4               | 42.8             | -17.2        | 36.1             | -13.9        |
| 32         | 12.497     | 46.9               | 42.7             | -17.3        | 35.6             | -14.4        |
| 33         | 12.562     | 50.0               | 45.7             | -14.3        | 38.8             | -11.2        |
| 34         | 12.594     | 49.5               | 45.5             | -14.5        | 38.4             | -11.6        |
| 35         | 12.653     | 47.8               | 42.6             | -17.4        | 35.7             | -14.3        |
| 36         | 12.747     | 48.9               | 45.2             | -14.8        | 38.3             | -11.7        |
| 37         | 12.813     | 48.3               | 44.8             | -15.2        | 37.8             | -12.2        |
| 38         | 12.967     | 49.1               | 45.1             | -14.9        | 38.1             | -11.9        |
| 39         | 13.047     | 46.3               | 43.3             | -16.7        | 36.7             | -13.3        |
| 40         | 13.095     | 47.2               | 43.6             | -16.4        | 36.5             | -13.5        |
| 41         | 13.436     | 45.1               | 41.1             | -18.9        | 34.6             | -15.4        |
| 42         | 13.563     | 48.0               | 46.6             | -13.4        | 38.1             | -11.9        |
| 43         | 14.255     | 42.7               | 38.9             | -21.1        | 31.6             | -18.4        |
| 44         | 14.550     | 42.7               | 37.5             | -22.5        | 29.8             | -20.2        |
| 45         | 14.734     | 41.4               | 37.2             | -22.8        | 29.7             | -20.3        |
| 46         | 14.961     | 40.0               | 36.5             | -23.5        | 29.0             | -21.0        |
| 47         | 16.063     | 45.5               | 41.2             | -18.8        | 31.7             | -18.3        |
| 48         | 16.250     | 44.8               | 41.5             | -18.5        | 31.0             | -19.0        |
| 49         | 16.437     | 43.3               | 38.9             | -21.1        | 29.2             | -20.8        |
| 50         | 16.717     | 43.2               | 39.1             | -20.9        | 29.8             | -20.2        |
| 51         | 16.842     | 45.3               | 40.6             | -19.4        | 31.0             | -19.0        |

# Table of signals measured for Neutral 150kHz - 30MHz

### ©2024 Kiwa Electrical Compliance ALL RIGHTS RESERVED

| 52              | 17.124           | 44.5         | 40.3         | -19.7          | 33.2 | -16.8         |
|-----------------|------------------|--------------|--------------|----------------|------|---------------|
| 53              | 17.312           | 44.8         | 41.0         | -19.0          | 31.9 | -18.1         |
| 54              | 17.561           | 43.3         | 39.3         | -20.7          | 30.8 | -19.2         |
| 55              | 17.717           | 44.1         | 39.5         | -20.5          | 32.3 | -17.7         |
| 56              | 17.938           | 44.1         | 39.1         | -20.9          | 32.1 | -17.9         |
| 57              | 18.001           | 44.9         | 41.3         | -18.7          | 34.4 | -15.6         |
| 58              | 18.344           | 43.1         | 38.1         | -21.9          | 30.5 | -19.5         |
| 59              | 19.313           | 38.5         | 35.3         | -24.7          | 21.6 | -28.4         |
| 60              | 19.709           | 38.3         | 36.3         | -23.7          | 33.5 | -16.5         |
| 61              | 20.001           | 39.1         | 37.2         | -22.8          | 34.8 | -15.2         |
| 62              | 20.258           | 38.2         | 36.8         | -23.2          | 34.3 | -15.7         |
| 63              | 20.380           | 37.5         | 35.6         | -24.4          | 32.4 | -17.6         |
| 64              | 20.808           | 37.0         | 35.7         | -24.3          | 33.4 | -16.6         |
| 65              | 21.113           | 35.4         | 34.2         | -25.8          | 32.1 | -17.9         |
| 66              | 21.663           | 40.7         | 39.3         | -20.7          | 36.6 | -13.4         |
| 67              | 21.724           | 34.5         | 32.8         | -27.2          | 29.9 | -20.1         |
| 68              | 21.907           | 38.4         | 37.0         | -23.0          | 34.2 | -15.8         |
| 69              | 22.029           | 36.0         | 34.1         | -25.9          | 30.9 | -19.1         |
| 70              | 22.212           | 37.9         | 36.2         | -23.8          | 32.8 | -17.2         |
| 70              | 22.395           | 36.4         | 35.2         | -24.8          | 31.5 | -18.5         |
| 72              | 22.456           | 39.3         | 38.1         | -24.8          | 31.5 | -15.3         |
| 73              | 22.430           | 39.9         | 38.0         | -22.0          | 34.4 | -15.6         |
| 74              | 22.884           | 40.1         | 38.7         | -21.3          | 35.1 | -14.9         |
| 74              | 23.067           | 41.3         | 40.2         | -19.8          | 36.8 | -13.2         |
| 76              | 23.128           | 45.4         | 44.3         | -15.7          | 41.0 | -9.0          |
| 70              | 24.349           | 42.6         | 41.6         | -18.4          | 39.1 | -10.9         |
| 78              | 24.533           | 41.4         | 40.3         | -19.7          | 38.0 | -12.0         |
| 79              | 25.876           | 41.4         | 40.3         | -19.2          | 39.4 | -10.6         |
| 80              | 26.487           | 44.4         | 43.6         | -16.4          | 42.2 | -7.8          |
| 81              | 26.548           | 43.4         | 43.0         | -17.3          | 41.3 | -7.0          |
| 82              | 26.548           | 44.2         | 43.4         | -16.6          | 41.8 | -8.2          |
| 83              | 26.609           | 45.1         | 44.4         | -15.6          | 41.8 | -7.3          |
| 84              | 27.158           | 45.6         | 44.7         | -15.3          | 42.8 | -7.2          |
| 85              | 27.342           | 42.7         | 41.7         | -18.3          | 40.3 | -9.7          |
| 86              |                  | 42.7         | 40.5         | -19.5          | 38.4 | -9.7          |
| 87              | 27.891<br>28.441 | 41.4         | 40.5         | -19.5          | 37.9 | -11.0         |
|                 |                  |              |              |                |      |               |
| 88              | 28.502<br>28.624 | 41.5<br>42.6 | 40.5         | -19.5<br>-18.4 | 38.1 | -11.9         |
| <u>89</u><br>90 |                  |              | 41.6<br>45.5 |                | 39.2 | -10.8         |
|                 | 28.685           | 46.8         |              | -14.5          | 43.2 | -6.8<br>-12.4 |
| 91              | 28.868           | 41.2         | 40.0         | -20.0          | 37.6 |               |
| 92              | 29.112           | 43.5         | 42.4         | -17.6          | 40.5 | -9.5          |
| 93              | 29.235           | 46.7         | 45.4         | -14.6          | 42.9 | -7.1          |
| 94              | 29.906           | 41.4         | 40.4         | -19.6          | 37.8 | -12.2         |

# 7 Explanatory Notes

## 7.1 Explanation of Table of Signals Measured

Measurements are made as required by the standard. These measurements are made and recorded using detectors, either peak, quasi peak or average dependant on the test. A table of results has been given following the relevant plots. This table looks similar to the one illustrated below dependant on the measurements required by the test: -

|   | Signal No. | Freq (MHz) | Peak Amp<br>(dBuV) | Pk – Lim 1<br>(dB) | QP Amp<br>(dBuV) | QP - Lim1<br>(dB) | Av Amp<br>(dBuV) | Av - Lim1 (dB) |
|---|------------|------------|--------------------|--------------------|------------------|-------------------|------------------|----------------|
| ſ | 1          | 12345      | 54.9               | -10.5              | 48               | -12.6             | 37.6             | -14.4          |

Column One - Labelled Signal No. is an incremental number that the receiver has given to each signal that has been measured.

Column Two - Labelled Freq (MHz) is the approximate frequency of the signal received.

Column Three - Labelled Peak Amp (dB $\mu$ V) is the level of received signal that was measured in dB above 1 $\mu$ V using the peak detector.

Column Four - Labelled Pk - Lim1 (dB) is the difference in level from the peak signal given to the active limit line. If this column appears in the table the peak detector measurement is required by the standard for this test. The results entered in this column indicate the signal level relative to the compliance limit required. Negative numbers indicate that the product is compliant.

Column Five - Labelled QP Amp (dB $\mu$ V) is the level of received signal that was measured in dB above 1 $\mu$ V using the quasi-peak detector.

Column Six - Labelled QP - Lim1 (dB) is the difference in level from the quasi-peak signal given to the active limit line. If this column appears in the table the quasi-peak detector measurement is required by the standard for this test. The results entered in this column indicate the signal level relative to the compliance limit required. Negative numbers indicate that the product is compliant.

Column Seven - Labelled Av Amp (dB $\mu$ V) is the level of received signal that was measured in dB above 1 $\mu$ V using the average detector.

Column Eight - Labelled Av - Lim1 (dB) is the difference in level from the average signal given to the active limit line. If this column appears in the table the average detector measurement is required by the standard for this test. The results entered in this column indicate the signal level relative to the compliance limit required. Negative numbers indicate that the product is compliant.

Only signals highlighted in red are deemed to exceed the limit of the detector required.

## 7.2 Explanation of limit line calculations for radiated measurements

The limits given in the test standard are normally expressed as absolute values (e.g. in  $\mu$ V/m at a specified distance), whereas the measured values are expressed as peak, quasi peak or average values in dB $\mu$ V/m referenced to the measuring instrument inputs. Kiwa Electrical Compliance calibrate the test set-up to account for any path losses, antenna gains, etc. so that the value read at the receiver relates directly to the absolute value required, except that it is expressed in dB relative to one microVolt and may need to take account of any alternative measuring distance used. Examples:

(a) limit of 500  $\mu$ V/m equates to 20.log (500) = 54 dB  $\mu$ V/m.

(b) limit of 300  $\mu$ V/m at 10m equates to 20.log (300 . 10/3) = 60 dB  $\mu$ V/m at 3m

### ©2024 Kiwa Electrical Compliance ALL RIGHTS RESERVED

(c) limit of 30  $\mu$ V/m at 30m, but below 30MHz, equates to 20.log(30) + 40.log(30/3) = 69.5 dB $\mu$ V/m at 3m, as extrapolation factor below 30MHz is 40dB/decade per 15.31(f)(2).

The measurement receiver used for emissions testing, performs the field strength (FS) calculations automatically. The receiver combines the signal amplitude (RA), Antenna Factor (AF) and Cable Loss (CL) factors for the frequency to be measured.

### Example calculation: - FS = RA + AF + CL.

| Receiver amplitude<br>(RA) | Antenna factor (3m) (AF) | Cable loss (CL) | Field strength result (3m)<br>(FS) |
|----------------------------|--------------------------|-----------------|------------------------------------|
| 20dBuV                     | 25 dB                    | 3 dB            | 48dBuV/m                           |

### Additional calculation examples per ANSI C63.10 clause 9.4 – 9.6 equations 21, 22, 25 & 26:

### Equation 21: E<sub>Linear</sub> = 10<sup>((E</sup>log<sup>-120)/20)</sup>

And therefore equation 21 transposed is:  $E_{Log} = 20xLog(E_{Linear}) + 120$ Where:  $E_{Linear}$  is the field strength of the emission in V/m

 $E_{Log}$  is the field strength of the emissions in dBµV/m

## Equation 22: EIRP = $E_{Meas}$ + 20log(d<sub>Meas</sub>) -104.7

Where:

EIRP is equivalent isotropically radiated power in dBm

 $E_{\text{Meas}}$  is the field strength of the emission at the measurement distance in  $dB\mu V\!/m$ 

 $d_{\mbox{\scriptsize Meas}}$  is the measurement distance in metres

## Equation 25: PD = EIRP<sub>Linear</sub> / $4\pi d^2$

And therefore equation 25 transposed is: EIRP<sub>Linear</sub> = PD x  $4\pi d^2$  Where:

PD is the power density at distance specified by the limit, in W/m<sup>2</sup> EIRP<sub>Linear</sub> is the equivalent isotropically radiated power in Watts d is the distance at which the power density limit is specified in metres

## Equation 26: PD = E<sup>2</sup><sub>Speclimit</sub> / 377

And therefore equation 26 transposed is:  $E_{Spec \ limit} = \sqrt{(PD \ x \ 377)}$ Where:

PD is the power density at distance specified by the limit, in  $W/m^2$ E<sub>spec limit</sub> is the field strength at the distance specified by the limit in V/m

## Example:

Radiated spurious emissions limit at 3metres of 90pW/cm<sup>2</sup>. 90pW/cm<sup>2</sup> x 100<sup>2</sup> = 0.9  $\mu$ W/m<sup>2</sup> = (EIRP Linear)

Equation 25 transposed:  $0.9 \times 10^{-6} \times 4 \times \pi \times 3^2 = 0.0001017876 \text{ W}$ 

And

Equation 26 transposed:  $E_{\text{Spec limit}} = \sqrt{(0.9 \times 10^{-6} \times 377)} = 0.01842 \text{ V/m}.$ And

Equation 21 transposed:  $E_{Log} = 20Log(0.01842) + 120 = 85.3dB\mu V/m @ 3m$ .

# 8 Photographs

No photographs included due to confidentiality request of client.

## 8.1 Radiated emission diagrams

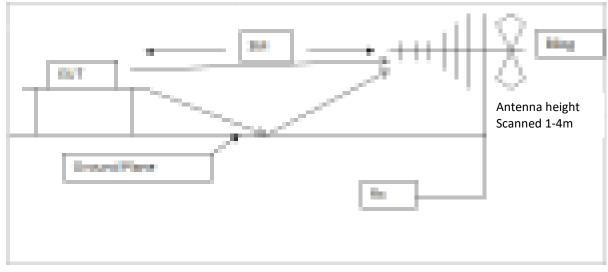
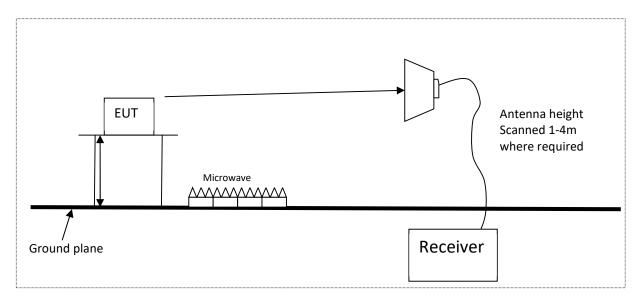




Diagram of the radiated emissions test setup 30 - 1000 MHz



## Diagram of the radiated emissions test setup above 1GHz

# 8.2 AC powerline conducted emission diagram

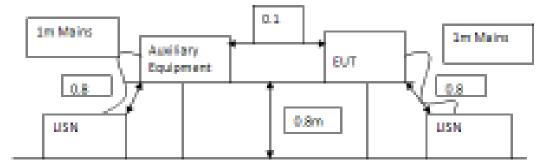



Diagram of the AC conducted emissions test setup

# 9 Test equipment calibration list

The following is a list of the test equipment used by Kiwa Electrical Compliance to test the unit detailed within this report. In line with our procedures, the equipment was within calibration for the period during which testing was carried out.

| RN No. | Model No.  | Description                         | Manufacturer          | Calibration date | Cal period |
|--------|------------|-------------------------------------|-----------------------|------------------|------------|
| E227   | 6632A      | PSU System DC Power Supply          | Hewlett Packard       | #20-Mar-2023     | 12 months  |
| E642   | E4440A     | PSA 3 Hz - 26.5 GHz                 | Agilent Technologies  | 24-Nov-2023      | 24 months  |
| E745   | 2017 4/2dB | Attenuator 4/2dB 30-1000MHz         | RN Electronics        | #24-Feb-2023     | 12 months  |
| E813   | 34401A     | Digital Multimeter 6.5 digit        | Hewlett Packard       | #22-Mar-2023     | 12 months  |
| E914   | VULB 9163  | Antenna BiLog 30MHz to 3GHz         | Schwarzbeck           | #23-Apr-2022     | 24 months  |
| F238   | N9039A     | 9 kHz - 1 GHz RF Filter Section     | Agilent Technologies  | 23-Aug-2023      | 12 months  |
| H071   | N9010B     | EXA Signal Analyser 10 Hz to 44 GHz | Keysight Technologies | 12-Dec-2022      | 24 months  |
| NSA-H  | NSA - H    | NSA - Site H                        | RN Electronics        | 17-May-2023      | 36 months  |
| TMS38  | VMT04/140  | Environmental Oven                  | Heraeus Votsch        | #13-Mar-2023     | 12 months  |
| TMS80  | 206-3722   | Digital Thermometer & K Probe       | RS Components         | #01-Feb-2024     | 12 months  |
| TMS81  | 6502       | Antenna Active Loop                 | EMCO                  | 17-Aug-2023      | 24 months  |
| ZSW1   | V2.5.2     | Measurement Software Suite          | RN Electronics        | Not Applic       | able       |

# Equipment was within calibration dates for tests and has been re-calibrated since/during date of tests.

# **10** Auxiliary and peripheral equipment

# **10.1** Customer supplied equipment

| Item No. | Model No.     | Description | Manufacturer | Serial No. |
|----------|---------------|-------------|--------------|------------|
| 1        | Latitude 7490 | Laptop      | Dell         | 83KL1X2    |
| 2        | -             | Tag         | Salunda Ltd  | 58999905   |

# **10.2** Kiwa Electrical Compliance supplied equipment

No Kiwa Electrical Compliance supplied ancillary equipment was used.

# 11 Condition of the equipment tested

In order for the EUT to produce the results shown within this report the following modifications, if any, were implemented.

## **11.1 Modifications before test**

No modifications were made before test by Kiwa Electrical Compliance.

# **11.2 Modifications during test**

No modifications were made during test by Kiwa Electrical Compliance.

## 12 Description of test sites

- Site A Radio Laboratory and Anechoic Chamber
- Site B Semi-Anechoic Chamber and Control Room FCC Registration No. 654321, ISED Registration No. 5612A-4
- Site C Transient Laboratory
- Site D Screened Room (Conducted Immunity)
- Site E Screened Room (Control Room for Site D)
- Site F Screened Room (Conducted Emissions)
- Site G Screened Room (Control Room for Site H)
- Site H 3m Semi-Anechoic Chamber (indoor OATS) FCC Registration No. 654321, ISED Registration No. 5612A-2, VCCI Registration No. 4065
- Site J Transient Laboratory
- Site K Screened Room (Control Room for Site M)
- Site M 3m Semi-Anechoic Chamber (indoor OATS) FCC Registration No. 654321, ISED Registration No. 5612A-3
- Site N Radio Laboratory
- Site Q Fully-Anechoic Chamber
- Site OATS 3m and 10m Open Area Test Site FCC Registration No. 654321, ISED Registration No. 5612A-1
- Site R Screened Room (Conducted Immunity)
- Site S Safety Laboratory
- Site T Transient Laboratory

CAB identifier as issued by Innovation, Science and Economic Development Canada is UK0002 CAB identifier as issued by FCC is UK2015

# **13** Abbreviations and units

|        |                                                                    | 1      |                                                            |
|--------|--------------------------------------------------------------------|--------|------------------------------------------------------------|
| %      |                                                                    | dBµV   | deciBels relative to 1µV                                   |
| λ      | Wavelength<br>microAmps per metre                                  | dBµV/m | deciBels relative to 1µV/m<br>deciBels relative to Carrier |
| µA/m   | microVolts                                                         | dBc    |                                                            |
| μV     |                                                                    | dBd    | deciBels relative to dipole gain                           |
| μW     | microWatts                                                         | dBi    | deciBels relative to isotropic gain                        |
| AC     | Alternating Current                                                | dBm    | deciBels relative to 1mW                                   |
| ACK    | ACKnowledgement                                                    | dBr    | deciBels relative to a maximum value                       |
| ACP    | Adjacent Channel Power                                             | dBW    | deciBels relative to 1W                                    |
| AFA    | Adaptive Frequency Agility                                         | DC     | Direct Current                                             |
| ALSE   | Absorber Lined Screened<br>Enclosure                               | DFS    | Dynamic Frequency Selection                                |
| AM     | Amplitude Modulation                                               | DMO    | Dynamic Modulation Order                                   |
| Amb    | Ambient                                                            | DSSS   | Direct Sequence Spread Spectrum                            |
| ANSI   | American National Standards<br>Institute                           | DTA    | Digital Transmission Analyser                              |
| ATPC   | Automatic Transmit Power Control                                   | EIRP   | Equivalent Isotropic Radiated Power                        |
| AVG    | Average                                                            | emf    | electromotive force                                        |
| AWGN   | Additive White Gaussian Noise                                      | ERC    | European Radiocommunications Committee                     |
| BER    | Bit Error Rate                                                     | ERP    | Effective Radiated Power                                   |
| BPSK   | Binary Phase Shift Keying                                          | ETSI   | European Telecommunications Standards Institute            |
| BT     | BlueTooth                                                          | EU     | European Union                                             |
| BLE    | BlueTooth Low Energy                                               | EUT    | Equipment Under Test                                       |
| BW     | Bandwidth                                                          | FCC    | Federal Communications Commission                          |
| °C     | Degrees Celsius                                                    | FER    | Frame Error Rate                                           |
| C/I    | Carrier / Interferer                                               | FHSS   | Frequency Hopping Spread Spectrum                          |
| CAC    | Channel Availability Check                                         | FM     | Frequency Modulation                                       |
| CCA    | Clear Channel Assessment                                           | FSK    | Frequency Shift Keying                                     |
|        | European Conference of Postal                                      |        | Fixed Satellite Service                                    |
| CEPT   | and Telecommunications<br>Administrations                          | FSS    |                                                            |
| CFR    | Code of Federal Regulations                                        | g      | Grams                                                      |
| CISPR  | Comité International Spécial des<br>Perturbations Radioélectriques | GHz    | GigaHertz                                                  |
| cm     | centimetre                                                         | GNSS   | Global Navigation Satellite System                         |
| COFDM  | Coherent OFDM                                                      | GPS    | Global Positioning System                                  |
| СОТ    | Channel Occupancy Time                                             | Hz     | Hertz                                                      |
| CS     | Channel Spacing                                                    | IEEE   | Institute of Electrical and Electronics Engineers          |
| CW     | Continuous Wave                                                    | IF     | Intermediate Frequency                                     |
| DAA    | Detect And Avoid                                                   | ISED   | Innovation Science and Economic Development                |
| dB     | deciBels                                                           | ITU    | International Telecommunications Union                     |
| dBµA/m | deciBels relative to 1µA/m                                         | KDB    | Knowledge DataBase                                         |
|        |                                                                    |        |                                                            |

## ©2024 Kiwa Electrical Compliance ALL RIGHTS RESERVED

| kgkilogramkHzkilopascalkPaKilopascalLBTListen Before TalkLISNLine Impedance Stabilisation NetworkLNALow Noise AmplifierLNBLow Noise BlockLOLocal OscillatormmetremAmilliAmpsmaxmaximumMbit/sMegaBits per secondMCSModulation and Coding SchemeMHzMegaHertzmicMicrophoneMIMOMultiple Input, Multiple OutputminmilliwetresmsmillisecondsmWmilliwattsNANot ApplicableNFCNear Field CommunicationsnomNominalnWnanoWattOATSOpen Area Test SiteOBWOccupied Band WidthOCWOccupied Channel Width | Ref<br>RF<br>RFC<br>RFID<br>RLAN<br>RMS<br>RNSS<br>RSL<br>RSSI<br>RSSI<br>RTP<br>RTPC<br>Rx<br>SINAD<br>SRD<br>Tx<br>UKAS<br>UKCA | picoWatts<br>Quadrature Amplitude Modulation<br>Quasi Peak<br>Quadrature Phase Shift Keying<br>Resolution Band Width<br>Radio Equipment Directive<br>Radio and Telecommunication Terminal Equipment<br>Reference<br>Radio Frequency<br>Remote Frequency Control<br>Radio Frequency IDentification<br>Radio Local Area Network<br>Root Mean Square<br>Radio Navigation Satellite Service<br>Received Signal Level<br>Received Signal Strength Indicator<br>Room Temperature and Pressure<br>Remote Transmit Power Control<br>Receiver<br>Seconds<br>Signal to Noise And Distortion<br>Short Range Device<br>Transmitter<br>United Kingdom Accreditation Service<br>United Kingdom Radio Equipment Regulations<br>Ultra High Frequency |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rx                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| OFDM Orthogonal Frequency Division<br>Multiplexing                                                                                                                                                                                                                                                                                                                                                                                                                                       | U-NII                                                                                                                             | Unlicensed National Information Infrastructure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| OOB Out Of Band                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | USB                                                                                                                               | Universal Serial Bus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ppm Parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | UWB                                                                                                                               | Ultra Wide Band                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| PER Packet Error Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V                                                                                                                                 | Volts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PK Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V/m                                                                                                                               | Volts per metre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| PMR Private Mobile Radio                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VBW                                                                                                                               | Video Band Width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| PRBS Pseudo Random Bit Sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                          | VHF                                                                                                                               | Very High Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| PRF Pulse Repetition Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VSAT                                                                                                                              | Very Small Aperture Terminal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| PSD Power Spectral Density                                                                                                                                                                                                                                                                                                                                                                                                                                                               | W                                                                                                                                 | Watts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PSU Power Supply Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

===== END OF TEST REPORT ======