

FCC TEST REPORT

FCC ID: 2AHB5-L3NT

On Behalf of

Zhejiang Hanshow Technology CO., LTD.

Electronic shelf label

Model No.: Stellar-L3N@, Stellar-L3YN@, Stellar-LN@,

Stellar-L3@, Stellar-L3Y@, Stellar-L@

Prepared for Address	 Zhejiang Hanshow Technology CO., LTD. Bld. 33, No. 966 xiuyuan Rd., BeiKeJian Innovation Park, XiuZhou District, Jiaxing, Zhejiang, PRC, PC 314000
Prepared By Address	 Shenzhen Alpha Product Testing Co., Ltd. Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103, Shenzhen, Guangdong, China

Report Number	:	A1910233-C01-R01
Date of Receipt	:	November 6, 2019
Date of Test	:	November 6-11, 2019
Date of Report	:	November 13, 2019
Version Number	:	V0

TABLE OF CONTENTS

De	escript	tion	Page
1.	- -	mary of Standards And Results	-
1.		Description of Standards and Results	
2.		eral Information	
4.	2.1.	Description of Device (EUT)	
	2.1.	Accessories of Device (EUT)	
	2.2.	Tested Supporting System Details	
	2.4.	Block Diagram of connection between EUT and simulators	
	2.5.	Test Mode Description	
	2.6.	Test Conditions	
	2.7.	Test Facility	
	2.8.	Measurement Uncertainty	
	2.9.	Test Equipment List	
3.	Powe	er Line Conducted Emission Test	
	3.1.	Block Diagram of Test Setup	
	3.2.	Test Limits	
	3.3.	Configuration of EUT on Test	
	3.4.	Operating Condition of EUT	
	3.5.	Test Procedure	
	3.6.	Test Results	
4.	Radi	ated Emission Test	
	4.1.	Block Diagram of Test Setup	
	4.2.	Test Limit	
	4.3.	Configuration of EUT on Test	15
	4.4.	Operating Condition of EUT	
	4.5.	Test Procedure	
	4.6.	Test Results	
5.	Band	l Edge Test	22
	5.1.	Block Diagram of Test Setup	22
	5.2.	Test Limit	22
	5.3.	Configuration of EUT on Test	23
	5.4.	Operating Condition of EUT	23
	5.5.	Test Procedure	23
	5.6.	Test Results	25
6.	Occu	pied bandwidth Test	27
	6.1.	Block Diagram of Test Setup	27
	6.2.	Test Limit	27
	6.3.	Test Procedure	27
	6.4.	Test Results	27
7.	Ante	nna Requirement	29
	7.1.	Standard Requirement	
	7.2.	Antenna Connected Construction	

	7.3.	Results	29
8.	Phot	ograph	30
	8.1.	Photos of Radiated Emission Test	30
9.	Phot	os of The EUT	31

TEST REPORT DECLARATION

Applicant	: Zh	Zhejiang Hanshow Technology CO., LTD.		
Address	•	Bld. 33, No. 966 xiuyuan Rd., BeiKeJian Innovation Park, XiuZhou District, Jiaxing, Zhejiang, PRC, PC 314000		
Manufacturer	: Zh	ejiang Hanshow Technology CO., LTD.		
Address	•	Bld. 33, No. 966 xiuyuan Rd., BeiKeJian Innovation Park, XiuZhou District, Jiaxing, Zhejiang, PRC, PC 314000		
EUT Description	: El	ectronic shelf label		
	(A) Model No. : Stellar-L3N@, Stellar-L3YN@, Stellar-LN@, Stellar-L3@, Stellar-L3Y@, Stellar-L@		
	(B) Trademark : Hanshow		

Measurement Standard Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.249 ANSI C63.10:2013

The device described above is tested by Shenzhen Alpha Product Testing Co., Ltd. to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The test results are contained in this test report and Shenzhen Alpha Product Testing Co., Ltd. is assumed full responsibility for the accuracy and completeness of test. Also, this report shows that the EUT is technically compliant with the FCC Part15 requirements.

This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Shenzhen Alpha Product Testing Co., Ltd.

Tested by (name + signature):	Lucas Pang Project Engineer	Lucas Pong
Approved by (name + signature):	Simple Guan Project Manager	ET G
Date of issue:	November 13, 2019	

,

Page 5 of 36

Revision History

Revision	Issue Date	Revisions	Revised By
V0	November 13, 2019	Initial released Issue	Simple Guan

1. SUMMARY OF STANDARDS AND RESULTS

1.1.Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below:

EMISSION						
Description of Test Item	Results					
Power Line Conducted Emission Test	FCC Part 15	Section 15.207	N/A			
Spurious Emission Test	FCC Part 15	Section 15.249&15.209	Р			
Occupied bandwidth	FCC Part 15	Section 15. 249	Р			
Band edge Requirement	FCC Part 15	Section 15.249	Р			
Antenna Requirement	FCC Part 15	Section 15.203	Р			
Note: 1. P is an abbreviation for Pass.						

2. F is an abbreviation for Fail.

3. N/A is an abbreviation for Not Applicable.

2. GENERAL INFORMATION

2.1.Description of Device (EUT)				
EUT Name	:	Electronic shelf label		
Trademark	:	Hanshow		
Model No.	:	Stellar-L3N@, Stellar-L3YN@, Stellar-LN@, Stellar-L3@, Stellar-L3Y@, Stellar-L@		
DIFF.	:	All the above models are the same in the same PCB layout, internal structure and circuit. The difference is that the LED screen color and model name used in the product are for commercial use. If there is no "N" in the model, the model has no NFC function. This report executes the model Stellar-L3N@.		
Power supply	:	DC 3V from battery		
Operation frequency Channel No. Channel Separation Modulation type Antenna Type	:	157		
Software version Hardware version	:	V1.0 HS_EL5102_9M_61_01		
Sample Type	:	Prototype production		

2.2. Accessories of Device (EUT)

Accessories1	:	/
Manufacturer	:	/
Model	:	/
Power supply	:	/

2.3. Tested Supporting System Details

No.	Description	Manufacturer	Model	Serial Number	Note
1					

2.4.Block Diagram of connection between EUT and simulators

2.5.Test Mode Description

Test mode:

	Mode	Channel	Frequency (MHz)
	GFSK	CH1	2402
	GFSK	CH80	2441
	GFSK	CH157	2480
Note:	channel, wireless mode2. The EUT has been test maximum power.3. New battery is used due4. For the relevant Cond	ontrol EUT work in Continuous T ted as an independent unit. And C uring all tests. ucted Measurement, the temporar . Antenna Connector Impedance:	Continual Transmitting in ry antenna connector is used

Channel list:

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
1	2402	•••	•••	154	2478.5
2	2402.5	79	2440.5	155	2479
3	2403	80	2441	156	2479.5
4	2403.5	81	2441.5	157	2480

2.6.Test Conditions

Temperature range	21-25°C
Humidity range	40-75%
Pressure range	86-106kPa

2.7.Test Facility

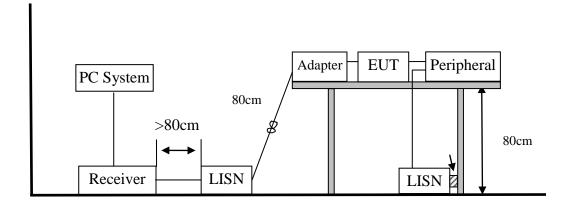
Shenzhen Alpha Product Testing Co., Ltd. Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103, Shenzhen, Guangdong, China

June 21, 2018 File on Federal Communication Commission Registration Number: 293961

July 15, 2019 Certificated by IC Registration Number: CN0085

2.8.Measurement Uncertainty

(95% confidence levels, k=2)


Item	Uncertainty
Uncertainty for Power point Conducted Emissions Test	2.74dB
Uncertainty for Radiation Emission test in 3m chamber	2.13 dB(Polarize: V)
(below 30MHz)	2.57dB(Polarize: H)
Uncertainty for Radiation Emission test in 3m chamber	3.77 dB (Distance: 3m Polarize: V)
(30MHz to 1GHz)	3.80 dB (Distance: 3m Polarize: H)
Uncertainty for Radiation Emission test in 3m chamber	4.13 dB (Distance: 3m Polarize: V)
(1GHz to 25GHz)	4.16 dB (Distance: 3m Polarize: H)
Uncertainty for radio frequency	5.8×10-8
Uncertainty for conducted RF Power	0.37dB
Uncertainty for temperature	0.2°C
Uncertainty for humidity	1%
Uncertainty for DC and low frequency voltages	0.06%

2.9.Test Equipment List

Equipmont	Manufacture	Model No.	Serial No.	Last cal.	Cal Interval
Equipment	Manufacture	Iviouel Ino.	Seriai No.	Last cal.	Cai intervai
9*6*6 anechoic chamber	CHENYU	9*6*6	N/A	2019.09.06	3Year
Spectrum analyzer	ROHDE&SCH WARZ	FSV40-N	102137	2019.09.05	1Year
Spectrum analyzer	Agilent	N9020A	MY499100060	2019.09.05	1Year
Receiver	ROHDE&SCH WARZ	ESR	1316.3003K03-102 082-Wa	2019.09.06	1Year
Receiver	R&S	ESCI	101165	2019.09.05	1Year
Bilog Antenna	Schwarzbeck	VULB 9168	VULB9168-438	2018.04.13	2Year
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	BBHA 9120 D(1201)	2018.04.13	2Year
Active Loop Antenna	SCHWARZBE CK	FMZB 1519B	00059	2019.09.07	2Year
Cable	Resenberger	N/A	No.1	2019.09.05	1Year
Cable	Resenberger	N/A	No.2	2019.09.05	1Year
Cable	Resenberger	N/A	No.3	2019.09.05	1Year
Pre-amplifier	HP	HP8347A	2834A00455	2019.09.05	1Year
Pre-amplifier	Agilent	8449B	3008A02664	2019.09.05	1Year
L.I.S.N.#1	Schwarzbeck	NSLK8126	8126466	2019.09.05	1Year
L.I.S.N.#2	ROHDE&SCH WARZ	ENV216	101043	2019.09.05	1 Year
20db Attenuator	ICPROBING	IATS1	82347	2019.08.26	1 Year
Horn Antenna	SCHWARZBE CK	BBHA9170	00946	2019.09.07	2 Year
Preamplifier	SKET	LNPA_1840-50	SK2018101801	2019.09.06	1 Year
Power Meter	Agilent	E9300A	MY41496625	2019.09.06	1 Year
Temp. &Humid. Chamber	Weihuang	WHTH-1000-40 -880	100631	2019.09.06	1 Year
Switching Mode Power Supply	JUNKE	JK12010S	20140927-6	2019.09.05	1 Year

3. POWER LINE CONDUCTED EMISSION TEST

3.1.Block Diagram of Test Setup

3.2.Test Limits

	Maximum RF	Line Voltage
Frequency	Quasi-Peak Level	Average Level
	dB(µV)	dB(µV)
150kHz ~ 500kHz	66 ~ 56*	56 ~ 46*
500kHz ~ 5MHz	56	46
5MHz ~ 30MHz	60	50

- Notes: 1. Emission level=Read level + LISN factor-Preamp factor + Cable loss
 - 2. * Decreasing linearly with logarithm of frequency.
 - 3. The lower limit shall apply at the transition frequencies.

3.3.Configuration of EUT on Test

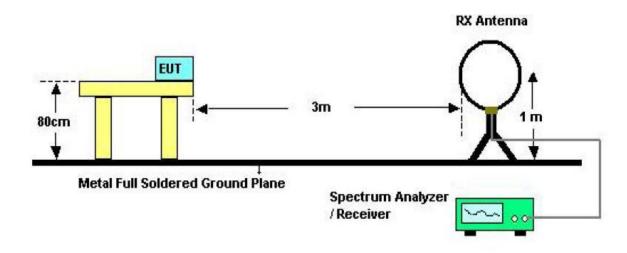
The following equipment are installed on Power Line Conducted Emission Test to meet the commission requirement and operating regulations in a manner which tends to maximize its emission characteristics in a normal application.

3.4. Operating Condition of EUT

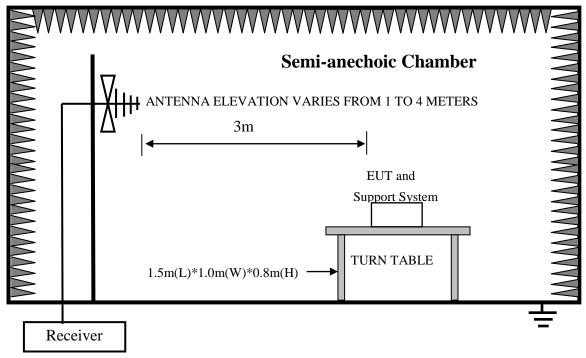
- (1) Setup the EUT as shown as Section 3.1.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode taking the test.

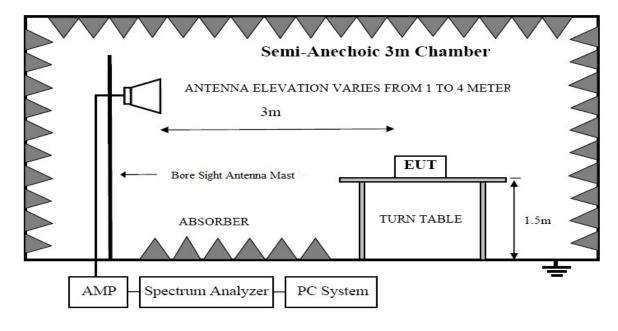
3.5.Test Procedure

- (1) The EUT was placed on a non-metallic table, 80cm above the ground plane. The EUT Power connected to the power mains through a line impedance stabilization network (L.I.S.N. 1#). This provided a 50-ohm coupling impedance for the EUT (Please refer to the block diagram of the test setup and photographs). The other peripheral devices power cord connected to the power mains through a line impedance stabilization network (L.I.S.N.#2). Both sides of power line were checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.10:2013 on conducted Emission test.
- (2) The frequency range from 150kHz to 30MHz is checked, the bandwidth of test receiver is set at 9kHz.
- (3) The frequency range from 30MHz to 1000MHz was pre-scanned with a Peak detector and all final readings of measurement from Test Receiver are Quasi-Peak and Average values.
- (4) The test results are reported on Section 3.6.


EUT	:	Electronic shelf label	Test Date : N/A
M/N	:	Stellar-L3N@	Temperature : N/A
Test Engineer	:	N/A	Humidity : N/A
Test Mode	:	N/A	
Test Results	:	N/A	
Note: 1. Not	app	blicable for equipment operated with batter	y power supply.

3.6.Test Results


4. RADIATED EMISSION TEST


4.1.Block Diagram of Test Setup

In Semi Anechoic Chamber (3m) Test Setup Diagram for 9KHz~30MHz

In Semi Anechoic Chamber (3m) Test Setup Diagram for 30MHz~1000MHz

In Semi Anechoic Chamber (3m) Test Setup Diagram for Above 1GHz

4.2.Test Limit

Frequ	iency	Distance	Field Streng	gths Limits
M	Hz	(Meters)	uV/m	dB uV/m
0.009 ~	~ 0.490	300	2400/F(kHz)	
0.490	1.705	30	24000/F(kHz)	
1.705	30	30	30	29.5
30	88	3	100(3nW)	40
88	216	3	150(6.8nW)	43.5
216	960	3	200(12nW)	46
Abov	pove 960 3		500(75nW)	54
Carrier fr	requency	3	50000(avg)	113.97(peak) 93.97(avg)

Notes: 1. Emission level = Read level + Antenna Factor - Preamp Factor + Cable Loss

2. The smaller limit shall apply at the cross point between two frequency bands.

3. Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.

4. For frequencies above 1000 MHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

4.3.Configuration of EUT on Test

The following equipment are installed on Radiated Emission Test to meet the commission requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

4.4.Operating Condition of EUT

- (1) Setup the EUT as shown as Section 4.1.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode taking the test.

4.5.Test Procedure

- (1) The EUT was placed on a non-metallic table, 80 cm above the ground plane inside a semi-anechoic chamber for below 1GHz and 150 cm above the ground plane inside a semi-anechoic chamber for above 1GHz. An antenna was located 3m from the EUT on an adjustable mast. A pre-scan was first performed in order to find prominent radiated emissions. For final emissions measurements at each frequency of interest, the EUT were rotated and the antenna height was varied between 1m and 4m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.10: 2013 on Radiated Emission test.
- (2) For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

(3) Test antenna was located 4m from the EUT on an adjustable mast. Below pre-scan procedure was first performed in order to find prominent radiated emissions.(a) Change work frequency or channel of device if practicable.

(b) Change modulation type of device if practicable.

(c) Rotated EUT though three orthogonal axes to determine the attitude of EUT arrangement produces highest emissions

- (4) For harmonic emissions test a appropriate high pass filter was inserted in the input port of AMP
- (5) The frequency range from 9KHz to 150KHz is checked, the bandwidth of test receiver

is set at 200Hz.

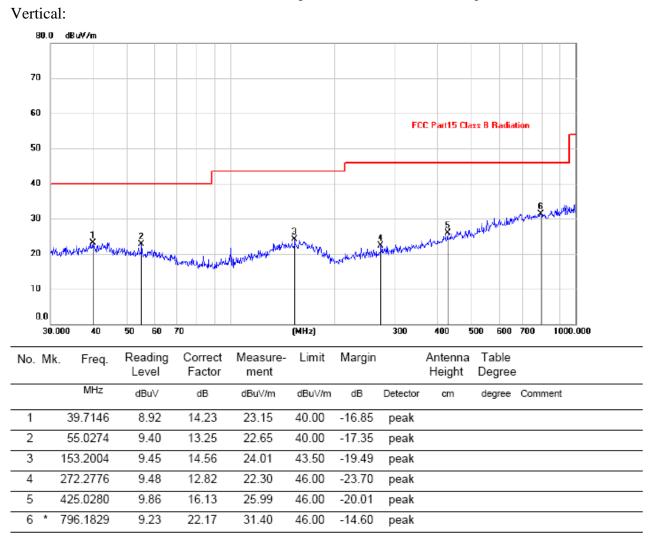
The frequency range from 150KHz to 30MHz is checked, the bandwidth of test receiver is set at 9KHz.

The frequency range from 30MHz to 1000MHz is checked, the bandwidth of test receiver is set at 120kHz.

The frequency range from above 1GHz is checked, the bandwidth of Signal Analyzer is set at 1MHz.

- (6) The frequency range from 30MHz to 1000MHz was pre-scanned with a peak detector and all final readings of measurement from Test Receiver are Quasi-Peak values, the frequency range from 1GHz to 6GHz was pre-scanned with a peak detector and all final readings of measurement from Spectrum Analyzer are peak and average values checked, all measurement distance is 3m in 3m semi anechoic chamber.
- (7) Test for all x, y, z axes is performed and only the worst case of X xes was recorded in the test report.
- (8) The test results are reported on Section 4.6.

4.6.Test Results


Frequency Range	: 9KHz~30MHz						
EUT	: Electronic shelf label	Test Date : 2019.11.06					
M/N	: Stellar-L3N@	Temperature : 24℃					
Test Engineer	: Lucas Pang	Humidity : 56%					
Test Mode	: TX 2402MHz						
Test Results	: PASS						
Note: 1. Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.							

Frequency Range	:	30MHz~1000MHz`			
EUT	:	Electronic shelf label	Test Date	:	2019.11.06
M/N	:	Stellar-L3N@	Temperature	:	24°C
Test Engineer	:	Lucas Pang	Humidity	:	56%
Test Mode	:	TX 2402MHz			
Test Results	:	PASS			

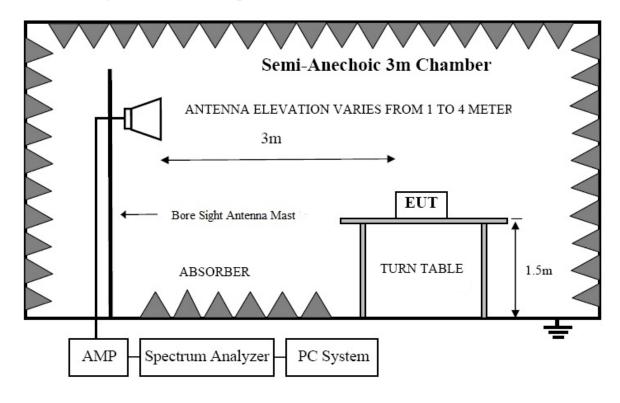
Note: 1. The test results are listed in next pages.

2. This mode is worst case mode, and this report only reflected the worst mode.

3. If the limits for the measurement with the quasi-peak detector are met when using a receiver with a peak detector, the test unit shall be deemed to meet both limits and the measurement with the quasi-peak detector need not be carried out.

80	0.0 di															
70																
60										FC	C Part15 Cl	ass B F	Radia	tion		
50					-											ſ
40	-				_											
30		_									nthetensetart	5	N MA	hur-h	hada	
		. Å			Ş 👘		Ż.	ANAMAN		*	with have being	wat.				
20	perned	ne And	hinnor	-workshiph	And the second	hander	- half hot and	and the state of t	We wanted a work of the second s	Atur Deriver						
10		n- Mad	lyMNPur	alline d	1	herbert	- Intelligence and the	and the second second	We the Andrew Martines	Alw notions						
10 0.0		40		50	60	hinikuliyyyyy 70	-shallpathort	(MH2)	han and an	300	400			700		000.000
10 0.0	0		0		60 ding			(MHz)	Margin			500 a Ta		700		
10 0.0	0 30.000	40	o :q.	50 Rea	60 ding vel	70 Corre		(MHz)			400 Antenna	500 a Tai Deç	600 ble gree	700	1	000.000
10 0.0	0 30.000 Mk.	40 Fre	D eq.	50 Rea Lev dB	60 ding vel	70 Corre Facto	ct Measury or ment dBuV/m	(MHz) e- Limit	Margin	300	400 Antenna Height	500 a Tai Deç	600 ble gree	700	1	000.000
10 0.(3 0. (0 30.000 Mk.	40 Fre MH:	0 :q. z 47	50 Rea Lev dB 9.	60 ding vel uV	70 Corre Facto dB	utututor ect Measure or ment dBuV/m 2 23.36	(MH₂) e- Limit dBuV/m	Margin	300 Detector	400 Antenna Height	500 a Tai Deç	600 ble gree	700	1	000.000
10 0.1 0.1	0 30.000 Mk. 4 5	40 Fre MH: 0.134	0 :q. 2 47 74	50 Rea Lev dB 9.	60 ding vel uV	70 Corre Facto dB 14.22	utuuhor Act Measure or ment dBuV/m 2 23.36 1 22.01	(MH₂) e- Limit dBuV/m 40.00	Margin dB -16.64	300 Detector peak	400 Antenna Height	500 a Tai Deç	600 ble gree	700	1	000.000
10 0.1 3 0.1	0 30.000 Mk. 4 5 13	40 Fre MH: 0.134 8.407	eq. 12 47 74	50 Rea Lev dB 9.	60 ding vel uV .14 .90	70 Corre Facto dB 14.2: 13.1	utuu Montaan or Measure or ment dBuV/m 2 23.36 1 22.01 4 22.85	(MH₂) e- Limit dBu∨/m 40.00 40.00	Margin dB -16.64 -17.99	300 Detector peak peak	400 Antenna Height	500 a Tai Deç	600 ble gree	700	1	000.000
10 0.1 3 0. 1	0 30.000 Mk. 4 5 13 28	40 Fre MH: 0.134 8.407 1.757	eq. 2 47 74 74 04	50 Rea Lev dB 9.	60 ding vel uv 14 90 51 88	70 Corre Facto dB 14.22 13.1 13.3	utu Measur or Measur dBuV/m 2 23.36 1 22.01 4 22.85 9 22.97	(MH₂) e- Limit dBuV/m 40.00 40.00 43.50	Margin dB -16.64 -17.99 -20.65	300 Detector peak peak peak	400 Antenna Height	500 a Tai Deç	600 ble gree	700	1	000.000

Horizontal:


Freque	ency Rang	e : 10	GHz~25GHz					
EUT		: Ele	ctronic shelf	label		Test Date	: 2019.1	1.06
M/N		: Ste	llar-L3N@			Temperature	: 24°C	
Test E	ngineer	: Luc	ucas Pang Humidity			Humidity	: 56%	
Test N	Iode	: TX	2402MHz					
Test R	esults	: PA	SS					
No.	Freq MHz	Polarity	Reading (dBuV/m)	Correct Factor	Result (dBuV/m)	Limit (dBuV/m)	Margin	Remark
1	2402	Н	90.12	-3.38	86.74	113.97	-27.23	Peak
2	2402	Н	76.61	-3.38	73.23	93.97	-20.74	Avg
3	4804	Н	42.64	3.23	45.87	74	-28.13	Peak
4	4804	Н		3.23		54		Avg
5	7206	Н	40.83	10.57	51.40	74	-22.60	Peak
6	7206	Н		10.57		54		Avg
1	2402	V	90.26	-3.38	86.88	113.97	-27.09	Peak
2	2402	V	70.81	-3.38	67.43	93.97	-26.54	Avg
3	4804	V	41.65	3.23	44.88	74	-29.12	Peak
4	4804	V		3.23		54		Avg
5	7206	V	39.07	10.57	49.64	74	-24.36	Peak
6	7206	V		10.57		54		Avg
Note:	20dB ma 2. Correct Result=F Margin= 3. Spectr Detector 4. Spectr Detector 5. If the receiver	argin. ct Factor=(Reading + (Result-Ling rum Set for PK. rum Set for rum Set for Avg. limits for t with a pea	Cable Loss+ A Correct Facto mit. PK measure AV measure he measurem	Antenna Fa or. : RBW=1M e: RBW=1 ent with th e test unit	actor-Ampli MHz, VBW MHz, VBW ne average d shall be dee	=1MHz, Sweep 7=3MHz, Swee letector are met med to meet bo	o time=Aut p time=Au when usin	to, to, ig a

Freque	ency Rang	e : 10	GHz~25GHz							
EUT : Electronic shelf label Test Date : 2019.11.07										
M/N	M/N : Stellar-L3N@					Temperature : 24°C				
Test E	Ingineer	: Luc	cas Pang H			Humidity : 56%				
Test Mode : TX 2441MHz										
Test R	lesults	: PASS								
No.	Freq MHz	Polarity	Reading (dBuV/m)	Correct Factor	Result (dBuV/m)	Limit (dBuV/m)	Margin	Remark		
1	2441	Н	89.96	-3.38	86.58	113.97	-27.39	Peak		
2	2441	Н	74.30	-3.38	70.92	93.97	-23.05	Avg		
3	4882	Н	43.02	3.23	46.25	74	-27.75	Peak		
4	4882	Н		3.23		54		Avg		
5	7323	Н	38.97	10.57	49.54	74	-24.46	Peak		
6	7323	Н		10.57		54		Avg		
1	2441	V	90.99	-3.38	87.61	113.97	-26.36	Peak		
2	2441	V	70.49	-3.38	67.11	93.97	-26.86	Avg		
3	4882	V	42.56	3.23	45.79	74	-28.21	Peak		
4	4882	V		3.23		54		Avg		
5	7323	V	41.01	10.57	51.58	74	-22.42	Peak		
6	7323	V		10.57		54		Avg		
Note:	 Means other frequency and mode comply with standard requirements and at least have 20dB margin. Correct Factor=Cable Loss+ Antenna Factor-Amplifier Gain. Result=Reading + Correct Factor. Margin= Result-Limit. Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK. Spectrum Set for AV measure: RBW=1MHz, VBW=3MHz, Sweep time=Auto, Detector: Avg. If the limits for the measurement with the average detector are met when using a receiver with a peak detector, the test unit shall be deemed to meet both limits and the measurement with the average detector need not be carried out. 									

Freque	ency Rang	e : 10	GHz~25GHz							
EUT : Electronic shelf label Test Date : 2019.11.07										
M/N	M/N : Stellar-L3N@					Temperature : 24°C				
Test E	Ingineer	: Luc	cas Pang	s Pang Humidity			: 56%			
Test N	Iode	: TX	2480MHz							
Test R	lesults	: PASS								
No.	Freq MHz	Polarity	Reading (dBuV/m)	Correct Factor	Result (dBuV/m)	Limit (dBuV/m)	Margin	Remark		
1	2480	Н	91.69	-3.38	88.31	113.97	-25.66	Peak		
2	2480	Н	75.89	-3.38	72.51	93.97	-21.46	Avg		
3	4960	Н	45.99	3.23	49.22	74	-24.78	Peak		
4	4960	Н		3.23		54		Avg		
5	7440	Н	41.20	10.57	51.77	74	-22.23	Peak		
6	7440	Н		10.57		54		Avg		
1	2480	V	88.77	-3.38	85.39	113.97	-28.58	Peak		
2	2480	V	77.58	-3.38	74.20	93.97	-19.77	Avg		
3	4960	V	45.20	3.23	48.43	74	-25.57	Peak		
4	4960	V		3.23		54		Avg		
5	7440	V	40.13	10.57	50.70	74	-23.30	Peak		
6	7440	V		10.57		54		Avg		
Note:	 Means other frequency and mode comply with standard requirements and at least have 20dB margin. Correct Factor=Cable Loss+ Antenna Factor-Amplifier Gain. Result=Reading + Correct Factor. Margin= Result-Limit. Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK. Spectrum Set for AV measure: RBW=1MHz, VBW=3MHz, Sweep time=Auto, Detector: Avg. If the limits for the measurement with the average detector are met when using a receiver with a peak detector, the test unit shall be deemed to meet both limits and the measurement with the average detector need not be carried out. 									

5. BAND EDGE TEST

5.1.Block Diagram of Test Setup

5.2.Test Limit

Please refer section 15.249 and section 15.205.

249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in section 15.209, whichever is the lesser attenuation.

249(e) As show in section 15.35(b), for frequencies above 1000MHz, the above field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For point-to-point operation under paragraph (b) of this section, the peak filed strength shall not exceed 2500 millivolts/meter at 3meters along the antenna azimuth.

5.3.Configuration of EUT on Test

The following equipment are installed on Radiated Emission Test to meet the commission requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

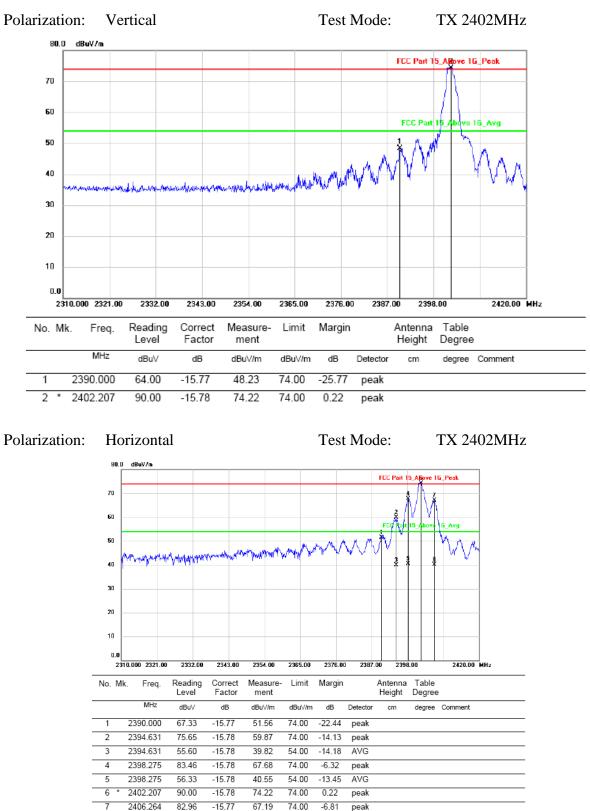
5.4. Operating Condition of EUT

- (1) Setup the EUT as shown as Section 5.1.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode taking the test.

5.5.Test Procedure

- (1) The EUT was placed on a non-metallic table, 150 cm above the ground plane inside a semi-anechoic chamber. An antenna was located 3m from the EUT on an adjustable mast. A pre-scan was first performed in order to find prominent radiated emissions. For final emissions measurements at each frequency of interest, the EUT were rotated and the antenna height was varied between 1m and 4m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.10: 2013 on Radiated Emission test.
- (2) For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

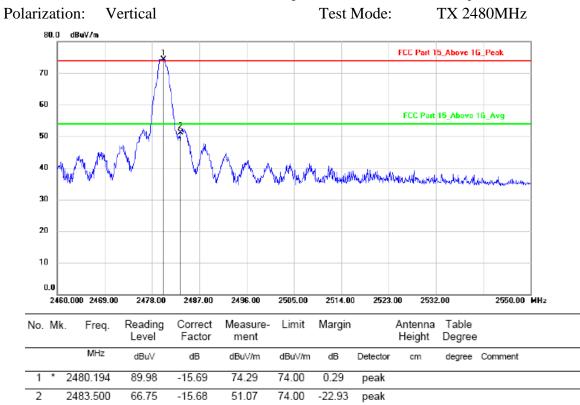

(3) Test antenna was located 4m from the EUT on an adjustable mast. Below pre-scan procedure was first performed in order to find prominent radiated emissions.(a) Change work frequency or channel of device if practicable.

(b) Change modulation type of device if practicable.

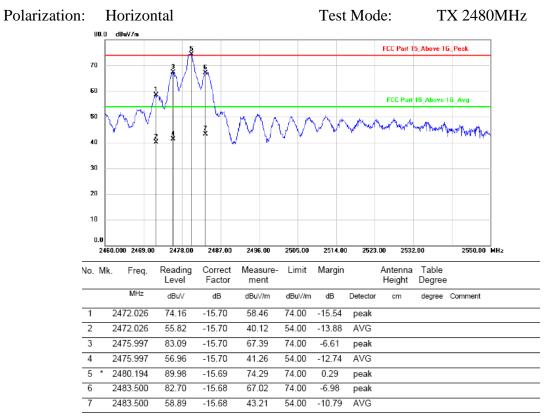
(c) Rotated EUT though three orthogonal axes to determine the attitude of EUT arrangement produces highest emissions

- (5) The frequency range from above 1GHz is checked, the bandwidth of Signal Analyzer is set at 1MHz.
- (6) The frequency range from 1GHz to 6GHz was pre-scanned with a peak detector and all final readings of measurement from Spectrum Analyzer are peak and average values checked, all measurement distance is 3m in 3m semi anechoic chamber.
- (7) Test for all x, y, z axes is performed and only the worst case of X xes was recorded in the test report.
- (8) The test results are reported on Section 5.6.

5.6.Test Results


2406.264

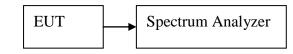
55.93


-15.77

40.16

54.00 -13.84 AVG

Page 26 of 36



Note:1. *:Maximum data; x:Over limit; !:over margin.

2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

6. OCCUPIED BANDWIDTH TEST

6.1.Block Diagram of Test Setup

6.2.Test Limit

Please refer section 15.249 and section 15.205.

6.3.Test Procedure

- (1) The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst-case (i.e. the widest) bandwidth.
- (2) The test receiver RBW set 30KHz, VBW set 100KHz, Sweep time set auto.

6.4.Test Results

Mode		Frequency	20dB Bandwidth	99% Bandwidth	Limit	
		MHz (MHz) (KHz)		(KHz)	(kHz)	
GFSK	ANT1	2402	0.5954	569.19	/	
		2441	0.5800	557.83	/	
		2480	0.5933	566.60	/	
Note: 1. The test results are listed in next pages.						

Frequency: 2402MHz

Frequency: 2441MHz

Frequency: 2480MHz

Agilent Spectrum Analyzer - Occupied BV P RF 50 P AC Ref Value 20.00 dBm	Center Trig:	SENSE:INT ALIGNAUTO Center Freq: 2.480000000 GHz Trig: Free Run Avg Hold: 10/10 #Atten: 30 dB		11:01:22 AMNov 08, 2019 Radio Std: None Radio Device: BTS	Trace	/Detector
Ref Offset 1 dB 10 dB/div Ref 20.00 dBm						
Log 10.0 0.00 -10.0		$\Lambda \Lambda$			с	lear Write
-20.0	J.		~~~~			Average
50.0 40.0 -70.0				Marrie and a second		Max Hold
Center 2.48 GHz #Res BW 30 kHz	#	VBW 100 kHz	Span 3 MHz Sweep 3.2 ms		Min Hol	
Occupied Bandwidth 50	56.60 kHz	Total Power	6.16	dBm		Detector
Transmit Freq Error x dB Bandwidth	4.108 kHz 593.3 kHz	OBW Power x dB	99.0 -20.0	00 % 0 dB	Auto	Peak▶ <u>Man</u>
15G			STATUS			

7. ANTENNA REQUIREMENT

7.1.Standard Requirement

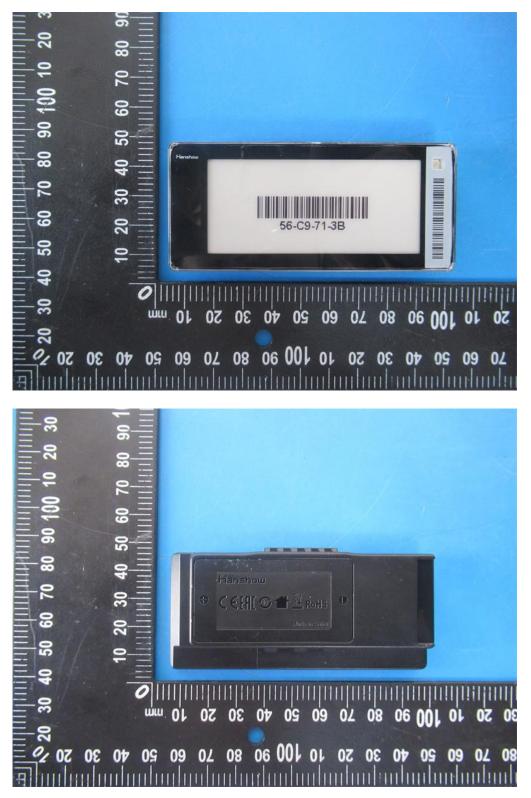
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

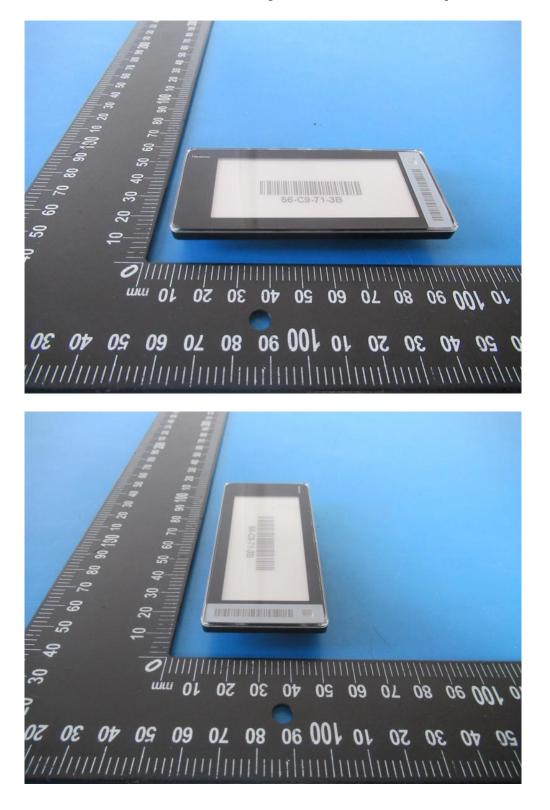
7.2. Antenna Connected Construction

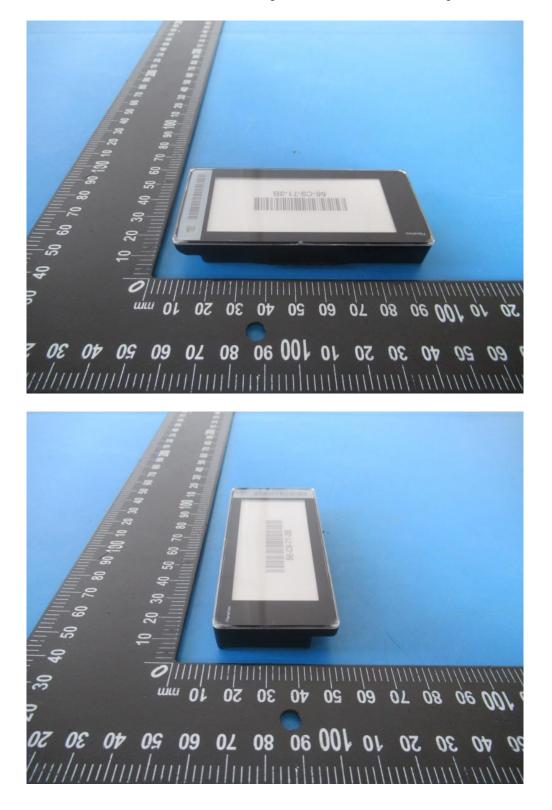
The directional gains of antenna used for transmitting is 0dBi, and the antenna is fixed antenna no consideration of replacement. Please see EUT photo for details.

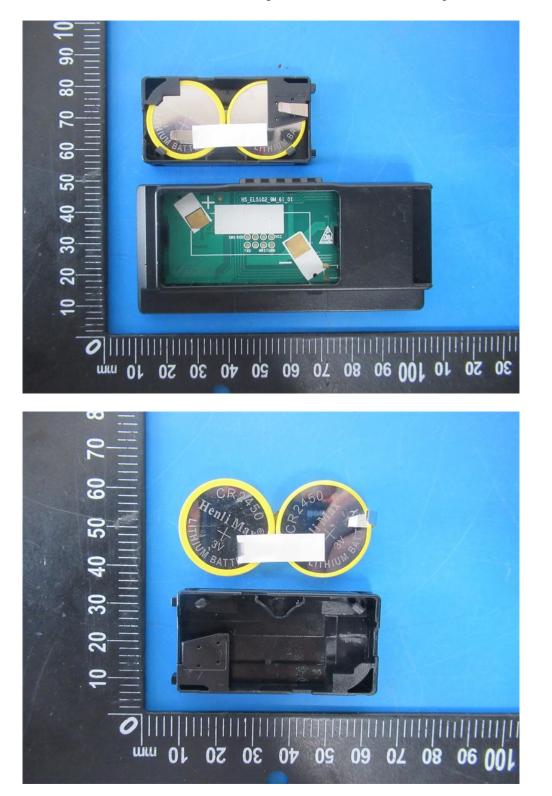
7.3.Results

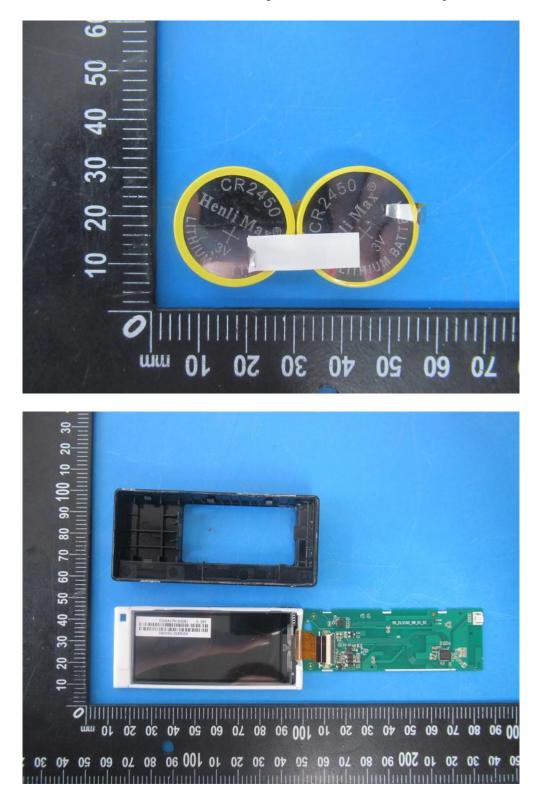
The EUT antenna is PCB Antenna. It complies with the standard requirement.

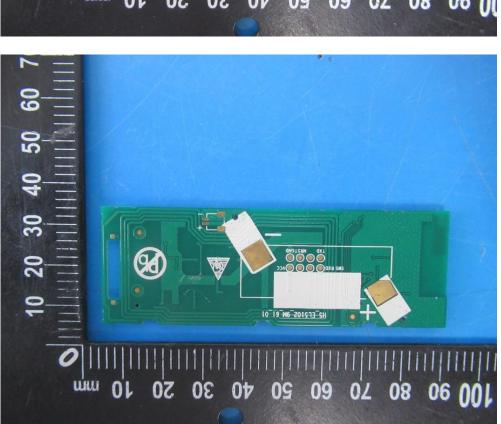

8. PHOTOGRAPH

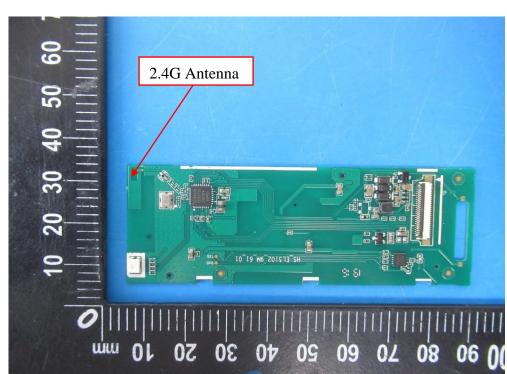

8.1.Photos of Radiated Emission Test






9. PHOTOS OF THE EUT





-----THE END OF REPORT------

