

FCC Test Report

Report No.: AGC03285241203FR02

FCC ID	:	2AMWOFSC-BW121
APPLICATION PURPOSE	:	Original Equipment
PRODUCT DESIGNATION	:	Bluetooth and WIFI combo module
BRAND NAME	:	Feasycom
MODEL NAME	:	FSC-BW121
APPLICANT	:	Shenzhen Feasycom Co., Ltd
DATE OF ISSUE	:	Apr. 21, 2025
STANDARD(S)	:	FCC Part 15 Subpart C §15.247
REPORT VERSION	:	V1.0

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes	
V1.0	/	Apr. 21, 2025	Valid	Initial Release	

Table of Contents

1. General Information	5
2. Product Information	6
2.1 Product Technical Description	6
2.2 Test Frequency List	6
2.3 Related Submittal(S) / Grant (S)	7
2.4 Test Methodology	7
2.5 Special Accessories	7
2.6 Equipment Modifications	7
2.7 Antenna Requirement	7
3. Test Environment	
3.1 Address of the Test Laboratory	
3.2 Test Facility	
3.3 Environmental Conditions	9
3.4 Measurement Uncertainty	9
3.5 List of Equipment Use	
4.System Test Configuration	
4.1 EUT Configuration	
4.2 EUT Exercise	
4.3 Configuration of Tested System	
4.4 Equipment Used In Tested System	
4.5 Summary of Test Results	
5. Description of Test Modes	14
6. Duty Cycle Measurement	
7. RF Output Power Measurement	
7.1 Provisions Applicable	
7.2 Measurement Procedure	
7.3 Measurement Setup (Block Diagram of Configuration)	
7.4 Measurement Result	17
8. 6dB Bandwidth Measurement	
8.1 Provisions Applicable	
8.2 Measurement Procedure	
8.3 Measurement Setup (Block Diagram of Configuration)	
8.4 Measurement Results	21
9. Power Spectral Density Measurement	
9.1 Provisions Applicable	
9.2 Measurement Procedure	
9.3 Measurement Setup (Block Diagram of Configuration)	
9.4 Measurement Results	
10. Conducted Band Edge and Out-of-Band Emissions	
10.1 Provisions Applicable	

10.2 Measurement Procedure	
10.3 Measurement Setup (Block Diagram of Configuration)	
10.4 Measurement Results	
11. Radiated Spurious Emission	
11.1 Measurement Limit	
11.2 Measurement Procedure	
11.3 Measurement Setup (Block Diagram of Configuration)	
11.4 Measurement Result	
12. AC Power Line Conducted Emission Test	
12.1 Measurement Limit	
12.2 Measurement Setup (Block Diagram of Configuration)	
12.3 Preliminary Procedure of Line Conducted Emission Test	
12.4 Final Procedure of Line Conducted Emission Test	
12.5 Measurement Results	
Appendix I: Photographs of Test Setup	
Appendix II: Photographs of Test EUT	50

1. General Information

Applicant	Shenzhen Feasycom Co., Ltd
Address	Rm 508, Building A, Fenghuang Zhigu, No.50, Tiezai Road, Xixiang, Baoan District, Shenzhen, 518102, China
Manufacturer	Shenzhen Feasycom Co., Ltd
Address	Rm 508, Building A, Fenghuang Zhigu, No.50, Tiezai Road, Xixiang, Baoan District, Shenzhen, 518102, China
Factory	Shenzhen Feasycom Co., Ltd
Address	Rm 508, Building A, Fenghuang Zhigu, No.50, Tiezai Road, Xixiang, Baoan District, Shenzhen, 518102, China
Product Designation	Bluetooth and WIFI combo module
Brand Name	Feasycom
Test Model	FSC-BW121
Series Model(s)	N/A
Difference Description	N/A
Date of receipt of test item	Jan. 02, 2025
Date of Test	Jan. 02, 2025~Feb. 07, 2025
Deviation from Standard	No any deviation from the test method
Condition of Test Sample	Normal
Test Result	Pass
Test Report Form No	AGCER-FCC-BLE-V1

Note: The test results of this report relate only to the tested sample identified in this report.

Bibo zhang Prepared By Bibo Zhang Apr. 21, 2025 (Project Engineer) Calvin Lin **Reviewed By** Calvin Liu Apr. 21, 2025 (Reviewer) Approved By 106 Angela Li Apr. 21, 2025 (Authorized Officer)

2. Product Information

2.1 Product Technical Description

Technology Type	Bluetooth Low Energy
Frequency Band	2400MHz-2483.5MHz
Operation Frequency Range	2402MHz-2480MHz
Bluetooth Version	V5.3
Modulation Type	BLE GFSK 1Mbps GFSK 2Mbps
Number of channels	40
Carrier Frequency of Each Channel	40 Channels (37 Data channels + 3 Advertising channels)
Channel Separation	2 MHz
Maximum Transmitter Power	6.422dBm
Hardware Version	V1.1
Software Version	V1.0
Antenna Designation	FPC Antenna
Antenna Gain	2.01dBi
Power Supply	DC 3.3V

2.2 Test Frequency List

Frequency Band	Channel Number	Test Frequency		
	0	2402 MHz		
	1	2404 MHz		
	:	:		
2400~2483.5MHz	19	2440MHz		
	:	:		
	38	2478 MHz		
	39	2480 MHz		
Note: f = 2402 + 2*k MHz, k = 0,, 39 f is the operating frequency (MHz); k is the operating channel.				

2.3 Related Submittal(S) / Grant (S)

This submittal(s) (test report) is intended for FCC ID: **2AMWOFSC-BW121**, filing to comply with Part 2, Part 15 of the Federal Communication Commission rules.

2.4 Test Methodology

The tests were performed according to following standards:

No.	Identity	Document Title
1	FCC 47 CFR Part 2	Frequency allocations and radio treaty matters; general rules and regulations
2	FCC 47 CFR Part 15	Radio Frequency Devices
3	ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices
4	KDB 558074 D01 15.247 Meas Guidance v05r02	Guidance for compliance measurements on Digital Transmission Systems, Frequency Hopping Spread Spectrum system, and Hybrid system devices operating under Section 15.247 of the FCC rules

2.5 Special Accessories

Not available for this EUT intended for grant.

2.6 Equipment Modifications

Not available for this EUT intended for grant.

2.7 Antenna Requirement

Standard Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi

EUT Antenna

The non-detachable antenna inside the device cannot be replaced by the user at will. The gain of the antenna is 2.01dBi.

3. Test Environment

3.1 Address of the Test Laboratory

Laboratory: Attestation of Global Compliance (Shenzhen) Co., Ltd.

Address: 1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L5488

Attestation of Global Compliance (Shenzhen) Co., Ltd. has been assessed and proved to follow CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories).

A2LA-Lab Cert. No.: 5054.02

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to follow ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 975832

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files with Registration 975832.

IC-Registration No.: 24842 (CAB identifier: CN0063)

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the Certification and Engineering Bureau of Industry Canada. The acceptance letter from the IC is maintained in our files with Registration 24842.

3.3 Environmental Conditions

	Normal Conditions
Temperature range (°C)	15 - 35
Relative humidity range	20 % - 75 %
Pressure range (kPa)	86 - 106
Power supply	DC 3.3V

3.4 Measurement Uncertainty

The reported uncertainty of measurement y $\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Item	Measurement Uncertainty	
Uncertainty of Conducted Emission for AC Port	$U_c = \pm 2.9 \text{ dB}$	
Uncertainty of Radiated Emission below 1GHz	$U_c = \pm 3.9 \text{ dB}$	
Uncertainty of Radiated Emission above 1GHz	$U_c = \pm 4.9 \text{ dB}$	
Uncertainty of total RF Power, Conducted	$U_c = \pm 0.8 \text{ dB}$	
Uncertainty of RF Power Density, Conducted	$U_c = \pm 2.6 \text{ dB}$	
Uncertainty of Spurious Emissions, Conducted	$U_c = \pm 2 \%$	
Uncertainty of Occupied Channel Bandwidth	$U_c = \pm 2 \%$	
Uncertainty of Dwell Time	$U_c = \pm 2 \%$	

3.5 List of Equipment Use

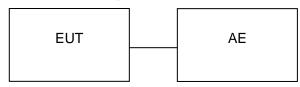
• R	RF Conducted Test System							
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)	
\boxtimes	AGC-ER-E036	Spectrum Analyzer	Agilent	N9020A	MY49100060	2024-05-24	2025-05-23	
	AGC-ER-E062	Power Sensor	Agilent	U2021XA	MY54110007	2024-02-01	2025-01-31	
	AGC-ER-E062	Power Sensor	Agilent	U2021XA	MY54110007	2025-01-14	2026-01-13	
	AGC-ER-E063	Power Sensor	Agilent	U2021XA	MY54110009	2024-02-01	2025-01-31	
	AGC-ER-E063	Power Sensor	Agilent	U2021XA	MY54110009	2025-01-14	2026-01-13	
	AGC-ER-A001	6dB Attenuator	Eeatsheep	LM-XX-6-5W	N/A	2023-06-09	2025-06-08	
	AGC-ER-E083	Signal Generator	Agilent	E4421B	US39340815	2024-05-23	2025-05-22	
\boxtimes	N/A	RF Connection Cable	N/A	1#	N/A	Each time	N/A	
\boxtimes	N/A	RF Connection Cable	N/A	2#	N/A	Each time	N/A	
• R	adiated Spurio	us Emission		1	1	1		
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)	
	AGC-EM-E046	EMI Test Receiver	R&S	ESCI	10096	2024-02-01	2025-01-31	
	AGC-EM-E046	EMI Test Receiver	R&S	ESCI	10096	2025-01-14	2026-01-13	
\boxtimes	AGC-EM-E116	EMI Test Receiver	R&S	ESCI	100034	2024-05-24	2025-05-23	
\boxtimes	AGC-EM-E061	Spectrum Analyzer	Agilent	N9010A	MY53470504	2024-05-28	2025-05-27	
\boxtimes	AGC-EM-E086	Loop Antenna	ZHINAN	ZN30900C	18051	2024-03-05	2026-03-04	
\boxtimes	AGC-EM-E001	Wideband Antenna	SCHWARZBECK	VULB9168	D69250	2023-05-11	2025-05-10	
	AGC-EM-E029	Broadband Ridged Horn Antenna	ETS	3117	00034609	2024-03-31	2025-03-30	
	AGC-EM-E082	Horn Antenna	SCHWARZBECK	BBHA 9170	#768	2023-09-24	2025-09-23	
	AGC-EM-E146	Pre-amplifier	ETS	3117-PA	00246148	2024-07-24	2026-07-23	
	AGC-EM-A119	2.4G Filter	SongYi	N/A	N/A	2024-05-23	2025-05-22	
	AGC-EM-A138	6dB Attenuator	Eeatsheep	LM-XX-6-5W	N/A	2023-06-09	2025-06-08	
	AGC-EM-A139	6dB Attenuator	Eeatsheep	LM-XX-6-5W	N/A	2023-06-09	2025-06-08	

• A	AC Power Line Conducted Emission							
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)	
\boxtimes	AGC-EM-E045	EMI Test Receiver	R&S	ESPI	101206	2024-05-28	2025-05-27	
\boxtimes	AGC-EM-A130	6dB Attenuator	Eeatsheep	LM-XX-6-5W	DC-6GZ	2023-06-09	2025-06-08	
	AGC-EM-E023	AMN	R&S	100086	ESH2-Z5	2024-05-28	2025-05-27	

Test Software							
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Version Information		
	AGC-EM-S001	CE Test System	R&S	ES-K1	V1.71		
	AGC-EM-S003	RE Test System	FARA	EZ-EMC	VRA-03A		
\boxtimes	AGC-ER-S012	BT/WIFI Test System	Tonscend	JS1120-2	2.6		
	AGC-EM-S011	RSE Test System	Tonscend	TS+-Ver2.1(JS36-RSE)	4.0.0.0		

4.System Test Configuration

4.1 EUT Configuration


The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

4.2 EUT Exercise

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

4.3 Configuration of Tested System

Radiated Emission Configure:

Conducted Emission Configure:

EUT	 AE

4.4 Equipment Used In Tested System

The following peripheral devices and interface cables were connected during the measurement:

- ☐ Test Accessories Come From The Laboratory
- Test Accessories Come From The Manufacturer

No.	Equipment	Manufacturer	Model No.	del No. Specification Information	
1	Computer host	Dell	Vostro 3688	COBCPR2	

4.5 Summary of Test Results

Item	FCC Rules	Description of Test	Result
1	§15.203&15.247(b)(4)	Antenna Equipment	Pass
2	§15.247 (b)(3)	RF Output Power	Pass
3	§15.247 (a)(2)	6 dB Bandwidth	Pass
4	§15.247 (e)	Power Spectral Density	Pass
5	§15.247 (d)	Conducted Band Edge and Out-of-Band Emissions	Pass
6	§15.209	Radiated Emission& Band Edge	Pass
7	§15.207	AC Power Line Conducted Emission	Pass

5. Description of Test Modes

Summary Table of Test Cases						
Test Item	Data Rate / Modulation					
Test nem	Bluetooth–LE(1Mbps)/GFSK					
Radiated & Conducted	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps(Connect Computer host) Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps(Connect Computer host)					
Test Cases	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps(Connect Computer host)					
AC Conducted Emission	Mode 1: Bluetooth Link + Connect Computer host					
 For Radiated Emissic For Conducted Test r Bluetoch RF Mode About Bluetoch RF Mode About E FKT TX (to Data Len Payload Type Statemore State 	Image: Status 2000 (RtlBluetoothMP.dll Version :5,2,2,19 RTLBTAPP Version :5,2,2,19) Image: Test Tool (RtlBluetoothMP.dll Version :5,2,2,19 RTLBTAPP Version :5,2,2,19) Image: Test Tool (RtlBluetoothMP.dll Version :5,2,2,19 RTLBTAPP Version :5,2,2,19) Image: Test Tool (RtlBluetoothMP.dll Version :5,2,2,19 RTLBTAPP Version :5,2,2,19) Image: Test Tool (RtlBluetoothMP.dll Version :5,2,2,19 RTLBTAPP Version :5,2,2,19) Image: Test Tool (RtlBluetoothMP.dll Version :5,2,2,19 RTLBTAPP Version :5,2,2,19) Image: Test Tool (RtlBluetoothMP.dll Version :5,2,2,19 RTLBTAPP Version :5,2,2,19) Image: Test Tool (RtlBluetoothMP.dll Version :5,2,2,19 RTLBTAPP Version :5,2,2,19) Image: Test Tool (RtlBluetoothMP.dll Version :5,2,2,19 RTLBTAPP Version :5,2,2,19) Image: Test Tool (RtlBluetoothMP.dll Version :5,2,2,19 RTLBTAPP Version :5,2,2,19) Image: Test Tool (RtlBluetoothMP.dll Version :5,2,2,19 RTLBTAPP Version :5,2,2,19) Image: Test Tool (RtlBluetoothMP.dll Version :5,2,2,19 RTLBTAPP Version :5,2,2,19) Image: Test Tool (RtlBluetoothMP.dll Version :5,2,2,19) Image: Test Tool (RtlBluetoothMP.dll Version :5,2,2,19 RTLBTAPP Version :5,2,2,19) Image: Test Tool (RtlBluetoothMP.dll Version :5,					

6. Duty Cycle Measurement

The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = Peak. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

Operating mode	T(µs)	Duty Cycle (%)	Duty Cycle Factor (dB)	1/ T Minimum VBW (kHz)
BLE_1Mbps	393.5	63	2.01	2.54

Remark:

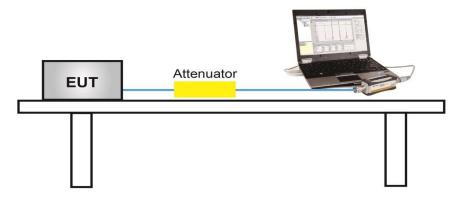
- 1. Duty Cycle factor = $10 * \log (1 / \text{Duty cycle})$
- 2. The duty cycle of each frequency band mode reflects the determination requirements of the low channel measurement value
- The test plots as follows:

Bluetooth–LE for 1Mbps	Bluetooth–LE for 2Mbps
Center 2.40200000 GHz #VBW 50 MHz* Sweep 2.599 ms (3000 pt) Min dec the ScL X Y K State Factor Pactor Pa	Auto Tune Center Freq 2000000 GHz Stop Freq 2000000 GHz ECF Step Men Freq Offset 0 Hz

7. RF Output Power Measurement

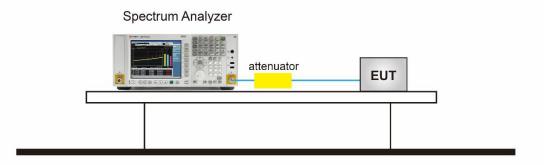
7.1 Provisions Applicable

For DTSs employing digital modulation techniques operating in the bands 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1 W.

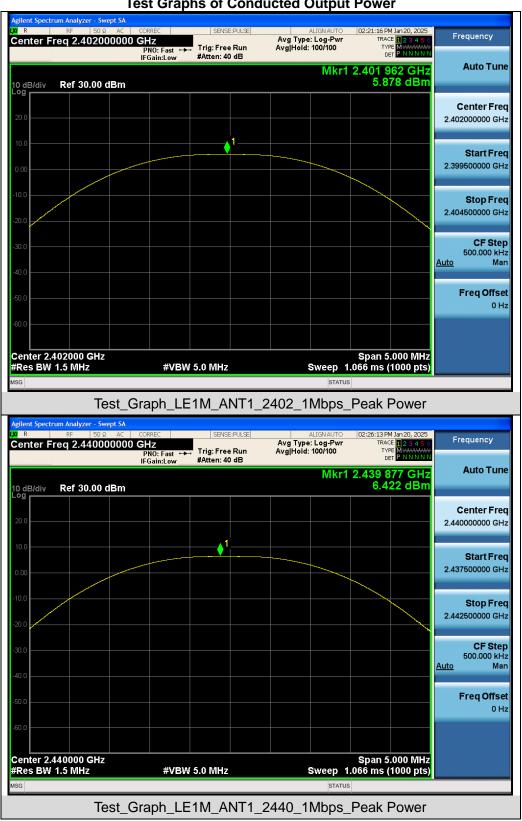

7.2 Measurement Procedure

For Peak Power, the testing follows ANSI C63.10 Section 11.9.1.1 Method Max peak power:

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the RBW≥DTS bandwidth
- 3. Set the VBW≥[3 × RBW].
- 4. Span≥[3 × RBW].
- 5. Sweep= auto couple.
- 6. Detector Function= Peak.
- 7. Trace mode= Max hold.
- 8. Allow trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power, after any corrections for external attenuators and cables.
- For Average power, the testing follows ANSI C63.10 Section 11.9.2.3.2 Method AVGPM-G:
- 1. The RF output of EUT was connected to the power meter by RF cable and attenuator.
- 2. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.


7.3 Measurement Setup (Block Diagram of Configuration)

For Average power test setup


For peak power test setup

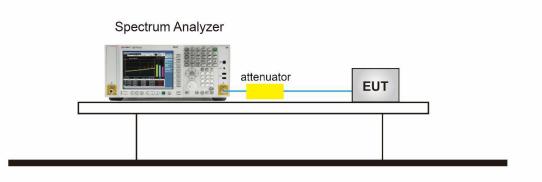
7.4 Measurement Result

Test Data of Conducted Output Power							
Test Mode	Test Frequency (MHz)Peak Power (dBm)Limits (dBm)Pa						
GFSK_1Mbps	2402	5.878	≪30	Pass			
	2440	6.422	≪30	Pass			
	2480	6.312	≪30	Pass			

Test Graphs of Conducted Output Power

Agilent Spectrum Analyzer - Swept SA	CORREC SENSE	E:PULSE /	LIGNAUTO 02:28:37 P	M Jan 20, 2025			
Center Freq 2.480000000	GHz	Avg Type:	Log-Pwr TRAC	E 1 2 3 4 5 6 E MWWWW			
	PNO: Fast Frig: Free IFGain:Low #Atten: 40		DI				
			Mkr1 2.479 8	77 GHz Auto Tu 12 dBm	une		
10 dB/div Ref 30.00 dBm			0.0				
22.0				Center F			
20.0				2.480000000	GHz		
10.0	1						
				Start F 2.477500000			
0.00				2.477500000	GIIZ		
-10.0				Stop F	rea		
				2.482500000			
-20.0							
-30.0				CFS			
				500.000 <u>Auto</u>	KHZ Man		
-40.0							
-50.0				Freq Off			
				C	0 Hz		
-60.0							
Center 2.480000 GHz #Res BW 1.5 MHz	#VBW 5.0 MHz		Span 5 Sween 1 066 ms (.000 MHz 1000 pts)			
MSG							
Test (Graph_LE1M_A	NT1 2480 1	Mbps Peak I	Power			

8. 6dB Bandwidth Measurement

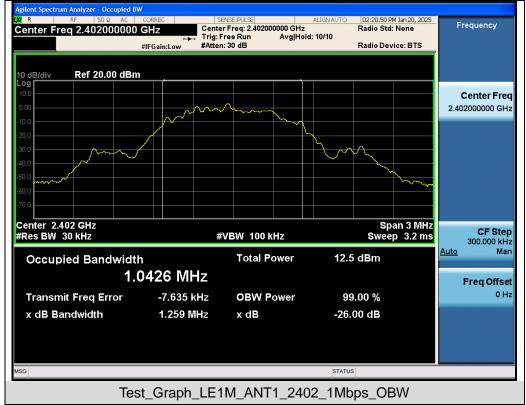

8.1 Provisions Applicable

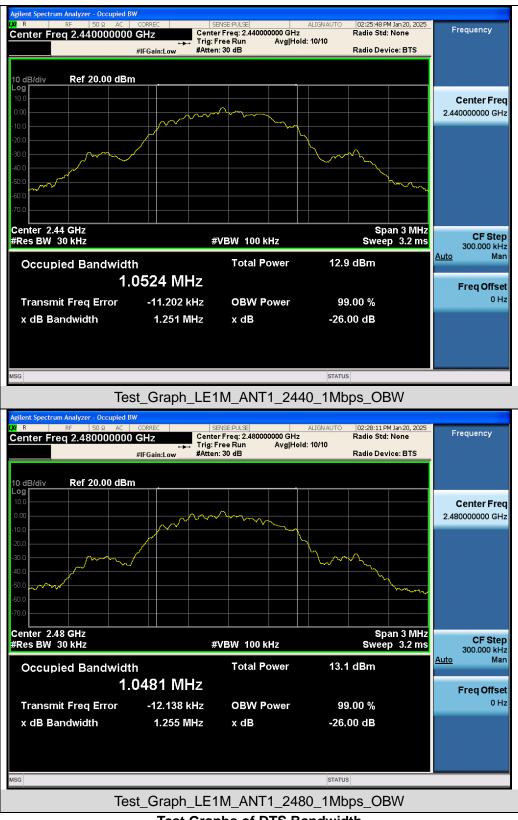
The minimum 6dB bandwidth shall be 500 kHz.

8.2 Measurement Procedure

- The testing follows the ANSI C63.10 Section 6.9.3 (OBW) and 11.8.1 (6dB BW).
- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1-5% of the OBW and set the Video bandwidth (VBW) ≥ 3 * RBW.
- 5. Measure and record the results in the test report.

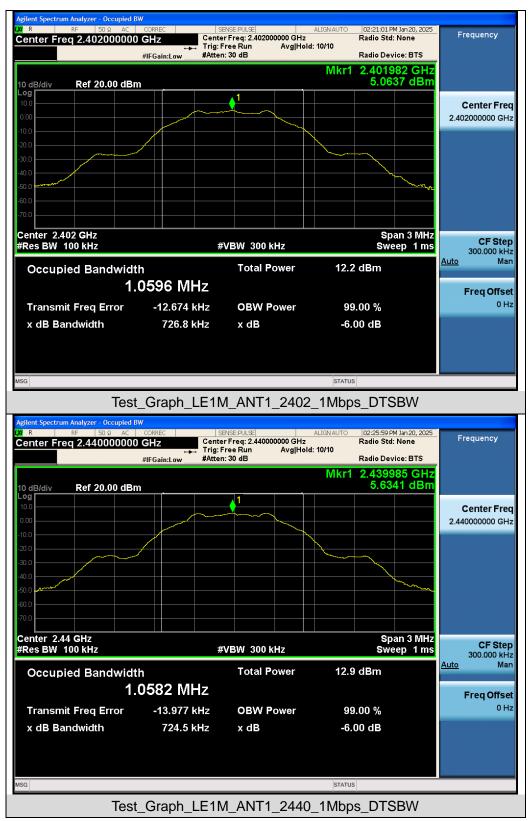
8.3 Measurement Setup (Block Diagram of Configuration)




8.4 Measurement Results

Test Data of Occupied Bandwidth and DTS Bandwidth								
Test Mode	DTS BW Limits	Pass or Fail						
GFSK_1Mbps	2402	1.043	0.727	≥0.5	Pass			
	2440	1.052	0.725	≥0.5	Pass			
	2480	1.048	0.732	≥0.5	Pass			

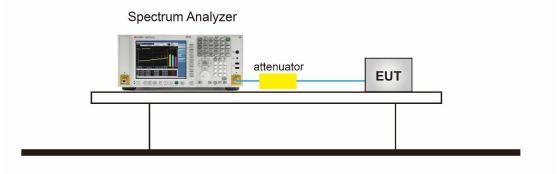
Test Graphs of Occupied Bandwidth



Test Graphs of DTS Bandwidth

	Analyzer - Occupied							
	RF 50 Ω AC		SENSE:PULSE Center Freg: 2.4	8000000 GH	ALIGN AUTO	02:28:22 P Radio Std	M Jan 20, 2025	Frequency
Center Free	q 2.48000000	U GHZ ↔	Trig: Free Run		old: 10/10			
		#IFGain:Low	#Atten: 30 dB			Radio Dev	rice: BTS	
					Mkr1	2.4799	88 GHz	
10 dB/div	Ref 20.00 dB	m				5.55	48 dBm	
Log 10.0			<u> </u>					Comton Enon
0.00				~				Center Freq 2.48000000 GHz
-10.0								2.480000000 GHz
-20.0						~~		
-30.0								
-40.0							~~~~	
-50.0								
-60.0								
-70.0								
Center 2.48							on 2 Milla	
#Res BW 1			#VBW 30	ነበ kHz			an 3 MHz ep 1 ms	CF Step
"TCC5 BT	001112		<i>"</i> •• D •••••••			UIIX		300.000 kHz Auto Man
Occupie	ed Bandwid	th	Tota	I Power	12.7	dBm		Auto Mari
		.0602 M						
		.0002 101						Freq Offset
Transmit	Freq Error	-14.779	kHz OBV	V Power	99	.00 %		0 Hz
x dB Bar	ndwidth	732.3	kHz xdE	3	-6-	00 dB		
			A di					
MSG					STATUS			
	Tes	t Graph	LE1M_AN	T1 248	0 1Mbp	s DTS	SBW	
					P			

9. Power Spectral Density Measurement

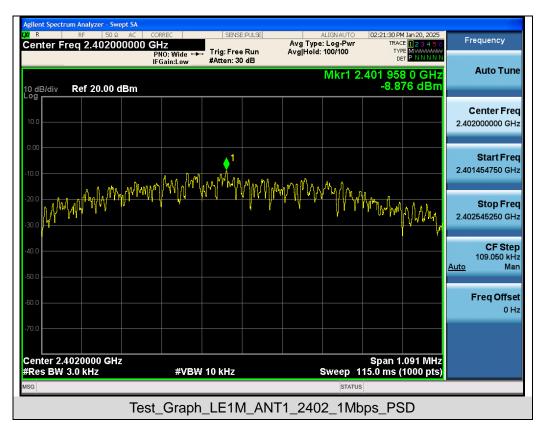

9.1 Provisions Applicable

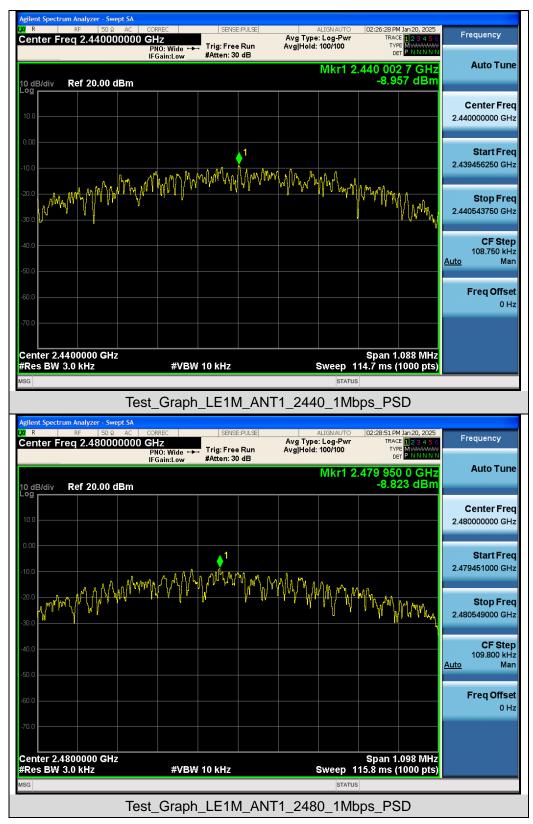
The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

9.2 Measurement Procedure

- The testing follows the ANSI C63.10 Section 11.10.2 Method PKPSD.
- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz. Video bandwidth VBW = 10 kHz in order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 4. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 5. Measure and record the results in the test report.
- 6. The Measured power density (dBm)/ 100kHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

9.3 Measurement Setup (Block Diagram of Configuration)

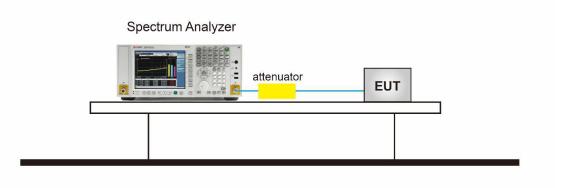



9.4 Measurement Results

Test Data of Conducted Output Power Spectral Density								
Test Mode	Test Frequency (MHz)Power density (dBm/3kHz)Limit (dBm/3kHz)Pass or Fail							
	2402	-8.876	≪8	Pass				
GFSK_1Mbps	2440	-8.957	≪8	Pass				
	2480	-8.823	≪8	Pass				

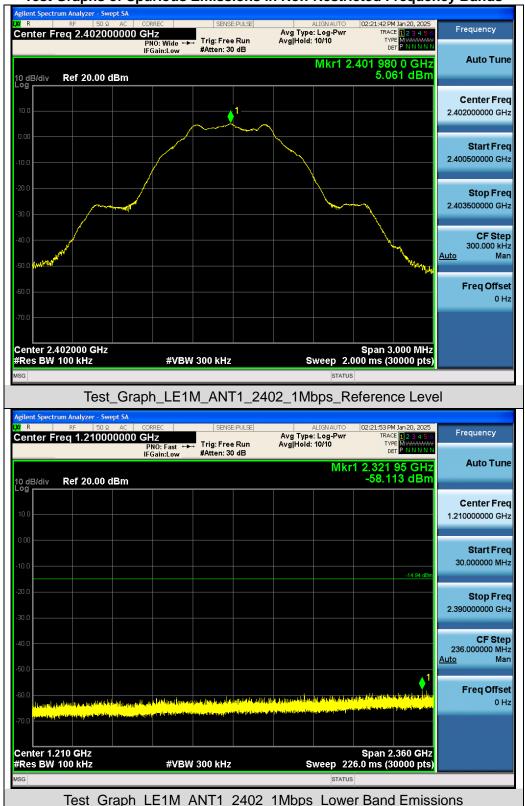
Test Graphs of Conducted Output Power Spectral Density

10. Conducted Band Edge and Out-of-Band Emissions

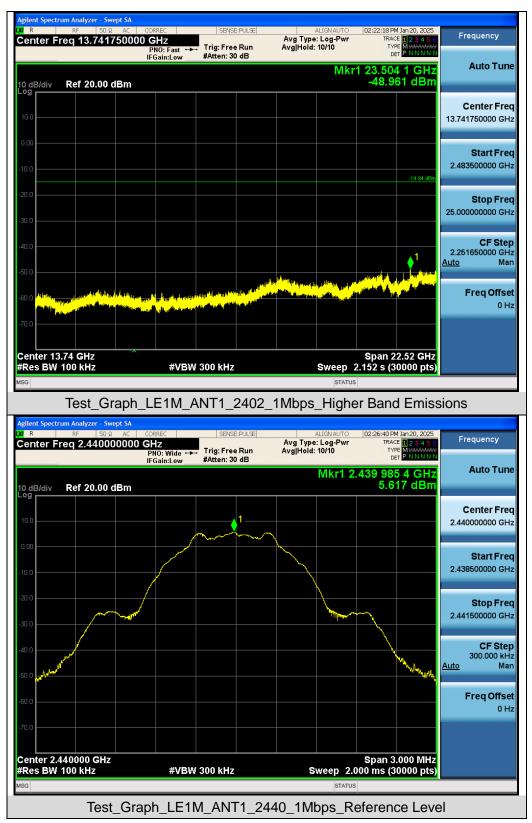

10.1 Provisions Applicable

The limit for out-of-band spurious emissions at the band edge is 20dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth per the PSD procedure.

10.2 Measurement Procedure

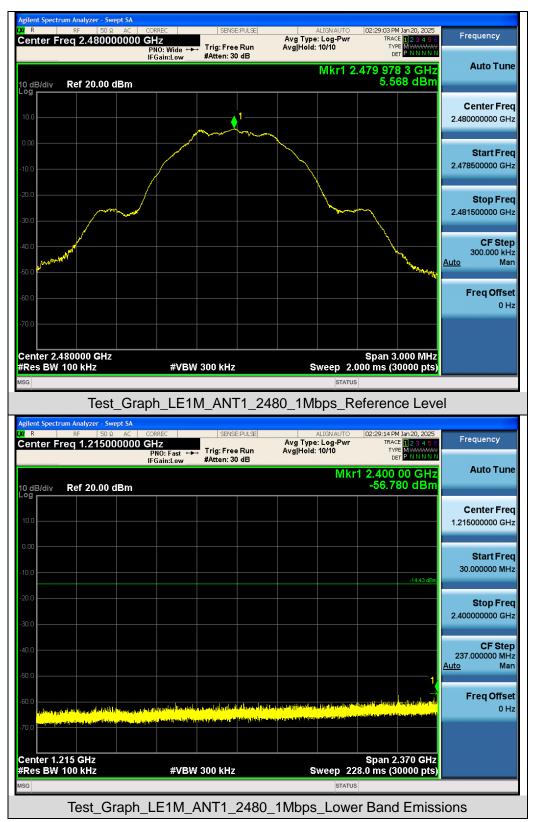

- Reference level measurement
- 1. Set instrument center frequency to DTS channel center frequency
- 2. Set the span to \geq 1.5 times the DTS bandwidth
- 3. Set the RBW = 100 kHz
- 4. Set the VBW \ge 3 x RBW
- 5. Detector = peak
- 6. Sweep time = auto couple
- 7. Trace mode = max hold
- 8. Allow trace to fully stabilize
- Emission level measurement
- 1. Set the center frequency and span to encompass frequency range to be measured
- 2. RBW = 100kHz
- 3. VBW = 300kHz
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

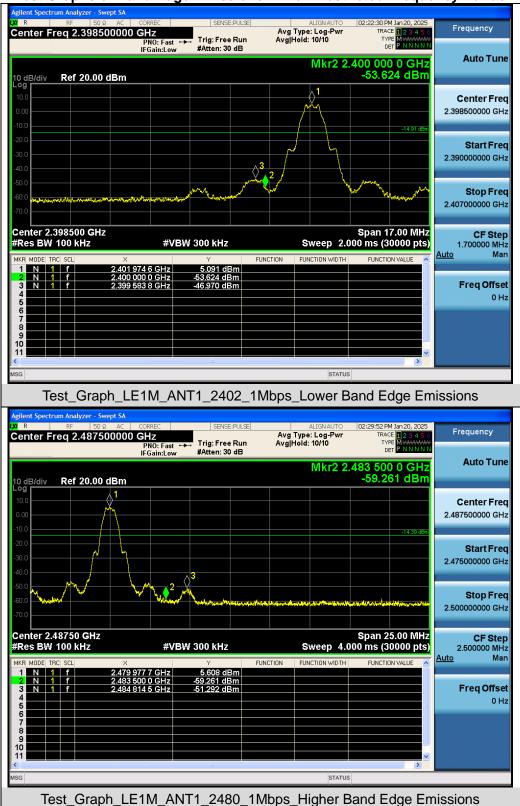
10.3 Measurement Setup (Block Diagram of Configuration)



10.4 Measurement Results

Test Graphs of Spurious Emissions in Non-Restricted Frequency Bands




Image: Note of the state of the s	
Image: Second	-
10 dB/div Ref 20.00 dBm -57.657 dBm Cente 10.0 Cente 1.21500000	Tune
100 Cente 1.21500000	
	r Freq
	00 GHz
Star	tFreq
.10.0 30.00000	
-20 0	
2000 Stop 2.4000000	p Freq 00 GHz
-30.0	
-40 0 CF	F Step
-50.0 Auto	Man
	Offset
	0 Hz
Center 1.215 GHz Span 2.370 GHz	
#Res BW 100 kHz #VBW 300 kHz Sweep 228.0 ms (30000 pts)	
MSG STATUS	
Test_Graph_LE1M_ANT1_2440_1Mbps_Lower Band Emissions	
Agilent Spectrum Analyzer - Swept SA ΔW R RF 50 Ω AC CORREC SENSE:PULSE ALIGN AUTO 02:27:16 PM Jan 20, 2025	
Center Freq 13.741750000 GHz PNO: Fast → Trace Run Avg Type: Log-Pwr Trace Run Avg Hold: 10/10 Trace Run	icy
IFGain:Low #Atten: 30 dB Der ENNIMON Mkr1 24.999 2 GHz	Tune
	rune
10 dB/div Ref 20.00 dBm -49.237 dBm	rune
10 dB/div Ref 20.00 dBm -49.237 dBm Cente	r Freq
10 dB/div Ref 20.00 dBm -49.237 dBm	r Freq
10 dB/div Ref 20.00 dBm -49.237 dBm Cente 10 0 0.00 Cente	r Freq
10 dB/div Ref 20.00 dBm -49.237 dBm 10 dB/div Ref 20.00 dBm Cente 10 dB/div Image: Cente 13.74175000 0.00 Image: Cente 13.74175000 10 dB/div Image: Cente	r Freq 00 GHz t Freq
10 dB/div Ref 20.00 dBm -49.237 dBm 100 Image: Control of the second secon	r Freq 00 GHz t Freq 00 GHz
10 dB/div Ref 20.00 dBm -49.237 dBm 10 0	r Freq 00 GHz t Freq 00 GHz p Freq
10 dB/div Ref 20.00 dBm -49.237 dBm 100 Image: Control of the second secon	r Freq 00 GHz t Freq 00 GHz p Freq 00 GHz
10 dB/div Ref 20.00 dBm -49.237 dBm 100 Image: Control of the second secon	r Freq 00 GHz t Freq 00 GHz p Freq 00 GHz F Step 00 GHz
10 dB/div Ref 20.00 dBm -49.237 dBm 100 Image: Control of the second secon	r Freq 00 GHz t Freq 00 GHz p Freq 00 GHz = Step
10 dB/div Ref 20.00 dBm -49.237 dBm 100	r Freq 00 GHz t Freq 00 GHz p Freq 00 GHz F Step 00 GHz
10 dB/div Ref 20.00 dBm -49.237 dBm 100	r Freq 00 GHz 1 Freq 00 GHz 00 GHz F Step 00 GHz Man
10 dB/div Ref 20.00 dBm -49.237 dBm 100	r Freq 00 GHz t Freq 00 GHz 00 GHz F Step 00 GHz Man Offset
10 dB/div Ref 20.00 dBm -49.237 dBm 100 Image: Contract of the c	r Freq 00 GHz t Freq 00 GHz 00 GHz F Step 00 GHz Man Offset
10 dB/div Ref 20.00 dBm -49.237 dBm 100 Image: Contraction of the state of th	r Freq 00 GHz t Freq 00 GHz 00 GHz F Step 00 GHz Man Offset

Agilent Spectrum Analyzer - Swept SA										
(X) R	RF 50 Ω req 13.7500			SENSE	PULSE		ALIGN AUTO : Log-Pwr		1 Jan 20, 2025 E 1 2 3 4 5 6	Frequency
Cerner	164 13.7500	Р	NO: Fast 🔸	Trig: Free #Atten: 30		Avg Hold:		TYP	E MWWWWWW T P N N N N N	
		IF	Gain:Low	#Atten: 30	dB		N 4 1			Auto Tune
	B-6.00.00	-ID					IVIKE	-48.96	35 GHz 72 dBm	
10 dB/div Log	Ref 20.00 (dBm	1					-40.2	Z ubm	
										Center Freq
10.0										13.750000000 GHz
0.00										
										Start Freq 2.50000000 GHz
-10.0									-14.43 dBm	2.500000000 GHZ
-20.0										Stop Freq
-30.0										25.00000000 GHz
-30.0										
-40.0										CF Step
40.0									1	2.25000000 GHz
-50.0										<u>Auto</u> Man
						h distant	L L I Martin La La I			
-60.0 <mark>19,1764</mark> -	واللغة الخضاصة أمري	A State of Log Hard State		an in the second	ula di an	رومان <u>محملاً المحمل المحمد</u> بعا	na sa			Freq Offset
a the state of the	and a state of the	a state of the second second of	- Northern Street	and the Manual State of States						0 Hz
-70.0										
Center 13	3 75 CH7	^						Snan 2	2.50 GHz	
#Res BW			#VBW	/ 300 kHz			Sweep 2	2.152 s (3	0000 pt <u>s)</u>	
MSG							STATUS			
Test_Graph_LE1M_ANT1_2480_1Mbps_Higher Band Emissions										

Test Graphs of Band Edge Emissions in Non-Restricted Frequency Bands

11. Radiated Spurious Emission

11.1 Measurement Limit

• FCC Part 15.209 Limit in the below table to be followed

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Note: All modes were tested for restricted band radiated emission, the test records reported below are the worst result compared to other modes.

11.2 Measurement Procedure

- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emission, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz RBW and 3MHz VBW for peak reading. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds.

- 8. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 9. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 10. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 11. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

Spectrum ParameterSettingStart ~Stop Frequency9kHz~150kHz/RB 200Hz for QPStart ~Stop Frequency150kHz~30MHz/RB 9kHz for QPStart ~Stop Frequency30MHz~1000MHz/RB 120kHz for QPStart ~Stop Frequency1GHz~26.5GHzStart ~Stop Frequency1MHz/3MHz for Peak, 1MHz/3MHz for Average

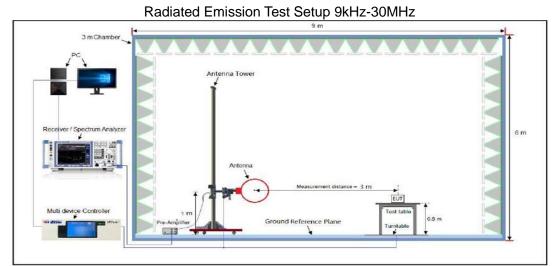
The following table is the setting of spectrum analyzer and receiver.

Receiver Parameter	Setting		
Start ~Stop Frequency	9kHz~150kHz/RB 200Hz for QP		
Start ~Stop Frequency	150kHz~30MHz/RB 9kHz for QP		
Start ~Stop Frequency	30MHz~1000MHz/RB 120kHz for QP		

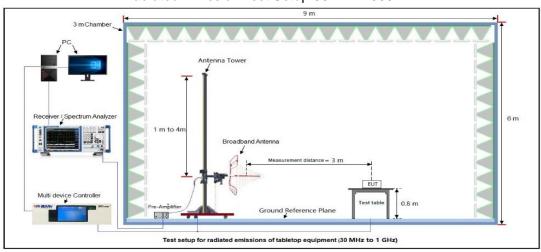
Quasi-Peak Measurements below 1GHz

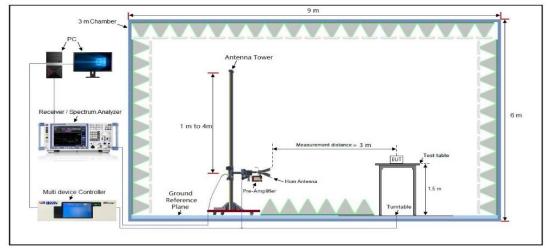
- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Span was set greater than 1MHz
- 3. RBW = as shown in the table above
- 4. Detector = CISPR quasi-peak
- 5. Sweep time = auto couple
- 6. Trace was allowed to stabilize

• Peak Measurements above 1GHz


- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

• Average Measurements above 1GHz


- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. $VBW \ge [3 \times RBW]$
- 4. Detector = Power averaging (rms)
- 5. Averaging type = power (i.e., rms)
- 6. Sweep time = auto
- 7. Perform a trace average of at least 100 traces.
- 8. The applicable correction factor is [10*log (1 / D)], where D is the duty cycle. The factor had been edited in the "Input Correction" of the Spectrum Analyzer.


11.3 Measurement Setup (Block Diagram of Configuration)

Radiated Emission Test Setup 30MHz-1000MHz

Radiated Emission Test Setup Above 1000MHz

11.4 Measurement Result

Radiated Emission Below 30MHz

The amplitude of spurious emissions from 9kHz to 30MHz which are attenuated more than 20 dB below the permissible value need not be reported.

			Radia	ted Emiss	ion Test Res	ults at 30MHz	z-1GHz		
	lame	Bluetooth and WIFI combo module				Model Na	me	FSC-BW121	
Temp	mperature 21.8°C				Relative H	lumidity	56.3%		
Press	ure	960hPa Test Voltage				Normal Vo	ltage		
Test N	lode	Мос	de 2			Antenna	Polarity	Horizontal	
	120				FCC Part 15	c		1	
	130 120								
	110								
	90								
	80 E 70								
	[ɯ///ˈɡp] eoei[dp] eoei 50								
	-								
	40 30							A Land	Terr
	20			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	month with	mm the more thank	hand what we have a server a s	and an and a second second	
	10								
	-10 -10			100M					16
					Frequency[H	z]			
	-	QP Lim QP Dete							
Final	Data List	t							
NO.	Frec [MH:		Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	61.0	4	22.36	17.54	40.00	17.64	150	110	Horizontal
2	159.0)1	23.57	17.75	43.50	19.93	150	230	Horizontal
3	239.5	52	19.98	16.00	46.00	26.02	150	60	Horizontal
4	462.6	62	27.69	24.11	46.00	18.31	150	170	Horizontal
5	623.6	64	30.67	25.40	46.00	15.33	150	200	Horizontal
6	864.	2	34.85	29.87	46.00	11.15	150	200	Horizontal

			Radia	ted Emiss	ion Test Res	ults at 30MHz	2-1GHz		
EUT N	lame	Blue	Bluetooth and WIFI combo module			Model Na	me	FSC-BW121	
Temp	Temperature 21.8℃					Relative H	lumidity	56.3%	
Press	ure	960	hPa			Test Volta	ige	Normal Vo	oltage
Test N	lode	Mod	le 2			Antenna	Polarity	Vertical	
	130				FCC Part 15	C			
	120 110								
	100								
	90								
	80								
	[W/\19] 60 evel 50								
	<u>p</u> 00 a 50								
	40								
	30						×	Warner Strander where and a strategy and and a strategy and and a strategy and and a strategy an	"Lun
	20		~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	men how	man the way	where and the second second		
	0								
	-10 30M								
	30M			100M	Frequency[H	z]			1G
	-	— QP Limi							
		QP Dete	ector						
Final	Data List	:							
	Frec		Level	Factor	Limit	Margin	Height	Angle	D L <i>V</i>
NO.	[MHz		[dBµV/m]	[dB]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	- 61.0	4	22.54	17.54	40.00	17.46	150	270	Vertical
2	98.8	7	21.69	16.73	43.50	21.81	150	350	Vertical
3	239.5	52	21.08	16.00	46.00	24.92	150	140	Vertical
4	460.6	68	28.03	24.60	46.00	17.97	150	50	Vertical
5	613.9	94	30.48	25.24	46.00	15.52	150	260	Vertical
6	857.4	1	35.80	29.92	46.00	10.20	150	160	Vertical

RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

2. All test modes had been pre-tested. The mode 2 is the worst case and recorded in the report.

Radiated Emissions Test Results for Above 1GHz

EUT Name		Bluetooth and WIF module	-I combo	Model Name FSC-BW12		21
Temperature		25 ℃		Relative Humidity 55.4%		
Pressure		960hPa		Test Voltage	Normal Vo	oltage
Test Mode		Mode 1		Antenna Polarity	Horizontal	
Frequency	Meter Readin	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV) (dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4804.000	50.12	0.08	50.2	74.00	-23.80	peak
4804.000	40.15	0.08	40.23	54.00	-13.77	AVG
7206.000	49.68		51.89	74.00	-22.11	peak
	41.11	2.21	43.32	54.00	-10.68	
7206.000	71.11	2.21	40.02	54.00	-10.00	AVG
Remark:		or + Cable Loss – F	Pre-amplifier.	54.00	-10.66	AVG
Remark:			Pre-amplifier.	Model Name	FSC-BW1	
Remark: Factor = Ante	enna Fact	or + Cable Loss – F Bluetooth and WIF	Pre-amplifier.			
Remark: Factor = Ante	enna Fact	or + Cable Loss – F Bluetooth and WIF module	Pre-amplifier.	Model Name	FSC-BW1	21
Remark: Factor = Ante EUT Name Temperature	enna Fact	or + Cable Loss – F Bluetooth and WIF module 25°	Pre-amplifier.	Model Name Relative Humidity	FSC-BW1 55.4%	21
Remark: Factor = Ante EUT Name Temperature Pressure Test Mode Frequency	enna Fact	or + Cable Loss – F Bluetooth and WIF module 25 °C 960hPa Mode 1 Factor	Pre-amplifier. Fl combo Emission Level	Model Name Relative Humidity Test Voltage Antenna Polarity Limits	FSC-BW1 55.4% Normal Vo Vertical Margin	21
Remark: Factor = Ante EUT Name Temperature Pressure Test Mode Frequency (MHz)	enna Fact Meter Readin (dBµV	or + Cable Loss – F Bluetooth and WIF module 25°C 960hPa Mode 1 g Factor) (dB)	Pre-amplifier. Fl combo Emission Level (dBµV/m)	Model Name Relative Humidity Test Voltage Antenna Polarity Limits (dBµV/m)	FSC-BW1 55.4% Normal Vo Vertical Margin (dB)	21 Ditage Value Type
Remark: Factor = Ante EUT Name Temperature Pressure Test Mode Frequency (MHz) 4804.000	enna Fact Meter Readin (dBµV 49.96	or + Cable Loss – F Bluetooth and WIF module 25° 960hPa Mode 1 g Factor) (dB) 0.08	Pre-amplifier. Fl combo Emission Level (dBµV/m) 50.04	Model Name Relative Humidity Test Voltage Antenna Polarity (dBµV/m) (dBµV/m) 174.00	FSC-BW1 55.4% Normal Vo Vertical Margin (dB) -23.96	21 Ditage Value Type peak
Remark: Factor = Anto EUT Name Temperature Pressure Test Mode Frequency (MHz) 4804.000 4804.000	Meter Readin (dBµV 49.96 39.57	or + Cable Loss – F Bluetooth and WIF module 25°C 960hPa Mode 1 g Factor) (dB) 0.08 0.08	Pre-amplifier. Fl combo Emission Level (dBµV/m) 50.04 39.65	Model Name Relative Humidity Test Voltage Antenna Polarity (dBµV/m) (dBµV/m) 54.00	FSC-BW1 55.4% Normal Vo Vertical Margin (dB) -23.96 -14.35	21 Ditage Value Type peak AVG
Remark: Factor = Ante EUT Name Temperature Pressure Test Mode Frequency (MHz) 4804.000	enna Fact Meter Readin (dBµV 49.96	or + Cable Loss – F Bluetooth and WIF module 25°C 960hPa Mode 1 g Factor) (dB) 0.08 0.08	Pre-amplifier. Fl combo Emission Level (dBµV/m) 50.04	Model Name Relative Humidity Test Voltage Antenna Polarity (dBµV/m) (dBµV/m) 174.00	FSC-BW1 55.4% Normal Vo Vertical Margin (dB) -23.96	21 Ditage Value Type peak

RESULT: PASS

Radiated Emissions Test Results for Above 1GHz

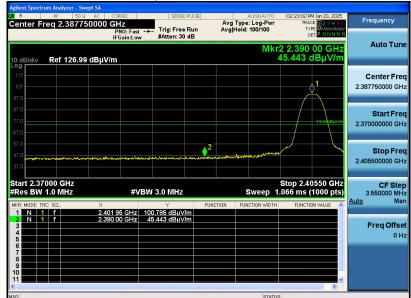
		module	FI combo	Model Name	FSC-BW121	FSC-BW121	
Temperature		25 ℃		Relative Humid	ity 55.4%	55.4%	
Pressure		960hPa		Test Voltage	Normal Volta	age	
Test Mode		Mode 2		Antenna Polarit	y Horizontal		
Frequency	Mete Readir	E E SOTOR	Emission Level	Limits	Margin	Value Type	
(MHz)	(dBµ∖	/) (dB)	(dBµV/m)	(dBµV/m)	(dB)	туре	
4880.000	50.5´	1 0.14	50.65	74.00	-23.35	peak	
4880.000	40.15	5 0.14	40.29	54.00	-13.71	AVG	
7323.000	48.79	9 2.36	51.15	74.00	-22.85	peak	
7323.000	41.3 <i>′</i>	1 2.36	43.67	54.00	-10.33	AVG	
Remark:		-					
Factor = Anter	nna Fac	ctor + Cable Loss -	Pre-amplifier.				
EUT Name		Bluetooth and WI module	FI combo	Model Name	FSC-BW121		
Temperature		25 ℃		Relative Humid	ity 55.4%	55.4%	
Pressure		960hPa		Test Voltage	Normal Volta	mal Voltage	
Test Mode		Mode 2		Antenna Polarit	y Vertical		
Frequency	Mete Readir	E Eactor	Emission Level	Limits	Margin	Value	
(MHz)	(dBµ∖	/) (dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
4880.000	49.5´	1 0.14	49.65	74.00	-24.35	peak	
4880.000	39.97	7 0.14	40.11	54.00	-13.89	AVG	
7323.000	47.9´	1 2.36	50.27	74.00	-23.73	peak	
7323.000	40.63	3 2.36	42.99	54.00	-11.01	AVG	
Remark:							

RESULT: Pass

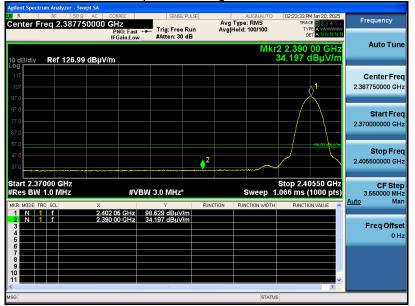
Radiated Emissions Test Results for Above 1GHz

EUT Name		Bluetooth and WIFI combo module			Model Name		FSC-BW121	FSC-BW121	
Temperature		25 ℃			Relative Humidity		55.4%	55.4%	
Pressure		960hPa			Te	st Voltage	Normal Voltag	je	
Test Mode		Mode	3		An	tenna Polarity	Horizontal		
Frequency	Mete Read		Factor	Emission Level		Limits	Margin	Value	
(MHz)	(dBµ	V)	(dB)	(dBµV/m)		(dBµV/m)	(dB)	Туре	
4960.000	49.7	'4	0.22	49.96		74.00	-24.04	peak	
4960.000	40.5	58	0.22	40.80		54.00	-13.20	AVG	
7440.000	49.3	31	2.64	51.95		74.00	-22.05	peak	
7440.000	41.2	21	2.64	43.85		54.00	-10.15	AVG	
Remark:									
Factor = Ante	enna Fa	ctor + C	Cable Loss – Pre	e-amplifier.					
EUT Name		Bluetooth and WIFI combo module			Model Name FSC-BV		FSC-BW121	W121	
Temperature		25 ℃			Relative Humidity		55.4%	55.4%	
Pressure		960hPa			Test Voltage		Normal Voltag	Normal Voltage	
Test Mode		Mode 3			Antenna Polarity Vertical				
				1				T	
Frequency	Mete Read		Factor	Emission Level		Limits	Margin	Value	
(MHz)	(dBµ		(dB)	(dBµV/m)		(dBµV/m)	(dB)	Туре	
4960.000	48.7	'9	0.22	49.01		74.00	-24.99	peak	
4960.000	41.5	53	0.22	41.75		54.00	-12.25	AVG	
7440.000	49.6	69	2.64	52.33		74.00	-21.67	peak	
7440.000 40.5		57	2.64	43.21		54.00	-10.79	AVG	
Remark:									
Factor = Ante	enna Fa	ctor + C	Cable Loss – Pre	e-amplifier.					
	Factor = Antenna Factor + Cable Loss – Pre-amplifier.								

RESULT: Pass


Note:

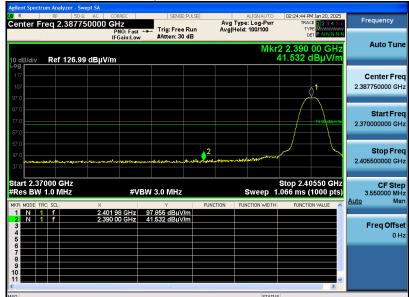
- 1. The amplitude of other spurious emissions from 1G to 25 GHz which are attenuated more than 20 dB below the permissible value need not be reported.
- 2. Factor = Antenna Factor + Cable loss Pre-amplifier gain, Margin = Emission Level-Limit.
- 3. The "Factor" value can be calculated automatically by software of measurement system.



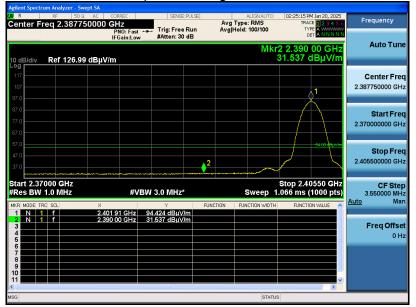
EUT Name	Bluetooth and WIFI combo module	Model Name	FSC-BW121
Temperature	25 ℃	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna Polarity	Horizontal

Test Graph for Peak Measurement

Test Graph for Average Measurement



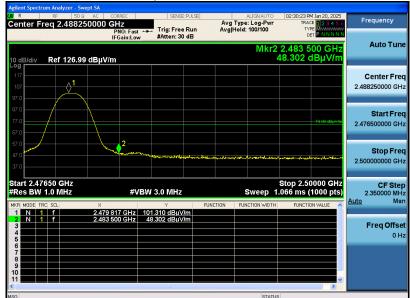
RESULT: PASS



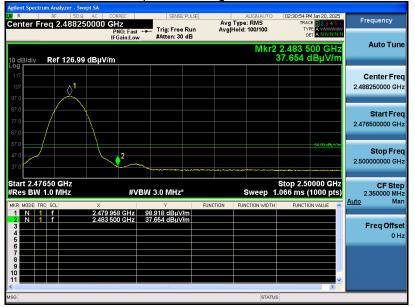
EUT Name	Bluetooth and WIFI combo module	Model Name	FSC-BW121
Temperature	25 ℃	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna Polarity	Vertical

Test Graph for Peak Measurement

Test Graph for Average Measurement



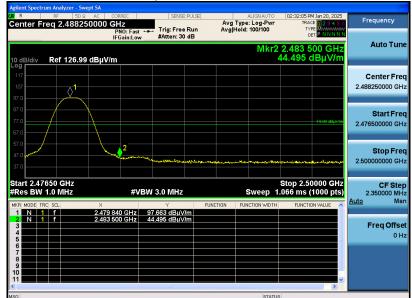
RESULT: PASS



EUT Name	Bluetooth and WIFI combo module	Model Name	FSC-BW121
Temperature	25 ℃	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna Polarity	Horizontal

Test Graph for Peak Measurement

Test Graph for Average Measurement



RESULT: PASS

EUT Name	Bluetooth and WIFI combo module	Model Name	FSC-BW121
Temperature	25 ℃	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna Polarity	Vertical

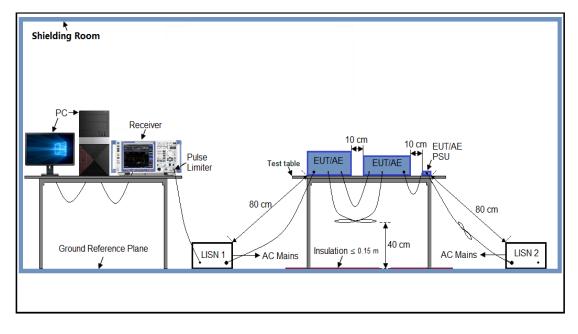
Test Graph for Peak Measurement

Test Graph for Average Measurement

RESULT: PASS

Note: The factor had been edited in the "Input Correction" of the Spectrum Analyzer.

12. AC Power Line Conducted Emission Test


12.1 Measurement Limit

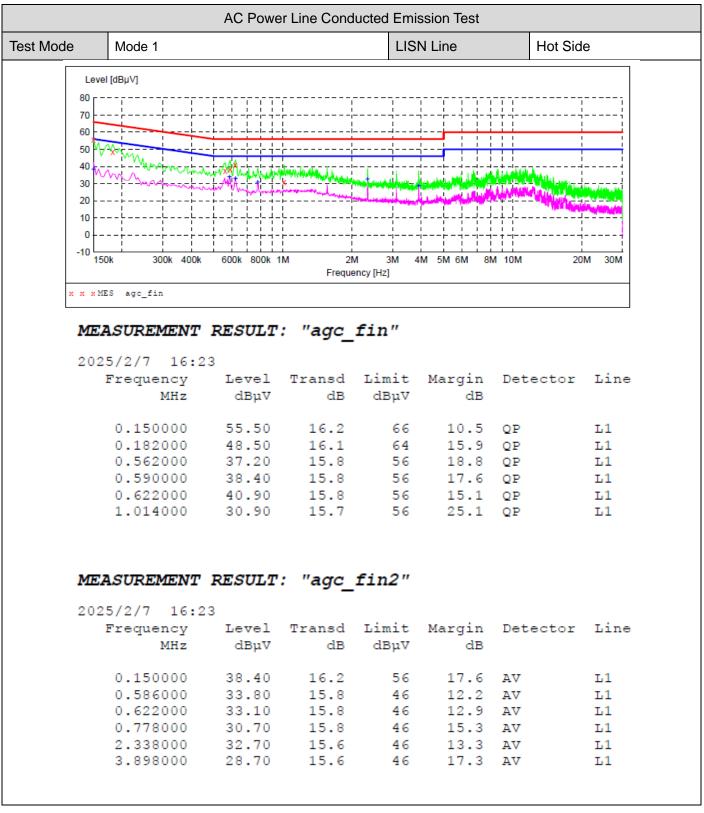
Fragueney	Maximum RF Line Voltage		
Frequency	Q.P. (dBµV)	Average (dBµV)	
150kHz~500kHz	66-56	56-46	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	

Note:

- 1. The lower limit shall apply at the transition frequency.
- 2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz

12.2 Measurement Setup (Block Diagram of Configuration)

12.3 Preliminary Procedure of Line Conducted Emission Test

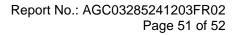

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. All support equipment received AC120V/60Hz power from a LISN, if any.
- 5. The EUT received DC 5V power from adapter which received AC120V/60Hz power from a LISN.
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side).
- Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 8. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 9. During the above scans, the emissions were maximized by cable manipulation.
- 10. The test mode(s) were scanned during the preliminary test.
- 11. Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

12.4 Final Procedure of Line Conducted Emission Test

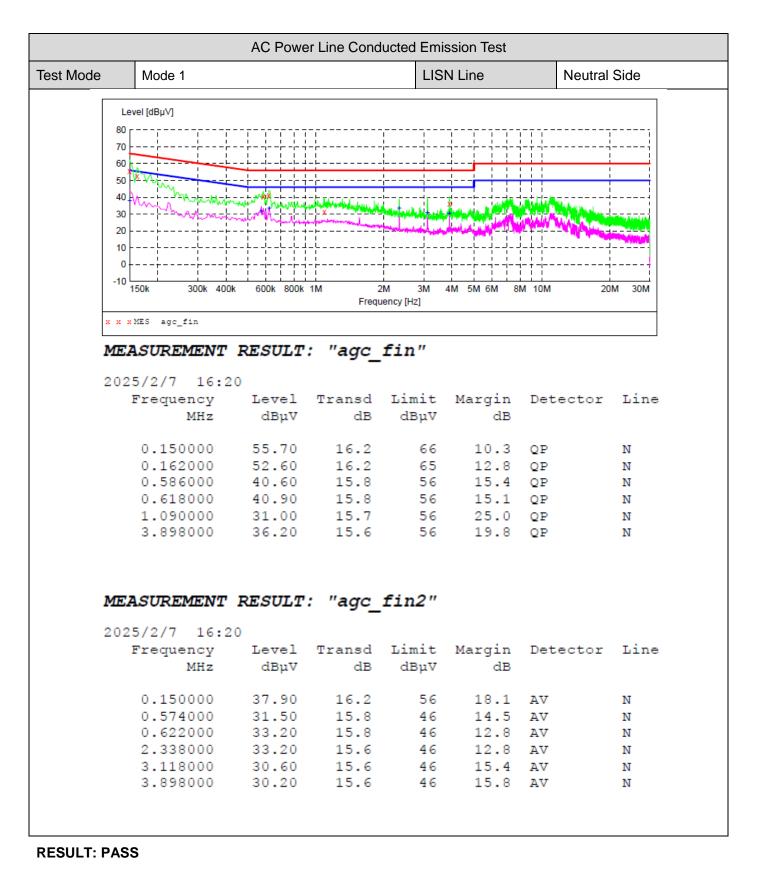
- 1. EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- 2. A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit.
- 3. If EUT emission level was less –2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 4. The test data of the worst case condition(s) was reported on the Summary Data page.
- 5. A conducted emission is calculated by the following equation:
 - Measurement Level (dBµV) = Receiver reading (dBµV) + Transd (dB)
 - Transd (dB)= AMN Factor(dB)+Cable Loss(dB)+Attenuation(dB)
 - Margin= Limit-Level

12.5 Measurement Result

RESULT: PASS


Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

 Attestation of Global Compliance(Shenzhen)Co., Ltd


 Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd

 Tel: +86-755 2523 4088
 E-mail: agc@agccert.com

 Web: http://www.agccert.com/

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

 Attestation of Global Compliance(Shenzhen)Co., Ltd

 Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd

 Tel: +86-755 2523 4088
 E-mail: agc@agccert.com

Appendix I: Photographs of Test Setup

Refer to the Report No.: AGC03285241203AP03

Appendix II: Photographs of Test EUT

Refer to the Report No.: AGC03285241203AP02

-----End of Report-----

Conditions of Issuance of Test Reports

1. All samples and goods are accepted by the Attestation of Global Compliance (Shenzhen) Co., Ltd (the "Company") solely for testing and reporting in accordance with the following terms and conditions. The company provides its services on the basis that such terms and conditions constitute express agreement between the company and any person, firm or company requesting its services (the "Clients").

2. Any report issued by Company as a result of this application for testing services (the "Report") shall be issued in confidence to the Clients and the Report will be strictly treated as such by the Company. It may not be reproduced either in its entirety or in part and it may not be used for advertising or other unauthorized purposes without the written consent of the Company. The Clients to whom the Report is issued may, however, show or send it, or a certified copy thereof prepared by the Company to its customer, supplier or other persons directly concerned. The Company will not, without the consent of the Clients, enter into any discussion or correspondence with any third party concerning the contents of the Report, unless required by the relevant governmental authorities, laws or court orders.

3. The Company shall not be called or be liable to be called to give evidence or testimony on the Report in a court of law without its prior written consent, unless required by the relevant governmental authorities, laws or court orders.

4. In the event of the improper use of the report as determined by the Company, the Company reserves the right to withdraw it, and to adopt any other additional remedies which may be appropriate.

5. Samples submitted for testing are accepted on the understanding that the Report issued cannot form the basis of, or be the instrument for, any legal action against the Company.

6. The Company will not be liable for or accept responsibility for any loss or damage however arising from the use of information contained in any of its Reports or in any communication whatsoever about its said tests or investigations.

7. Clients wishing to use the Report in court proceedings or arbitration shall inform the Company to that effect prior to submitting the sample for testing.

8. The Company is not responsible for recalling the electronic version of the original report when any revision is made to them. The Client assumes the responsibility to providing the revised version to any interested party who uses them.

9. Subject to the variable length of retention time for test data and report stored hereinto as otherwise specifically required by individual accreditation authorities, the Company will only keep the supporting test data and information of the test report for a period of six years. The data and information will be disposed of after the aforementioned retention period has elapsed. Under no circumstances shall we provide any data and information which has been disposed of after retention period. Under no circumstances shall we be liable for damage of any kind, including (but not limited to) compensatory damages, lost profits, lost data, or any form of special, incidental, indirect, consequential or punitive damages of any kind, whether based on breach of contract of warranty, tort (including negligence), product liability or otherwise, even if we are informed in advance of the possibility of such damages.