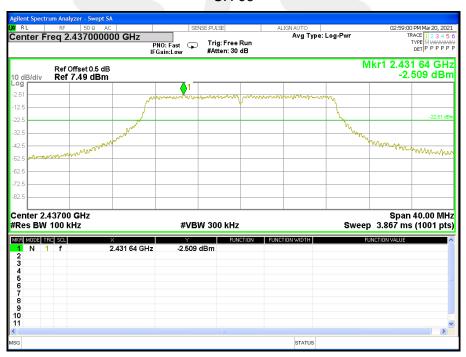


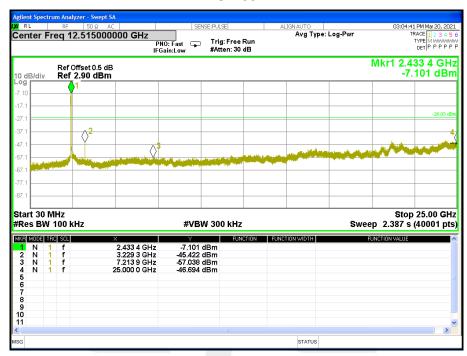
Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 3V	Test Mode:	TX n Mode(20M) /CH01, CH06, CH11

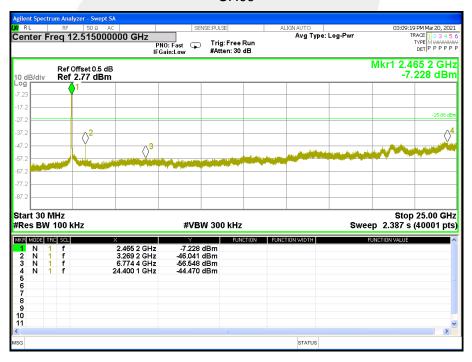
CH 01



Band edge(it's also the reference level for conducted spurious emission)

CH 01




Page 40 of 68	Report No.:STS2103	3072W09
---------------	--------------------	---------

Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 3V	Test Mode:	TX n Mode(40M) /CH03, CH06, CH09



Band edge(it's also the reference level for conducted spurious emission)

CH03

5. POWER SPECTRAL DENSITY TEST

5.1 LIMIT

FCC Part15.247 , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(e)	Power Spectral Density	≤8 dBm (RBW ≥3KHz)	2400-2483.5	PASS

5.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the 100 kHz ≥ RBW ≥3 kHz.
- 4. Set the VBW ≥ 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

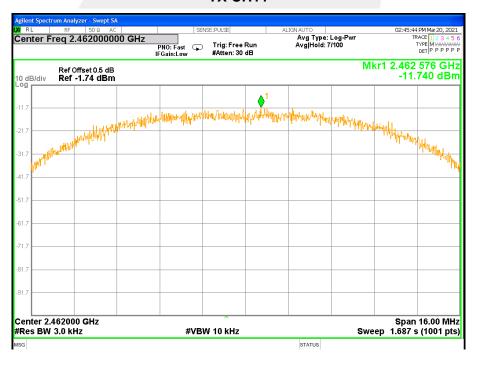
5.3 DEVIATION FROM STANDARD No deviation.

5.4 TEST SETUP

5.5 EUT OPERATION CONDITIONS

Please refer to section 3.1.4 of this report.

5.6 TEST RESULTS


Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 3V	Test Mode:	TX b Mode /CH01, CH06, CH11

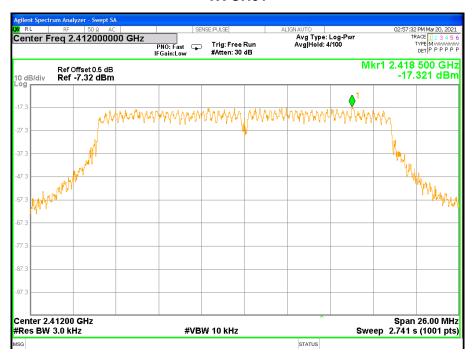
Fraguency	Power Density	Limit (dPm/2KHz)	Popult	
Frequency	(dBm/3kHz)	Limit (dBm/3KHz)	Result	
2412 MHz	-11.900	≤8	PASS	
2437 MHz	-11.677	≤8	PASS	
2462 MHz	-11.740	≤8	PASS	



Page 47 of 68 Report No.:STS2103072W09


Temperature:	25℃	Relative Humidity:	60%
Test Voltage:	DC 3V	Test Mode:	TX g Mode /CH01, CH06, CH11

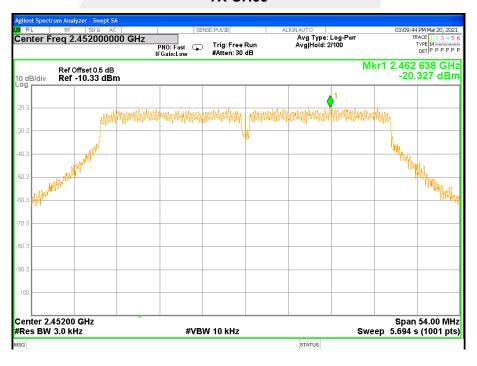
Fraguency	Power Density	Limit (dDm/2l/Ll=)	Popult	
Frequency	(dBm/3kHz)	Limit (dBm/3KHz)	Result	
2412 MHz	-17.4700	≤8	PASS	
2437 MHz	-17.1920	≤8	PASS	
2462 MHz	-17.0170	≤8	PASS	





Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 3V	Test Mode:	TX n Mode(20M) /CH01, CH06, CH11

Fraguenay	Power Density	Limit (dBm/3KHz)	Result	
Frequency	(dBm/3kHz)	LIIIII (UBIII/3KHZ)		
2412 MHz	-17.3210	≤8	PASS	
2437 MHz	-17.1550	≤8	PASS	
2462 MHz	-17.1550	≤8	PASS	


Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 3V	Test Mode:	TX n Mode(40M) /CH03, CH06, CH09

Fraguency	Power Density	Limit (dDm/2l/Ll=)	Dogult	
Frequency	(dBm/3kHz)	Limit (dBm/3KHz)	Result	
2422 MHz	-21.0260	≤8	PASS	
2437 MHz	-19.8500	≤8	PASS	
2452 MHz	-20.3270	≤8	PASS	

6. BANDWIDTH TEST

6.1 LIMIT

FCC Part15.247,Subpart C				
Section Test Item Limit			Frequency Range (MHz)	Result
15.247(a)(2)	Bandwidth	≥500KHz (6dB bandwidth)	2400-2483.5	PASS

6.2 TEST PROCEDURE

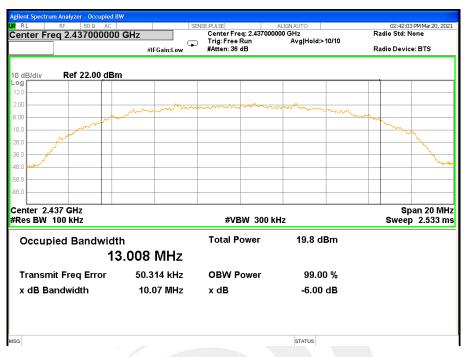
The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW≥3RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be≥6 dB.

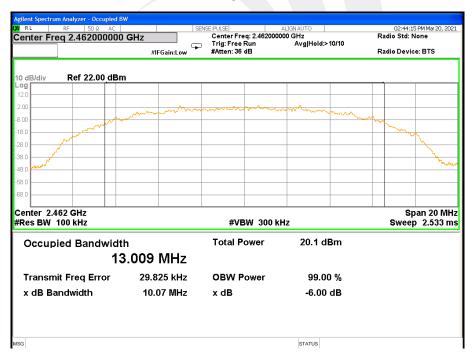
6.3 DEVIATION FROM STANDARD No deviation.

6.4 TEST SETUP

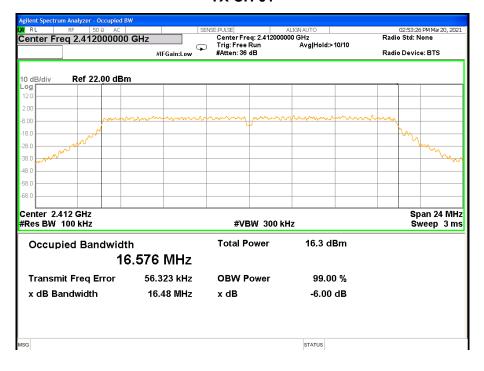
6.5 EUT OPERATION CONDITIONS Please refer to section 3.1.4 of this report.

6.6 TEST RESULTS


Temperature:	25℃	Relative Humidity:	60%
Test Voltage:	DC 3V	Test Mode:	TX b Mode /CH01, CH06, CH11


Remark: PEAK DETECTOR IS USED

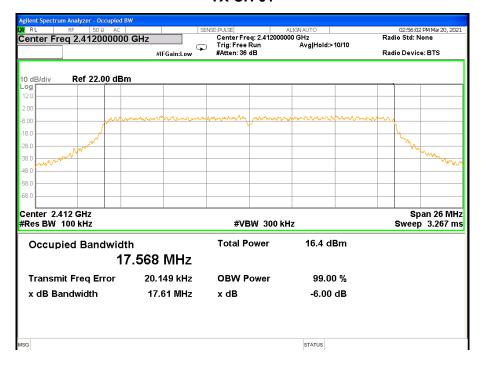
Fraguency	6dB Bandwidth	Limit	Result
Frequency	(MHz)	(KHz)	Result
2412 MHz	10.070	≥500KHz	PASS
2437 MHz	10.070	≥500KHz	PASS
2462 MHz	10.070	≥500KHz	PASS

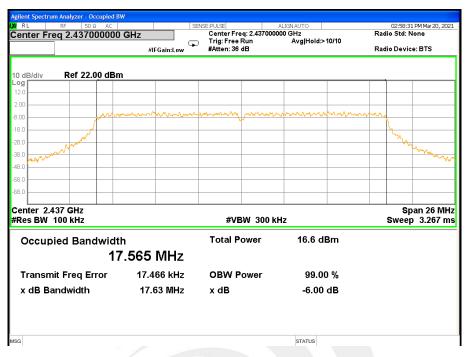


Page 56 of 68 Report No.:STS2103072W09

Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 3V	Test Mode:	TX g Mode /CH01, CH06, CH11

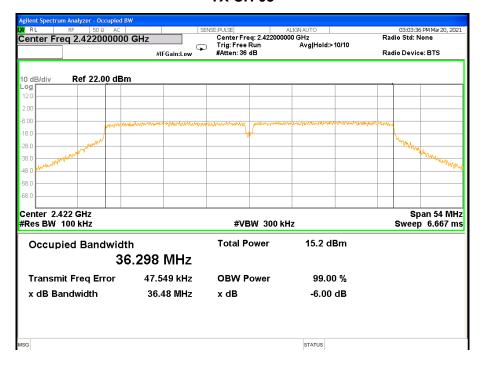
Fraguency	6dB Bandwidth	Limit	Result
Frequency	(MHz)	(KHz)	Kesuit
2412 MHz	16.48	≥500KHz	PASS
2437 MHz	16.47	≥500KHz	PASS
2462 MHz	16.47	≥500KHz	PASS

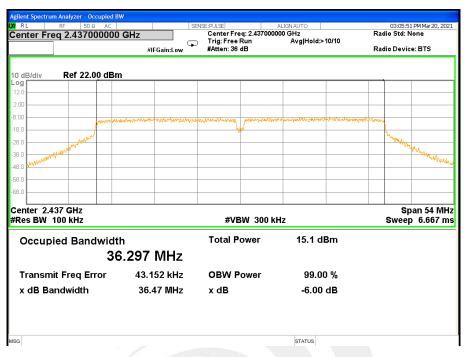


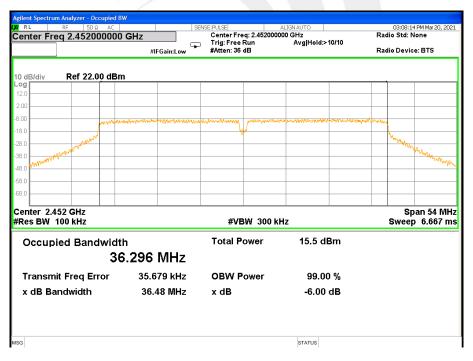



Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 3V	Test Mode:	TX n Mode(20M) /CH01, CH06, CH11

Fraguency	6dB Bandwidth	Limit	Result
Frequency	(MHz)	(KHz)	Kesuit
2412 MHz	17.61	≥500KHz	PASS
2437 MHz	17.63	≥500KHz	PASS
2462 MHz	17.62	≥500KHz	PASS






Temperature:	25℃	Relative Humidity:	60%
Test Voltage:	DC 3V	Test Mode:	TX n Mode(40M) /CH03, CH06, CH09

Fraguency	6dB Bandwidth	Limit	Result
Frequency	(MHz)	(KHz)	Kesuit
2422 MHz	36.48	≥500KHz	PASS
2437 MHz	36.47	≥500KHz	PASS
2452 MHz	36.48	≥500KHz	PASS

7. PEAK OUTPUT POWER TEST

7.1 LIMIT

FCC Part15.247,Subpart C				
Section Test Item Limit Frequency Range (MHz)				
15.247(b)(3)	Output Power	1 watt or 30dBm	2400-2483.5	PASS

7.2 TEST PROCEDURE

One of the following procedures may be used to determine the maximum peak conducted output power of a DTS EUT.

RBW ≥ DTS bandwidth

The following procedure shall be used when an instrument with a resolution bandwidth that is greater than the DTS bandwidth is available to perform the measurement:

- a) Set the RBW ≥ DTS bandwidth.
- b) Set VBW \geq [3 \times RBW]. c) Set span \geq [3 \times RBW].
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

Integrated band power method:

The following procedure can be used when the maximum available RBW of the instrument is less than the

DTS bandwidth:

- a) Set the RBW = 1 MHz.
- b) Set the VBW ≥ [3 × RBW].
- c) Set the span \geq [1.5 × DTS bandwidth].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges (for some instruments, this may require a manual override to select the peak detector). If the instrument does not have a band power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the DTS channel bandwidth.

PKPM1 Peak power meter method:

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.

7.3 DEVIATION FROM STANDARD

No deviation.

7.5 EUT OPERATION CONDITIONS Please refer to section 3.1.4 of this report.

7.6 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 3V		

Mode	Test Channel	Frequency	Peak Conducted Output Power	Average Conducted Output Power	LIMIT
		(MHz)	(dBm)	(dBm)	dBm
	CH01	2412	15.53	12.53	30
TX 802.11b	CH06	2437	15.34	12.63	30
	CH11	2462	15.36	12.65	30
	CH01	2412	16.67	11.45	30
TX 802.11g	CH06	2437	16.91	11.80	30
	CH11	2462	17.04	11.85	30
	CH01	2412	16.99	11.21	30
TX 802.11n20	CH06	2437	17.11	11.60	30
	CH11	2462	17.47	11.64	30
	CH01	2422	15.14	10.57	30
TX 802.11n40	CH06	2437	15.19	10.67	30
	CH11	2452	15.21	10.73	30

Note: Our power sensor test AVG power has no duty cycle display. The power sensor measures AVG power is Burst power. The software has considered the factor of the duty cycle factor, so it is unnecessary to add it again.

Duty cycle

Page 65 of 68

Mode	Ton	Тр	Duty cycle(%)	Duty factor(dB)
802.11b	0.598	1.236	48.37%	3.15
802.11g	0.593	1.226	48.35%	3.16
802.11n20	0.573	1.211	47.27%	3.25
802.11n40	0.588	1.226	47.94%	3.19

802.11b

802.11g

802.11n(HT20)

802.11n(HT40)

8. ANTENNA REQUIREMENT

8.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible partyshall be used with the device.

8.2 EUT ANTENNA

The EUT antenna is PCB Antenna. It comply with the standard requirement.

APPENDIX-PHOTOS OF TEST SETUP

Note: See test photos in setup photo document for the actual connections between Product and support equipment.

* * * * * END OF THE REPORT * * * *

