

Conversion Factor Assessment

Body	835 MHz	$\epsilon_r = 55.2 \pm 5\%$	σ = 0.97 ± 5% mho/m

Valid for f=793-877 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C

ConvF X	6.1 ± 9.5% (k=2)	Boundary effect:
ConvF Y	6.1 ± 9.5% (k=2)	Alpha 0.24
ConvF Z	6.1 ± 9.5% (k=2)	Depth 2.00

Body

1900 MHz

ε, = 53.3 ± 5%

σ = 1.52 ± 5% mho/m

Valid for f=1805-1995 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C

ConvF X	4.6	± 9.5% (k=2)	Boundary	effect:
ConvF Y	4.6	± 9.5% (k=2)	Alpha	0.24
ConvF Z	4.6	± 9.5% (k=2)	Depth	2.64

Page 4 of 6

Conversion Factor Assessment

Body	900 MHz		ε r = 55.	0±5% σ=	1.05 ± 5% mho/m	
Valid for f=855-945	MHz with Bo	dy Tissue	e Simulating	Liquid according to	OET 65 Suppl. C	
ConvF	х	6.1 ± 9).5% (k=2)		Boundary effect:	

ConvF Y	6.1 ± 9.5% (k=2)	Alpha	0.27
ConvF Z	6.1 ± 9.5% (k=2)	Depth	1.82

Body	1800 MI	Ηz	ε _r = 53.3 ± 5%	σ = 1.52 ± 5% mho/m
Valid fo	or f=1710-1890 MHz w	rith Body	Tissue Simulating Liquid	according to OET 65 Suppl. C
	ConvF X	4.7	± 9.5% (k=2)	Boundary effect:
	ConvF Y	4.7	± 9.5% (k=2)	Alpha 0.23
	ConvF Z	4.7	± 9.5% (k=2)	Depth 2.99

Page 5 of 6

Conversion Factor Assessment

Head	2450 MHz	ε _r = 39.2 ± 5%	σ = 1.80 ± 5% mho/m
Valid for f=	2400-2500 MHz with Head Ti	ssue Simulating Liquid ad	cording to EN 50361, P1528-200X

ConvF X	4.5	± 9.5% (k=2)	Boundary effe	ct:
ConvF Y	4.5	± 9.5% (k=2)	Alpha	0.40
ConvF Z	4.5	± 9.5% (k=2)	Depth	1.62

Body	2450 MHz		$\varepsilon_r = 52.7 \pm 5\%$	o = 1.95 ± 5% mho/m	
Valid for f=	2400-2500 MHz with	Body	Tissue Simulating Liquid a	according to OET 65 Suppl. C	
	ConvF X	4.2	± 9.5% (k=2)	Boundary effect:	
	ConvF Y	4.2	± 9.5% (k=2)	Alpha 0.3	12
	ConvF Z	4.2	± 9.5% (k=2)	Depth 1.9	8

Page 6 of 6

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Additional Conversion Factors

for Dosimetric E-Field Probe

уре:	ES3DV2
Serial Number:	3019
Place of Assessment	Zurich
Date of Assessment:	October 13, 2003
Probe Calibration Date:	October 9, 2003

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

Assessed by:

Man . Hata

ES3DV2-SN:3019

October 13, 2003

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speeg.com, http://www.speag.com

Dosimetric E-Field Probe ES3DV2 SN:3019

Conversion factor (± standard deviation)

150 MHz	ConvF	8.7 ± 8%	$\epsilon_r = 52.3 \pm 5\%$
			$\sigma = 0.76 \pm 5\%$ mho/m
			(head tissue)
150 MHz	ConvF	8.3 ± 8%	$\varepsilon_r = 61.9 \pm 5\%$
			$\sigma = 0.80 \pm 5\%$ mho/m
			(body tissue)
450 MH2	ConvF	7.4 ± 8%	$\epsilon_{r} = 43.5 \pm 5\%$
450 11111	çonti	1112014	$\sigma = 0.87 \pm 5\%$ mho/m
			(head tissue)
450 MHz	ConvF	7.3 ± 8%	$e_r = 56.7 \pm 5\%$
			$\sigma = 0.94 \pm 5\%$ mho/m
			(body tissue)

ES3DV2-SN:3019

October 13, 2003

Freq. (MHz) 5725	Amplitude (dB) 5 -53.5	Phase (deg) 152	Rel. Perm 51	Condy (S/m) 6.829	Freq. (MHz) 400	Rel. Perm. 45.3	Condy (S/m) 0.87				0	
5800	54	138	50.81	6.891	835	41.5	0.9					
0620	-04./5	134	50.65	6.996	900	41.5	0.97				Conductivity	
					1450	40.5	1.2		T		in Lawrence and the second	
					1800	40	1.4	Ê	·			
					2000	40	1.4	IS)	0.5		- Hereiter auf	
					2450	39.2	1.8	vity	6		Salat Spectra	
					3000	38.5	2.4	rcti	° 	and the second		10%
					5800	48.2	6	ndt	5.5			-10%
					400	40.00		5			A STATE AND	Body liqui
					400	49.83	0.96	10	5	i shiri shiri		Dody ilqui
					000	45.05	0.99 High	1%	5700		580	10
					1450	40.00	1.07				frequency (MHz)	
					1900	44.00	1.32					
					2000	44.00	1.54				Permittivity	
					2450	43.10	1.04		F.4. 1989	The conference of		1
					3000	42 35	2.64	λį.	52			All Market States
					5800	53 02	6.60	111	50			
						00.01	0.00	E	48			
					400	40.77	0.78	10	46	in part for	a diffe and a day	
					835	37.35	0.81 Low	% ativ	44			10%
					900	37 35	0.87	k la	42			
					1450	36 45	1.08		40			Body liquic
					1800	36.00	1.26		5700		580	N
					2000	36.00	1.26				frequency (MHz)	
					2450	35.28	1 62					
					3000	34.65	2 18					

FCC ID: MCLAIRMPI350DE:

Body 2450 MHz Liquid Measurement, 2004-02-10

				//
				nona
frequency	e' e''	2450 MHz Body Liq	und	1, 12004
2400000000.0000	52.6735	13.9488		2/10/2007
2404000000.0000	52.7475	13.9783		1 1
240600000.0000	52.8836	14.0266		
2410000000.0000	52.8734	14.0039		
2412000000.0000	52.7795	14.0342		
2416000000.0000	52.8348	14.0219		
2418000000.0000	52.8524	14.0258		
2422000000.0000	52.7181	14.0445		
2424000000.0000	52.5875	14.0311		
2428000000.0000	52.4572	14.1060		
2430000000.0000	52.4977	14.1055		
2434000000.0000	52.5003	14.0501		
2436000000.0000	52.6003	14.0984		
2440000000.0000	52.6844	14.0881		
2444000000.0000	52.6703	14.1109		
244600000.0000	52.5996	14.0723		
245000000.0000	52.5417	14.1503	- =	
2452000000.0000	52.5663	14.1605	1.9286	
2456000000.0000	52.6193	14.1507		
2458000000.0000	52.5963	14.1875		
2462000000.0000	52.6125	14.2219		
2464000000.0000	52.6254	14.2225		
246800000.0000	52.6151	14.2436		
2472000000.0000	52.5904	14.2328		
247400000.0000	52.6791 52.7674	14.2458		
2478000000.0000	52.8528	14.2699		
2480000000.0000	52.7638	14.2813		
2484000000.0000	52.6734	14.3042		
2486000000.0000	52.6112	14.2960		
249000000.0000	52.6158	14.2949		
2494000000.0000	52.6620	14.3215		
2496000000.0000	52.7338	14.3311 14.3290		
2500000000.0000	52.7454	14.3182		

 $\sigma = \omega \varepsilon_o \varepsilon'' = 2 \pi f \varepsilon_o \varepsilon'' = 1.9286$ where $f = 2450x 10^6$ $\varepsilon_o = 8.854 x 10^{-12}$ $\varepsilon'' = 14.1503$

FCC ID: MCLAIRMPI350DE:

Head 2450 MHz Liquid Measurement, 2004-02-10

2/10/2004

		2450 MHz head Liquid	4
frequency 230000000.0000 2304166666.6667 230833333.333 2312500000.0000 2316666666.6667 232083333.333 2325000000.0000 23291666666.6667 233333333.333 237500000.0000 2341666666.6667 234583333.333 235000000.0000 23541666666.6667 237083333.333 237500000.0000 23791666666.6667 239583333.333 237500000.0000 2391666666.6667 239583333.333 240000000.0000 2404166666.6667 24083333.333 2412500000.0000 241666666.6667 24083333.333 2412500000.0000 241666666.6667 24083333.333 2412500000.0000 241666666.6667 242083333.333 2412500000.0000 241666666.6667 2433333.333 2437500000.0000 241666666.6667 2433333.333 2437500000.0000 2441666666.6667 2433333.333 2437500000.0000 2441666666.6667 2433333.333 2437500000.0000 2441666666.6667 2433333.333 2437500000.0000 2441666666.6667 2433333.333 2437500000.0000 2441666666.6667 2433333.333 2437500000.0000 2454166666.6667 244583333.333	e' e'' 39.5703 39.5415 39.4667 39.4315 39.4022 39.3488 39.3614 39.3418 39.3418 39.3418 39.3418 39.34172 39.4612 39.4612 39.4612 39.4690 39.44769 39.44769 39.4490 39.44769 39.4918 39.5275 39.528 39.5017 39.5017 39.5017 39.5017 39.5017 39.5017 39.5017 39.5017 39.5017 39.5017 39.5017 39.5017 39.5017 39.5025 39.5291 39.5025 39.5291 39.5025 39.5291 39.5027 39.5291 39.5025 39.5291 39.5025 39.5291 39.5025 39.5291 39.5025 39.5291 39.5025 39.5291 39.5025 39.5291 39.5025 39.5291 39.5025 39.5291 39.5025 39.5291 39.5025 39.5291 39.5025 39.5025 39.5025 39.22926 39.1275 39.0281 39.0048	13.1568 13.1731 13.1753 13.2026 13.2276 13.2427 13.2583 13.2726 13.3395 13.3799 13.4183 13.4666 13.4830 13.5563 13.5563 13.5563 13.5563 13.6205 13.6115 13.6205 13.6372 13.6540 13.6646 13.6824 13.6646 13.6824 13.6667 13.6865 13.6458 13.6664 13.5818 13.6054 13.6664 13.5818 13.6054 13.6654 13.6822 13.6520 13.6664 13.5818 13.6054 13.6654 13.6825 13.6252 13.5945 13.7377 13.7639 13.7910 13.8263 	- 1.8845
2458333333.333 2462500000.0000 24666666666.6667 2470833333.333 2475000000.0000 2479166666.6667 24833333.333 2487500000.0000 2491666666.6667 249583333.333 2500000000.0000	38.9243 38.9485 39.0303 39.0456 39.1292 39.0972 39.0786 39.1383 39.2013 39.1794 39.1380	$13.8131 \\ 13.8584 \\ 13.9177 \\ 13.9368 \\ 14.0190 \\ 14.0417 \\ 14.1126 \\ 14.1530 \\ 14.1851 \\ 14.2151 \\ 14.2148 $	

 $\sigma = \omega \varepsilon_o \varepsilon'' = 2 \pi f \varepsilon_o \varepsilon'' = 1.8845$ where $f = 2450x \ 10^{\circ}$ $\varepsilon_o = 8.854 \ x \ 10^{-12}$ $\varepsilon'' = 13.8263$

3 - EUT SUMMARY

Applicant:	AMBIT Microsystems Corporation
Product Description:	Wireless MinPCI Card
Model Name:	AIR-MPI350
FCC ID:	MCLAIRMPI350DE
Serial Number:	00000001SC/00D059C99003
Transmitter Frequency:	2412-2462 MHz
Maximum Output Power:	20.67 dBm (117 mW)
RF Exposure environment:	General Population/Uncontrolled
Power Supply:	DELL AC Adapter, M/N: AA22850
Applicable Standard	FCC CFR 47, Part 15 Subpart C
Application Type:	Certification

1 Specific Absorption Rate (SAR) is a measure of the rate of energy absorption due to exposure to an RF transmitting source (wireless portable device).
2 IEEE/ANSI Std. C95.1-1992 limits are used to determine compliance with FCC ET Docket 93-62.

Note: The test data was good for test sample only. It may have deviation for other test samples.

* The test data gathered are from production sample, serial number: MPI350-001, provided by the manuafactuer.

4 - SYSTEM TEST CONFIGURATION

4.1 Justification

The system was configured for testing in a typical fashion (as normally used by a typical user).

4.2 EUT Exercise Software and Procedure

The EUT exercising program used during SAR testing was designed to exercise the various system components in a manner similar to a typical use. The software, PRISM utilities, contained on the hard drive, is auto starting on power-up. Once loaded, the program sequentially exercises each system component.

The testing procedure is as follows:

- 1. Click PRISM test utilities on Window
- 2. Select wireless LAN Adapter under adapters list
- 3. Select low, mid and high channels under Radio Channels
- 4. Select Tx Rate of 11MB
- 5. Click on "continuous Tx" bottom

4.3 Special Accessories

All interface cables used for compliance testing are shielded as normally supplied by INMAC, Monster Cable and their respective support equipment manufacturer. The EUT is featured shielded metal connectors.

4.4 Equipment Modifications

No modification(s) were made to ensure that the EUT complies with the applicable limits.

5 - CONDUCTED OUTPUT POWER MEASUREMENT

5.1 Measurement Procedure

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to a spectrum analyzer.
- 3. Add a correction factor to the display.

5.2 Test Results

HFT06

Antenna	Frequency (MHz)	Peak Output Power (dBm)	Correction Factor (dBm)	Corrected Factor (dBm)	Output Power (W)	Standard (W)	Result
Main	2462	12.50	8.0	20.50	0.112	<u><</u> 1 W	Compliant
	2437	12.67	8.0	20.67	0.117	<u>≤</u> 1 W	Compliant
	2412	12.50	8.0	20.50	0.112	≤1 W	Compliant
Auxiliary	2463	12.50	8.0	20.50	0.112	≤1 W	Compliant
	2437	12.67	8.0	20.67	0.117	<u>≤</u> 1 W	Compliant
	2412	12.33	8.0	20.33	0.108	<u><</u> 1 W	Compliant

CAQ-S

Antenna	Frequency (MHz)	Peak Output Power (dBm)	Correction Factor (dBm)	Corrected Factor (dBm)	Output Power (W)	Standard (W)	Result
Main	2437	12.67	8.0	20.67	0.117	<u><</u> 1 W	Compliant
Auxiliary	2437	12.50	8.0	20.50	0.112	≤1 W	Compliant

*Correction Factor = 10 Log
$$\frac{6\text{dB Bandwidth}}{\text{RBW}}$$
 = 10 Log $\frac{13}{2} \approx 8.0$

5.3 Measurement Plots

Please refer to the plots hereinafter.

Ambit Microsystems Corporation

FCC ID: MCLAIRMPI350DE:

HFT06

Ambit Microsystems Corporation

FCC ID: MCLAIRMPI350DE:

Ambit Microsystems Corporation

FCC ID: MCLAIRMPI350DE:

CAQ-S

6 - DOSIMETRIC ASSESSMENT SETUP

These measurements were performed with the automated near-field scanning system DASY3 from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision robot (working range greater than 0.9m) which positions the probes with a positional repeatability of better than ± 0.02 mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines to the data acquisition unit. The system is described in detail in [3].

The SAR measurements were conducted with the dosimetric probe ET3DV6 SN: 1604 (manufactured by SPEAG), designed in the classical triangular configuration [3] and optimized for dosimetric evaluation. The probe has been calibrated according to the procedure described in [7] with accuracy of better than $\pm 10\%$. The spherical isotropy was evaluated with the procedure described in [8] and found to be better than ± 0.25 dB.

The phantom used was the \Generic Twin Phantom" described in [4]. The ear was simulated as a spacer of 4 mm thickness between the earpiece of the phone and the tissue simulating liquid. The Tissue simulation liquid used for each test is in according with the FCC OET65 supplement C as listed below.

Ingredients	Frequency (MHz)									
(% by weight)	45	0	83	35	9	15	1900		2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (Nacl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton x-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.2	52.7
Conductivity (s/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.80	1.91

6.1 Measurement System Diagram

The DASY3 system for performing compliance tests consist of the following items:

- 1. A standard high precision 6-axis robot (Stäubli RX family) with controller and software.
- 2. An arm extension for accommodating the data acquisition electronics (DAE).
- 3. A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- 4. A data acquisition electronic (DAE), which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- 5. A unit to operate the optical surface detector, which is connected to the EOC. The Electro-optical coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the PC plug-in card. The functions of the PC plug-in card based on a DSP is to perform the time critical task such as signal filtering, surveillance of the robot operation fast movement interrupts.
- 6. A computer operating Windows 95 or larger
- 7. DASY3 software
- 8. Remote control with teaches pendant and additional circuitry for robot safety such as warning lamps, etc.
- 9. The generic twin phantom enabling testing left-hand and right-hand usage.
- 10. The device holder for handheld EUT.
- 11. Tissue simulating liquid mixed according to the given recipes (see Application Note).
- 12. System validation dipoles to validate the proper functioning of the system.

6.2 System Components

ET3DV6 Probe Specification

Construction Symmetrical design with triangular core Built-in optical fiber for surface detection System Built-in shielding against static charges Calibration In air from 10 MHz to 2.5 GHz In brain and muscle simulating tissue at Frequencies of 450 MHz, 900 MHz and 1.8 GHz (accuracy \pm 8%) Frequency 10 MHz to > 6 GHz; Linearity: ± 0.2 dB (30 MHz to 3 GHz) Directivity ± 0.2 dB in brain tissue (rotation around probe axis) ± 0.4 dB in brain tissue (rotation normal probe axis) Dynamic 5 mW/g to > 100 mW/g; Range Linearity: $\pm 0.2 \text{ dB}$ Surface ± 0.2 mm repeatability in air and clear liquids Detection over diffuse reflecting surfaces. Dimensions Overall length: 330 mm Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm Distance from probe tip to dipole centers: 2.7 mm Application General dosimetric up to 3 GHz Compliance tests of mobile phones Fast automatic scanning in arbitrary phantoms

The SAR measurements were conducted with the dosimetric probe ET3DV6 designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multi-fiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY3 software reads the reflection during a software approach and looks for the maximum using a 2 nd order fitting. The approach is stopped when reaching the maximum.

Photograph of the probe

Inside view of ET3DV6 E-field Probe

E-Field Probe Calibration Process

Each probe is calibrated according to a dosimetric assessment procedure described in [6] with accuracy better than +/- 10%. The spherical isotropy was evaluated with the procedure described in [7] and found to be better than +/-0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a waveguide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

Data Evaluation

The DASY3 software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe Parameter:	-Sensitivity	Norm _i , a_{i0} , a_{i1} , a_{i2}
	-Conversion Factor	ConvFi
	-Diode compression point	Dcp _i
Device parameter:	-Frequency	f
	-Crest Factor	cf
Media parameter:	-Conductivity	σ
	-Density	ρ

These parameters must be set correctly in the software. They can either be found in the component documents or be imported into the software from the configuration files issued for the DASY3 components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$Vi = Ui + (Ui)^2 cf / dcp_i$$

With Vi = compensated signal of channel i (i = x, y, z)

- Ui = input signal of channel i (i = x, y, z)
- cf = crest factor of exciting field (DASY parameter)
- dcp_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes:

$$E_{i} = \sqrt{\frac{V_{i}}{Norm_{i} \cdot ConvF}}$$
H-field probes:

$$H_{i} = \sqrt{Vi} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^{2}}{f}$$

With Vi = compensated signal of channel i (i =x, y, z) Norm_i = sensor sensitivity of channel i (i = x, y, z) $\mu V/(V/m)^2$ for E-field probes ConF = sensitivity enhancement in solution

- = sensor sensitivity factors for H-field probes a_{ij} f
- = carrier frequency [GHz]
- = electric field strenggy of channel i in V/m Ei
- = diode compression point (DASY parameter) Hi

The RSS value of the field components gives the total field strength (Hermitian magnitude):

 $E_{tot} = Square Root [(E_x)^2 + (E_y)^2 + (E_z)^2]$

The primary field data are used to calculate the derived field units.

SAR =
$$(E_{tot})^2 \cdot \sigma / (\rho \cdot 1000)$$

With SAR = local specific absorption rate in mW/g

 E_{tot} = total field strength in V/m

= conductivity in [mho/m] or [Siemens/m] σ

= equivalent tissue density in g/cm^3 ρ

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

The power flow density is calculated assuming the excitation field as a free space field.

$$P_{pwe} = (E_{tot})^2 / 3770 \text{ or } P_{pwe} = (H_{tot})2 \cdot 37.7$$

With P_{pwe} = equivalent power density of a plane wave in mW/cm3

 E_{tot} = total electric filed strength in V/m

 H_{tot} = total magnetic filed strength in V/m

Generic Twin Phantom

The Generic Twin Phantom is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users [9][10]. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allows the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. Shell Thickness 2 ± 0.1 mm Filling Volume Approx. 20 liters Dimensions 810 x 1000 x 500 mm (H x L x W)

Generic Twin Phantom

Device Holder

In combination with the Generic Twin Phantom V3.0, the Mounting Device enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatedly positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

* Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produced infinite number of configurations [10]. To produce the worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests.

Device Holder