

FCC §15.247 (i), §2.1091 - RF Exposure

FCC ID: 2BC6T-ROCK5B

Applied procedures / limit

According to FCC §15.247(i) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ², H ²or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

Note: *f* is frequency in MHz

Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz

^{* =} Power density limit is applicable at frequencies greater than 100 MHz

^{* =} Plane-wave equivalent power density

MPE PREDICTION

Predication of MPE limit at a given distance, Equation from OET Bulletin 65, Edition 97-01

$$S = PG/4\pi R^2$$

Where: S = power density

P = power input to antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna, R=0.2m

TEST RESULTS

	Tune up Produce power	Maximum peak output power (dBm)	Output power to antenna (mW)	Antenna Gain (numeric)	Power Density (S) (mW/ cm2)	Limit (mW / cm2	Result
вт	7±1	8	6.31	1.62(2.1dBi)	0.002034	1	Pass
BLE	1±1	2	1.58	1.62(2.1dBi)	0.000509	1	Pass
2.4G WIFI	14±1	15	31.63	1.62(2.1dBi)	0.010197	1	Pass
5.1G WIFI	12±1	13	19.95	1.56(1.93dBi)	0.006193	1	Pass
5.8G WIFI	12±1	13	19.95	1.56(1.93dBi)	0.006193	1	Pass

The maximum value of the WIFI part is MIMO

For the Max simultaneous transmission:

	Power Density (S) (mW/ cm2)	Total Power Density (S)	Limit	Result
ВТ	0.002034			
2.4GHz	0.010197			
WIFI	0.010197	0.018424	1	Pass
5GHz	0.006193			
WIFI	0.006193			

For the max result : 0.018424 \leq 1.0, compliance with FCC's RF Exposure