FCC TEST REPORT **REPORT NO.:** RF140922C21 MODEL NO.: TR 165 FCC ID: DMOTR165 **RECEIVED:** Sep. 22, 2014 **TESTED:** Sep. 25 ~ Sep. 30, 2014 ISSUED: Oct. 06, 2014 **APPLICANT:** Sennheiser electronic GmbH & Co.KG. ADDRESS: Am Labor 1 D-30900 Wedemark, Germany **ISSUED BY:** Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch LAB ADDRESS: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan, R.O.C. **TEST LOCATION:** No. 19, Hwa Ya 2nd Rd, Wen Hwa Tsuen, Kwei Shan Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C. This report should not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies. This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification ## **Table of Contents** | RELE | ASE CONTROL RECORD | 4 | |-------|--|----| | 1. | CERTIFICATION | 5 | | 2. | SUMMARY OF TEST RESULTS | 6 | | 2.1 | MEASUREMENT UNCERTAINTY | 6 | | 3. | GENERAL INFORMATION | 7 | | 3.1 | GENERAL DESCRIPTION OF EUT | 7 | | 3.2 | DESCRIPTION OF TEST MODES | 8 | | 3.2.1 | TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL | 9 | | 3.3 | DESCRIPTION OF SUPPORT UNITS | 11 | | 3.3.1 | CONFIGURATION OF SYSTEM UNDER TEST | 11 | | 3.4 | GENERAL DESCRIPTION OF APPLIED STANDARDS | 12 | | 4. | TEST TYPES AND RESULTS | 13 | | 4.1 | RADIATED EMISSION AND BANDEDGE MEASUREMENT | 13 | | 4.1.1 | LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT | 13 | | 4.1.2 | TEST INSTRUMENTS | 14 | | 4.1.3 | TEST PROCEDURES | 15 | | 4.1.4 | DEVIATION FROM TEST STANDARD | 15 | | 4.1.5 | TEST SETUP | 16 | | 4.1.6 | EUT OPERATING CONDITIONS | 16 | | 4.1.7 | TEST RESULTS | 17 | | 4.2 | CONDUCTED EMISSION MEASUREMENT | 21 | | 4.2.1 | LIMITS OF CONDUCTED EMISSION MEASUREMENT | 21 | | 4.2.2 | TEST INSTRUMENTS | 21 | | 4.2.3 | TEST PROCEDURES | 22 | | 4.2.4 | DEVIATION FROM TEST STANDARD | 22 | | 4.2.5 | TEST SETUP | 23 | | 4.2.6 | EUT OPERATING CONDITIONS | 23 | | 4.2.7 | TEST RESULTS | 24 | | 4.3 | 6dB BANDWIDTH MEASUREMENT | 26 | | 4.3.1 | LIMITS OF 6dB BANDWIDTH MEASUREMENT | 26 | | 4.3.2 | TEST SETUP | 26 | | 4.3.3 | TEST INSTRUMENTS | 26 | | 4.3.4 | TEST PROCEDURE | 26 | | 4.3.5 | DEVIATION FROM TEST STANDARD | 26 | | 4.3.6 | EUT OPERATING CONDITIONS | 26 | | 4.3.7 | TEST RESULTS | 27 | | | | | | 4.4 | CONDUCTED OUTPUT POWER | 28 | |-------|---|----| | 4.4.1 | LIMITS OF CONDUCTED OUTPUT POWER MEASUREMENT | 28 | | 4.4.2 | TEST SETUP | 28 | | 4.4.3 | TEST INSTRUMENTS | 28 | | 4.4.4 | TEST PROCEDURES | 28 | | 4.4.5 | DEVIATION FROM TEST STANDARD | 28 | | 4.4.6 | EUT OPERATING CONDITIONS | 28 | | 4.4.7 | TEST RESULTS | 28 | | 4.5 | POWER SPECTRAL DENSITY MEASUREMENT | 29 | | 4.5.1 | LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT | 29 | | 4.5.2 | TEST SETUP | 29 | | 4.5.3 | TEST INSTRUMENTS | 29 | | 4.5.4 | TEST PROCEDURE | 29 | | 4.5.5 | DEVIATION FROM TEST STANDARD | 29 | | 4.5.6 | EUT OPERATING CONDITION | 29 | | 4.5.7 | TEST RESULTS | 30 | | 4.6 | CONDUCTED OUT OF BAND EMISSION MEASUREMENT | 31 | | 4.6.1 | LIMITS OF OUT OF BAND EMISSION MEASUREMENT | 31 | | 4.6.2 | TEST SETUP | 31 | | 4.6.3 | TEST INSTRUMENTS | 31 | | 4.6.4 | TEST PROCEDURE | 32 | | 4.6.5 | DEVIATION FROM TEST STANDARD | 32 | | 4.6.6 | EUT OPERATING CONDITION | 32 | | 4.6.7 | TEST RESULTS | 32 | | 4.6.8 | TEST RESULTS | 33 | | 5. | PHOTOGRAPHS OF THE TEST CONFIGURATION | 34 | | 6. | INFORMATION ON THE TESTING LABORATORIES | 35 | | 7. | APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE | | | | EUT BY THE LAB | 36 | ## **RELEASE CONTROL RECORD** | ISSUE NO. | REASON FOR CHANGE | DATE ISSUED | | |-------------|-------------------|---------------|--| | RF140922C21 | Original release | Oct. 06, 2014 | | Report No.: RF140922C21 4 of 36 Report Format Version 5.1.0 ## 1. CERTIFICATION **PRODUCT:** Digital Wireless Headphone System (RS 165) MODEL NO.: TR 165 **BRAND: SENNHEISER** **APPLICANT:** Sennheiser electronic GmbH & Co.KG. **TESTED:** Sep. 25 ~ Sep. 30, 2014 TEST SAMPLE: ENGINEERING SAMPLE STANDARDS: FCC Part 15, Subpart C (Section 15.247) The above equipment (model: TR 165) has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report. PREPARED BY : Oct. 06, 2014 Polly Chien / Specialist APPROVED BY : ________, DATE : _________, Oct. 06, 2014 Ken Liu / Senior Manager ## 2. SUMMARY OF TEST RESULTS The EUT has been tested according to the following specifications: | APPLIED STANDARD: FCC PART 15, SUBPART C (SECTION 15.247) | | | | | | | |---|-----------------------------|--------|--|--|--|--| | STANDARD
SECTION | TEST TYPE AND LIMIT | RESULT | REMARK | | | | | 15.207 | AC Power Conducted Emission | PASS | Meet the requirement of limit. Minimum passing margin is -20.69dB at 0.48594MHz. | | | | | 15.205 & 209 | Radiated Emissions | PASS | Meet the requirement of limit. Minimum passing margin is -4.6dB at 900.51MHz. | | | | | 15.247(d) | Band Edge Measurement | PASS | Meet the requirement of limit. Minimum passing margin is -5.6dB at 2483.50MHz. | | | | | 15.247(d) | Antenna Port Emission | PASS | Meet the requirement of limit. | | | | | 15.247(a)(2) | 6dB bandwidth | PASS | Meet the requirement of limit. | | | | | 15.247(b) | Conducted power | PASS | Meet the requirement of limit. | | | | | 15.247(e) | Power Spectral Density | PASS | Meet the requirement of limit. | | | | | 15.203 | Antenna Requirement | PASS | No antenna connector is used. | | | | #### **2.1 MEASUREMENT UNCERTAINTY** Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2: | MEASUREMENT | FREQUENCY | UNCERTAINTY | |---------------------|-----------------|-------------| | Conducted emissions | 150kHz~30MHz | 2.44 dB | | | 30MHz ~ 200MHz | 3.63 dB | | Radiated emissions | 200MHz ~1000MHz | 3.64 dB | | Radiated emissions | 1GHz ~ 18GHz | 2.29 dB | | | 18GHz ~ 40GHz | 2.29 dB | This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2. ## 3. GENERAL INFORMATION ### 3.1 GENERAL DESCRIPTION OF EUT | EUT | Digital Wireless Headphone System (RS 165) | |---------------------|--| | MODEL NO. | TR 165 | | POWER SUPPLY | 9Vdc (Adapter) | | MODULATION TYPE | 8-FSK Digital | | TRANSFER RATE | 5 Mb/s | | OPERATING FREQUENCY | 2406 ~ 2474MHz | | NUMBER OF CHANNEL | 18 | | CHANNEL SPACING | 4MHz | | OUTPUT POWER | 0.2844mW | | ANTENNA TYPE | Inverted F antenna with 4.15dBi gain | | ANTENNA CONNECTOR | NA | | DATA CABLE | 2m non-shielded stereo audio cable with 3.5mm jack plugs | | I/O PORTS | Refer to user's manual | | ACCESSORY DEVICES | Adapter | #### NOTE: 1. The EUT was operated with following power adapter: | BRAND: | SENNHEISER | |-------------|---| | MODEL: | NT9-3W (Type: 15.3916) | | INPUT: | 100-240Vac, 50-60Hz, 80mA | | OUTPUT: | 9Vdc, 300mA | | POWER LINE: | 1.8m cable without core attached on adapter | 2. The above EUT information is declared by the manufacturer and for more detailed feature description, please refer to the manufacturer's specifications or User's Manual. ## 3.2 DESCRIPTION OF TEST MODES 18 channels are provided to this EUT: | CHANNEL | FREQUENCY | CHANNEL | FREQUENCY | |---------|-----------|---------|-----------| | 1 | 2406MHz | 10 | 2442MHz | | 2 | 2410MHz | 11 | 2446MHz | | 3 | 2414MHz | 12 | 2450MHz | | 4 | 2418MHz | 13 | 2454MHz | | 5 | 2422MHz | 14 | 2458MHz | | 6 | 2426MHz | 15 | 2462MHz | | 7 | 2430MHz | 16 | 2466MHz | | 8 | 2434MHz | 17 | 2470MHz | | 9 | 2438MHz | 18 | 2474MHz | Report No.: RF140922C21 8 of 36 Report Format Version 5.1.0 #### 3.2.1 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL | EUT | APPLICABLE TO | | | | | |----------------|---------------|-----------|-----------|--------------|-------------| | CONFIGURE MODE | RE≥1G | RE<1G | PLC | APCM | DESCRIPTION | | - | $\sqrt{}$ | $\sqrt{}$ | $\sqrt{}$ | \checkmark | - | Where **RE≥1G:** Radiated Emission above 1GHz **PLC:** Power Line Conducted Emission RE<1G: Radiated Emission below 1GHz APCM: Antenna Port Conducted Measurement #### **RADIATED EMISSION TEST (ABOVE 1 GHz):** Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. | EUT CONFIGURE MODE AVAILABLE CHANNEL | | TESTED CHANNEL | MODULATION TYPE | |--------------------------------------|---------|----------------|-----------------| | - | 1 to 18 | 1, 9, 18 | 8-FSK Digital | #### **RADIATED EMISSION TEST (BELOW 1 GHz):** Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. | EUT CONFIGURE MODE AVAILABLE CHANNEL | | TESTED CHANNEL | MODULATION TYPE | |--------------------------------------|---------|----------------|-----------------| | - | 1 to 18 | 1 | 8-FSK Digital | #### **POWER LINE CONDUCTED EMISSION TEST:** Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. | EUT CONFIGURE MODE AVAILABLE CHANNEL | | TESTED CHANNEL | MODULATION TYPE | |--------------------------------------|---------|----------------|-----------------| | - | 1 to 18 | 1 | 8-FSK Digital | Report No.: RF140922C21 9 of 36 Report Format Version 5.1.0 #### **BANDEDGE MEASUREMENT:** - Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture). - Following channel(s) was (were) selected for the final test as listed below. | EUT CONFIGURE MODE | AVAILABLE CHANNEL | TESTED CHANNEL | MODULATION TYPE | | |--------------------|-------------------|----------------|-----------------|--| | - | 1 to 18 | 1, 18 | 8-FSK Digital | | #### **ANTENNA PORT CONDUCTED MEASUREMENT:** - Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture). - Following channel(s) was (were) selected for the final test as listed below. | EUT CONFIGURE MODE | AVAILABLE CHANNEL | TESTED CHANNEL | MODULATION TYPE | |--------------------|-------------------|----------------|-----------------| | - | 1 to 18 | 1, 9, 18 | 8-FSK Digital | #### **TEST CONDITION:** | APPLICABLE TO | ENVIRONMENTAL CONDITIONS | INPUT POWER | TESTED BY | |---------------|--------------------------|--------------|------------| | RE≥1G | 25deg. C, 60%RH | 120Vac, 60Hz | Tank Wu | | RE<1G | 25deg. C, 60%RH | 120Vac, 60Hz | Tank Wu | | PLC | 24deg. C, 64%RH | 120Vac, 60Hz | Match Tsui | | APCM | 24deg. C, 64%RH | 120Vac, 60Hz | Match Tsui | Report No.: RF140922C21 10 of 36 Report Format Version 5.1.0 ### 3.3 DESCRIPTION OF SUPPORT UNITS The EUT has been tested as an independent unit. ### 3.3.1 CONFIGURATION OF SYSTEM UNDER TEST Report No.: RF140922C21 11 of 36 Report Format Version 5.1.0 #### 3.4 GENERAL DESCRIPTION OF APPLIED STANDARDS The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards: FCC Part 15, Subpart C (15.247) 558074 D01 DTS Meas Guidance v03r02 ANSI C63.10-2009 All test items have been performed and recorded as per the above standards. **NOTE:** The EUT is also considered as a kind of computer peripheral, because the connection to computer is necessary for typical use. It has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately. Report No.: RF140922C21 12 of 36 Report Format Version 5.1.0 #### 4. TEST TYPES AND RESULTS #### 4.1 RADIATED EMISSION AND BANDEDGE MEASUREMENT #### 4.1.1 LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power: | FREQUENCIES (MHz) | FIELD STRENGTH (microvolts/meter) | MEASUREMENT DISTANCE (meters) | |-------------------|-----------------------------------|-------------------------------| | 0.009 ~ 0.490 | 2400/F(kHz) | 300 | | 0.490 ~ 1.705 | 24000/F(kHz) | 30 | | 1.705 ~ 30.0 | 30 | 30 | | 30 ~ 88 | 100 | 3 | | 88 ~ 216 | 150 | 3 | | 216 ~ 960 | 200 | 3 | | Above 960 | 500 | 3 | #### NOTE: - 1. The lower limit shall apply at the transition frequencies. - 2. Emission level (dBuV/m) = 20 log Emission level (uV/m). - 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation. ### 4.1.2 TEST INSTRUMENTS | DESCRIPTION & MANUFACTURER | MODEL NO. | SERIAL NO. | DATE OF CALIBRATION | DUE DATE OF CALIBRATION | |---|------------------------------|----------------------------------|---------------------|-------------------------| | Test Receiver
ROHDE & SCHWARZ | ESCS30 | 100289 | Nov. 29, 2013 | Nov. 28, 2014 | | Spectrum Analyzer
ROHDE & SCHWARZ | FSP40 | 100269 | Feb. 11, 2014 | Feb. 10, 2015 | | BILOG Antenna
SCHWARZBECK | VULB9168 | 9168-156 | Feb. 25, 2014 | Feb. 24, 2015 | | HORN Antenna
SCHWARZBECK | BBHA 9120 D | 9120D-209 | Aug. 25, 2014 | Aug. 24, 2015 | | HORN Antenna
SCHWARZBECK | BBHA 9170 | BBHA9170241 | Feb. 17, 2014 | Feb. 16, 2015 | | Preamplifier
Agilent | 8449B | 3008A01911 | Aug. 09, 2014 | Aug. 08, 2015 | | Preamplifier
Agilent | 8447D | 2944A10638 | Oct. 18, 2013 | Oct. 17, 2014 | | RF signal cable
HUBER+SUHNNER | SUCOFLEX 104 | 248780/4
309222/4
274092/4 | Aug. 09, 2014 | Aug. 08, 2015 | | RF signal cable
Worken | 5D-FB | Cable-HYCH9-01 | Aug. 11, 2014 | Aug. 10, 2015 | | Software
BV ADT | ADT_Radiated_
V7.6.15.9.4 | NA | NA | NA | | Antenna Tower
EMCO | 2070/2080 | 512.835.4684 | NA | NA | | Turn Table
EMCO | 2087-2.03 | NA | NA | NA | | Antenna Tower &Turn
Table Controller
EMCO | 2090 | NA | NA | NA | | High Speed Peak Power
Meter | ML2495A | 0824011 | Jul. 26, 2014 | Jul. 25, 2015 | | Power Sensor | MA2411B | 0738171 | Jul. 26, 2014 | Jul. 25, 2015 | **NOTE:** 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA. - 2. The test was performed in HwaYa Chamber 9. - 3. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested. - 4. The FCC Site Registration No. is 215374. - 5. The IC Site Registration No. is IC 7450F-9. #### 4.1.3 TEST PROCEDURES - a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. - b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. - f. If the emission level of the EUT in peak mode was lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. #### NOTE: - 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz. - 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz. - 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T(Duty cycle < 98%) or 10Hz(Duty cycle > 98%) for Average detection (AV) at frequency above 1GHz. - 4. All modes of operation were investigated and the worst-case emissions are reported. #### 4.1.4 DEVIATION FROM TEST STANDARD No deviation. #### 4.1.5 TEST SETUP ### Frequency range 30MHz~1GHz ## Frequency range above 1GHz For the actual test configuration, please refer to the attached file (Test Setup Photo). ### 4.1.6 EUT OPERATING CONDITIONS - a. Placed the EUT on the testing table. - b. Set the EUT under transmission condition continuously at specific channel frequency. #### 4.1.7 TEST RESULTS #### **ABOVE 1GHz WORST-CASE DATA:** | CHANNEL | TX Channel 1 | DETECTOR | Peak (PK) | |-----------------|--------------|----------|--------------| | FREQUENCY RANGE | 1GHz ~ 25GHz | FUNCTION | Average (AV) | | | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M | | | | | | | | |-----|---|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------| | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | 1 | 2390.00 | 60.1 PK | 74.0 | -13.9 | 1.00 H | 242 | 27.10 | 33.00 | | 2 | 2390.00 | 48.1 AV | 54.0 | -5.9 | 1.00 H | 242 | 15.10 | 33.00 | | 3 | *2406.00 | 90.1 PK | | | 1.00 H | 242 | 57.00 | 33.10 | | 4 | *2406.00 | 83.8 AV | | | 1.00 H | 242 | 50.70 | 33.10 | | 5 | 4812.00 | 47.9 PK | 74.0 | -26.1 | 1.00 H | 148 | 46.40 | 1.50 | | 6 | 4812.00 | 39.1 AV | 54.0 | -14.9 | 1.00 H | 148 | 37.60 | 1.50 | | | | ANTENNA | A POLARITY | / & TEST DI | STANCE: V | ERTICAL A | T 3 M | | | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | 1 | 2390.00 | 61.4 PK | 74.0 | -12.6 | 1.00 V | 261 | 28.40 | 33.00 | | 2 | 2390.00 | 48.9 AV | 54.0 | -5.1 | 1.00 V | 261 | 15.90 | 33.00 | | 3 | *2406.00 | 94.9 PK | | | 1.00 V | 261 | 61.80 | 33.10 | | 4 | *2406.00 | 89.0 AV | | | 1.00 V | 261 | 55.90 | 33.10 | | 5 | 4812.00 | 45.8 PK | 74.0 | -28.2 | 1.00 V | 32 | 44.30 | 1.50 | | | 4812.00 | 34.2 AV | 54.0 | -19.8 | 1.00 V | 32 | 32.70 | 1.50 | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) - Pre-Amplifier Factor(dB) - 3. The other emission levels were very low against the limit. - 4. Margin value = Emission Level Limit value - 5. " * ": Fundamental frequency. | CHANNEL | TX Channel 9 | DETECTOR | Peak (PK) | |-----------------|--------------|----------|--------------| | FREQUENCY RANGE | 1GHz ~ 25GHz | FUNCTION | Average (AV) | | | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M | | | | | | | | | |------------|---|-------------------------------|-------------------|----------------|--------------------------|----------------------------|--------------------------|--------------------------------|--| | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | | 1 | *2438.00 | 90.2 PK | | | 1.45 H | 235 | 56.90 | 33.30 | | | 2 | *2438.00 | 84.1 AV | | | 1.45 H | 235 | 50.80 | 33.30 | | | 3 | 4876.00 | 47.1 PK | 74.0 | -26.9 | 1.00 H | 147 | 45.60 | 1.50 | | | 4 | 4876.00 | 38.4 AV | 54.0 | -15.6 | 1.00 H | 147 | 36.90 | 1.50 | | | | | ANTENNA | POLARITY | / & TEST DI | STANCE: V | ERTICAL A | T 3 M | | | | | | | | | | | | | | | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | | NO. | | LEVEL | | | HEIGHT | ANGLE | VALUE | FACTOR | | | | (MHz) | LEVEL
(dBuV/m) | | | HEIGHT
(m) | ANGLE
(Degree) | VALUE
(dBuV) | FACTOR
(dB/m) | | | 1 | (MHz)
*2438.00 | LEVEL
(dBuV/m)
92.0 PK | | | HEIGHT (m) | ANGLE
(Degree) | VALUE
(dBuV)
58.70 | FACTOR (dB/m) 33.30 | | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) - Pre-Amplifier Factor(dB) - 3. The other emission levels were very low against the limit. - 4. Margin value = Emission Level Limit value - 5. " * ": Fundamental frequency. | CHANNEL | TX Channel 18 | DETECTOR | Peak (PK) | |-----------------|---------------|----------|--------------| | FREQUENCY RANGE | 1GHz ~ 25GHz | FUNCTION | Average (AV) | | | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M | | | | | | | | |-----|---|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------| | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | 1 | *2474.00 | 92.5 PK | | | 1.46 H | 230 | 59.10 | 33.40 | | 2 | *2474.00 | 86.5 AV | | | 1.46 H | 230 | 53.10 | 33.40 | | 3 | 2483.50 | 61.8 PK | 74.0 | -12.2 | 1.46 H | 230 | 28.40 | 33.40 | | 4 | 2483.50 | 48.4 AV | 54.0 | -5.6 | 1.46 H | 230 | 15.00 | 33.40 | | 5 | 4948.00 | 47.2 PK | 74.0 | -26.8 | 1.00 H | 142 | 45.50 | 1.70 | | 6 | 4948.00 | 38.2 AV | 54.0 | -15.8 | 1.00 H | 142 | 36.50 | 1.70 | | | | ANTENNA | N POLARITY | ' & TEST DI | STANCE: V | ERTICAL A | T 3 M | | | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | 1 | *2474.00 | 91.5 PK | | | 1.00 V | 210 | 58.10 | 33.40 | | 2 | *2474.00 | 85.7 AV | | | 1.00 V | 210 | 52.30 | 33.40 | | 3 | 2483.50 | 61.3 PK | 74.0 | -12.7 | 1.00 V | 210 | 27.90 | 33.40 | | 4 | 2483.50 | 48.3 AV | 54.0 | -5.7 | 1.00 V | 210 | 14.90 | 33.40 | | 5 | 4948.00 | 46.2 PK | 74.0 | -27.8 | 1.00 V | 173 | 44.50 | 1.70 | | 6 | 4948.00 | 35.4 AV | 54.0 | -18.6 | 1.00 V | 173 | 33.70 | 1.70 | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) - Pre-Amplifier Factor(dB) - 3. The other emission levels were very low against the limit. - 4. Margin value = Emission Level Limit value - 5. " * ": Fundamental frequency. #### **BELOW 1GHz WORST-CASE DATA:** | CHANNEL | TX Channel 1 | DETECTOR
FUNCTION | Ougei Beek (OD) | |-----------------|--------------|----------------------|-----------------| | FREQUENCY RANGE | 30MHz ~ 1GHz | | Quasi-Peak (QP) | | | | ANTENNA | POLARITY & | & TEST DIS | TANCE: HO | RIZONTAL | AT 3 M | | |-----|----------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------| | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | 1 | 50.21 | 23.3 QP | 40.0 | -16.7 | 2.00 H | 55 | 37.30 | -14.00 | | 2 | 68.86 | 25.2 QP | 40.0 | -14.8 | 1.51 H | 60 | 41.40 | -16.20 | | 3 | 134.15 | 35.5 QP | 43.5 | -8.0 | 2.00 H | 261 | 50.80 | -15.30 | | 4 | 252.29 | 28.7 QP | 46.0 | -17.3 | 1.00 H | 296 | 43.00 | -14.30 | | 5 | 777.71 | 29.8 QP | 46.0 | -16.2 | 1.51 H | 264 | 32.60 | -2.80 | | 6 | 981.35 | 31.1 QP | 54.0 | -22.9 | 1.26 H | 156 | 31.00 | 0.10 | | | | ANTENNA | POLARITY | / & TEST DI | STANCE: V | ERTICAL A | T 3 M | | | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | 1 | 50.21 | 34.5 QP | 40.0 | -5.5 | 1.00 V | 39 | 48.50 | -14.00 | | 2 | 65.75 | 30.8 QP | 40.0 | -9.2 | 1.00 V | 183 | 46.30 | -15.50 | | 3 | 138.81 | 33.8 QP | 43.5 | -9.7 | 1.24 V | 226 | 48.60 | -14.80 | | 4 | 188.56 | 28.1 QP | 43.5 | -15.4 | 1.00 V | 16 | 44.30 | -16.20 | | 5 | 900.51 | 41.4 QP | 46.0 | -4.6 | 1.24 V | 298 | 42.80 | -1.40 | | 6 | 982.90 | 31.4 QP | 54.0 | -22.6 | 1.99 V | 220 | 31.30 | 0.10 | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) - 3. The other emission levels were very low against the limit. - 4. Margin value = Emission Level Limit value #### 4.2 CONDUCTED EMISSION MEASUREMENT #### 4.2.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT | FREQUENCY OF EMISSION (MHz) | CONDUCTED | LIMIT (dBµV) | |-----------------------------|------------|--------------| | | Quasi-peak | Average | | 0.15 ~ 0.5 | 66 to 56 | 56 to 46 | | 0.5 ~ 5 | 56 | 46 | | 5 ~ 30 | 60 | 50 | **NOTE**: 1. The lower limit shall apply at the transition frequencies. - 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz. - 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above. #### 4.2.2 TEST INSTRUMENTS | DESCRIPTION & MANUFACTURER | MODEL NO. | SERIAL NO. | DATE OF CALIBRATION | DUE DATE OF CALIBRATION | |---|--------------------------|----------------|---------------------|-------------------------| | Test Receiver
ROHDE & SCHWARZ | ESCS30 | 100288 | Apr. 24, 2014 | Apr. 23, 2015 | | RF signal cable
Woken | 5D-FB | Cable-HYCO2-01 | Dec. 27, 2013 | Dec. 26, 2014 | | LISN
ROHDE & SCHWARZ
(EUT) | ESH2-Z5 | 100100 | Dec. 23, 2013 | Dec. 22, 2014 | | LISN
ROHDE & SCHWARZ
(Peripheral) | ESH3-Z5 | 100312 | Jul. 10, 2014 | Jul. 09, 2015 | | Software
ADT | BV ADT_Cond_
V7.3.7.3 | NA | NA | NA | **NOTE:** 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA. - 2. The test was performed in HwaYa Shielded Room 2. - 3. The VCCI Site Registration No. is C-2047. #### 4.2.3 TEST PROCEDURES - a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument. - b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference. - c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded. NOTE: All modes of operation were investigated and the worst-case emissions are reported. #### 4.2.4 DEVIATION FROM TEST STANDARD No deviation. #### 4.2.5 TEST SETUP Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes For the actual test configuration, please refer to the attached file (Test Setup Photo). ### 4.2.6 EUT OPERATING CONDITIONS Same as 4.1.6. #### 4.2.7 TEST RESULTS #### **CONDUCTED WORST-CASE DATA:** |--| | Na | Freq. | Corr.
Factor | Readin | g Value | | ssion
vel | Limit | | Margin | | |----|----------|-----------------|--------|---------|-------|--------------|-------|-------|--------|--------| | No | | ractor | [dB | (uV)] | [dB | (uV)] | [dB | (uV)] | (dl | B) | | | [MHz] | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | | 1 | 0.16953 | 0.27 | 22.86 | 12.99 | 23.13 | 13.26 | 64.98 | 54.98 | -41.85 | -41.72 | | 2 | 0.48594 | 0.31 | 28.71 | 25.24 | 29.02 | 25.55 | 56.24 | 46.24 | -27.22 | -20.69 | | 3 | 1.69922 | 0.35 | 23.92 | 16.61 | 24.27 | 16.96 | 56.00 | 46.00 | -31.73 | -29.04 | | 4 | 2.64844 | 0.38 | 26.27 | 18.72 | 26.65 | 19.10 | 56.00 | 46.00 | -29.35 | -26.90 | | 5 | 3.24219 | 0.40 | 24.67 | 16.31 | 25.07 | 16.71 | 56.00 | 46.00 | -30.93 | -29.29 | | 6 | 16.93750 | 0.55 | 17.50 | 14.13 | 18.05 | 14.68 | 60.00 | 50.00 | -41.95 | -35.32 | - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level = Correction Factor + Reading Value | PHASE | Line 2 | 6dB BANDWIDTH | 9kHz | |-------|--------|---------------|------| | _ | | | | | No | Freq. | Corr.
Factor | Readin | g Value | | ssion
vel | Lir | nit | Mar | gin | |----|----------|-----------------|--------|---------|-------|--------------|-------|-------|--------|--------| | NO | | racioi | [dB | (uV)] | [dB | (uV)] | [dB | (uV)] | (dl | B) | | | [MHz] | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | | 1 | 0.16562 | 0.27 | 25.45 | 9.55 | 25.72 | 9.82 | 65.18 | 55.18 | -39.46 | -45.36 | | 2 | 0.48203 | 0.31 | 23.11 | 18.27 | 23.42 | 18.58 | 56.30 | 46.30 | -32.89 | -27.73 | | 3 | 1.87500 | 0.37 | 20.05 | 12.26 | 20.42 | 12.63 | 56.00 | 46.00 | -35.58 | -33.37 | | 4 | 2.69922 | 0.39 | 23.03 | 16.69 | 23.42 | 17.08 | 56.00 | 46.00 | -32.58 | -28.92 | | 5 | 3.86328 | 0.44 | 18.77 | 10.39 | 19.21 | 10.83 | 56.00 | 46.00 | -36.79 | -35.17 | | 6 | 16.93359 | 0.59 | 14.36 | 11.73 | 14.95 | 12.32 | 60.00 | 50.00 | -45.05 | -37.68 | - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level = Correction Factor + Reading Value #### 4.3 6dB BANDWIDTH MEASUREMENT #### 4.3.1 LIMITS OF 6dB BANDWIDTH MEASUREMENT The minimum of 6dB Bandwidth Measurement is 0.5 MHz. #### 4.3.2 TEST SETUP #### 4.3.3 TEST INSTRUMENTS Refer to section 4.1.2 to get information of above instrument. #### 4.3.4 TEST PROCEDURE - 1. Set resolution bandwidth (RBW) = 100kHz - 2. Set the video bandwidth (VBW) \geq 3 x RBW, Detector = Peak. - 3. Trace mode = max hold. - 4. Sweep = auto couple. - 5. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. #### 4.3.5 DEVIATION FROM TEST STANDARD No deviation. #### 4.3.6 EUT OPERATING CONDITIONS The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually. Report No.: RF140922C21 26 of 36 Report Format Version 5.1.0 ### 4.3.7 TEST RESULTS | CHANNEL | FREQUENCY
(MHz) | 6dB
BANDWIDTH
(MHz) | MINIMUM LIMIT
(MHz) | PASS / FAIL | |---------|--------------------|---------------------------|------------------------|-------------| | 1 | 2406 | 2.31 | 0.5 | PASS | | 9 | 2438 | 2.30 | 0.5 | PASS | | 18 | 2474 | 2.27 | 0.5 | PASS | #### 4.4 CONDUCTED OUTPUT POWER #### 4.4.1 LIMITS OF CONDUCTED OUTPUT POWER MEASUREMENT For systems using digital modulation in the 2400–2483.5 MHz: 1 Watt (30dBm) #### 4.4.2 TEST SETUP #### 4.4.3 TEST INSTRUMENTS Refer to section 4.1.2 to get information of above instrument. #### 4.4.4 TEST PROCEDURES A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the peak power level. #### 4.4.5 DEVIATION FROM TEST STANDARD No deviation. #### 4.4.6 EUT OPERATING CONDITIONS Same as Item 4.3.6. #### 4.4.7 TEST RESULTS | CHANNEL | FREQUENCY
(MHz) | PEAK POWER
(mW) | PEAK POWER
(dBm) | LIMIT (dBm) | PASS/FAIL | |---------|--------------------|--------------------|---------------------|-------------|-----------| | 1 | 2406 | 0.2844 | -5.46 | 30 | PASS | | 9 | 2438 | 0.2500 | -6.02 | 30 | PASS | | 18 | 2474 | 0.2168 | -6.64 | 30 | PASS | Report No.: RF140922C21 28 of 36 Report Format Version 5.1.0 #### 4.5 POWER SPECTRAL DENSITY MEASUREMENT #### 4.5.1 LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT The Maximum of Power Spectral Density Measurement is 8dBm. #### 4.5.2 TEST SETUP #### 4.5.3 TEST INSTRUMENTS Refer to section 4.1.2 to get information of above instrument. #### 4.5.4 TEST PROCEDURE - a. Set resolution bandwidth (RBW) = approximately 1% of the emission bandwidth - b. Set the video bandwidth (VBW) \geq 3 x RBW, Detector = Peak. - c. Trace mode = max hold. - d. Sweep = auto couple. - e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission #### 4.5.5 DEVIATION FROM TEST STANDARD No deviation. #### 4.5.6 EUT OPERATING CONDITION Same as Item 4.3.6 ### 4.5.7 TEST RESULTS | Channel | FREQ.
(MHz) | PSD
(dBm/3kHz) | Limit
(dBm/3kHz) | PASS/FAIL | |---------|----------------|-------------------|---------------------|-----------| | 1 | 2406 | -22.64 | 8 | PASS | | 9 | 2438 | -23.60 | 8 | PASS | | 18 | 2474 | -24.71 | 8 | PASS | #### 4.6 CONDUCTED OUT OF BAND EMISSION MEASUREMENT #### 4.6.1 LIMITS OF OUT OF BAND EMISSION MEASUREMENT Below –20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth). #### 4.6.2 TEST SETUP #### 4.6.3 TEST INSTRUMENTS Refer to section 4.1.2 to get information of above instrument. Report No.: RF140922C21 31 of 36 Report Format Version 5.1.0 #### 4.6.4 TEST PROCEDURE #### **MEASUREMENT PROCEDURE REF** - 1. Set the RBW = 100 kHz. - 2. Set the VBW ≥ 300 kHz. - 3. Detector = peak. - 4. Sweep time = auto couple. - 5. Trace mode = max hold. - 6. Allow trace to fully stabilize. - 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW. #### **MEASUREMENT PROCEDURE OOBE** - 1. Set RBW = 100 kHz. - 2. Set VBW ≥ 300 kHz. - 3. Detector = peak. - 4. Sweep = auto couple. - 5. Trace Mode = max hold. - 6. Allow trace to fully stabilize. - 7. Use the peak marker function to determine the maximum amplitude level. #### 4.6.5 DEVIATION FROM TEST STANDARD No deviation. #### 4.6.6 EUT OPERATING CONDITION Same as Item 4.3.6 #### 4.6.7 TEST RESULTS The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 20dB offset below D1. It shows compliance with the requirement. #### 4.6.8 TEST RESULTS | 5. PHOTOGRAPHS OF THE TEST CONFIGURATION | |---| | Please refer to the attached file (Test Setup Photo). | Report No.: RF140922C21 34 of 36 Report Format Version 5.1.0 ## 6. INFORMATION ON THE TESTING LABORATORIES We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025. If you have any comments, please feel free to contact us at the following: Linko EMC/RF Lab: Hsin Chu EMC/RF/Telecom Lab: Tel: 886-2-26052180 Tel: 886-3-5935343 Fax: 886-2-26051924 Fax: 886-3-5935342 Hwa Ya EMC/RF/Safety Lab: Tel: 886-3-3183232 Fax: 886-3-3270892 Email: service.adt@tw.bureauveritas.com Web Site: www.bureauveritas-adt.com The address and road map of all our labs can be found in our web site also. Report No.: RF140922C21 35 of 36 Report Format Version 5.1.0 # 7. APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB No modifications were made to the EUT by the lab during the test. --- END ---