	TEST REPOR	RT		
FCC ID	2AQ5C-MMBS1			
Test Report No:	TCT240910E005		(\mathcal{C})	
Date of issue:	Sep. 13, 2024			
Testing laboratory:	SHENZHEN TONGCE TESTI	NG LAB		
Testing location/ address:	2101 & 2201, Zhenchang Fact Subdistrict, Bao'an District, Sh People's Republic of China			
Applicant's name: :	Hypercel Corporation		$\langle c' \rangle$	
Address:	28385 Constellation Rd., Vale States	ncia, California 91	355, United	
Manufacturer's name :	Shenzhen Hypercel Technolog	gy Co., Ltd		
Address:	Room 605, No.4 Building, Ton Avenue, Bao'an District, Shen			
Standard(s):	FCC CFR Title 47 Part 15 Sub FCC KDB 558074 D01 15.247 ANSI C63.10:2013	•		
Product Name::	MAGNETIC MINI WIRELESS	SPEAKER		
Trade Mark:	N/A ()			
	16127			
Model/Type reference :	Rechargeable Li-ion Battery DC 3.7V			
Model/Type reference : Rating(s):	Rechargeable Li-ion Battery D	OC 3.7V		
		DC 3.7V		
Rating(s):	Sep. 10, 2024			
Rating(s): Date of receipt of test item : Date (s) of performance of	Sep. 10, 2024		ONGCE 78	
Rating(s): Date of receipt of test item Date (s) of performance of test	Sep. 10, 2024 Sep. 10, 2024 ~ Sep. 13, 2024	4		

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

1. General Product Information	
1.1. EUT description	3
1.2. Model(s) list	
1.3. Operation Frequency	
2. Test Result Summary	
3. General Information	
3.1. Test environment and mode	5
3.2. Description of Support Units	5
4. Facilities and Accreditations	
4.1. Facilities	
4.2. Location	6
4.3. Measurement Uncertainty	6
5. Test Results and Measurement Data	7
5.1. Antenna requirement	7
5.2. Conducted Emission	
5.3. Conducted Output Power	
5.4. Emission Bandwidth	
5.5. Power Spectral Density	14
5.6. Conducted Band Edge and Spurious Emission Measurement	15
5.7. Radiated Spurious Emission Measurement	17
Appendix A: Test Result of Conducted Test	
Appendix B: Photographs of Test Setup	
Appendix C: Photographs of EUT	

1. General Product Information

1.1. EUT description

Product Name:	MAGNETIC MINI WIRELESS SPEAKER	
Model/Type reference:	16127	
Sample Number	TCT240910E004-0101	
Bluetooth Version:	V5.3 (This report is for BLE)	
Operation Frequency:	2402MHz~2480MHz	
Channel Separation:	2MHz	
Number of Channel:	40	
Modulation Type:	GFSK	
Antenna Type:	PCB Antenna	
Antenna Gain:	-0.58dBi	
Rating(s):	Rechargeable Li-ion Battery DC 3.7V	

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

None.

1.3. Operation Frequency

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
(<u> </u>	(<u>(</u>)		(c)		()
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz
Remark: Channel 0, 19 & 39 have been tested.						(Å	

Report No.: TCT240910E005

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247 (b)(3)	PASS
6dB Emission Bandwidth	§15.247 (a)(2)	PASS
Power Spectral Density	§15.247 (e)	PASS
Band Edge	§15.247(d)	PASS
Spurious Emission	§15.205/§15.209	PASS

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

Page 4 of 47

3. General Information

3.1. Test environment and mode

Operating Environment:				
Condition	Conducted Emission	Radiated Emission		
Temperature:	23.8 °C	22.8 °C		
Humidity:	53 % RH	51 % RH		
Atmospheric Pressure:	1010 mbar	1010 mbar		
Test Software:		·		
Software Information:	FCC_assist1.0.4			
Power Level:	10			
Test Mode:				
Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations with Fully-charged battery			

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case (Z axis) are shown in Test Results of the following pages.

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	EP-TA200	R37M4PR7QD4SE3	/	SAMSUNG

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

- IC Registration No.: 10668A
- SHENZHEN TONGCE TESTING LAB
- CAB identifier: CN0031

The testing lab has been registered by Innovation, Science and Economic Development Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

4.3. Measurement Uncertainty

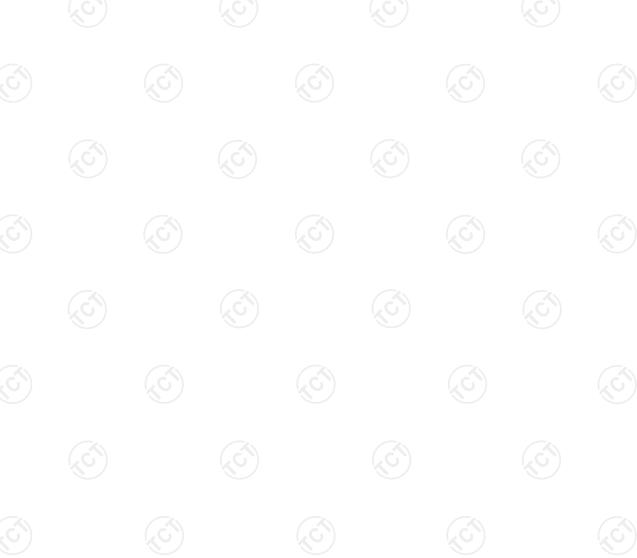
The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

5. Test Results and Measurement Data

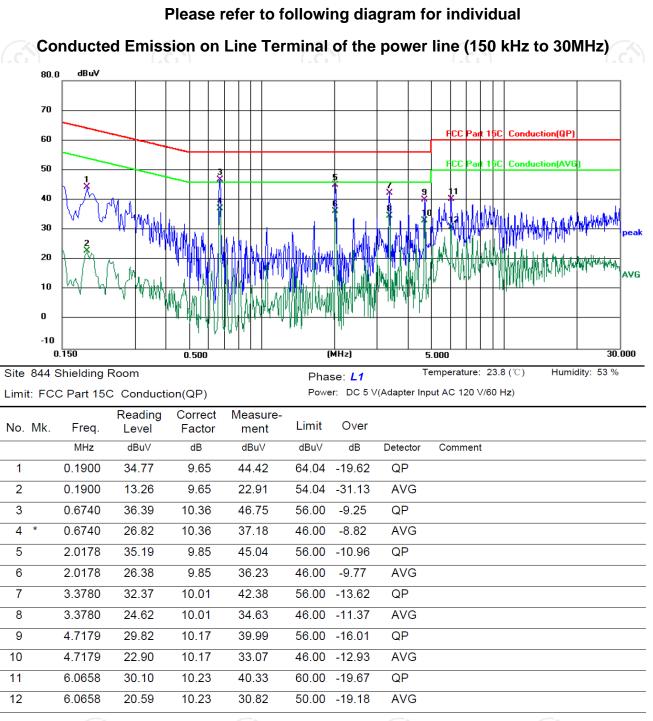
5.1. Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c) 15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. 15.247(c) (1)(i) requirement: (i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi. **E.U.T Antenna:** The Bluetooth antenna is PCB antenna which permanently attached, and the best case gain of the antenna is -0.58dBi. Antenna 09 20 um or 30 17 07.

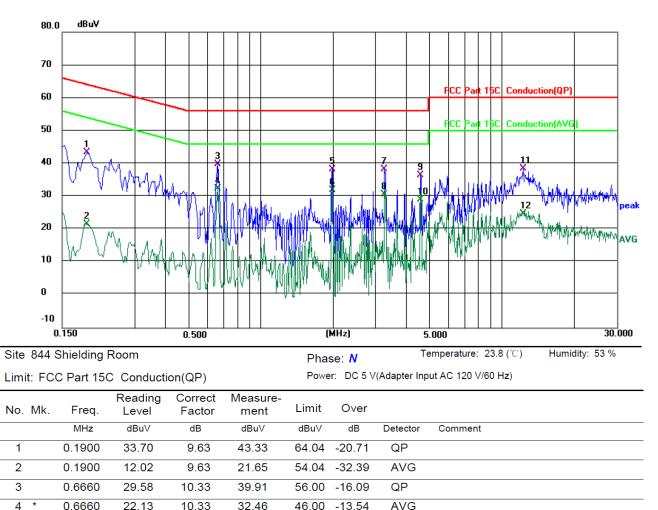

5.2. Conducted Emission

5.2.1. Test Specification

Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test Mode: Charging + Transmitting Mode 1. The E.U.T is connected to an adapter through a line	Test Requirement:	FCC Part15 C Section 15.207					
Receiver setup: RBW=9 kHz, VBW=30 kHz, Sweep time=auto Limits: Frequency range Limit (dBuV) Quasi-peak Average 0.15-0.5 66 to 56* 0.5-5 56 40cm 0.5-5 9 60 50 50 7 60 7 60 60 50 7 60 7 60 60 50 7 60 7 60 7 60 7 60 7 60 7 60 7 60 7 60 7 60 7 60 7 60 7 60 7 7 80cm LISN 80cm FilterneePlane 1 1 1 1 1 1 1 1 1 1 1 1	Test Method:	ANSI C63.10:2013					
Limits: Frequency range (MHz) Limit (dBuV) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 Reference Plane Image: Colspan="2">Image: Colspan="2" Test Mode: Image: Colspan="2" Test Mode: Image: Colspan="2" Test Mode: Image: Colspan="2" Test Mode: Image: Colspan="2" Test Mode:	Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz				
Imits: Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 Reference Plane Imits: Imits: Imits: Imits: Imits: Imits: Imits: Imits: Imits: Reference Plane Imits: Imits: Imits: Imits: Restable/Imits: Imits: <	Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto					
Limits: 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 Reference Plane Image: Colspan="2">Image: Colspan="2">Colspan="2"Colspa		Frequency range	Limit (it (dBuV)			
0.5-5 56 46 5-30 60 50 Reference Plane 40cm 1000000000000000000000000000000000000		(MHz)	Quasi-peak	Average			
5-30 60 50 Reference Plane Image: Stabilization plane Image: Stabilization plane Image: Stabilization Network Test Mode: Charging + Transmitting Mode 1. The E.U.T is connected to an adapter through a lim impedance stabilization network (L.I.S.N.). Thi provides a 500hm/50uH coupling impedance for th measuring equipment. 2. The peripheral devices are also connected to the mai power through a LISN that provides a 500hm/50uH coupling impedance for th measuring equipment. 3. Both sides of A.C. line are checked for maximur conducted interference. In order to find the maximur emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.	Limits:	0.15-0.5	66 to 56*	56 to 46*			
Test Setup: Reference Plane Image:		0.5-5	56	46			
Test Setup: Image: Test table/Insulation plane 80cm Image: Filter AC power Remark E.U.T. Fedupment Under Test Image: Filter AC power I.SN. Line modeline Stabilization Network E.U.T. is connected to an adapter through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. Test Procedure: 2. The peripheral devices are also connected to the mai power through a LISN that provides a 500hm/50uH coupling impedance for the measuring equipment. 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.		5-30	60	50			
Test Setup: Image: Test table/Insulation plane 80cm Image: Test table/Insulation plane Test Mode: Charging + Transmitting Mode 1. The E.U.T is connected to an adapter through a lin impedance stabilization network (L.I.S.N.). The provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance of the block diagram of the test setup an photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.		Reference	e Plane				
 The E.U.T is connected to an adapter through a lining educe stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50ul coupling impedance with 500hm termination. (Pleas refer to the block diagram of the test setup an photographs). Both sides of A.C. line are checked for maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 	Test Setup:	E.U.T AC power 80cm LISN Test table/Insulation plane Filter AC power Remarkc E.U.T. Equipment Under Test EMI LISN: Line Impedence Stabilization Network Edition Network					
 Test Procedure: impedance stabilization network (L.I.S.N.). The provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50ul coupling impedance with 50ohm termination. (Pleas refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 		LISN: Line Impedence Stabilization Ne	etwork				
	Test Mode:	LISN: Line Impedence Stabilization Ne Test table height=0.8m					
		 LISN Line Impedence Stabilization Ne Test table height=0.8m Charging + Transmittin The E.U.T is conne impedance stabiliz provides a 50ohm/5 measuring equipment The peripheral device power through a LI coupling impedance refer to the block photographs). Both sides of A.C. conducted interferent emission, the relative the interface cables 	ng Mode cted to an adapte ation network 50uH coupling im nt. ces are also conne SN that provides with 50ohm tern diagram of the line are checke nce. In order to fin e positions of equals must be chang	(L.I.S.N.). Thi pedance for the ected to the mai a 500hm/50ul nination. (Please test setup and ed for maximum nd the maximum ipment and all c red according to			


5.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)					
Equipment	Manufacturer	Model	Serial Number	Calibration Due	
EMI Test Receiver	R&S	ESCI3	100898	Jun. 26, 2025	
LISN	Schwarzbeck	NSLK 8126	8126453	Jan. 31, 2025	
Attenuator	N/A	10dB	164080	Jun. 26, 2025	
Line-5	тст	CE-05	/	Jun. 26, 2025	
EMI Test Software	EZ_EMC	EMEC-3A1	1.1.4.2	1 6	


Page 9 of 47

5.2.3. Test data

Note:

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$ Q.P. =Quasi-Peak AVG =average * is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz Page 10 of 47

56.00 -17.66

46.00 -14.02

56.00 -17.79

46.00 -15.45

56.00 -19.47

46.00 -17.00

60.00 -21.46

50.00 -25.18

QP

AVG

QP

AVG QP

AVG

QP

AVG

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Note1:

5

6 7

8

9

10

11

12

Freq. = Emission frequency in MHz

28.55

22.19

28.29

20.63

26.46

18.93

28.26

14.54

9.79

9.79

9.92

9.92

10.07

10.07

10.28

10.28

38.34

31.98

38.21

30.55

36.53

29.00

38.54

24.82

CT通测检测 TESTING CENTRE TECHNOLOGY

Reading level ($dB\mu V$) = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V) = Reading \, level \, (dB\mu V) + Corr. Factor (dB)$

Limit $(dB\mu V) = Limit$ stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak

1.9818

1.9818

3.2659

3.2659

4.6139

4.6139

12.3056

12.3056

AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note2: Measurements were conducted in all three channels (high, middle, low), and the worst case Mode (Highest channel) was submitted only.

5.3. Conducted Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)			
Test Method:	KDB 558074 D01 v05r02			
Limit:	30dBm			
Test Setup:	Spectrum Analyzer EUT			
Test Mode:	Refer to item 3.1			
Test Procedure:	 Set spectrum analyzer as following: a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level. 			
Test Result:	PASS			

5.3.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB	1	1

5.4. Emission Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	KDB 558074 D01 v05r02
Limit:	>500kHz
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Refer to item 3.1
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Test Result:	PASS

5.4.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB		

5.5. Power Spectral Density

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB 558074 D01 v05r02
Limit:	The peak power spectral density shall not be greated than 8dBm in any 3kHz band at any time interval or continuous transmission.
Test Setup:	
	spectrum Analyzer
Test Mode:	Refer to item 3.1
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW) Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum
	5. Measure and record the results in the test report.

5.5.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB	/	1

5.6. Conducted Band Edge and Spurious Emission Measurement

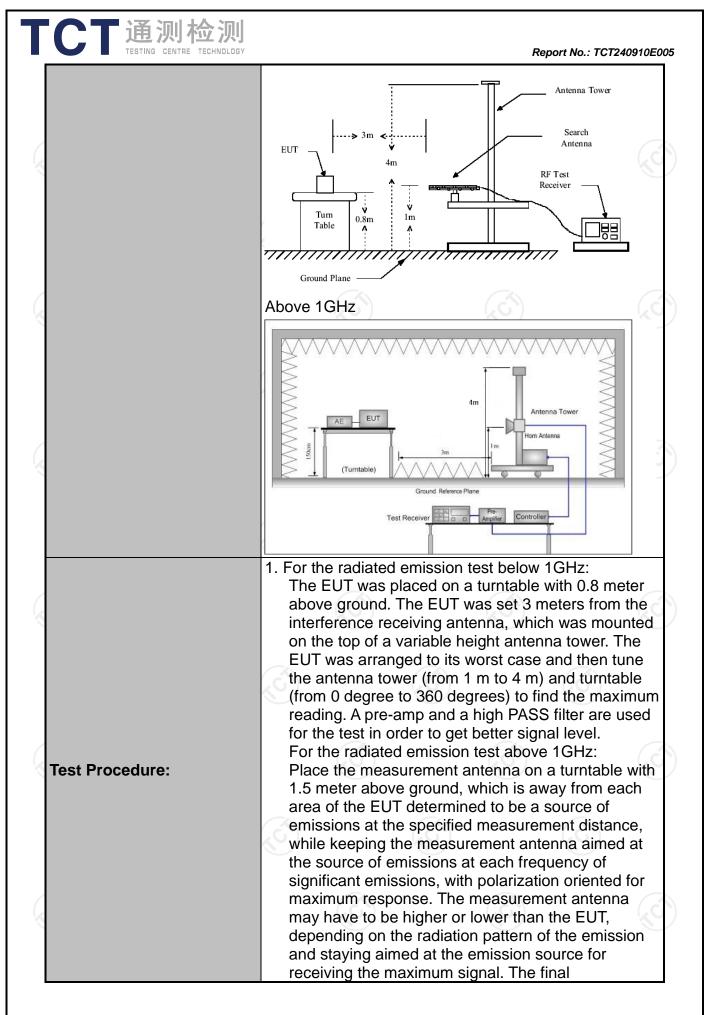
5.6.1. Test Specification

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15 C Section	15.247 (d)	
Test Method:	KDB 558074 D01 v05r0)2	C
Limit:	In any 100 kHz band frequency band, the non-restricted bands sh 30dB relative to the ma RF conducted measur which fall in the restrict 15.205(a), must also co limits specified in Section	emissions which fa nall be attenuated at lea aximum PSD level in 10 rement and radiated ted bands, as defined comply with the radiated	II in the ast 20 dB a 00 kHz by emissions in Sectior
Test Setup:	Spectrum Analyzer	EUT	
Test Mode:	Refer to item 3.1		
Test Procedure:	compensated to the 2. Set to the maximum EUT transmit contin 3. Set RBW = 100 kHz, Unwanted Emission bandwidth outside o shall be attenuated I maximum in-band p maximum peak cond used. If the transmit power limits based o a time interval, the a	e. The path loss was results for each measu power setting and enab uously. VBW=300 kHz, Peak I s measured in any 100 f the authorized frequen by at least 20 dB relativ eak PSD level in 100 kl ducted output power pro- ter complies with the co on the use of RMS avera- attenuation required unc 30 dB instead of 20 dB the results in the test re-	rement. le the Detector. kHz ncy band re to the Hz when ocedure is onducted aging over der this per
		in the operating freque	

5.6.2. Test Instruments

Name Spectrum		Manufactu	rer Model I	No. Seria	I Number	Calibratio	on Due
Sp Ar	ectrum nalyzer	Agilent	N9020	DA MY4	9100619	Jun. 26, 1	2025
	biner Box	Ascentes	t AT890-F	RFB	1	/	


5.7. Radiated Spurious Emission Measurement

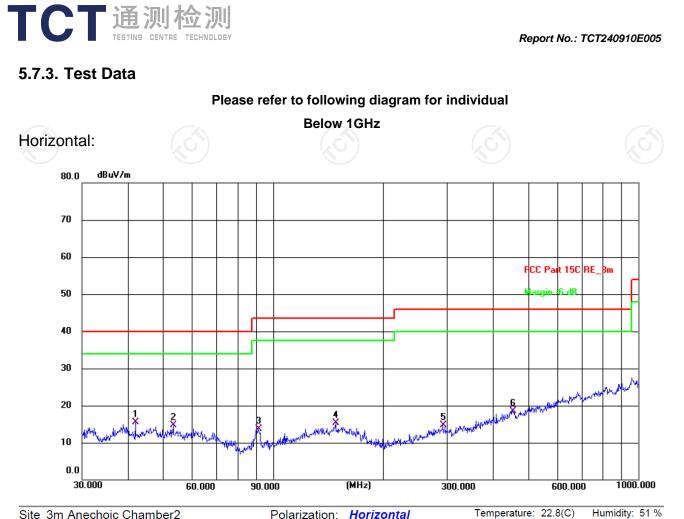
5.7.1. Test Specification

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15	C Section	15.209		
Test Method:	ANSI C63.10):2013			
Frequency Range:	9 kHz to 25 0	GHz	Z		
Measurement Distance:	3 m	X	9		No.
Antenna Polarization:	Horizontal &	Vertical			
Operation mode:	Refer to item	n 3.1	(<i>(</i>)	(
	Frequency 9kHz- 150kHz 150kHz-	Detector Quasi-peal Quasi-peal		VBW 1kHz 30kHz	Remark Quasi-peak Value Quasi-peak Value
Receiver Setup:	30MHz 30MHz-1GHz Above 1GHz	Quasi-peal Peak Peak	 120KHz 1MHz 1MHz 	300KHz 3MHz 10Hz	Quasi-peak Value Peak Value Average Value
	Frequen	190	Field Stro (microvolts) 2400/F(I	ength /meter) KHz)	Measurement Distance (meters) 300
	0.490-1.7 1.705-3 30-88	30	24000/F(30 100		30 30 3
Limit:	88-216 216-96 Above 9	0	150 200 500)	3 3 3
	Frequency Above 1GHz	Fiel (micro	d Strength ovolts/meter) 500	Measurer Distand (meter 3 3	ce Detector rs) Average
Test setup:	tt	emission: stance = 3m	5000 s below 30)MHz	Computer
iosi seiup.	0.8m		1 Plane	- [_R	eceiver

Page 17 of 47

CT通测检测 TESTING CENTRE TECHNOLOGY	Report No.: TCT240910E
	 measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. 2. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level 3. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. 4. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=120 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f >1 GHz for peak measurement. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Test mode:	Refer to section 3.1 for details
Test results:	PASS

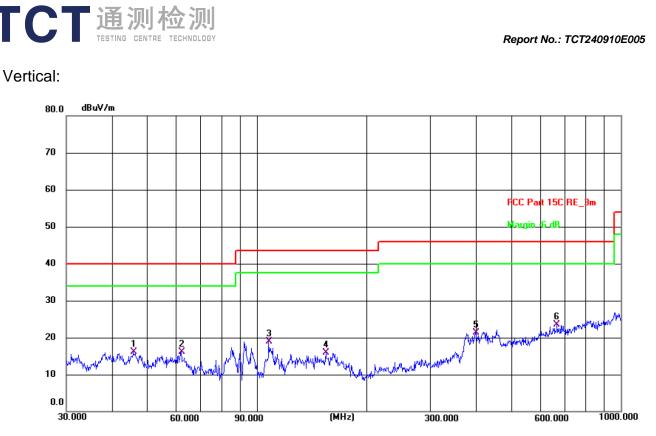

5.7.2. Test Instruments

TCT通测检测 TESTING CENTRE TECHNOLOGY

No		Emission Test S		
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESCI7	100529	Jan. 31, 202
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 26, 202
Pre-amplifier	HP	8447D	2727A05017	Jun. 26, 202
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012102	Jan. 31, 202
Pre-amplifier	SKET	LNPA_1840G- 50	SK20210920350 0	Jan. 31, 202
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jun. 26, 202
Broadband Antenna	Schwarzbeck	VULB9163	340	Jun. 28, 202
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jun. 28, 202
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Feb. 02, 202
Coaxial cable	SKET	RE-03-D	/	Jun. 26, 202
Coaxial cable	SKET	RE-03-M		Jun. 26, 202
Coaxial cable	SKET	RE-03-L	/	Jun. 26, 202
Coaxial cable	SKET	RE-04-D	1	Jun. 26, 202
Coaxial cable	SKET	RE-04-M	/	Jun. 26, 202
Coaxial cable	SKET	RE-04-L		Jun. 26, 202
Antenna Mast	Keleto	RE-AM	1	
EMI Test Software	EZ_EMC	FA-03A2 RE+	1.1.4.2	1
5°) (2	<u>(</u> ()	(C)	(<u>,</u> G`)	

Page 20 of 47

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com


Site 3m Anechoic Chamber2 Limit: FCC Part 15C RE 3m

Polarization: Horizontal

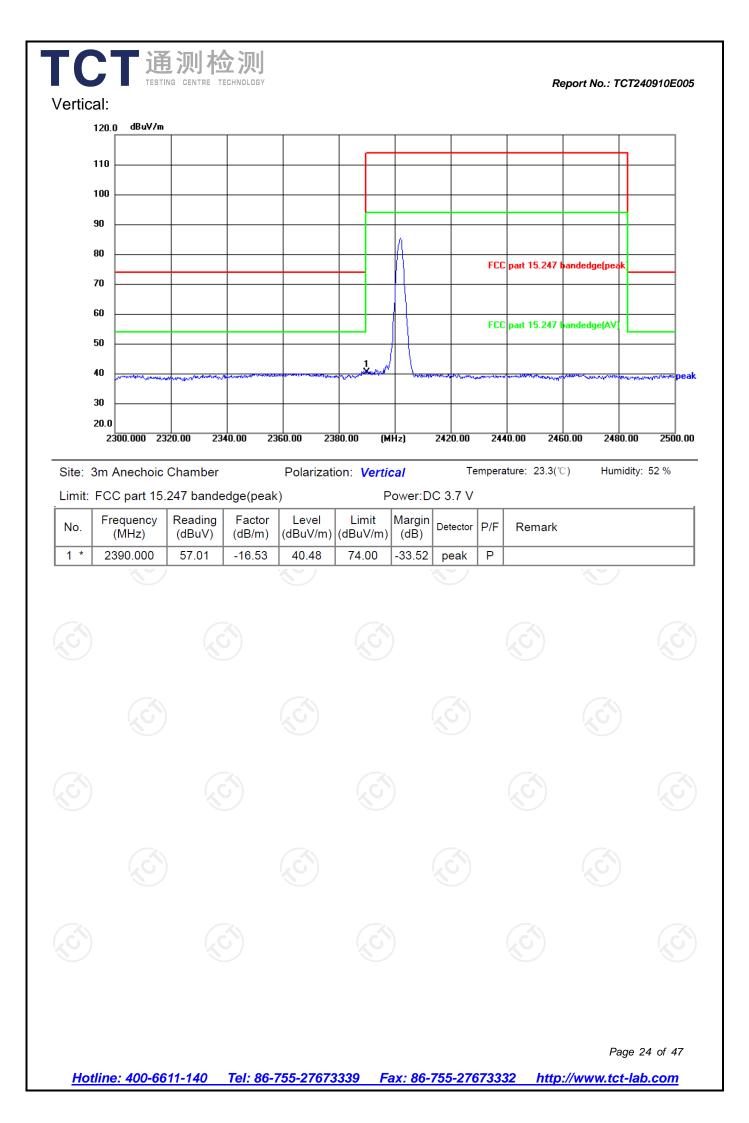
Power: AC 120 V/60 Hz

	001 410 1001								-
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	42.0066	33.98	-18.53	15.45	40.00	-24.55	QP	Ρ	
2	53.3179	33.64	-18.98	14.66	40.00	-25.34	QP	Ρ	
3	91.1746	36.14	-22.47	13.67	43.50	-29.83	QP	Ρ	
4	148.4410	32.80	-17.47	15.33	43.50	-28.17	QP	Ρ	
5	292.0583	32.21	-17.53	14.68	46.00	-31.32	QP	Ρ	
6	452.7197	31.90	-13.47	18.43	46.00	-27.57	QP	Ρ	

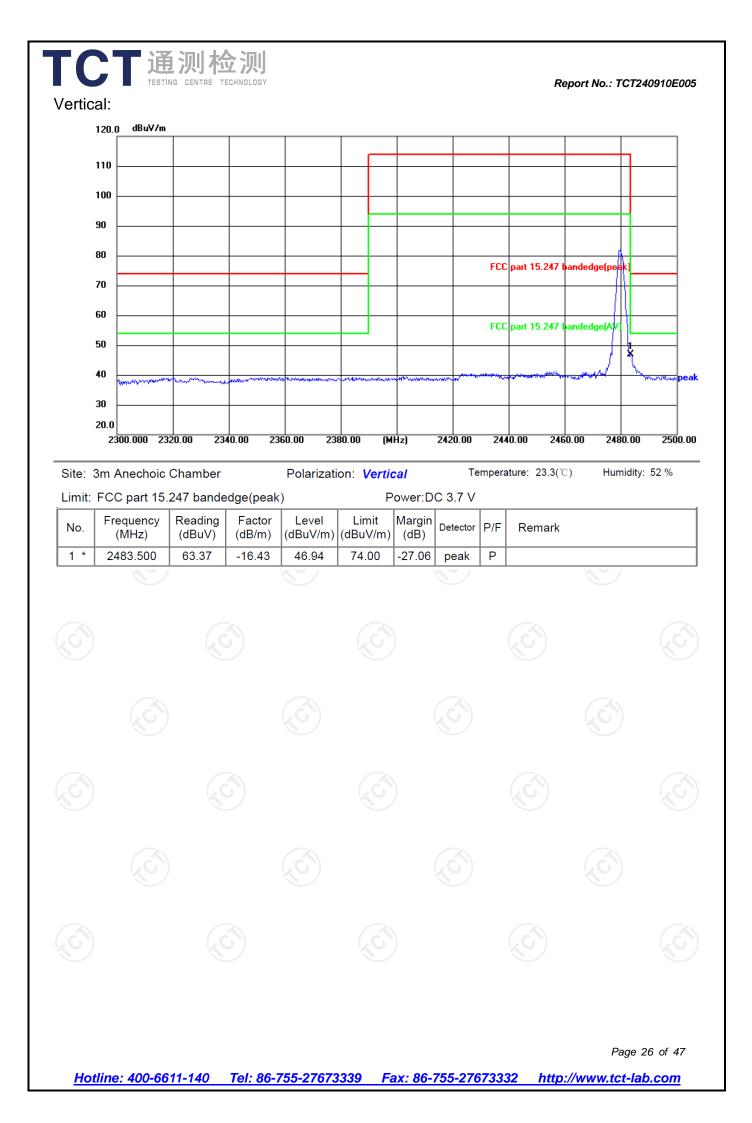
Page 21 of 47

Temperature: 22.8(C) Humidity: 51 % Site 3m Anechoic Chamber2 Polarization: Vertical Limit: FCC Part 15C RE_3m Power: AC 120 V/60 Hz Reading Factor Level Limit Frequency Margin Detector P/F Remark No (MHz) (dBuV) (dB/m)(dBuV/m) (dBuV/m) (dB) 45.8553 34.69 -18.66 16.03 40.00 QP Ρ 1 -23.97 61.9950 16.20 40.00 2 35.21 -19.01 -23.80 QP Ρ 107.8877 -20.65 18.89 43.50 QP Ρ 3 39.54 -24.61 4 154.8204 32.96 -16.99 15.97 43.50 -27.53 QP Ρ 399.0302 -14.78 21.27 -24.73 5 36.05 46.00 QP Ρ 6 668.1422 31.83 -8.41 23.42 46.00 -22.58 QP Ρ *

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported


2. Measurements were conducted in all three channels (high, middle, low), and the worst case Mode (Highest channel) was submitted only.

- 3. Freq. = Emission frequency in MHz
 - Measurement ($dB\mu V/m$) = Reading level ($dB\mu V$) + Corr. Factor (dB) Correction Factor= Antenna Factor + Cable loss – Pre-amplifier Limit ($dB\mu V/m$) = Limit stated in standard
 - Margin (dB) = Measurement (dB μ V/m) Limits (dB μ V/m)


* is meaning the worst frequency has been tested in the test frequency range

Page 22 of 47

	ontal:											
	120.0 dBuV/m											
	110											
	100											
	90					Λ				1		
	80							FCC	part 15.247	' banded	ge(peak	
	60											
	50							FCC	part 15.247	/ banded	ge(AV]	
	40				1	Д	attra (14) to a star fragment	and the second	1 Calman and			
		~15 MEDILARE TRANSPORT	and the second second second second				att af All Constant and the Allen				*****J4,*****	mesterth frest
	30 –											
	20.0 2300.000 23	20.00 23	40.00 23	360.00 23	80.00	(MH=)	2420.00	244	0.00 2/	460.00	2490.0	0 25
:	20.0		40.00 23			(MHz)	2420.00			460.00	2480.0	
te: 3	20.0 2300.000 23 3m Anechoic	Chamber		Polarizat		rizontal	Te		0.00 24 ture: 23.3(0 25 ty: 52 %
e: 3 nit:	20.0 2300.000 23 3m Anechoic FCC part 15 Frequency	Chamber 247 bande Reading	edge(peak	Polarizati	ion: <i>Hor</i> Limit	r izontal Power:D	Te C 3.7 V	mpera	ture: 23.3((°C)		
te: 3 nit: o.	20.0 2300.000 23 3m Anechoic FCC part 15	Chamber 247 bande	edge(peak	Polarizati	ion: <i>Hor</i> Limit (dBuV/n	rizontal Power:D Margin n) (dB)	Te C 3.7 V Detector	mpera		(°C)		
te: 3 nit: o.	20.0 2300.000 23 3m Anechoic FCC part 15 Frequency (MHz)	Chamber 247 bande Reading (dBuV)	edge(peak Factor (dB/m)	Polarizati <) Level (dBuV/m)	ion: <i>Hor</i> Limit	r izontal Power:D	Te C 3.7 V Detector	empera	ture: 23.3((°C)		
te: 3 nit: o.	20.0 2300.000 23 3m Anechoic FCC part 15 Frequency (MHz)	Chamber 247 bande Reading (dBuV)	edge(peak Factor (dB/m)	Polarizati <) Level (dBuV/m)	ion: <i>Hor</i> Limit (dBuV/n	rizontal Power:D Margin n) (dB)	Te C 3.7 V Detector	empera	ture: 23.3((°C)		
te: 3 nit: o.	20.0 2300.000 23 3m Anechoic FCC part 15 Frequency (MHz)	Chamber 247 bande Reading (dBuV)	edge(peak Factor (dB/m)	Polarizati <) Level (dBuV/m)	ion: <i>Hor</i> Limit (dBuV/n	rizontal Power:D Margin n) (dB)	Te C 3.7 V Detector	empera	ture: 23.3((°C)		
te: 3 nit: o.	20.0 2300.000 23 3m Anechoic FCC part 15 Frequency (MHz)	Chamber 247 bande Reading (dBuV)	edge(peak Factor (dB/m)	Polarizati <) Level (dBuV/m)	ion: <i>Hor</i> Limit (dBuV/n	rizontal Power:D Margin n) (dB)	Te C 3.7 V Detector	empera	ture: 23.3((°C)		
te: 3 nit: o.	20.0 2300.000 23 3m Anechoic FCC part 15 Frequency (MHz)	Chamber 247 bande Reading (dBuV)	edge(peak Factor (dB/m)	Polarizati <) Level (dBuV/m)	ion: <i>Hor</i> Limit (dBuV/n	rizontal Power:D Margin n) (dB)	Te C 3.7 V Detector	empera	ture: 23.3((°C)		
te: 3 nit: o.	20.0 2300.000 23 3m Anechoic FCC part 15 Frequency (MHz)	Chamber 247 bande Reading (dBuV)	edge(peak Factor (dB/m)	Polarizati <) Level (dBuV/m)	ion: <i>Hor</i> Limit (dBuV/n	rizontal Power:D Margin n) (dB)	Te C 3.7 V Detector	empera	ture: 23.3((°C)		
te: 3 nit: o.	20.0 2300.000 23 3m Anechoic FCC part 15 Frequency (MHz)	Chamber 247 bande Reading (dBuV)	edge(peak Factor (dB/m)	Polarizati <) Level (dBuV/m)	ion: <i>Hor</i> Limit (dBuV/n	rizontal Power:D Margin n) (dB)	Te C 3.7 V Detector	empera	ture: 23.3((°C)		
te: 3 nit: o.	20.0 2300.000 23 3m Anechoic FCC part 15 Frequency (MHz)	Chamber 247 bande Reading (dBuV)	edge(peak Factor (dB/m)	Polarizati <) Level (dBuV/m)	ion: <i>Hor</i> Limit (dBuV/n	rizontal Power:D Margin n) (dB)	Te C 3.7 V Detector	empera	ture: 23.3((°C)		
te: 3 nit: o.	20.0 2300.000 23 3m Anechoic FCC part 15 Frequency (MHz)	Chamber 247 bande Reading (dBuV)	edge(peak Factor (dB/m)	Polarizati <) Level (dBuV/m)	ion: <i>Hor</i> Limit (dBuV/n	rizontal Power:D Margin n) (dB)	Te C 3.7 V Detector	empera	ture: 23.3((°C)		
te: 3	20.0 2300.000 23 3m Anechoic FCC part 15 Frequency (MHz)	Chamber 247 bande Reading (dBuV)	edge(peak Factor (dB/m)	Polarizati <) Level (dBuV/m)	ion: <i>Hor</i> Limit (dBuV/n	rizontal Power:D Margin n) (dB)	Te C 3.7 V Detector	empera	ture: 23.3((°C)		

Report No.: TCT240910E005 Highest channel 2480: Horizontal: dBu¥/m 120.0 110 100 90 80 FCC part 15.247 bandedge(pea 70 60 FCC part 15.247 bandedge(AV 50 × 40 peak Martin Martin Mr. Van Harrison where proved 30 20.0 2300.000 2320.00 2340.00 2360.00 2380.00 (MHz) 2420.00 2440.00 2460.00 2480.00 2500.00 Site: 3m Anechoic Chamber Polarization: Horizontal Temperature: 23.3(℃) Humidity: 52 % Limit: FCC part 15.247 bandedge(peak) Power: DC 3.7 V Reading Factor Level Limit Frequency Margin No. Detector P/F Remark (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 1 * 2483.500 -16.43 46.74 -27.26 63.17 74.00 Ρ peak Page 25 of 47

Low char	nnel: 2402	MHz							
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak		Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4804	Н	55.33		-9.51	45.82		74	54	-8.18
7206	Н	47.97		-1.41	46.56		74	54	-7.44
	Н								
4804	V	55.45		-9.51	45.94	·	74	54	-8.06
7206	ΟV	47.20	-420	-1.41	45.79	<u>G</u> -)-	74	54	-8.21
	V								

Above 1GHz

Middle channel: 2440 MHz

Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4880	Н	54.67		-9.36	45.31	 74	54	-8.69
7320	Н	45.28		-1.15	44.13	 74	54	-9.87
	Н			<u> </u>	/	 		
			Ň)				
4880	V	55.01		-9.36	45.65	74	54	-8.35
7320	V	46.69		-1.15	45.54	 74	54	-8.46
	V					 		

			•	(•			(.c
High chanr	nel: 2480 N	ЛНz		0					<u> </u>
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak	n Level AV (dBµV/m)	Peak limit (dBµV/m)		Margin (dB)
4960	Н	55.81		-9.20	46.61	<u></u>	74	54	-7.39
7440	С H	46.71		-0.96	45.75		74	54	-8.25
	Н								
4960	V	55.34		-9.20	46.14		74	54	-7.86
7440	V	45.80		-0.96	44.84		74	54	-9.16
	V			<i></i>	/				<i></i>

Note:

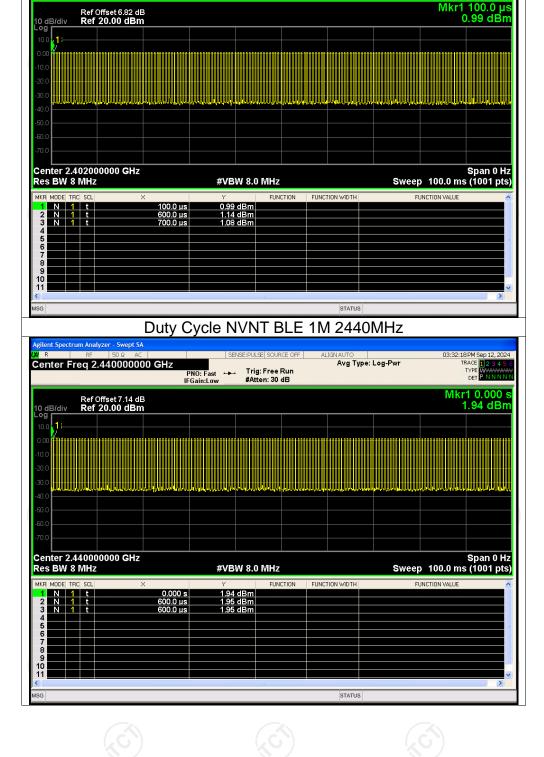
1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.


6. All the restriction bands are compliance with the limit of 15.209.

Appendix A: Test Result of Conducted Test

		Duty C	Sycle		6
Condition	Mode	Frequency (MHz)	Duty Cycle (%)	Correction Factor (dB)	X
NVNT	BLE 1M	2402	32.07	4.94	
NVNT	BLE 1M	2440	28.07	5.52	
NVNT	BLE 1M	2480	27.97	5.53	

Page 28 of 47

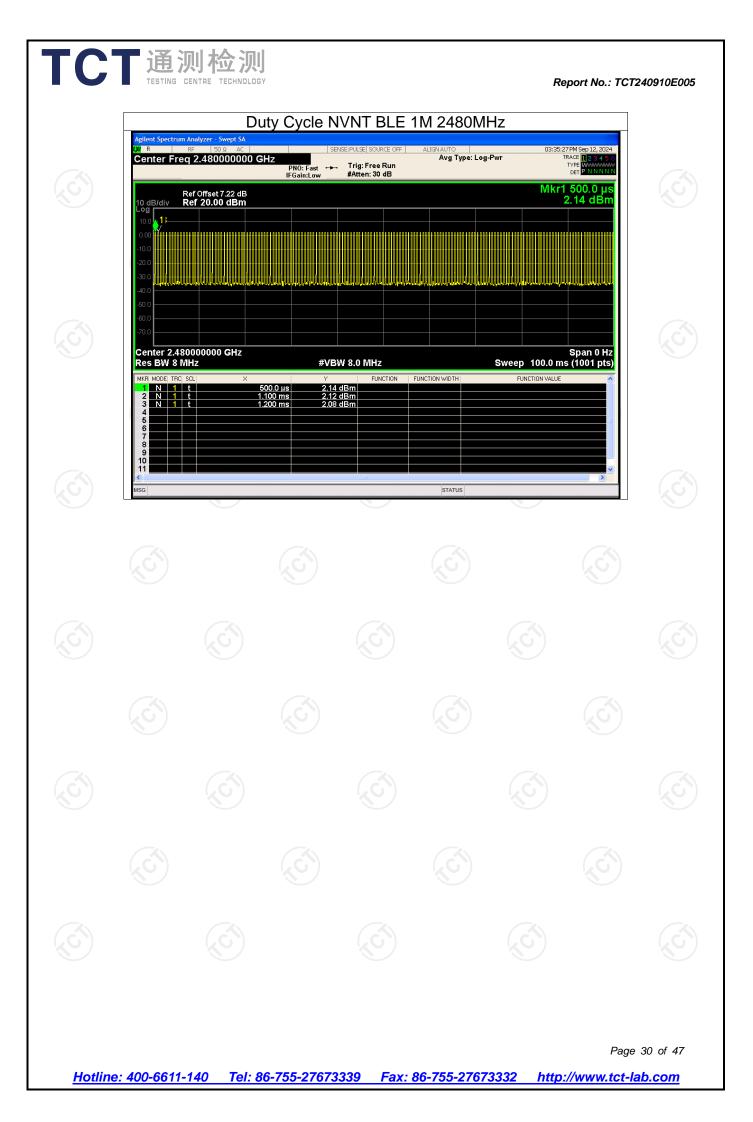
Test Graphs Duty Cycle NVNT BLE 1M 2402MHz

PULSE SOURCE OFF

PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB

Avg Type: Log-Pwr

Report No.: TCT240910E005


Page 29 of 47

29:41PM Sep 12, 2024 TRACE 1 2 3 4 5 6 TYPE WWWWWW DET P N N N N N

R

gilent Spectrum Analyzer - Swept SA

Center Freq 2.402000000 GHz

TCT	通测检测
	TESTING CENTRE TECHNOLOGY

		num Conc	d Output Po Conducted	wer Limit		1
Condition NVNT	Mode BLE 1M	(MHz) 2402	Power (dBm) 1.09		Verdict Pass	
NVNT NVNT NVNT	BLE 1M BLE 1M BLE 1M	2402 2440 2480	1.92 2.07	30 30 30	Pass Pass Pass	
line: 400-6611-					Page 31	1 of 47

Test Graphs Power NVNT BLE 1M 2402MHz

≜¹

Avg Type: Log-Pwr Avg|Hold: 500/500

SENSE: PULSE SOURCE OF

PNO: Fast ---- Trig: Free Run IFGain:Low #Atten: 30 dB

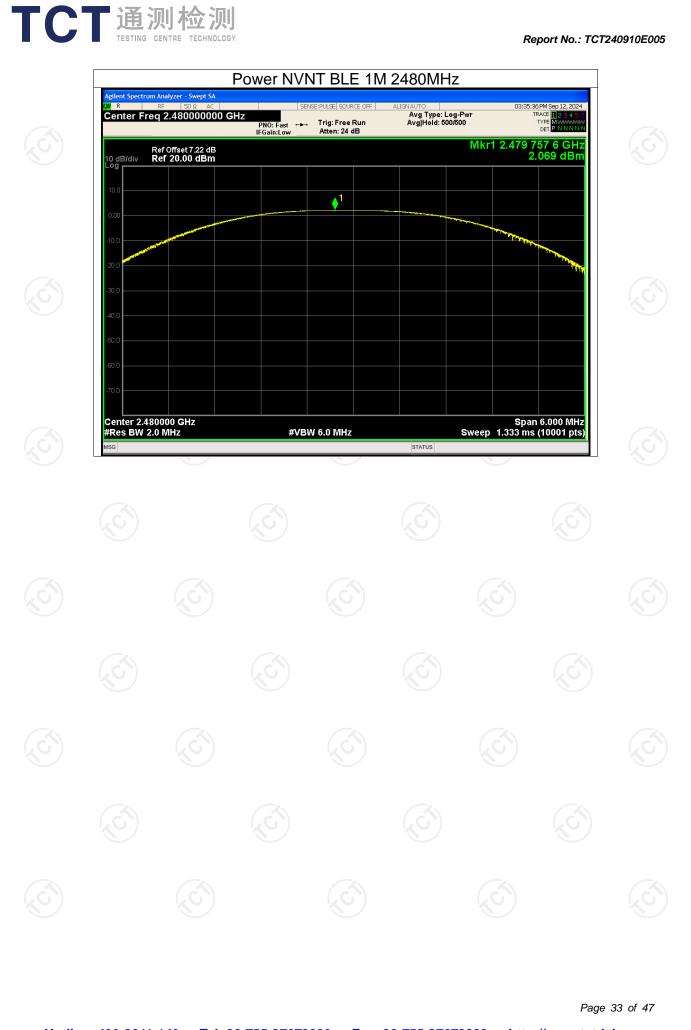
TCT通测检测 TEGTING CENTRE TECHNOLOGY

<mark>u</mark> R

10 dB/div Log

gilent Spectrum Analyzer - Swept SA

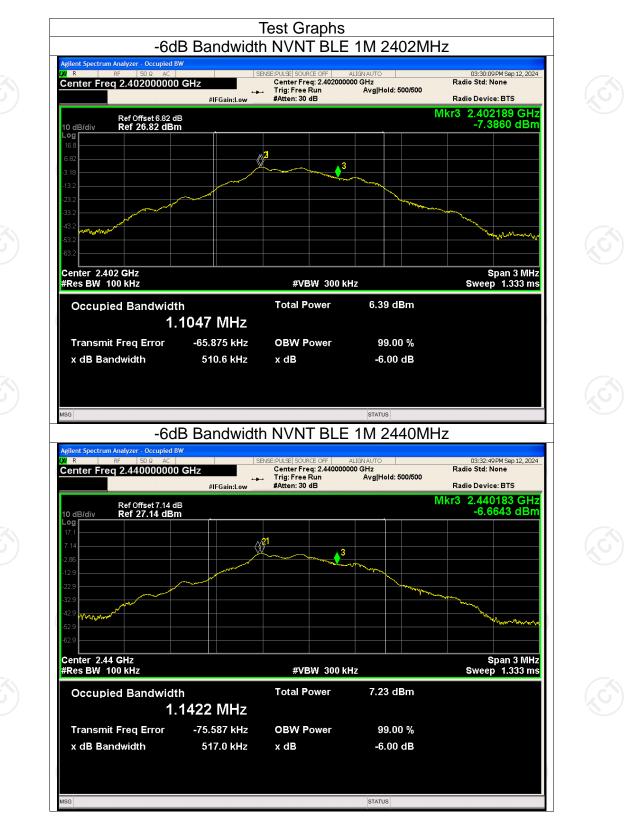
Center Freq 2.402000000 GHz


Ref Offset 6.82 dB Ref 20.00 dBm

#Res BW 2.0 MHz	#VBW 6.0 MHz	Sweep	1.000 ms (1001 p
	Power NVNT BLE 1	IM 2440MHz	
Agilent Spectrum Analyzer - Swept SA X R RF 50 Ω AC	SENSE: PULSE SOURCE OF		03:32:27 PM Sep 12, 2
Center Freq 2.440000000 G	PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold: 500/500	TRACE 1234 TYPE MWWW DET PNNN
Ref Offset 7.14 dB 10 dB/div Ref 20.00 dBm		Mkr1	2.439 861 4 G 1.920 dE
10.0	1		
0.00			
-10.0			and the second s
-20.0			And a find of the second s
-30.0			
-30.0			
-40.0			
-50.0			
-60.0			
-70.0			
Center 2.440000 GHz #Res BW 2.0 MHz	#VBW 6.0 MHz	Swoon	Span 6.000 N 1.333 ms (10001 p
MSG	**************************************	SWGGP	

Report No.: TCT240910E005

29:48 PM Sep 12, 2024 TRACE 123456 TYPE MWWWWW DET PNNNNN

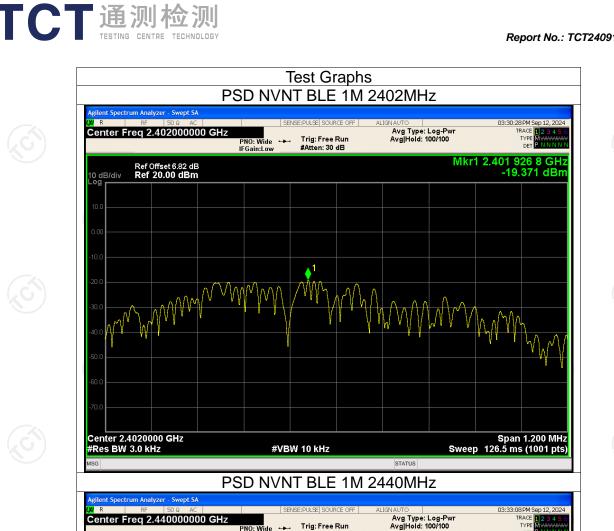

Mkr1 2.402 060 GHz 1.093 dBm

			Page 34 of 47
Hotline: 400-6611-140	Tel: 86-755-27673339	Fax: 86-755-27673332	http://www.tct-lab.com

Condition	Mode	Frequency (MHz)	B Bandw -6 dB Band (MHz)	dwidth	Limit -6 dB Bandwidth (MHz)		Verdict	
NVNT NVNT NVNT	BLE 1M BLE 1M BLE 1M	2402 2440 2480	0.511 0.517 0.529	7	0.5 0.5 0.5		Pass Pass Pass	

Page 35 of 47

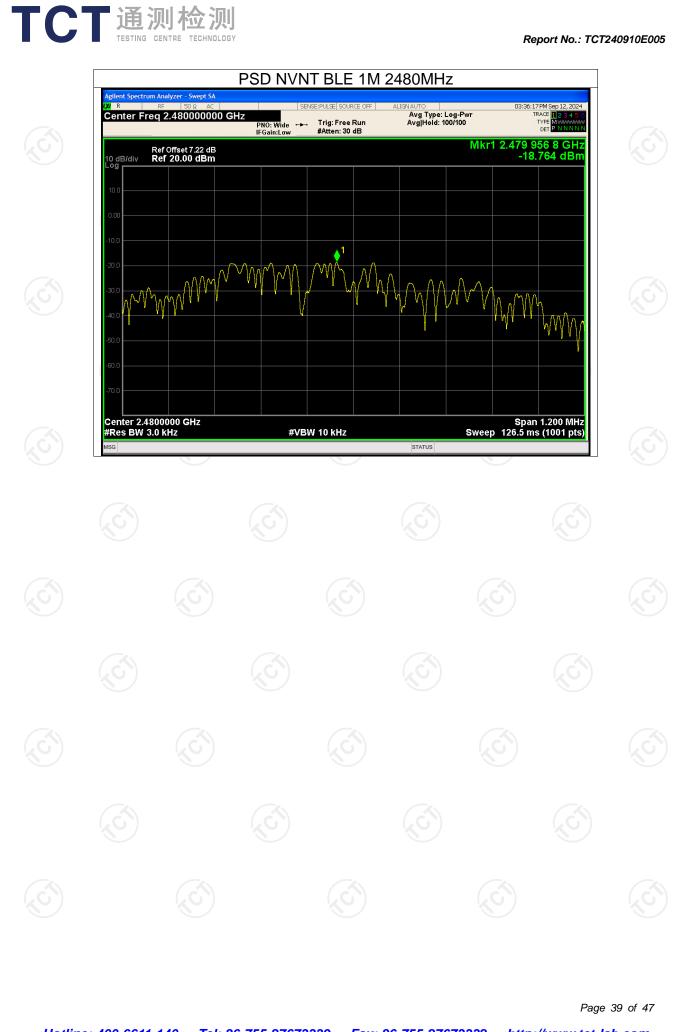
Condi		Mode	num Power Frequency (MHz)	nducted PSE dBm/3kHz)) L	.imit n/3kHz)	Verdict
	ΝT	BLE 1M BLE 1M BLE 1M	2402 2440 2480	-19.37 -18.65 -18.76		8 8 8	Pass Pass Pass


TCT通测检测 TESTING CENTRE TECHNOLOGY

♦¹

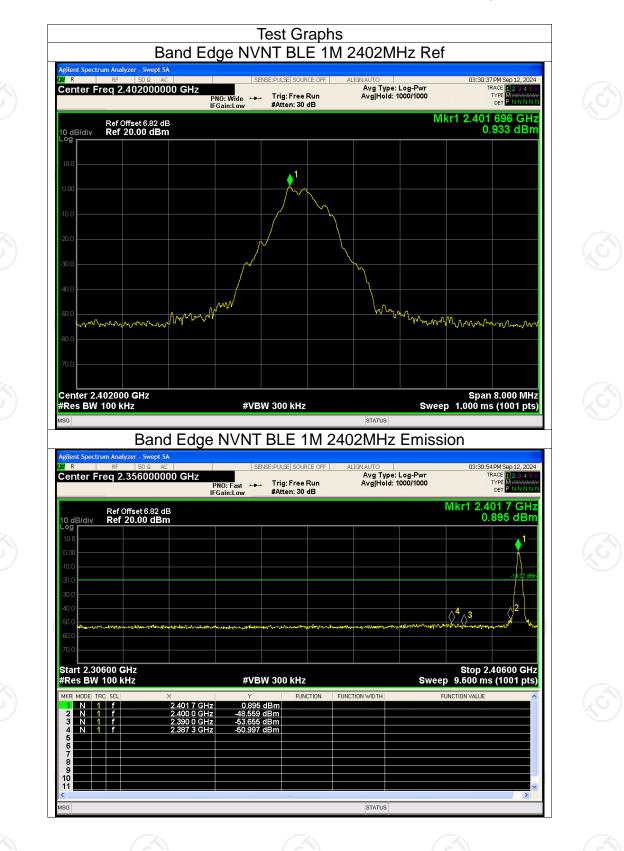
PNO: Wide $\leftrightarrow \rightarrow$ Trig: Free Run IFGain:Low #Atten: 30 dB

Ref Offset 7.14 dB Ref 20.00 dBm

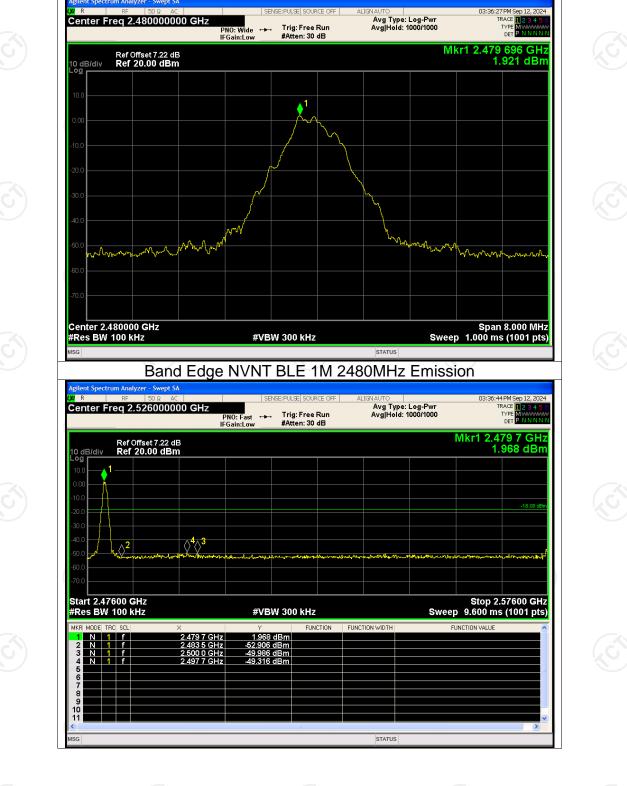

10 dB/div Log

Report No.: TCT240910E005

TYPE DET


Mkr1 2.439 958 0 GHz -18.654 dBm

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com


Condition	Mode	Freq	Band E Frequency (MHz)		x Value (dl	Bc) Lin	nit (dBc)	Verdict
NVNT NVNT	BLE 1M BLE 1M		2402 2480		-51.92 -51.23		-20 -20	Pass Pass
9	DEL)	2100	0	01.20	C	20	1 460

TCT通测检测 TESTING CENTRE TECHNOLOGY

TCT通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT240910E005

Band Edge NVNT BLE 1M 2480MHz Ref

gilent Spect

Report No.: TCT240910E005

Page 42 of 47

Verdict	nit (dBc)	Bc) Lim	x Value (dB	lz) Max	ducted R quency (M	de Fre		Condit
Pass Pass	-20 -20		-40.22 -41.85	6	2402 2440	1M	T BLE	NVN NVN
Pass	-20		-41.38		2480	1M	T BLE	NVN

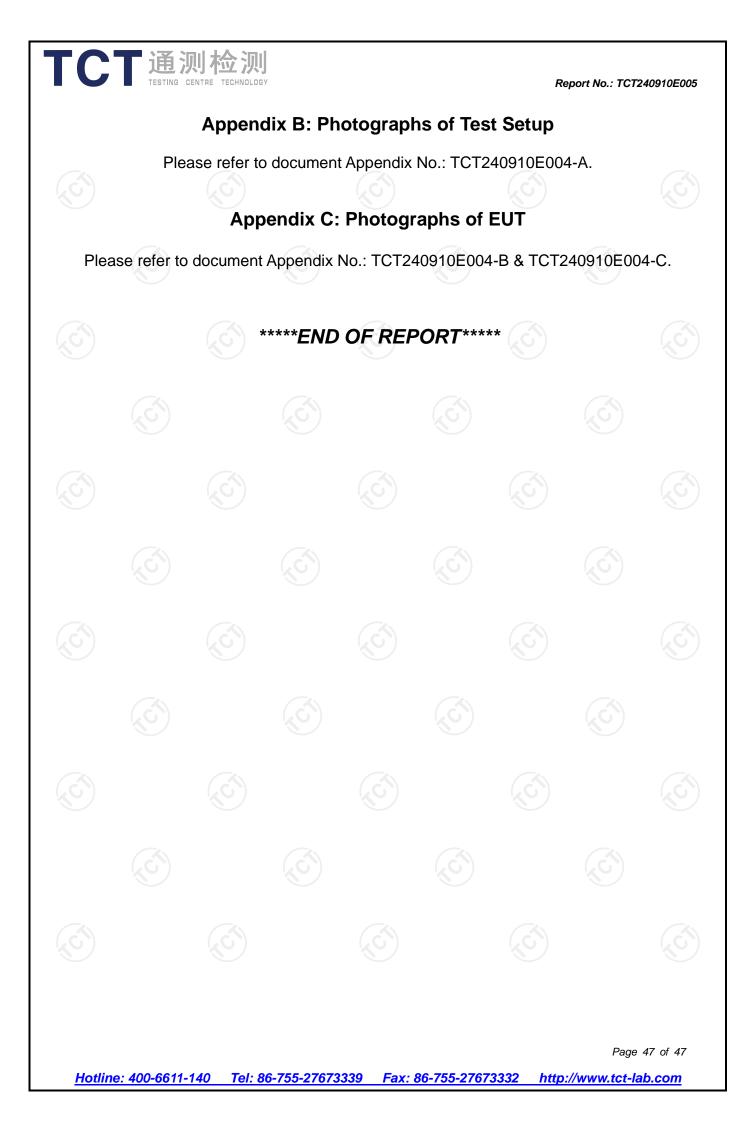
TCT通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT240910E005

TCT通测检测 TESTING CENTRE TECHNOLOGY

)

Page 45 of 47


STATUS

TCT通测检测 TESTING CENTRE TECHNOLOGY

> 10 11 <

Report No.: TCT240910E005

