8.2 MAXIMUM CONDUCTED OUTPUT POWER #### 8.2.1 Applicable Standard According to FCC Part 15.407(a)(1) for UNII Band I According to FCC Part 15.407(a)(2) for UNII Band II-A and UNII Band II-C According to FCC Part 15.407(a)(3) for UNII Band III According to 789033 D02 Section II(E) #### 8.2.2 Conformance Limit #### ■ For the band 5.15-5.25 GHz, - (a) (1) (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm). - (a) (1) (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. - (a) (1) (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations. - (a) (1) (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. #### ■ For the 5.25-5.35 GHz and 5.47-5.725 GHz bands (a) (2) the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. #### ■ For the band 5.725-5.85 GHz (a) (3)For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. #### 8.2.3 Test Configuration Test according to clause 6.1 radio frequency test setup TRF No.: FCC 15.407/A Page 104 of 144 Report No.: ES180313010W02 Ver.1.0 #### 8.2.4 Test Procedure The maximum average conducted output power can be measured using Method PM-G (Measurement using a gated RF average power meter): Measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required. - a. The Transmitter output (antenna port) was connected to the power meter. - b. Turn on the EUT and power meter and then record the power value. - c. Repeat above procedures on all channels needed to be tested. ### 8.2.5 Test Results Temperature: Test Date : March 27, 2018 28 65 % Humidity: King Kong Test Bv: Band Channel Channel Conducted Output Power(dBm) Limit Verdict Number Freq. (MHz) Ant0 Ant1 Ant2 Ant3 (dBm) CH36 5180 13.74 13.45 13.93 13.42 18.98 Pass UNII CH40 5200 13.15 12.84 12.98 12.98 18.98 Pass Band I CH48 5240 14.00 13.55 13.66 13.87 18.98 Pass CH149 5745 12.47 12.01 12.00 12.10 24.98 Pass UNII 12.31 CH157 5785 12.05 11.91 11.70 24.98 Pass Band III CH165 5825 11.58 11.59 11.59 11.56 24.98 **Pass** Note: N/A (Not Applicable) Temperature: 28 11.70 Test Date: March 27, 2018 Humidity: 65 %11.56 Test By: King Kong | Band | Channel | Channel | | Conduct | (dBm) | Limit | Verdict | | | |----------------|---------|-------------|-------|---------|-------|-------|-------------|-------|---------| | | Number | Freq. (MHz) | Ant0 | Ant1 | Ant2 | Ant3 | Ant 0+1+2+3 | (dBm) | verdict | | LINIII | CH36 | 5180 | 12.39 | 12.74 | 12.35 | 12.35 | 12.26 | 18.98 | Pass | | UNII
Band I | CH40 | 5200 | 12.47 | 12.56 | 12.39 | 12.85 | 12.45 | 18.98 | Pass | | Dallu I | CH48 | 5240 | 12.74 | 12.75 | 12.85 | 12.69 | 12.78 | 18.98 | Pass | | UNII | CH149 | 5745 | 13.42 | 12.82 | 13.15 | 13.37 | 13.38 | 24.98 | Pass | | Band III | CH157 | 5785 | 13.04 | 12.89 | 12.66 | 12.68 | 12.69 | 24.98 | Pass | | Dailu III | CH165 | 5825 | 12.28 | 12.23 | 12.23 | 13.33 | 12.26 | 24.98 | Pass | Temperature: 28 Test Date: March 27, 2018 Humidity: 65 % Test By: King Kong | Band | Channel | Channel | | Conduct | (dBm) | Limit | Verdict | | | |-----------|---------|-------------|-------|---------|-------|-------|-------------|-------|---------| | | Number | Freq. (MHz) | Ant0 | Ant1 | Ant2 | Ant3 | Ant 0+1+2+3 | (dBm) | verdict | | UNII | CH36 | 5180 | 12.54 | 12.53 | 12.34 | 13.27 | 13.24 | 18.98 | Pass | | Band I | CH40 | 5200 | 12.56 | 12.45 | 12.35 | 12.65 | 12.38 | 18.98 | Pass | | Dallu I | CH48 | 5240 | 12.90 | 12.79 | 12.77 | 12.77 | 12.94 | 18.98 | Pass | | UNII | CH149 | 5745 | 13.34 | 13.28 | 12.77 | 13.14 | 12.71 | 24.98 | Pass | | Band III | CH157 | 5785 | 12.72 | 12.68 | 12.62 | 12.48 | 14.36 | 24.98 | Pass | | Dailu III | CH165 | 5825 | 12.57 | 12.24 | 12.33 | 12.30 | 12.12 | 24.98 | Pass | Temperature: Test Date : March 27, 2018 28 65 % Humidity: Test By: King Kong | Band | Channel | Channel | | Conduct | (dBm) | Limit | Verdict | | | | | |----------|---------|-------------|-------|---------|-------|-------|-------------|-----------------|------|--|--| | | Number | Freq. (MHz) | Ant0 | Ant1 | Ant2 | Ant3 | Ant 0+1+2+3 | (dBm) Verdici | | | | | UNII | CH38 | 5190 | 12.48 | 12.72 | 12.43 | 13.17 | 12.24 | 18.98 | Pass | | | | Band I | CH46 | 5230 | 14.61 | 13.77 | 13.84 | 15.56 | 14.06 | 18.98 | Pass | | | | UNII | CH151 | 5755 | 12.75 | 12.66 | 12.45 | 12.44 | 12.17 | 24.98 | Pass | | | | Band III | CH159 | 5795 | 13.60 | 11.96 | 11.93 | 11.93 | 12.04 | 24.98 | Pass | | | Test Date : Temperature: March 27, 2018 28 King Kong Humidity: 65 % Test By: | Band | Channel | Channel | | Conduct | Limit | Verdict | | | | |----------|---------|-------------|-------|---------|-------|---------|-------------|-------|---------| | | Number | Freq. (MHz) | Ant0 | Ant1 | Ant2 | Ant3 | Ant 0+1+2+3 | (dBm) | verdict | | UNII | CH38 | 5190 | 13.07 | 12.31 | 12.21 | 12.51 | 11.75 | 18.98 | Pass | | Band I | CH46 | 5230 | 14.26 | 13.82 | 13.77 | 14.20 | 13.34 | 18.98 | Pass | | UNII | CH151 | 5755 | 12.35 | 12.37 | 12.89 | 12.18 | 12.13 | 24.98 | Pass | | Band III | CH159 | 5795 | 12.00 | 12.31 | 11.82 | 12.01 | 11.93 | 24.98 | Pass | ⊠ 802.11ac(VHT80) mode Test Date : N Temperature: 28 March 27, 2018 Humidity: 65 % Test By: King Kong | Band | Channel | Channel | | Conduct | Limit | Verdict | | | | |------------------|---------|-------------|-------|---------|-------|---------|-------------|-------|---------| | | Number | Freq. (MHz) | Ant0 | Ant1 | Ant2 | Ant3 | Ant 0+1+2+3 | (dBm) | verdict | | UNII
Band I | CH42 | 5210 | 16.00 | 15.78 | 15.78 | 16.00 | 17.11 | 18.98 | Pass | | UNII
Band III | CH155 | 5775 | 12.80 | 12.32 | 12.43 | 12.62 | 12.60 | 24.98 | Pass | #### 8.3 MAXIMUM PEAK POWER DENSITY #### 8.3.1 Applicable Standard According to FCC Part 15.407(a)(1) for UNII Band I According to FCC Part 15.407(a)(2) for UNII Band II-A and UNII Band II-C According to FCC Part 15.407(a)(3) for UNII Band III According to 789033 D02 Section II(F) #### 8.3.2 Conformance Limit #### ■ For the band 5.15-5.25 GHz, (a) (1) (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm). (a) (1) (ii) For an indoor access
point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. (a) (1) (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations. (a) (1) (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. # ■ For the 5.25-5.35 GHz and 5.47-5.725 GHz bands (b) (2) the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. # ■ For the band 5.725-5.85 GHz (a) (3)For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. # 8.3.3 Test Configuration Test according to clause 6.1 radio frequency test setup ### 8.3.4 Test Procedure Methods refer to FCC KDB 789033 TRF No.: FCC 15.407/A Page 108 of 144 Report No.: ES180313010W02 Ver.1.0 - 1) Create an average power spectrum for the EUT operating mode being tested by following the instructions in section E)2) for measuring maximum conducted output power using a spectrum analyzer or EMI receiver: select the appropriate test method (SA-3, or alternatives to each) and apply it up to, but not including, the step labeled, "Compute power...". - 2) Use the peak search function on the instrument to find the peak of the spectrum. - 3) The result is the PPSD. - 4) The above procedures make use of 500kHz resolution bandwidth to satisfy the 500kHz measurement bandwidth specified in the 15.407(a)(5). That rule section also permits use of resolution bandwidths less than 1 MHz "provided that the measured power is integrated to show the total power over the measurement bandwidth" (i.e., 1 MHz). If measurements are performed using a reduced resolution bandwidth and integrated over 500kHz bandwidth Note: As a practical matter, it is recommended to use reduced RBW of 500 kHz for the sections 5.c) and 5.d) above, since RBW=500 kHz is available on nearly all spectrum analyzers. TRF No.: FCC 15.407/A Page 109 of 144 Report No.: ES180313010W02 Ver.1.0 # 8.3.5 Test Results Temperature: 28 Test By: King Kong Humidity: 65 % | Band | Channel | Channel | Po | ower Spe | ectral Der | nsity | | | |------------------|---------|----------------|-------|----------|-------------|-------|------------------|---------| | | Number | Freq.
(MHz) | Ant0 | Ant1 | 1 Ant2 Ant3 | | Limit | Verdict | | LINIII | CH36 | 5180 | 1.01 | 0.71 | 1.10 | 1.21 | ≤5.98dBm/1MHz | Pass | | UNII
Band I | CH40 | 5200 | 1.30 | 1.21 | 1.10 | 1.19 | ≤5.98dBm/1MHz | Pass | | Dallu I | CH48 | 5240 | -1.96 | -1.94 | -1.77 | -1.94 | ≤5.98dBm/1MHz | Pass | | LINIII | CH149 | 5745 | -3.72 | -4.48 | -4.16 | -4.42 | ≤21.98dBm/500KHz | Pass | | UNII
Band III | CH157 | 5785 | -5.52 | -5.04 | -5.09 | -5.33 | ≤21.98dBm/500KHz | Pass | | Dailu III | CH165 | 5825 | -4.61 | -4.59 | -4.83 | -5.03 | ≤21.98dBm/500KHz | Pass | Note: N/A (Not Applicable) Temperature : 28 Test By: King Kong Humidity: 65 % | Band | Channel | Channel | | Pow | er Specti | al Density | У | | | |----------------|---------|----------------|-------|-----------------------------|-----------|----------------|-------|------------------|------| | | Number | Freq.
(MHz) | Ant0 | Anto I Anto I Anto I Anto I | | Ant
0+1+2+3 | Limit | Verdict | | | LINIII | CH36 | 5180 | -2.94 | -3.43 | -3.14 | -3.33 | 2.81 | ≤5.98dBm/1MHz | Pass | | UNII
Band I | CH40 | 5200 | -2.95 | -2.70 | -2.75 | -2.86 | 3.21 | ≤5.98dBm/1MHz | Pass | | Dallu I | CH48 | 5240 | -5.87 | -6.09 | -5.91 | -6.34 | -0.03 | ≤5.98dBm/1MHz | Pass | | UNII | CH149 | 5745 | -5.79 | -5.92 | -5.70 | -5.60 | 0.27 | ≤21.98dBm/500KHz | Pass | | Band III | CH157 | 5785 | -6.68 | -6.87 | -6.79 | -6.46 | -0.68 | ≤21.98dBm/500KHz | Pass | | Danu III | CH165 | 5825 | -6.99 | -6.86 | -6.92 | -6.47 | -0.78 | ≤21.98dBm/500KHz | Pass | | Al. t. | | | | | | | | | | Note: N/A (Not Applicable) Temperature : 28 Test By: King Kong Humidity: 65 % | Band | Channel | Channel | | Pow | er Specti | ral Density | | | | |------------------|---------|----------------|-------|-------|-----------|-------------|----------------|------------------|---------| | | Number | Freq.
(MHz) | Ant0 | Ant1 | Ant2 | Ant3 | Ant
0+1+2+3 | Limit | Verdict | | LINIII | CH36 | 5180 | -3.01 | -3.06 | -2.96 | -2.65 | 3.10 | ≤5.98dBm/1MHz | Pass | | UNII
Band I | CH40 | 5200 | -2.70 | -2.50 | -2.47 | -2.10 | 3.58 | ≤5.98dBm/1MHz | Pass | | Danu i | CH48 | 5240 | -5.36 | -5.98 | -5.91 | -5.43 | 0.36 | ≤5.98dBm/1MHz | Pass | | LINIII | CH149 | 5745 | -5.88 | -5.48 | -5.59 | -5.59 | 0.39 | ≤21.98dBm/500KHz | Pass | | UNII
Band III | CH157 | 5785 | -6.61 | -7.05 | -6.79 | -6.48 | -0.71 | ≤21.98dBm/500KHz | Pass | | Danu III | CH165 | 5825 | -6.89 | -6.43 | -6.23 | -6.73 | -0.54 | ≤21.98dBm/500KHz | Pass | Note: N/A (Not Applicable) TRF No.: FCC 15.407/A Page 110 of 144 Report No.: ES180313010W02 Ver.1.0 Temperature: 28 Test By: King Kong Humidity: 65 % | Band | Channel | Channel | | Pow | er Specti | al Density | У | | | |----------|---------|----------------|--------|--------|-----------|------------|----------------|------------------|---------| | | Number | Freq.
(MHz) | Ant0 | Ant1 | Ant2 | Ant3 | Ant
0+1+2+3 | Limit | Verdict | | UNII | CH38 | 5190 | -6.87 | -6.70 | -6.60 | -6.25 | -0.58 | ≤5.98dBm/1MHz | Pass | | Band I | CH46 | 5230 | -9.75 | -9.82 | -9.91 | -9.67 | -3.77 | ≤5.98dBm/1MHz | Pass | | UNII | CH151 | 5755 | -9.83 | -9.77 | -9.95 | -9.49 | -3.74 | ≤21.98dBm/500KHz | Pass | | Band III | CH159 | 5795 | -10.84 | -10.79 | -10.67 | -10.99 | -4.80 | ≤21.98dBm/500KHz | Pass | Note: N/A (Not Applicable) Temperature : 28 Test Date : March 27, 2018 Humidity : 65 % Test By: King Kong | Band | Channel | Channel | | Pow | er Specti | al Density | | | | |----------|---------|---------|--------|--------|-----------|------------|---------|------------------|---------| | | Number | Freq. | Ant0 | Ant1 | Ant2 | Ant3 | Ant | Limit | Verdict | | | | (MHz) | Anto | Anti | Antz | AIIIS | 0+1+2+3 | | | | UNII | CH38 | 5190 | -6.85 | -6.19 | -6.38 | -5.98 | -0.32 | ≤5.98dBm/1MHz | Pass | | Band I | CH46 | 5230 | -9.34 | -9.79 | -9.63 | -9.73 | -3.60 | ≤5.98dBm/1MHz | Pass | | UNII | CH151 | 5755 | -9.48 | -9.90 | -9.92 | -9.49 | -3.67 | ≤21.98dBm/500KHz | Pass | | Band III | CH159 | 5795 | -10.75 | -10.17 | -10.53 | -10.99 | -4.58 | ≤21.98dBm/500KHz | Pass | Note: N/A (Not Applicable) Temperature: 28 Test Date: February 07, 2018 Humidity: 65 % Test By: King Kong | Band | Channel | Channel | | Pow | er Specti | al Density | У | | | |------------------|---------|----------------|--------|--------|-----------|------------|----------------|------------------|---------| | | Number | Freq.
(MHz) | Ant0 | Ant1 | Ant2 | Ant3 | Ant
0+1+2+3 | Limit | Verdict | | UNII
Band I | CH42 | 5210 | -15.17 | -15.51 | -15.02 | -15.11 | -9.18 | ≤5.98dBm/1MHz | Pass | | UNII
Band III | CH155 | 5775 | -14.93 | -14.44 | -15.48 | -14.58 | -8.82 | ≤21.98dBm/500KHz | Pass | | Notes | | | | | | | | | | Note: N/A (Not Applicable) TRF No.: FCC 15.407/A Page 111 of 144 Report No.: ES180313010W02 Ver.1.0 ### **8.4 FREQUENCY STABILITY** #### 8.4.1 Applicable Standard According to FCC Part 15.407(g) ANSI C63.10 Section 6.8 #### 8.4.2 Conformance Limit Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the users manual. ### 8.4.3 Test Configuration Test according to clause 6.1 radio frequency test setup #### 8.4.4 Test Procedure The RF
output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously Set RBW = 10 kHz. Set the video bandwidth (VBW) =30 kHz. Set Span= Entire absence of modulation emissions bandwidth Set Detector = Peak. Set Trace mode = max hold. Set Sweep = auto couple. Allow the trace to stabilize. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value. Beginning at each temperature level specified in user manual, the frequency shall be measured within one minute after application of primary power to the transmitter and at intervals of no more than one minute thereafter until ten minutes have elapsed or until sufficient measurements are obtained to indicate clearly that the frequency has stabilized within the applicable tolerance, whichever time period is greater. During each test, the ambient temperature shall not be allowed to rise more than 10° centigrade above the respective beginning ambient temperature level Measure and record the results in the test report. ### 8.4.5 Test Results Two antenna have been tested, and the worst results have been recorded in the report. TRF No.: FCC 15.407/A Page 112 of 144 Report No.: ES180313010W02 Ver.1.0 Temperature : -- Test Date : March 27, 2018 Humidity : 65 % Test By: King Kong | Voltage(V) | Temp() | Test Frequency
(MHz) | Max. Deviation
(KHz) | Verdict | |------------|---------|-------------------------|-------------------------|---------| | | -20 | 5179.998456 | -1.544 | Pass | | | -10 | 5179.998456 | -1.544 | Pass | | | 0 | 5179.998456 | -1.544 | Pass | | Vnom | 10 | 5179.996456 | -3.544 | Pass | | VIIOIII | 20 | 5179.997456 | -2.544 | Pass | | | 30 | 5179.996456 | -3.544 | Pass | | | 40 | 5179.995456 | -4.544 | Pass | | | 50 | 5179.995456 | -4.544 | Pass | | 85% Vnom | 20 | 5179.998456 | -1.544 | Pass | | 115% Vnom | 20 | 5179.997456 | -2.544 | Pass | Antenna 0 5200 Temperature : -- Test Date : March 27, 2018 Humidity : 65 % Test By: King Kong | Voltage(V) | Temp() | Test Frequency
(MHz) | Max. Deviation
(KHz) | Verdict | |------------|---------|-------------------------|-------------------------|---------| | | -20 | 5199.989456 | -10.544 | Pass | | | -10 | 5199.989456 | -10.544 | Pass | | | 0 | 5199.990456 | -9.544 | Pass | | Vnom | 10 | 5199.990456 | -9.544 | Pass | | VIIOIII | 20 | 5200.003456 | 3.456 | Pass | | | 30 | 5199.988456 | -11.544 | Pass | | | 40 | 5199.989456 | -10.544 | Pass | | | 50 | 5199.986456 | -13.544 | Pass | | 85% Vnom | 20 | 5199.990456 | -9.544 | Pass | | 115% Vnom | 20 | 5199.990456 | -9.544 | Pass | Antenna 0 5240 Temperature : -- Test Date : March 27, 2018 Humidity : Test By: King Kong | Voltage(V) | Temp() | Test Frequency
(MHz) | Max. Deviation
(KHz) | Verdict | |------------|---------|-------------------------|-------------------------|---------| | | -20 | 5239.997456 | -2.544 | Pass | | | -10 | 5239.996456 | -3.544 | Pass | | | 0 | 5239.997456 | -2.544 | Pass | | Vnom | 10 | 5239.996456 | -3.544 | Pass | | VIIOIII | 20 | 5239.994456 | -5.544 | Pass | | | 30 | 5239.996456 | -3.544 | Pass | | | 40 | 5239.992456 | -7.544 | Pass | | | 50 | 5239.994456 | -5.544 | Pass | | 85% Vnom | 20 | 5239.997456 | -2.544 | Pass | | 115% Vnom | 20 | 5239.996456 | -3.544 | Pass | TRF No.: FCC 15.407/A Page 113 of 144 Report No.: ES180313010W02 Ver.1.0 Temperature : -- Test Date : May04, 2017 Humidity : 65 % Test By: King Kong | Voltage(V) | Temp() | Test Frequency
(MHz) | Max. Deviation
(KHz) | Verdict | |------------|---------|-------------------------|-------------------------|---------| | | -20 | 5745.000456 | 0.456 | Pass | | | -10 | 5744.999456 | -0.544 | Pass | | | 0 | 5745.002456 | 2.456 | Pass | | Vacan | 10 | 5745.003456 | 3.456 | Pass | | Vnom | 20 | 5745.004456 | 4.456 | Pass | | | 30 | 5745.001456 | 1.456 | Pass | | | 40 | 5745.000456 | 0.456 | Pass | | | 50 | 5745.002456 | 2.456 | Pass | | 85% Vnom | 20 | 5745.002456 | 2.456 | Pass | | 115% Vnom | 20 | 5745.002456 | 2.456 | Pass | Antenna 0 5785 Temperature : -- Test Date : March 27, 2018 Humidity : 65 % Test By: King Kong | Voltage(V) | Temp() | Test Frequency
(MHz) | Max. Deviation
(KHz) | Verdict | |------------|---------|-------------------------|-------------------------|---------| | | -20 | 5784.999456 | -0.544 | Pass | | | -10 | 5785.001456 | 1.456 | Pass | | | 0 | 5785.003456 | 3.456 | Pass | | Vnom | 10 | 5785.002456 | 2.456 | Pass | | VIIOIII | 20 | 5785.002456 | 2.456 | Pass | | | 30 | 5785.004456 | 4.456 | Pass | | | 40 | 5785.002456 | 2.456 | Pass | | | 50 | 5785.005456 | 5.456 | Pass | | 85% Vnom | 20 | 5785.005456 | 5.456 | Pass | | 115% Vnom | 20 | 5785.005456 | 5.456 | Pass | Antenna 0 5825 Temperature : -- Test Date : March 27, 2018 Humidity : 65 % Test By: King Kong | Voltage(V) | Temp() | Test Frequency
(MHz) | Max. Deviation
(KHz) | Verdict | |------------|---------|-------------------------|-------------------------|---------| | | -20 | 5824.997456 | -2.544 | Pass | | | -10 | 5824.995456 | -4.544 | Pass | | | 0 | 5824.996456 | -3.544 | Pass | | Vnom | 10 | 5824.993456 | -6.544 | Pass | | VIIOIII | 20 | 5824.992456 | -7.544 | Pass | | | 30 | 5824.994456 | -5.544 | Pass | | | 40 | 5824.997456 | -2.544 | Pass | | | 50 | 5824.994456 | -5.544 | Pass | | 85% Vnom | 20 | 5824.993456 | -6.544 | Pass | | 115% Vnom | 20 | 5824.998456 | -1.544 | Pass | TRF No.: FCC 15.407/A Page 114 of 144 Report No.: ES180313010W02 Ver.1.0 Temperature : -- Test Date : March 27, 2018 Humidity : 65 % Test By: King Kong | Voltage(V) | Temp() | Test Frequency
(MHz) | Max. Deviation
(KHz) | Verdict | |------------|---------|-------------------------|-------------------------|---------| | | -20 | 5189.989456 | -10.544 | Pass | | | -10 | 5189.989456 | -10.544 | Pass | | | 0 | 5189.986456 | -13.544 | Pass | | \/nom | 10 | 5189.986456 | -13.544 | Pass | | Vnom | 20 | 5189.988456 | -11.544 | Pass | | | 30 | 5189.989456 | -10.544 | Pass | | | 40 | 5189.989456 | -10.544 | Pass | | | 50 | 5189.987456 | -12.544 | Pass | | 85% Vnom | 20 | 5189.986456 | -13.544 | Pass | | 115% Vnom | 20 | 5189.987456 | -12.544 | Pass | Antenna 0 5230 Temperature : -- Test Date : March 27, 2018 Humidity : 65 % Test By: King Kong | Voltage(V) | Temp() | Test Frequency
(MHz) | Max. Deviation (KHz) | Verdict | |------------|---------|-------------------------|----------------------|---------| | | -20 | 5229.984456 | -15.544 | Pass | | | -10 | 5229.985456 | -14.544 | Pass | | | 0 | 5229.987456 | -12.544 | Pass | | Vnom | 10 | 5229.985456 | -14.544 | Pass | | VIIOIII | 20 | 5229.984456 | -15.544 | Pass | | | 30 | 5229.986456 | -13.544 | Pass | | | 40 | 5229.987456 | -12.544 | Pass | | | 50 | 5229.987456 | -12.544 | Pass | | 85% Vnom | 20 | 5229.984456 | -15.544 | Pass | | 115% Vnom | 20 | 5229.984456 | -15.544 | Pass | Antenna 0 5755 Temperature : -- Test Date : March 27, 2018 Humidity : 65 % Test By: King Kong | Voltage(V) | Temp() | Test Frequency
(MHz) | Max. Deviation
(KHz) | Verdict | |------------|---------|-------------------------|-------------------------|---------| | | -20 | 5754.998456 | -1.544 | Pass | | | -10 | 5754.997456 | -2.544 | Pass | | | 0 | 5755.000456 | 0.456 | Pass | | Vnom | 10 | 5754.999456 | -0.544 | Pass | | VIIOIII | 20 | 5754.998456 | -1.544 | Pass | | | 30 | 5755.001456 | 1.456 | Pass | | | 40 | 5754.997456 | -2.544 | Pass | | | 50 | 5754.997456 | -2.544 | Pass | | 85% Vnom | 20 | 5755.001456 | 1.456 | Pass | | 115% Vnom | 20 | 5754.997456 | -2.544 | Pass | TRF No.: FCC 15.407/A Page 115 of 144 Report No.: ES180313010W02 Ver.1.0 Temperature : -- Test Date : March 27, 2018 Humidity : 65 % Test By: King Kong | Voltage(V) | Temp() | Test Frequency
(MHz) | Max. Deviation
(KHz) | Verdict | |------------|---------|-------------------------|-------------------------|---------| | | -20 | 5794.991456 | -8.544 | Pass | | | -10 | 5794.991456 | -8.544 | Pass | | | 0 | 5794.988456 | -11.544 | Pass | | Vnom | 10 | 5794.989456 | -10.544 | Pass | | VIIOIII | 20 | 5794.988456 | -11.544 | Pass | | | 30 | 5794.989456 | -10.544 | Pass | | | 40 | 5794.990456 | -9.544 | Pass | | | 50 | 5794.991456 | -8.544 | Pass | | 85% Vnom | 20 | 5794.992456 | -7.544 | Pass | | 115% Vnom | 20 | 5794.989456 | -10.544 | Pass | Antenna 0 5210 Temperature: -- Test Date: February 07, 2018 Humidity: 65 % Test By: King Kong | Voltage(V) | Temp() | Test Frequency
(MHz) | Max. Deviation
(KHz) | Verdict | |------------|---------|-------------------------|-------------------------|---------| | | -20 | 5209.988456 | -11.544 | Pass | | | -10 | 5209.988456 | -11.544 | Pass | | | 0 | 5209.988456 | -11.544 | Pass | | Vnom | 10 | 5209.988456 | -11.544 | Pass | | VIIOIII | 20 | 5209.989456 | -10.544 | Pass | | | 30 | 5209.989456 | -10.544 | Pass | | | 40 | 5209.991456 | -8.544 | Pass | | | 50 | 5209.987456 | -12.544 | Pass | | 85% Vnom | 20 | 5209.988456 | -11.544 | Pass | | 115% Vnom | 20 | 5209.989456 | -10.544 | Pass | Antenna 0 5775 Temperature : -- Test Date : February 07, 2018 Humidity : 65 % Test By: King Kong | Voltage(V) | Temp() | Test Frequency
(MHz) | Max. Deviation
(KHz) | Verdict | |------------|---------|-------------------------|-------------------------|---------| | | -20 | 5775.010456 | 10.456 | Pass | | | -10 | 5775.012456 | 12.456 | Pass | | | 0 | 5775.011456 | 11.456 | Pass | | Vnom | 10 | 5775.012456 | 12.456 | Pass | | VIIOIII | 20 | 5775.008456 | 8.456 | Pass | | | 30 | 5775.009456 | 9.456 | Pass | | | 40 | 5775.009456 | 9.456 | Pass | | | 50 | 5775.008456 | 8.456 | Pass | | 85% Vnom | 20 | 5775.010456 | 10.456 | Pass | | 115% Vnom | 20 | 5775.011456 | 11.456 | Pass | # 8.5 UNDESIRABLE RADIATED SPURIOUS EMISSION #### 8.5.1 Applicable Standard According to FCC Part 15.407 (b) According to 789033 D02 Section II(G) #### 8.5.2 Conformance Limit For transmitters
operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz. Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209 The emissions from an intentional radiator shall not exceed the field strength levels specified in the following table 15.209(a): | Restricted Frequency(MHz) | Field Strength (µV/m) | Field Strength (dBµV/m) | Measurement Distance | |---------------------------|-----------------------|-------------------------|----------------------| | 0.009-0.490 | 2400/F(KHz) | 20 log (uV/m) | 300 | | 0.490-1.705 | 2400/F(KHz) | 20 log (uV/m) | 30 | | 1.705-30 | 30 | 29.5 | 30 | | 30-88 | 100 | 40 | 3 | | 88-216 | 150 | 43.5 | 3 | | 216-960 | 200 | 46 | 3 | | Above 960 | 500 | 54 | 3 | The provisions of §15.205 apply to intentional radiators operating under this section,15.205 Restricted bands of operation | MHz | MHz | GHz | |---------------------|--|---| | 16.42-16.423 | 399.9-410 | 4.5-5.15 | | 16.69475-16.69525 | 608-614 | 5.35-5.46 | | 16.80425-16.80475 | 960-1240 | 7.25-7.75 | | 25.5-25.67 | 1300-1427 | 8.025-8.5 | | 37.5-38.25 | 1435-1626.5 | 9.0-9.2 | | 73-74.6 | 1645.5-1646.5 | 9.3-9.5 | | 74.8-75.2 | 1660-1710 | 10.6-12.7 | | 123-138 | 2200-2300 | 14.47-14.5 | | 149.9-150.05 | 2310-2390 | 15.35-16.2 | | 156.52475-156.52525 | 2483.5-2500 | 17.7-21.4 | | 156.7-156.9 | 2690-2900 | 22.01-23.12 | | 162.0125-167.17 | 3260-3267 | 23.6-24.0 | | 167.72-173.2 | 3332-3339 | 31.2-31.8 | | 240-285 | 3345.8-3358 | 36.43-36.5 | | 322-335.4 | 3600-4400 | (2) | | | | | | | 16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285 | 16.42-16.423 399.9-410 16.69475-16.69525 608-614 16.80425-16.80475 960-1240 25.5-25.67 1300-1427 37.5-38.25 1435-1626.5 73-74.6 1645.5-1646.5 74.8-75.2 1660-1710 123-138 2200-2300 149.9-150.05 2310-2390 156.52475-156.52525 2483.5-2500 156.7-156.9 2690-2900 162.0125-167.17 3260-3267 167.72-173.2 3332-3339 240-285 3345.8-3358 | - Remark: 1. Emission level in dBuV/m=20 log (uV/m) - 2. Measurement was performed at an antenna to the closed point of EUT distance of - 3. Only spurious frequency is permitted to locate within the Restricted Bands specified in provision of ξ 15.205, and the emissions located in restricted bands also comply with 15.209 limit. TRF No.: FCC 15.407/A Report No.: ES180313010W02 Ver.1.0 Page 117 of 144 ### 8.5.3 Test Configuration Test according to clause 6.2 radio frequency test setup #### 8.5.4 Test Procedure ■ Unwanted Emissions Measurements below 1000 MHz Compliance shall be demonstrated using CISPR quasi-peak detection; however, peak detection is permitted as an alternative to quasi-peak detection. The EUT was placed on a turn table which is 0.8m above ground plane. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. Repeat above procedures until all frequency measured was complete. We use software control the EUT, Let EUT hopping on and transmit with highest power, All the modes have been tested and the worst result was reported. Use the following spectrum analyzer settings: Set RBW=120kHz for f < 1 GHz(30MHz to 1GHz), 200Hz for f<150KHz(9KHz to 150KHz), 9KHz for <30MHz (150KHz to 30KHz). Set the VBW > RBW. Detector = Peak. Trace mode = max hold. Follow the guidelines in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization, etc. A pre-amp and a high pass filter are required for this test, in order to provide the measuring system with sufficient sensitivity. Allow the trace to stabilize. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, which must comply with the limit specified in Section 15.35(b). Submit this data. Repeat above procedures until all frequency measured was complete. ■ Unwanted Maximum peak Emissions Measurements above 1000 MHz Maximum emission levels are measured by setting the analyzer as follows: RBW = 1 MHz. VBW ≥ 3 MHz. Detector = Peak. Sweep time = auto. Trace mode = max hold. Allow sweeps to continue until the trace stabilizes. Note that if the transmission is not continuous, the time required for the trace to stabilize will increase by a factor of approximately 1/x, where x is the duty cycle. For example, at 50 percent duty cycle, the measurement time will increase by a factor of two relative to measurement time for continuous transmission. ■ Unwanted Average Emissions Measurements above 1000 MHz Method VB (Averaging using reduced video bandwidth): Alternative method. RBW = 1 MHz. Video bandwidth. • If the EUT is configured to transmit with duty cycle ≥ 98 percent, set VBW ≤ RBW/100 (i.e., 10 kHz) but not less than 10 Hz. • If the EUT duty cycle is < 98 percent, set VBW ≥ 1/T, where T is defined in section II.B.1.a). Video bandwidth mode or display mode • The instrument shall be set to ensure that video filtering is applied in the power domain. Typically, this requires setting the detector mode to RMS and setting the Average-VBW Type to Power (RMS). • As an alternative, the analyzer may be set to linear detector mode. Ensure that video filtering is applied in linear voltage domain (rather than in a log or dB domain). Some analyzers require linear display mode in order to accomplish this. Others have a setting for Average-VBW Type, which can be set to "Voltage" regardless of the display mode. Detector = Peak. Sweep time = auto. Trace mode = max hold. Allow max hold to run for at least 50 traces if the transmitted signal is continuous or has at least 98 percent duty cycle. For lower duty cycles, increase the minimum number of traces by a factor of 1/x, where x is the duty cycle. For example, use at least 200 traces if the duty cycle is 25 percent. (If a specific emission is demonstrated to be continuous—i.e., 100 percent duty cycle—rather than turning on and off with the transmit cycle, at least 50 traces shall be averaged.) TRF No.: FCC 15.407/A Page 118 of 144 Report No.: ES180313010W02 Ver.1.0 ### Band edge measurements. Unwanted band-edge emissions may be measured using either of the special band-edge measurement techniques (the marker-delta or integration methods) described below. Note that the marker-delta method is primarily a radiated measurement technique that requires the 99% occupied bandwidth edge to be within 2 MHz of the authorized band edge, whereas the integration method can be used in either a radiated or conducted measurement without any special requirement with regards to the displacement of the unwanted emission(s) relative to the authorized bandwidth. Marker-Delta Method. The marker-delta method, as described in ANSI C63.10, can be used to perform measurements of the radiated unwanted emissions level of emissions provided that the 99% occupied bandwidth of the fundamental is within 2 MHz of the authorized band-edge. #### 8.5.5 Test Results ■ ☑For Undesirable radiated Spurious Emission in UNII Band I The modes 802.11a/n/ac has been tested and the worst result recorded as below: TRF No.: FCC 15.407/A Page 119 of 144 Report No.: ES180313010W02 Ver.1.0 ● ☑Undesirable radiated Spurious Emission Above 1GHz (1GHz to 40GHz) Temperature : 28 Test Date : March 27, 2018 Humidity : 65 % Test By: King Kong Test mode: 802.11a Frequency(MHz): 5180 | Freq.
(MHz) | Ant.Pol.
H/V | Field Strength
(dBuV/m) | E.I.R.P
(dBm) | Limit (dBm) | Over(dB) | |----------------|-----------------|----------------------------|------------------|-------------|----------| | 3180.9 | V | 54.15 | -41.08 | -27.00 | -14.08 | | 5776.14 | V | 55.63 | -39.6 | -27.00 | -12.6 | | 9257.22 | V | 60.98 | -34.25 | -27.00 | -7.25 | | 3550.54 | Н | 52.46 | -42.77 | -27.00 | -15.77 | | 6235.4 | Н | 59.55 | -35.68 | -27.00 | -8.68 | | 9554.13 | Н | 62.59 | -32.64 | -27.00 | -5.64 | Temperature: 28 Test Date: March 27, 2018 Humidity: 65 % Test By: King Kong Test mode: 802.11a Frequency(MHz): 5220 | Freq. | Ant.Pol. |
Field Strength | E.I.R.P | Limit (dDm) | Over(dB) | |----------|----------|----------------|---------|-------------|----------| | (MHz) | H/V | (dBuV/m) | (dBm) | Limit (dBm) | Over(dB) | | 3691.15 | V | 55.49 | -39.74 | -27.00 | -12.74 | | 6287.34 | V | 58.46 | -36.77 | -27.00 | -9.77 | | 9256.89 | V | 64.52 | -30.71 | -27.00 | -3.71 | | 3174.4 | Н | 53.95 | -41.28 | -27.00 | -14.28 | | 7067.24 | Н | 62.71 | -32.52 | -27.00 | -5.52 | | 10216.79 | Н | 65.76 | -29.47 | -27.00 | -2.47 | Temperature: 28 Test Date: March 27, 2018 Humidity: 65 % Test By: King Kong Test mode: 802.11a Frequency(MHz): 5240 | Freq. | Ant.Pol. | Field Strength | E.I.R.P | Limit (dBm) | Over(dB) | |---------|----------|----------------|---------|--------------|----------| | (MHz) | H/V | (dBuV/m) | (dBm) | Limit (ubin) | Over(ub) | | 3992.85 | V | 57.89 | -37.34 | -27.00 | -10.34 | | 5920.42 | V | 57.79 | -37.44 | -27.00 | -10.44 | | 9076.47 | V | 64.31 | -30.92 | -27.00 | -3.92 | | 3190.51 | Н | 53.1 | -42.13 | -27.00 | -15.13 | | 6660.04 | Н | 61.2 | -34.03 | -27.00 | -7.03 | | 9986.19 | Н | 65.3 | -29.93 | -27.00 | -2.93 | Note: (1) Emission Level= Reading Level+Probe Factor +Cable Loss. (2) EIRP[dBm] = E[dBμV/m] + 20 log(d[meters]) - 104.77 d is the measurement distance in 3 meters TRF No.: FCC 15.407/A Page 120 of 144 Report No.: ES180313010W02 Ver.1.0 ● ⊠Undesirable radiated Undesirable radiated Spurious Emission in Band Edge Temperature: 28 Test Date: March 27, 2018 Humidity: 65 % Test By: King Kong Test mode: 802.11a Frequency(MHz): 5180 | Freq.
(MHz) | Ant.Pol.
H/V | Field Strength
(RBW=100KHz)
(dBuV/m) | E.I.R.P
(dBm) | Limit (dBm) | Verdict | |----------------|-----------------|--|------------------|-------------|---------| | 5149.65 | V | 54.93 | -40.30 | -27.00 | Pass | | 5148.65 | Н | 52.05 | -43.18 | -27.00 | Pass | Temperature: 28 Test Date: March 27, 2018 Humidity: 65 % Test By: King Kong Test mode: 802.11a Frequency(MHz): 5240 | Freq.
(MHz) | Ant.Pol. Field Strength (RBW=100KHz) (dBuV/m) | | E.I.R.P
(dBm) | Limit (dBm) | Verdict | |----------------|---|-------|------------------|-------------|---------| | 5352.45 | V | 50.42 | -44.81 | -27.00 | Pass | | 5351.65 | Н | 52.16 | -43.07 | -27.00 | Pass | **Note:** (1) Emission Level= Reading Level+Probe Factor +Cable Loss. (2) EIRP[dBm] = E[dB μ V/m] + 20 log(d[meters]) - 104.77 d is the measurement distance in 3 meters TRF No.: FCC 15.407/A Page 121 of 144 Report No.: ES180313010W02 Ver.1.0 ■ ⊠For Undesirable radiated Spurious Emission in UNII Band III All the modes 802.11a/n/ac has been tested and the worst result 802.11a recorded as below: ● ☑Undesirable radiated Spurious Emission Above 1GHz (1GHz to 40GHz) Temperature: 28 Test Date: April 01, 2018 Humidity: 65 % Test By: King Kong Test mode: 802.11a Frequency(MHz): 5745 | Freq.
(MHz) | Ant.Pol.
H/V | Field Strength (dBuV/m) | E.I.R.P
(dBm) | Limit (dBm) | Over(dB) | |----------------|-----------------|-------------------------|------------------|-------------|----------| | 3752.74 | V | 56.06 | -39.17 | -27.00 | -12.17 | | 6545.04 | V | 59.61 | -35.62 | -27.00 | -8.62 | | 9176.97 | V | 64.25 | -30.98 | -27.00 | -3.98 | | 3496.82 | Н | 55.28 | -39.95 | -27.00 | -12.95 | | 6733.53 | Н | 64.15 | -31.08 | -27.00 | -4.08 | | 9563.26 | Н | 63.6 | -31.63 | -27.00 | -4.63 | Temperature: 28 Test Date: April 01, 2018 Humidity: 65 % Test By: King Kong Test mode: 802.11a Frequency(MHz): 5785 | Freq.
(MHz) | Ant.Pol.
H/V | Field Strength (dBuV/m) | E.I.R.P
(dBm) | Limit (dBm) | Over(dB) | |----------------|-----------------|-------------------------|------------------|-------------|----------| | 3794.43 | V | 56.79 | -38.44 | -27.00 | -11.44 | | 6571.83 | V | 60.27 | -34.96 | -27.00 | -7.96 | | 9702.04 | V | 63.19 | -32.04 | -27.00 | -5.04 | | 3017.47 | Н | 56.48 | -38.75 | -27.00 | -11.75 | | 6770.68 | Н | 61.96 | -33.27 | -27.00 | -6.27 | | 9294.37 | Н | 63.04 | -32.19 | -27.00 | -5.19 | Temperature: 28 Test Date: April 01, 2018 Humidity: 65 % Test By: King Kong Test mode: 802.11a Frequency(MHz): 5825 | Freq.
(MHz) | Ant.Pol.
H/V | Field Strength (dBuV/m) | E.I.R.P
(dBm) | Limit (dBm) | Over(dB) | |----------------|-----------------|-------------------------|------------------|-------------|----------| | 3982.39 | V | 58.45 | -36.78 | -27.00 | -9.78 | | 6622.1 | V | 59.13 | -36.10 | -27.00 | -9.1 | | 9446.89 | V | 64.99 | -30.24 | -27.00 | -3.24 | | 2974.42 | Н | 54.11 | -41.12 | -27.00 | -14.12 | | 6763.05 | Н | 61.97 | -33.26 | -27.00 | -6.26 | | 10056.18 | Н | 64.04 | -31.19 | -27.00 | -4.19 | Note: (1) Emission Level= Reading Level+Probe Factor +Cable Loss. (2) EIRP[dBm] = E[dB μ V/m] + 20 log(d[meters]) - 104.77 d is the measurement distance in 3 meters TRF No.: FCC 15.407/A Page 125 of 144 Report No.: ES180313010W02 Ver.1.0 # ● ⊠Undesirable radiated Spurious Emission in band edge Temperature: 28 Test Date: April 01, 2018 Humidity: 65 % Test By: King Kong Test mode: 802.11a Frequency: 5745 Freq. Ant.Pol. Field Strength E.I.R.P | Freq.
(MHz) | Ant.Pol.
H/V | Field Strength
(RBW=100KHz)
(dBuV/m) | E.I.R.P
(dBm) | Limit (dBm) | Verdict | |----------------|-----------------|--|------------------|-------------|---------| | 5724.75 | V | 59.37 | -35.86 | 29.28 | PASS | | 5723.50 | Н | 56.01 | -39.22 | 25.68 | PASS | Temperature :28Test Date :April 01, 2018Humidity :65 %Test By:King KongTest mode:802.11aFrequency:5825 | Freq.
(MHz) | Ant.Pol.
H/V | Field Strength
(RBW=100KHz)
(dBuV/m) | E.I.R.P
(dBm) | Limit (dBm) | Verdict | |----------------|-----------------|--|------------------|-------------|---------| | 5852.125 | V | 52.09 | -43.14 | 23.88 | PASS | | 5853.125 | Н | 51.31 | -43.92 | 21.00 | PASS | **Note:** (1) Emission Level= Reading Level+Probe Factor +Cable Loss. (2) EIRP[dBm] = E[dB μ V/m] + 20 log(d[meters]) - 104.77 d is the measurement distance in 3 meters TRF No.: FCC 15.407/A Page 126 of 144 Report No.: ES180313010W02 Ver.1.0 Undesirable radiated Spurious Emission below 1GHz (30MHz to 1GHz) All mode have been tested, and the worst results have been recorded in the report. Limit: (RE)FCC PART 15C Mode:TX 5180 Note: | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | Table
Degree | | |-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------| | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 1 | * | 31.2893 | 51.19 | -14.13 | 37.06 | 40.00 | -2.94 | QP | | | | | 2 | | 43.2017 | 39.03 | -11.24 | 27.79 | 40.00 | -12.21 | QP | | | | | 3 | | 58.6126 | 43.18 | -12.39 | 30.79 | 40.00 | -9.21 | QP | | | | | 4 | | 67.6751 | 46.05 | -14.20 | 31.85 | 40.00 | -8.15 | QP | | | | | 5 | ļ | 148.4410 | 53.29 | -15.56 | 37.73 | 43.50 | -5.77 | QP | | | | | 6 | 1 | 504.7062 | 47.04 | -4.85 | 42.19 | 46.00 | -3.81 | QP | | | | TRF No.: FCC 15.407/A Page 129 of 144 Report No.: ES180313010W02 Ver.1.0 Mode:TX 5180 | No. | Mk | . Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | Table
Degree | | |-----|----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------| | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 1 | | 65.3432 | 43.59 | -13.34 | 30.25 | 40.00 | -9.75 | QP | | | | | 2 | | 209.3130 | 46.37 | -11.89 | 34.48 | 43.50 | -9.02 | QP | | | | | 3 | * | 261.9753 | 48.73 | -9.46 | 39.27 | 46.00 | -6.73 | QP | | | | | 4 | | 419.1081 | 39.61 | -5.55 | 34.06 | 46.00 | -11.94 | QP | | | | | 5 | | 580.7026 | 40.03 | -3.27 | 36.76 | 46.00 | -9.24 | QP | | | | | 6 | | 701.7610 | 39.48 | -1.24 | 38.24 | 46.00 | -7.76 | QP | | | | Mode:TX 5200 | No. | Mk | . Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | Table
Degree | | |-----|----|----------|------------------|-------------------|------------------|--------|-------|----------|-------------------|-----------------|---------| | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 1 | | 30.0000 | 47.72 | -14.10 | 33.62 | 40.00 | -6.38 | QP | | | | | 2 | | 31.1798 | 46.26 | -14.13 | 32.13 | 40.00 | -7.87 | QP | | | | | 3 | ļ | 64.4331 | 47.76 | -13.14 | 34.62 | 40.00 | -5.38 | QP | | | | | 4 | I | 145.3506 | 53.45 | -15.66 | 37.79 | 43.50 | -5.71 | QP | | | | | 5 | | 241.6763 | 49.69 | -10.09 | 39.60 | 46.00 | -6.40 | QP | | | | | 6 | * | 515.4374 | 47.98 | -4.70 | 43.28 | 46.00 | -2.72 | QP | | | | Mode:TX 5200 | No. | Mk. | . Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | Table
Degree | | |-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------| | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 1 | | 61.9951 | 35.64 | -12.83 | 22.81 | 40.00 | -17.19 | QP | | | | | 2 | | 210.0482 | 44.75 | -11.92 | 32.83 | 43.50 | -10.67 | QP | | | | | 3 | * | 263.8190 | 46.44 | -9.38 | 37.06 | 46.00 | -8.94 | QP | | | | | 4 | | 408.9460 | 40.25 | -5.79 | 34.46 | 46.00 | -11.54 | QP | | | | | 5 | | 586.8437 | 38.13 | -2.99 | 35.14 | 46.00 | -10.86 | QP | | | | | 6 | | 629.4772 | 37.82 | -2.06 | 35.76 | 46.00 | -10.24 | QP | | | | Mode:TX 5240 | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | Table
Degree | | |-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------
-----------------|---------| | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 1 | | 31.2893 | 47.82 | -14.13 | 33.69 | 40.00 | -6.31 | QP | | | | | 2 | | 59.6493 | 42.18 | -12.53 | 29.65 | 40.00 | -10.35 | QP | | | | | 3 | * | 65.8031 | 50.02 | -13.52 | 36.50 | 40.00 | -3.50 | QP | | | | | 4 | | 144.8418 | 52.26 | -15.68 | 36.58 | 43.50 | -6.92 | QP | | | | | 5 | | 241.6763 | 42.40 | -10.09 | 32.31 | 46.00 | -13.69 | QP | | | | | 6 | İ | 519.0650 | 46.84 | -4.52 | 42.32 | 46.00 | -3.68 | QP | | | | Humidity: Limit: (RE)FCC PART 15C Mode:TX 5240 | No. | Mk | . Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | Table
Degree | | |-----|----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------| | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 1 | | 147.4036 | 41.03 | -15.60 | 25.43 | 43.50 | -18.07 | QP | | | | | 2 | | 207.8501 | 41.92 | -11.85 | 30.07 | 43.50 | -13.43 | QP | | | | | 3 | | 268.4853 | 43.51 | -9.35 | 34.16 | 46.00 | -11.84 | QP | | | | | 4 | ļ | 467.2350 | 45.30 | -5.03 | 40.27 | 46.00 | -5.73 | QP | | | | | 5 | ļ | 552.8832 | 44.78 | -4.07 | 40.71 | 46.00 | -5.29 | QP | | | | | 6 | * | 631.6884 | 42.85 | -2.04 | 40.81 | 46.00 | -5.19 | QP | | | | Mode:TX 5745 | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | Table
Degree | | |-----|-----|----------|------------------|-------------------|------------------|--------|-------|----------|-------------------|-----------------|---------| | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 1 | * | 31.8427 | 50.68 | -14.15 | 36.53 | 40.00 | -3.47 | QP | | | | | 2 | | 59.2325 | 43.17 | -12.48 | 30.69 | 40.00 | -9.31 | QP | | | | | 3 | | 147.4036 | 50.48 | -15.60 | 34.88 | 43.50 | -8.62 | QP | | | | | 4 | ; | 302.4812 | 45.28 | -8.39 | 36.89 | 46.00 | -9.11 | QP | | | | | 5 | | 336.0352 | 45.07 | -7.43 | 37.64 | 46.00 | -8.36 | QP | | | | | 6 | | 517.2480 | 43.84 | -4.61 | 39.23 | 46.00 | -6.77 | QP | | | | Mode:TX 5745 | No. | Mk | . Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | Table
Degree | | |-----|----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------| | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 1 | | 34.8823 | 32.14 | -13.24 | 18.90 | 40.00 | -21.10 | QP | | | | | 2 | | 75.4464 | 33.77 | -16.62 | 17.15 | 40.00 | -22.85 | QP | | | | | 3 | * | 154.2786 | 54.41 | -15.29 | 39.12 | 43.50 | -4.38 | QP | | | | | 4 | | 276.1235 | 46.64 | -9.02 | 37.62 | 46.00 | -8.38 | QP | | | | | 5 | | 460.7271 | 42.38 | -4.96 | 37.42 | 46.00 | -8.58 | QP | | | | | 6 | | 679.9600 | 38.47 | -1.52 | 36.95 | 46.00 | -9.05 | QP | | | | Mode:TX 5785 | 117.7725 51.11 -13.69 37.42 43.50 -6.08 QP
323.3204 45.40 -8.03 37.37 46.00 -8.63 QP
* 520.8882 46.05 -4.45 41.60 46.00 -4.40 QP | No. | Mk | . Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | Table
Degree | | |--|-----|----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------| | 65.3432 42.74 -13.34 29.40 40.00 -10.60 QP
117.7725 51.11 -13.69 37.42 43.50 -6.08 QP
323.3204 45.40 -8.03 37.37 46.00 -8.63 QP
* 520.8882 46.05 -4.45 41.60 46.00 -4.40 QP | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 117.7725 51.11 -13.69 37.42 43.50 -6.08 QP
323.3204 45.40 -8.03 37.37 46.00 -8.63 QP
* 520.8882 46.05 -4.45 41.60 46.00 -4.40 QP | 1 | | 31.3992 | 47.16 | -14.13 | 33.03 | 40.00 | -6.97 | QP | | | | | 323.3204 45.40 -8.03 37.37 46.00 -8.63 QP
* 520.8882 46.05 -4.45 41.60 46.00 -4.40 QP | 2 | | 65.3432 | 42.74 | -13.34 | 29.40 | 40.00 | -10.60 | QP | | | | | * 520.8882 46.05 -4.45 41.60 46.00 -4.40 QP | 3 | | 117.7725 | 51.11 | -13.69 | 37.42 | 43.50 | -6.08 | QP | | | | | | 4 | | 323.3204 | 45.40 | -8.03 | 37.37 | 46.00 | -8.63 | QP | | | | | ! 672.8444 42.40 -1.67 40.73 46.00 -5.27 QP | 5 | * | 520.8882 | 46.05 | -4.45 | 41.60 | 46.00 | -4.40 | QP | | | | | | 6 | İ | 672.8444 | 42.40 | -1.67 | 40.73 | 46.00 | -5.27 | QP | | | | Mode:TX 5785 | No. | Mk | . Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | Table
Degree | | |-----|----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------| | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 1 | | 63.3132 | 38.53 | -13.00 | 25.53 | 40.00 | -14.47 | QP | | | | | 2 | | 148.4410 | 43.14 | -15.56 | 27.58 | 43.50 | -15.92 | QP | | | | | 3 | | 239.1473 | 46.41 | -10.18 | 36.23 | 46.00 | -9.77 | QP | | | | | 4 | | 259.2338 | 46.16 | -9.61 | 36.55 | 46.00 | -9.45 | QP | | | | | 5 | | 454.3100 | 41.36 | -5.00 | 36.36 | 46.00 | -9.64 | QP | | | | | 6 | * | 684.7454 | 42.97 | -1.46 | 41.51 | 46.00 | -4.49 | QP | | | | Mode:TX 5825 | No. | Mk. | . Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | Table
Degree | | |-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------| | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 1 | | 31.2893 | 47.32 | -14.13 | 33.19 | 40.00 | -6.81 | QP | | | | | 2 | * | 66.2662 | 50.48 | -13.68 | 36.80 | 40.00 | -3.20 | QP | | | | | 3 | | 143.8295 | 50.21 | -15.65 | 34.56 | 43.50 | -8.94 | QP | | | | | 4 | | 327.8873 | 41.53 | -7.82 | 33.71 | 46.00 | -12.29 | QP | | | | | 5 | | 502.9395 | 44.55 | -4.82 | 39.73 | 46.00 | -6.27 | QP | | | | | 6 | ļ | 633.9073 | 43.35 | -2.03 | 41.32 | 46.00 | -4.68 | QP | | | | Mode:TX 5825 | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | Table
Degree | | |-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------| | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 1 | | 65.3432 | 41.91 | -13.34 | 28.57 | 40.00 | -11.43 | QP | | | | | 2 | | 147.4036 | 44.04 | -15.60 | 28.44 | 43.50 | -15.06 | QP | | | | | 3 | | 210.7860 | 44.24 | -11.89 | 32.35 | 43.50 | -11.15 | QP | | | | | 4 | | 235.8164 | 45.99 | -10.47 | 35.52 | 46.00 | -10.48 | QP | | | | | 5 | | 336.0352 | 43.72 | -7.43 | 36.29 | 46.00 | -9.71 | QP | | | | | 6 | * | 684.7454 | 38.61 | -1.46 | 37.15 | 46.00 | -8.85 | QP | | | | # 8.6 POWER LINE CONDUCTED EMISSIONS # 8.6.1 Applicable Standard According to FCC Part 15.207(a) #### 8.6.2 Conformance Limit #### Conducted Emission Limit | Frequency(MHz) | Quasi-peak | Average | |----------------|------------|---------| | 0.15-0.5 | 66-56 | 56-46 | | 0.5-5.0 | 56 | 46 | | 5 0-30 0 | 60 | 50 | Note: 1. The lower limit shall apply at the transition frequencies 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz. ### 8.6.3 Test Configuration Test according to clause 6.3 conducted emission test setup ### 8.6.4 Test Procedure The EUT was placed on a table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Repeat above procedures until all frequency measured were complete. ### 8.6.5 Test Results Pass TRF No.: FCC 15.407/A Page 141 of 144 Report No.: ES180313010W02 Ver.1.0 Humidity: 54 % Power: AC 120V/60Hz Site Conduction #1 Limit: (CE)FCC PART 15 C Mode: WIFI ON | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | | |-----|-----|---------|------------------|-------------------|------------------|-------|--------|----------|---------| | | | MHz | dBuV | dB | dBuV | dBuV | dB | Detector | Comment | | 1 | | 0.1500 | 48.27 | 9.60 | 57.87 | 66.00 | -8.13 | QP | | | 2 | | 0.1500 | 24.49 | 9.60 | 34.09 | 56.00 | -21.91 | AVG | | | 3 | * | 0.1860 | 46.54 | 9.61 | 56.15 | 64.21 | -8.06 | QP | | | 4 | | 0.1860 | 22.97 | 9.61 | 32.58 | 54.21 | -21.63 | AVG | | | 5 | | 0.5460 | 28.08 | 9.70 | 37.78 | 56.00 | -18.22 | QP | | | 6 | | 0.5460 | 16.58 | 9.70 | 26.28 | 46.00 | -19.72 | AVG | | | 7 | | 3.6940 | 35.95 | 9.80 | 45.75 | 56.00 | -10.25 | QP | | | 8 | | 3.6940 | 20.20 | 9.80 | 30.00 | 46.00 | -16.00 | AVG | | | 9 | | 11.8300 | 32.90 | 10.01 | 42.91 | 60.00 | -17.09 | QP | | | 10 | | 11.8300 | 20.63 | 10.01 | 30.64 | 50.00 | -19.36 | AVG | | | 11 | | 17.0740 | 30.12 | 10.32 | 40.44 | 60.00 | -19.56 | QP | | | 12 | | 17.0740 | 23.18 | 10.32 | 33.50 | 50.00 | -16.50 | AVG | | | | | | | | | | | | | Humidity: 54 % Power: AC 120V/60Hz Limit: (CE)FCC PART 15 C Mode: WIFI ON | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | | |-----|-----|---------|------------------|-------------------|------------------|-------|--------|----------|---------| | | | MHz | dBuV | dB | dBuV | dBuV | dB | Detector | Comment | | 1 | | 0.1580 | 45.94 | 9.60 | 55.54 | 65.57 | -10.03 | QP | | | 2 | | 0.1580 | 25.36 | 9.60 | 34.96 | 55.57 | -20.61 | AVG | | | 3 | | 0.2020 | 40.18 | 9.61 | 49.79 | 63.53 | -13.74 | QP | | | 4 | | 0.2020 | 20.50 | 9.61 | 30.11 | 53.53 | -23.42 | AVG | | | 5 | | 0.5620 | 26.84 | 9.70 | 36.54 | 56.00 | -19.46 | QP | | | 6 | | 0.5620 | 16.90 | 9.70 | 26.60 | 46.00 | -19.40 | AVG | | | 7 | * | 3.5700 | 37.20 |
9.80 | 47.00 | 56.00 | -9.00 | QP | | | 8 | | 3.5700 | 21.16 | 9.80 | 30.96 | 46.00 | -15.04 | AVG | | | 9 | | 11.8180 | 34.73 | 10.01 | 44.74 | 60.00 | -15.26 | QP | | | 10 | | 11.8180 | 22.31 | 10.01 | 32.32 | 50.00 | -17.68 | AVG | | | 11 | | 22.6860 | 33.69 | 10.50 | 44.19 | 60.00 | -15.81 | QP | | | 12 | | 22.6860 | 22.93 | 10.50 | 33.43 | 50.00 | -16.57 | AVG | | # 8.7 ANTENNA APPLICATION # 8.7.1 Antenna Requirement | Standard | Requirement | |---------------------|--| | FCC CRF Part 15.203 | An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded. | For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.407 (a), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi. ### 8.7.2 Result PASS. The EUT'S with WIFI function has four integral antennas. The antenna gain is 5dBi, and the four antennas can't be replaced by the user which in accordance to section 15.203, please refer to the photos. TRF No.: FCC 15.407/A Page 144 of 144 Report No.: ES180313010W02 Ver.1.0