

FCC RF EXPOSURE REPORT

FCC ID: 2BH7FWR802NV4

Project No. : 2010C076B

Equipment: 300Mbps Wireless N Nano Router

Brand Name : tp-link
Test Model : TL-WR802N

Series Model : N/A

Applicant: TP-Link Systems Inc.

Address : 10 Mauchly, Irvine, CA 92618

Manufacturer: TP-Link Systems Inc.

Address : 10 Mauchly, Irvine, CA 92618

Date of Receipt : Jan. 06, 2025 Issued Date : Mar. 13, 2025

Report Version : R00

Test Sample : Engineering Sample

Standard(s) : FCC Guidelines for Human Exposure IEEE C95.1 & FCC Part 2.1091

FCC Title 47 Part 2.1091 & KDB 447498 D01 v06

The above equipment has been evaluated and found compliance with the requirement of the relative standards by BTL Inc.

Prepared by

Sheldon. Vu Sheldon Ou hay. Cai

Approved by

Chay Cai

Room 108-116, 309-310, Building 2, No.1, Yile Road, Songshan Lake Zone, Dongguan City, Guangdong, People's Republic of China

Tel: +86-769-8318-3000 Web: www.newbtl.com Service mail: btl_qa@newbtl.com

REPORT ISSUED HISTORY

Report No. Version		Description	Issued Date	Note
BTL-FCCP-2-2010C076B	R00	Original Report.	Mar. 13, 2025	Valid

1. MPE CALCULATION METHOD

Calculation Method of RF Safety Distance:

$$S = \frac{PG}{4\pi r^2} = \frac{EIRP}{4\pi r^2}$$

where:

S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

2. ANTENNA SPECIFICATION

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	
1	N/A	N/A	Printed Inverted-F	N/A	2.85	
2	N/A	N/A	Printed Inverted-F	N/A	2.85	

Note:

 This EUT supports CDD, and all antennas have the same gain, Directional gain = G_{ANT}+Array Gain.

For power measurements, Array Gain=0dB ($N_{ANT} \le 4$), so the Directional gain=2.85 For power spectral density measurements, $N_{ANT} = 2$, $N_{SS} = 1$.

So the Directional gain=G_{ANT}+Array Gain=G_{ANT}+10log(N_{ANT}/ N_{SS})dBi=2.85+10log(2/1)dBi=5.86.

2) The antenna gain is provided by the manufacturer.

3. CALCULATED RESULT

Directional Gain (dBi)	Directional Gain (numeric)	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm²)	Test Result
2.85	1.9275	26.03	400.8667	0.15380	1	Complies

Note:

- (1) The calculated distance is 20 cm.
- (2) Ratio=Power Density (S) (mW/cm²)/Limit of Power Density (S) (mW/cm²)
- (3) The Max. Output Power is provided by the manufacturer.

End of Test Report