

2/F., Garment Centre, 576 Castle Peak Road, Kowloon, Hong Kong.

 Telephone:
 (852) 2173 8888

 Facsimile:
 (852) 2785 5487

 www.intertek.com

TEST REPORT

Report No.: 17070431HKG-001

Application For Original Grant of 47 CFR Part 15 Certification

Cisco IP Conference Phone (Bluetooth 3.0 portion)

FCC ID: LDK88321516

PREPARED AND CHECKED BY:

APPROVED BY:

Signed On File Yao Xin Lu, Josie Engineer

Jess Tang Lead Engineer Date: August 17, 2017

Intertek's standard Terms and Conditions can be obtained at our website http://www.intertek.com/terms/.

The test report only allows to be revised within the retention period unless further standard or the requirement was noticed

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

GENERAL INFORMATION

Grantee: Grantee Address:

FCC Specification Standard: FCC ID: FCC Model(s): Type of EUT: Description of EUT: Serial Number: Sample Receipt Date: Date of Test: Report Date: Environmental Conditions: Cisco Systems Inc. 125 West Tasman Drive, San Jose, CA 95134-1706. FCC Part 15, October 1, 2015 Edition LDK88321516 CP-8832 Transceiver Cisco IP Conference Phone N/A July 07, 2017 July 07, 2017 to August 11, 2017 August 17, 2017 Temperature: +10 to 40°C Humidity: 10 to 90% Cisco Systems Inc. Intertek Report: No: 17070431HKG-001

TABLE OF CONTENTS

1.0 Test Results Summary & Statement of Compliance	. 4
1.1 Summary of Test Results	. 4
1.2 Statement of Compliance	. 4
2.0 General Description	. 5
2.1 Product Description	. 5
2.2 Test Methodology	. 5
2.3 Test Facility	. 5
3.0 System Test Configuration	. 6
3.1 Justification	. 6
3.2 EUT Exercising Software	. 7
3.3 Radiated Emission Test Setup	. 8
3.4 Conducted Emission Test Setup	. 9
3.5 Details of EUT and Description of Accessories1	10
3.6 Measurement Uncertainty 1	10
4.0 Test Results	11
4.1 Field Strength Calculation	11
4.2 Radiated Emissions 1	12
4.2.1 Radiated Emission Configuration Photograph1	12
4.2.2 Radiated Emission Data1	12
4.2.3 Transmitter Duty Cycle Calculation1	17
4.3 Radiated Emission on the Bandedge	18
4.4 AC Power Line Conducted Emission	21
4.4.1 AC Power Line Conducted Emission Configuration Photograph	21
4.4.2 AC Power Line Conducted Emission Data	21
5.0 Equipment List	24

EXHIBIT 1 TEST RESULTS SUMMARY & STATEMENT OF COMPLIANCE

1.0 Test Results Summary & Statement of Compliance

1.1 Summary of Test Results

TEST ITEMS	FCC PART 15 SECTION	RESULTS	DETAILS SEE SECTION
Antenna Requirement	15.203	Pass	2.1
Radiated Emission Radiated Emission on the Bandedge	15.249, 15.209	Pass Pass	4.2 4.3
Radiated Emission in Restricted Bands	15.205	Pass	4.2
AC Power Line Conducted Emission	15.207 & 15.107	Pass	4.4

Note: Pursuant to FCC Part 15 Section 15.215(c), the 20dB bandwidth of the emission was contained within the frequency band designated (mentioned as above) which the EUT operated. The effects, if any, from frequency sweeping, frequency hopping, other modulation techniques and frequency stability over expected variations in temperature and supply voltage were considered.

1.2 Statement of Compliance

The equipment under test is found to be complying with the following standards:

FCC Part 15, October 1, 2015 Edition

EXHIBIT 2 GENERAL DESCRIPTION

2.0 General Description

2.1 Product Description

The CP-8832 is a Cisco IP Conference Phone. It is the next generation IP Conference Phone with Wireless Wi-Fi (802.11a/ac/b/g/n) connectivity as well as Wired RJ45 POE Ethernet support, Bluetooth connectivity, and DECT wireless microphone, as well as 3.5mm wired extension microphone support. The EUT was powered by 120AC adaptor or POE.

The EUT can support Bluetooth 3.0 mode, Bluetooth 4.0 BLE mode, 2.4GHz WiFi mode, 5.8GHz WiFi mode and 1.9GHz DECT mode.

For the Bluetooth module:

For Bluetooth 3.0 mode, it occupies a frequency range from 2402MHz to 2480MHz (79 channels with channel spacing of 1MHz). It transmits via GFSK modulation.

The antenna(s) used in the EUT is internal, integral. And the test sample is a prototype.

The circuit description is saved with filename: descri.pdf.

2.2 Test Methodology

Both AC power line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.10 (2013). Preliminary radiated scans and all radiated measurements were performed in Radiated Emission Test Sites. All Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "Justification Section" of this Application.

2.3 Test Facility

The radiated emission test sites and conducted measurement facility used to collect the radiated data and conducted data are at Workshop No. 3, G/F., World-Wide Industrial Centre, 43-47 Shan Mei Street, Fo Tan, Sha Tin, N.T., Hong Kong. This test facility and site measurement data have been fully placed on file with the FCC.

EXHIBIT 3 SYSTEM TEST CONFIGURATION

3.0 System Test Configuration

3.1 Justification

For radiated emissions testing, the equipment under test (EUT) was setup to transmit continuously mode to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, all cables (if any) were manipulated to produce worst case emissions.

The EUT was powered by 120AC adaptor or POE.

For the measurements, the EUT was attached to a plastic stand if necessary and placed on the wooden turntable which is four feet in diameter and approximately 0.8m in height above the ground plane for emission measurement at or below 1GHz and 1.5m in height above the ground plane for emission measurement above 1GHz. If the base unit attached to peripherals, they were connected and operational to simulate typical use. The handset was remotely located as far from the antenna and the base as possible to ensure full power transmission from the base. Else, the base was wired to transmit full power.

The signal was maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization were varied during the search for maximum signal level. The antenna height was varied from 1 to 4 meters. Radiated emissions were taken at three meters unless the signal level was too low for measurement at that distance. If necessary, a pre-amplifier was used and/or the test was conducted at a closer distance.

For any intentional radiator powered by AC power line, measurements of the radiated signal level of the fundamental frequency component of the emission was performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage.

For transmitter radiated measurement, the spectrum analyzer resolution bandwidth was 100 kHz for frequencies below 1000 MHz. The resolution bandwidth was 3 MHz for frequencies above 1000 MHz.

Radiated emission measurement for transmitter was performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

Emission that are directly caused by digital circuits in the transmit path and transmitter portion were measured, and the limit are according to FCC Part 15 Section 15.209. Digital circuitry used to control additional functions other than the operation of the transmitter are subject to FCC Part 15 Section 15.109 Limits.

3.1 Justification - Cont'd

Detector function for radiated emissions is in peak mode. Average readings, when required, are taken by measuring the duty cycle of the equipment under test and subtracting the corresponding amount in dB from the measured peak readings. A detailed description for the calculation of the average factor can be found in section 4.2.3.

Determination of pulse desensitization was made according to *Hewlett Packard Application Note 150-2, Spectrum Analysis... Pulsed RF.* The effective period (Teff) was 625µs. With the resolution bandwidth 1MHz and spectrum analyzer IF bandwidth 3dB, the pulse desensitization factor was 0dB.

For AC line conducted emission test, the EUT along with its peripherals were placed on a 1.0m(W)x1.5m(L) and 0.8m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane. The EUT was connected to power mains through a line impedance stabilization network (LISN), which provided 50ohm coupling impedance for measuring instrument. The LISN housing, measuring instrument case, reference ground plane, and vertical ground plane were bounded together. The excess power cable between the EUT and the LISN was bundled.

All connecting cables of EUT and peripherals were manipulated to find the maximum emission.

All relevant operation modes have been tested, and the worst case data was included in this report.

3.2 EUT Exercising Software

The EUT exercise program used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use.

3.3 Radiated Emission Test Setup

The figure below shows the test setup, which is utilized to make these measurements.

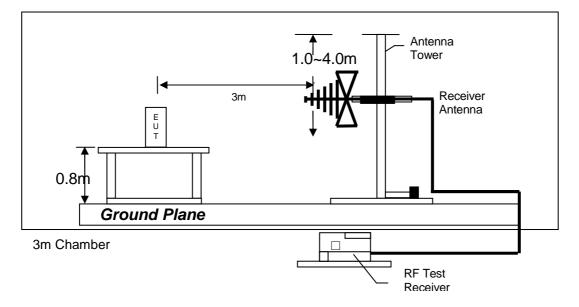


Figure 3.3.1 Test setup of radiated emissions up to 1GHz

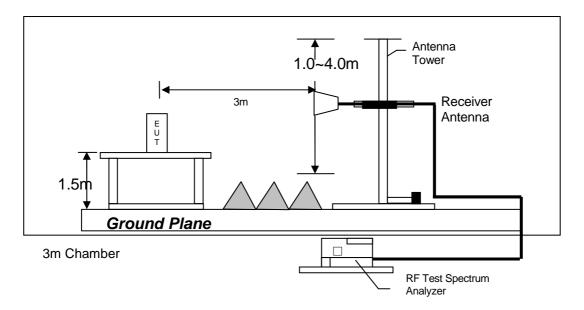


Figure 3.3.2 Test setup of radiated emissions above 1GHz

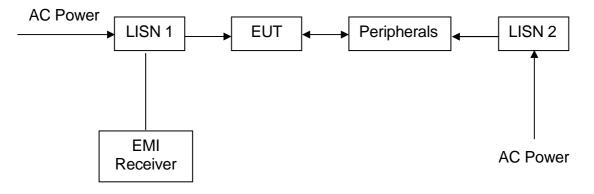


Figure 3.4.1

3.5 Details of EUT and Description of Accessories

Details of EUT:

An adaptor (provided with the unit) was used to power the device. Its description is listed below.

(1) Adaptor with cable in length of 1.8m, S/N: FCH2119D6L9 (Supplied by Client)

Description of Accessories:

- (1) AC Power Adaptor (Input: 100-240V, 50/60Hz, 0.5A; Output: 5V, 3A/ 9V, 2A/ 12V, 1.5A/ 15V, 1.2A), Model: AQ18A-59CFAC-H (Supplied by Client)
- (2) Bluetooth Headset, Model: BTE6, Brand: Jabra (Supplied by Client)
- (3) Wired Microphone x 2, Brand: Cisco, with cable length of 2.1m (Supplied by Client)
- (4) DECT handset, Model: Speedphone 51, Brand: Deutsche Telekom (Supplied by Client)
- PoE (Power over Ethernet), Brand: TP-LINK, Model: TL-POE150S with Adaptor (Model: MU24-1480050-B2, Input: 100-240V, 50/60Hz, 1.0A; Output: 48V, 0.5A)
 (Supplied by Intertek)
- (6) LAN cable(s) with 2m in length (Supplied by Intertek)

3.6 Measurement Uncertainty

When determining of the test conclusion, the Measurement Uncertainty of test has been considered. The values of the Measurement uncertainty for radiated emission test, AC line conducted emission test and RF conducted test, frequency stability and timing jitter are \pm 5.3dB, \pm 4.2dB, \pm 1dB, \pm 23Hz, 0.1µs respectively.

Uncertainty and Compliance - Unless the standard specifically states that measured values are to be extended by the measurement uncertainty in determining compliance, all compliance determinations are based on the actual measured value.

EXHIBIT 4 TEST RESULTS

4.0 Test Results

Data is included of the worst case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included.

4.1 Field Strength Calculation

The field strength is calculated by adding the reading on the Spectrum Analyzer to the factors associated with preamplifiers (if any), antennas, cables, pulse desensitization and average factors (when specified limit is in average and measurements are made with peak detectors). A sample calculation is included below.

FS = RA + AF + CF - AG + PD + AV

where
 FS = Field Strength in dBμV/m
 RA = Receiver Amplitude (including preamplifier) in dBμV
 CF = Cable Attenuation Factor in dB
 AF = Antenna Factor in dB
 AG = Amplifier Gain in dB
 PD = Pulse Desensitization in dB
 AV = Average Factor in -dB

In the radiated emission table which follows, the reading shown on the data table may reflects the preamplifier gain. An example of the calculations, where the reading does not reflect the preamplifier gain, follows:

FS = RA + AF + CF - AG + PD + AV

Example

Assume a receiver reading of 62.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted. The pulse desensitization factor of the spectrum analyzer was 0 dB, and the resultant average factor was -10 dB. The net field strength for comparison to the appropriate emission limit is 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = 62.0 dBµV AF = 7.4 dB CF = 1.6 dB AG = 29 dB PD = 0 dB AV = -10 dB FS = 62 + 7.4 +1.6 -29 +0 + (-10) = 32 dBµV/m

Level in μ V/m = Common Antilogarithm [(32 dB μ V/m)/20] = 39.8 μ V/m

Cisco Systems Inc. Intertek Report: No: 17070431HKG-001

4.2 Radiated Emissions

4.2.1 Radiated Emission Configuration Photograph

Worst Case Radiated Emission at

62.743 MHz

The worst case radiated emission configuration photographs are saved with filename: config photos.pdf

4.2.2 Radiated Emission Data

The data in tables 1-8 list the significant emission frequencies, the limit and the margin of compliance. Test setup is shown in section 3.3 Figure 3.3.1 and 3.3.2.

Judgement -

Passed by 1.2 dB margin

RADIATED EMISSION DATA

Lowest Channel

Cisco Systems Inc.
Intertek Report: No:
17070431HKG-001

Table 1

			Pre-Amp	Antenna	Net at	Average	Calculated	Average Limit	
Polari-	Frequency	Reading	Gain	Factor	3m - Peak	Factor	at 3m	at 3m	Margin
zation	(MHz)	(dBµV)	(dB)	(dB)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
Н	2402.000	107.6	33	29.4	104.0	24	80.0	94.0	-14.0
Н	4804.000	42.5	33	34.9	44.4	24	20.4	54.0	-33.6
Н	7206.000	38.8	33	37.9	43.7	24	19.7	54.0	-34.3
Н	9608.000	37.4	33	40.4	44.8	24	20.8	54.0	-33.2
Н	12010.000	40.8	33	40.5	48.3	24	24.3	54.0	-29.7
V	14412.000	42.4	33	40.0	49.4	24	25.4	54.0	-28.6
v	14412.000	72.7	- 55	40.0	43.4	27	20.4	04.0	-20.0

			Pre-Amp	Antenna	Net at	Peak Limit	
Polari-	Frequency	Reading	Gain	Factor	3m - Peak	at 3m	Margin
zation	(MHz)	(dBµV)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
Н	2402.000	107.6	33	29.4	104.0	114.0	-10.0
Н	4804.000	42.5	33	34.9	44.4	74.0	-29.6
Н	7206.000	38.8	33	37.9	43.7	74.0	-30.3
Н	9608.000	37.4	33	40.4	44.8	74.0	-29.2
Н	12010.000	40.8	33	40.5	48.3	74.0	-25.7
V	14412.000	42.4	33	40.0	49.4	74.0	-24.6

NOTES: 1. Peak detector is used for the emission measurement.

- 2. All measurements were made at 3 meters. Radiated emissions not detected at the 3meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other radiated emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna is used for the emission over 1000MHz.
- 5. Emission (the row indicated by *bold italic*) within the restricted band meets the requirement of FCC Part 15 Section 15.205.
- 6. Measurement Uncertainty is ±5.3dB at a level of confidence of 95%.

Middle Channel:

Table 2

			Pre-Amp	Antenna	Net at	Average	Calculated	Average Limit	
Polari-	Frequency	Reading	Gain	Factor	3m - Peak	Factor	at 3m	at 3m	Margin
zation	(MHz)	(dBµV)	(dB)	(dB)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
Н	2441.000	108.1	33	29.4	104.5	24	80.5	94.0	-13.5
Н	4882.000	41.4	33	34.9	43.3	24	19.3	54.0	-34.7
Н	7323.000	38.8	33	37.9	43.7	24	19.7	54.0	-34.3
Н	9764.000	37.2	33	40.4	44.6	24	20.6	54.0	-33.4
Н	12205.000	41.2	33	40.5	48.7	24	24.7	54.0	-29.3
V	14646.000	44.2	33	38.4	49.6	24	25.6	54.0	-28.4

Polari-	Frequency	Reading	Pre-Amp Gain	Antenna Factor	Net at 3m - Peak	Peak Limit at 3m	Margin
zation	(MHz)	(dBµV)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
Н	2441.000	108.1	33	29.4	104.5	114.0	-9.5
Н	4882.000	41.4	33	34.9	43.3	74.0	-30.7
Н	7323.000	38.8	33	37.9	43.7	74.0	-30.3
Н	9764.000	37.2	33	40.4	44.6	74.0	-29.4
Н	12205.000	41.2	33	40.5	48.7	74.0	-25.3
V	14646.000	44.2	33	38.4	49.6	74.0	-24.4

NOTES: 1. Peak detector is used for the emission measurement.

- 2. All measurements were made at 3 meters. Radiated emissions not detected at the 3meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other radiated emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna is used for the emission over 1000MHz.
- 5. Emission (the row indicated by **bold italic**) within the restricted band meets the requirement of FCC Part 15 Section 15.205.
- 6. Measurement Uncertainty is ±5.3dB at a level of confidence of 95%.

Highest Channel

Table 3

			Pre-Amp	Antenna	Net at	Average	Calculated	Average Limit	
Polari-	Frequency	Reading	Gain	Factor	3m - Peak	Factor	at 3m	at 3m	Margin
zation	(MHz)	(dBµV)	(dB)	(dB)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
Н	2480.000	107.2	33	29.4	103.6	24	79.6	94.0	-14.4
Н	4960.000	42.0	33	34.9	43.9	24	19.9	54.0	-34.1
Н	7440.000	38.3	33	37.9	43.2	24	19.2	54.0	-34.8
Н	9920.000	37.5	33	40.4	44.9	24	20.9	54.0	-33.1
Н	12400.000	41.0	33	40.5	48.5	24	24.5	54.0	-29.5
V	14880.000	43.7	33	38.4	49.1	24	25.1	54.0	-28.9

			Pre-Amp	Antenna	Net at	Peak Limit	
Polari-	Frequency	Reading	Gain	Factor	3m - Peak	at 3m	Margin
zation	(MHz)	(dBµV)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
Н	2480.000	107.2	33	29.4	103.6	114.0	-10.4
Н	4960.000	42.0	33	34.9	43.9	74.0	-30.1
Н	7440.000	38.3	33	37.9	43.2	74.0	-30.8
Н	9920.000	37.5	33	40.4	44.9	74.0	-29.1
Н	12400.000	41.0	33	40.5	48.5	74.0	-25.5
V	14880.000	43.7	33	38.4	49.1	74.0	-24.9

NOTES: 1. Peak detector is used for the emission measurement.

- 2. All measurements were made at 3 meters. Radiated emissions not detected at the 3meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other radiated emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna is used for the emission over 1000MHz.
- 5. Emission (the row indicated by **bold italic**) within the restricted band meets the requirement of FCC Part 15 Section 15.205.
- 6. Measurement Uncertainty is ±5.3dB at a level of confidence of 95%.

Mode: Bluetooth on with LAN transmission and powered by POE

		-	Pre-	Antenna	Net	Limit	
	Frequency	Reading	amp	Factor	at 3m	at 3m	Margin
Polarization	(MHz)	(dBµV)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
V	56.435	43.2	16	11.0	38.2	40.0	-1.8
V	58.612	43.6	16	11.0	38.6	40.0	-1.4
V	62.743	44.8	16	10.0	38.8	40.0	-1.2
V	73.168	48.4	16	6.0	38.4	40.0	-1.6
V	115.489	43.7	16	14.0	41.7	43.5	-1.8
V	159.613	40.9	16	16.0	40.9	43.5	-2.6
V	185.446	39.3	16	16.0	39.3	43.5	-4.2
V	202.902	37.5	16	16.0	37.5	43.5	-6.0
V	319.416	33.3	16	23.0	40.3	46.0	-5.7
Н	663.533	27.1	16	29.0	40.1	46.0	-5.9
V	761.865	27.8	16	30.0	41.8	46.0	-4.2
Н	850.019	26.4	16	31.0	41.4	46.0	-4.6
Н	958.413	24.2	16	33.0	41.2	46.0	-4.8

Table 4

NOTES: 1. Peak Detector Data unless otherwise stated.

- 2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3meter distances were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative sign in the column shows value below limit.
- 4. Horn antenna is used for the emission over 1000MHz.
- 5. Emission (the row indicated by *bold italic*) within the restricted band meets the requirement of FCC Part 15 Section 15.205.
- 6. Measurement Uncertainty is ±5.3dB at a level of confidence of 95%.

4.2.3 Transmitter Duty Cycle Calculation

Based on the Bluetooth Specification Version 3.0, the transmitter ON time for each timeslot of Bluetooth is 625 μ s. DH5 has the maximum duty cycle, which consists of 5 continuous Tx slots and 1 Rx slot. Therefore one hopset take (5+1) x 625 μ s = 3.75ms. For one period for a pseudo-random hopping through at least 20 RF channels in adaptive mode (worst case), it take: 20 x 3.75ms = 75ms.

The dwell time for DH5 is 5 x 625us = 3.125ms

For the worst case calculation, there are two transmissions might occur in 100ms.

Therefore,

Duty Cycle (DC) = Maximum On time in 100ms/100ms = 3.125ms x 2 /100ms = 0.0625

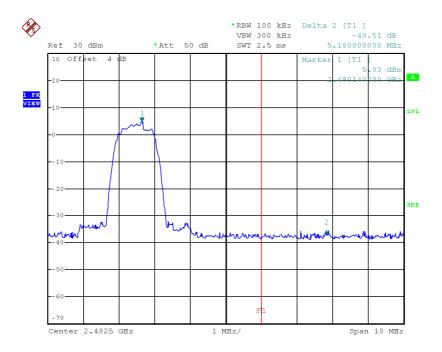
Average Factor (AF) of Bluetooth in dB = $20 \log_{10} (0.0625)$ = -24.0dB

4.3 Radiated Emission on the Bandedge

From the following plots, they show that the fundamental emissions are confined in the specified band (2400MHz and 2483.5MHz). In case of emissions up to two standard bandwidths away from the bandedge, the delta measurement technique is used for determining bandedge compliance. Standard bandwidth is the bandwidth specified by ANSI C63.10 (2013) for frequency being measured.

Emissions radiated outside of the specified frequency bands, except harmonics, are attenuated by 50 dB below the level of the fundamental or to the general radiated emission limits in FCC Part 15 Section 15.209, whichever is the lesser attenuation, which meet the requirement of FCC Part 15 Section 15.249(d).

The plots of radiated emission on the bandedge are saved as below.


Cisco Systems Inc. Intertek Report: No: 17070431HKG-001

TEST REPORT

LOWEST CHANNEL

HIGHEST CHANNEL

Peak Measurement (Bluetooth 3.0)

Bandedge compliance is determined by applying marker-delta method, i.e. (Bandedge Plot).

Lower bandedge

Peak Resultant field strength = Fundamental emissions (peak value) - delta from the plot

=104.0 dBμV/m – 40.23 dB =63.77 dBμV/m

Average Resultant field strength = Fundamental emissions (average value) – delta from the plot

=80.0 dBμV/m – 40.23 dB =39.77 dBμV/m

Upper bandedge

Peak Resultant field strength = Fundamental emissions (peak value) – delta from the plot

=103.6 dBμV/m – 40.51 dB =63.09 dBμV/m

Average Resultant field strength = Fundamental emissions (average value) – delta from the plot

=79.6 dBμV/m – 40.51 dB =39.09 dBμV/m

The resultant field strength meets the general radiated emission limit in Section 15.209, which does not exceed 74 dB μ V/m (Peak Limit) and 54 dB μ V/m (Average Limit).

4.4 AC Power Line Conducted Emission

- [] Not applicable EUT is only powered by battery for operation.
- [X] EUT connects to AC power line. Emission Data is listed in following pages.
- [] Base Unit connects to AC power line and has transmission. Handset connects to AC power line but has no transmission. Emission Data of Base Unit is listed in following pages.

Test setup is shown in section 3.4 Figure 3.4.1.

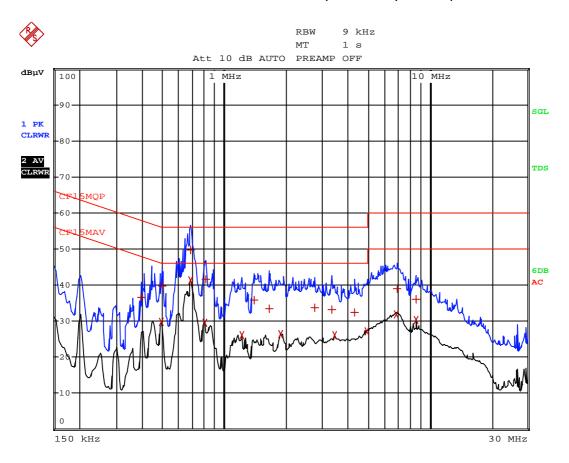
4.4.1 AC Power Line Conducted Emission Configuration Photograph

Worst Case Line-Conducted Configuration at

685.5 kHz

The worst case line conducted configuration photographs are saved with filename: config photos.pdf.

4.4.2 AC Power Line Conducted Emission Data


The plot(s) and data in the following pages list the significant emission frequencies, the limit and the margin of compliance.

Passed by 4.61 dB margin compared with CISPR average limit

CONDUCTED EMISSION DATA

Worst Case: Bluetooth on with LAN transmission and powered by AC Adaptor

- - 10 TTO 0010 01-00-10

Worst Case: Bluetooth on with LAN transmission and powered by AC Adaptor

	EDIT	PEAK LIST (Final	Measurement Res	ults)
Tra	cel:	CF15MQP		
Tra	.ce2:	CF15MAV		
Tra	.ce3:			
	TRACE	FREQUENCY	LEVEL dBµV	DELTA LIMIT dB
1	Quasi Peak	393 kHz	36.73 Ll	-21.26
2	CISPR Average	e492 kHz	29.83 L1	-16.30
1	Quasi Peak	496.5 kHz	39.79 L1	-16.26
1	Quasi Peak	685.5 kHz	49.76 N	-6.23
2	CISPR Average	685.5 kHz	41.39 L1	-4.61
2	CISPR Average	802.5 kHz	29.62 L1	-16.37
1	Quasi Peak	811.5 kHz	41.48 L1	-14.51
2	CISPR Average	1.221 MHz	26.09 N	-19.90
1	Quasi Peak	1.4055 MHz	35.89 Ll	-20.11
1	Quasi Peak	1.6575 MHz	33.34 N	-22.65
2	CISPR Average	1.887 MHz	26.38 L1	-19.61
1	Quasi Peak	2.751 MHz	33.83 N	-22.17
1	Quasi Peak	3.3495 MHz	33.08 L1	-22.91
2	CISPR Average	3.4485 MHz	26.09 N	-19.90
1	Quasi Peak	4.2945 MHz	32.30 L1	-23.69
2	CISPR Average	4.965 MHz	27.11 N	-18.88
2	CISPR Average	6.8955 MHz	31.87 L1	-18.12
1	Quasi Peak	6.9765 MHz	38.95 N	-21.05
2	CISPR Average	8.619 MHz	30.33 N	-19.67
1	Quasi Peak	8.6235 MHz	35.97 Ll	-24.02

EXHIBIT 5 EQUIPMENT LIST

5.0 Equipment List

1) Radiated Emissions Test

Equipment	Biconical Antenna	EMI Test Receiver (9kHz	Double Ridged Guide
		to 26.5GHz)	Antenna
Registration No.	EW-0571	EW-3156	EW-0194
Manufacturer	EMCO	ROHDESCHWARZ	EMCO
Model No.	3104C	ESR26	3115
Calibration Date	May. 18, 2016	Dec. 06. 2016	Aug. 10, 2016
Calibration Due Date	Nov. 18, 2017	Dec. 06, 2017	Feb. 10, 2018

Equipment	Log Periodic Antenna	Pyramidal Horn Antenna	Spectrum Analyzer
Registration No.	EW-0447	EW-0905	EW-2249
Manufacturer	EMCO	EMCO	R&S
Model No.	3146	3160-09	FSP30
Calibration Date	May. 18, 2016	Feb. 12, 2016	Dec. 23, 2016
Calibration Due Date	Nov. 18, 2017	Aug. 12, 2017	Nov, 27. 2017

Equipment	Active Loop H-field (9kHz to 30MHz)	RF Cable 9kHz to 1000MHz	RF Cable (up to 40GHz)
Registration No.	EW-2313	EW-3170	EW-3155
Manufacturer	ELECTROMETRI	N/A	N/A
Model No.	EM-6876	9kHz to 1000MHz	1-40 GHz
Calibration Date	May. 18, 2016	Mar. 20, 2017	Dec. 05, 2016
Calibration Due Date	Nov. 18, 2017	Mar. 20, 2018	Dec. 05, 2017

Equipment	Solid State Low Noise Preamplifier Assembly (1 - 18)GHz	RF Pre-amplifier 3 pcs (9kHz to 40GHz)	Notch Filter (cutoff frequency 2.4GHz to 2.5GHz)
Registration No.	EW-3229	EW-3006	EW-3155
Manufacturer	BONN ELEKTRO	SCHWARZBECK	MICROTRONICS
Model No.	BLMA 0118-5G	BBV 9744	BRM50701-02
Calibration Date	Oct. 24, 2016	Mar. 23, 2017	May. 26, 2017
Calibration Due Date	Oct. 24, 2017	Mar. 23, 2018	May. 26, 2018

2) Conducted Emissions Test

Equipment	EMI Test Receiver	RF Cable 9kHz to 1000MHz	LISN
Registration No.	EW-3156	EW-3170	EW-2874
Manufacturer	ROHDESCHWARZ	N/A	R&S
Model No.	ESR26	9kHz to 1000MHz	ENV-216
Calibration Date	Dec. 06. 2016	Mar. 20, 2017	Mar. 16, 2017
Calibration Due Date	Dec. 06, 2017	Mar. 20, 2018	Mar. 16, 2018

Cisco Systems Inc. Intertek Report: No: 17070431HKG-001

TEST REPORT

3) Bandedge Measurement Test

Equipment	Spectrum Analyzer	
Registration No.	EW-2249	
Manufacturer	R&S	
Model No.	FSP30	
Calibration Date	Dec. 23, 2016	
Calibration Due Date	Nov. 27, 2017	

END OF TEST REPORT