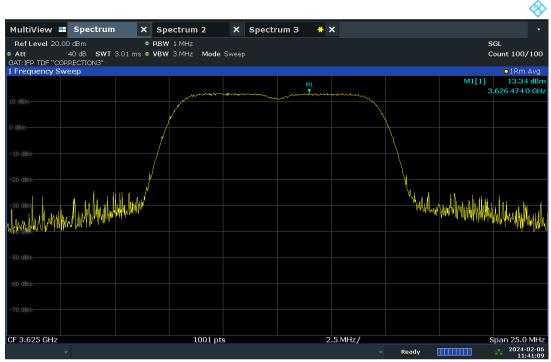
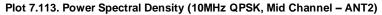


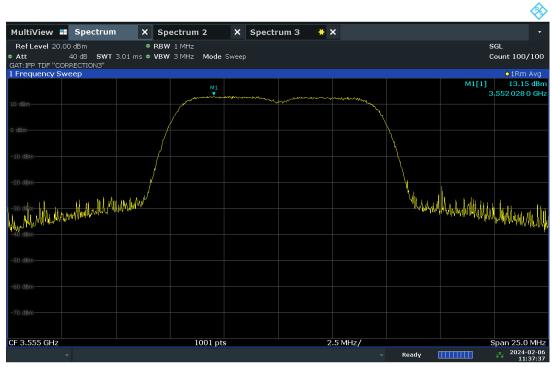
ACLRResults

Plot 7.111. Power Spectral Density (40MHz 64QAM, Low Channel – ANT1)


05:40:52 PM 02/05/2024

Plot 7.112. Power Spectral Density (40MHz 256QAM, Mid Channel – ANT1)


FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Page 78 of 152		
1M2401230005-01.2A S22	11/29/23-9/3/2024	-9/3/2024 CBRS CPE			
©2024 ELEMENT			V3.0 1/6/2022		



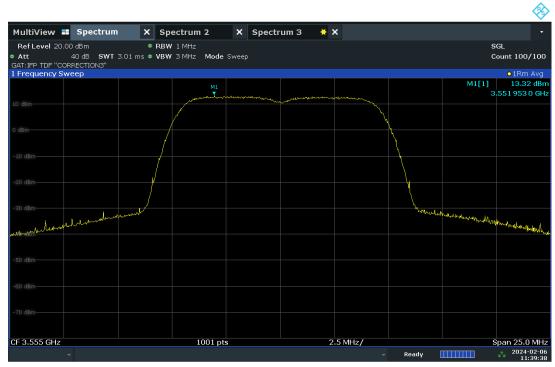
Antenna 2 Power Spectral Density

11:41:10 AM 02/06/2024

11:37:38 AM 02/06/2024

Plot 7.114. Power Spectral Density (10MHz 16QAM, Low Channel – ANT2)

FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 70 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRSCPE	Page 79 of 152
©2024 ELEMENT	•		V3.0 1/6/2022

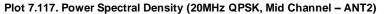


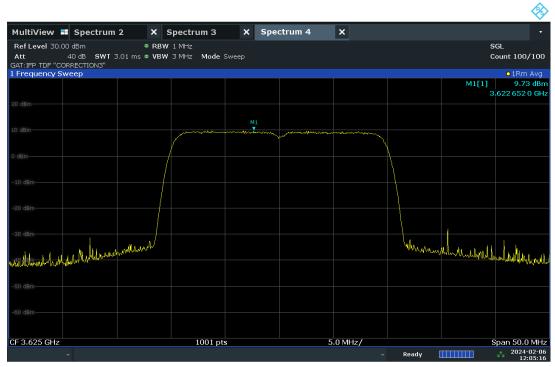
MultiView 🎫 Spectrum	× Sp	ectrum 2	×s	pectrum 3	<mark>★</mark> ×				
Ref Level 20.00 dBm	● RBW	/ 1 MHz						:	SGL
Att 40 dB SWT 3.0 AT: IFP TDF "CORRECTION3"	ims 🗢 VBW	3 MHz Mode	e Sweep						Count 100/10
Frequency Sweep									o1Rm Av
		M1						M1[1]	13.16 di
		menterman	- manager and a second	man	man	ward and a start of the start o			3.621 528 0 0
		1 million		,		- N			
		1				Ň			
	/	/				<u>}_</u>			
						N	`		
							\		
							_\		
							1		
0 dBm							\square		
and more than more many more	and the second						Udal	un hall and a failed	hele where we
Unit shows and so and a second second									in the second
- 3.625 GHz		1001 p	te		2.5 Mł	17/			Span 25.0 M
- 3.023 GHZ		1001 p	15		2.3 191	127	Ready		2024-02-

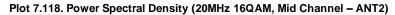
~

11:43:07 AM 02/06/2024

11:39:39 AM 02/06/2024

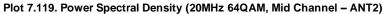


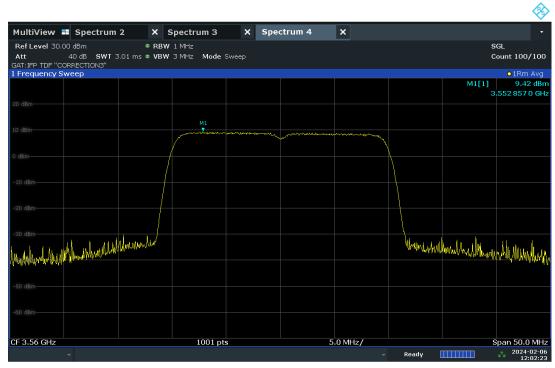

FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 80 of 152	
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 80 01 152	
©2024 ELEMENT			V3.0 1/6/2022	


ultiview	Spectrum 2	×	Spectrum 3	×	Spectrum 4	×			
Ref Level 30 Att AT: IFP TDF "().00 dBm 40 dB SWT 3.01 m CORRECTION3"		/1MHz /3MHz Mode %	Sweep					GL ount 100/10
Frequency									01Rm Av
								M1[1] 3	9.50 dE .618 007 0 G
			M1			and a second and a second and a second and a second a se	*~		
			[
		/							
		dune							
Bartreburg	went vertile and						T and the second s	Anorthender	mendledown

12:03:25 PM 02/06/2024

12:05:17 PM 02/06/2024

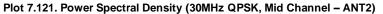


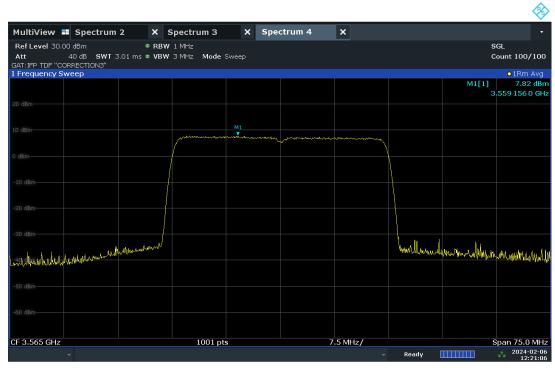

FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dogo 91 of 152		
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 81 of 152		
©2024 ELEMENT	-		V3.0 1/6/2022		

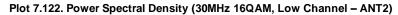
	Spectrum 2	×	Spectrum 3	×	Spectrum 4	×			
Ref Level 30 Att AT: IFP TDF "(0.00 dBm 40 dB SWT 3.01 m CORRECTION3"		V/1 MHz V/3 MHz Mode ∜	Sweep					SGL Count 100/10
Frequency									o1Rm Av
								M1[1]	9.53 dl 3.618 207 0 G
			M1	~~~~	man	mahanan			
							\mathcal{A}		
0 dBm									
	alphilipping alphing and	ndund					hustalan	mmanphap	and the
Nathanton	AND A ME A ME A								a he i - shricingalifich
F 3.625 GHz	_		1001 pts			5.0 MHz/			Span 50.0 M

12:06:12 PM 02/06/2024

12:02:23 PM 02/06/2024



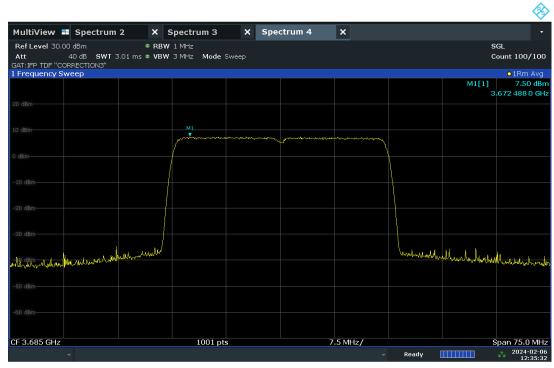

FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 82 of 152	
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 82 01 152	
©2024 ELEMENT	•		V3.0 1/6/2022	


	Spectrum 2	~	Spectrum 3	×	Spectrum 4	×				Ì
Ref Level 30 Att AT: IFP TDF "0	0.00 dBm 40 dB SWT 3.01 CORRECTION3"		¥IMHz ¥3MHz Mode	Sweep						GL Count 100/10
Frequency										o 1Rm Avg
									M1[1] 3	7.60 dE 8.6130870 G
			M1		me man		-m			
			(Ť		Ì			
.0 dBm			[
		/								
		manera								
10 dBm	non the strand and a second							manut	In margine walk	mannenter

12:24:28 PM 02/06/2024

12:21:07 PM 02/06/2024

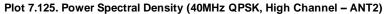


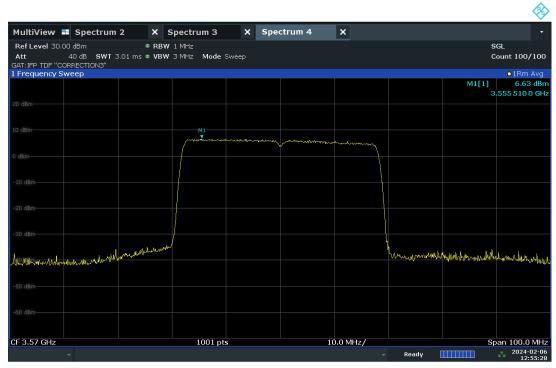

FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dogo 92 of 152	
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRS CPE	Page 83 of 152	
©2024 ELEMENT		·	V3.0 1/6/2022	

MultiView	Spectrum 2	× Spec	trum 3	X Spec	trum 4	×			
RefLevel 30.1 Att AT: IFP TDF "CI	40 dB SWT 3.01 m	 RBW 1 MH s < VBW 3 MH 		еер					GL ount 100/10
Frequency S									o 1Rm Avç
								M1[1] 3	7.79 dE .612 113 0 G
		N	1			and the state of the second			
0 dBm									
0 dBm		w ·					mannen	and the second and the second s	mamman
						7.5 MHz/			Span 75.0 M

12:27:43 PM 02/06/2024

12:35:33 PM 02/06/2024

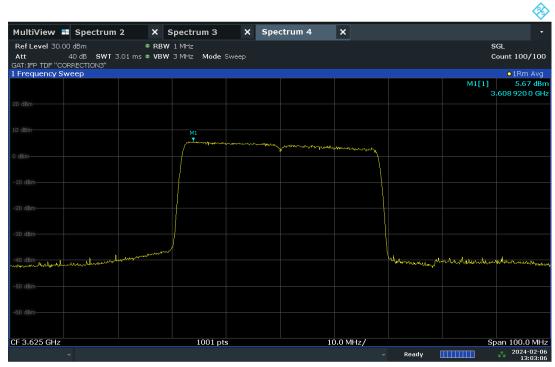


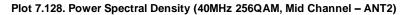

FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dogo 94 of 152	
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRSCPE	Page 84 of 152	
©2024 ELEMENT			V3.0 1/6/2022	

	Spectrum	2 X	Spectrum 3	X Spe	ctrum 4	×			
Ref Level 30 Att			VIMHz VI3MHz ModeS	weep					GL ount 100/10
Frequency									•1Rm Avg
								M1[1] 3	6.01 dB .662 920 0 GI
			M1	which and a second second					
						- common -			
0 dBm						1			
	when and work	hadender	~				human	Munhamman	
mahamit	trad the patter the second								And a Charle and a

01:04:16 PM 02/06/2024

12:55:29 PM 02/06/2024


FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dogo 95 of 152		
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRSCPE	Page 85 of 152		
©2024 E LEMENT					


MultiView	Spectrum 2	×	Spectrum 3	×	Spectrum 4	×				
RefLevel 30 Att GAT: IFP TDF "	0.00 dBm 40 dB SWT 3.0 CORRECTION3"		/1MHz /3MHz Mode:	Sweep						GL ount 100/10
Frequency										•1Rm Avg
									M1[1] З	6.52 dE .553 420 0 G
			M1							
				f	- many many many many	un and an and a second	η			
0 dBm										
	1	1. Alternative Start	J				ι.		h	1 I.
0 dBm	am and married and						"harring	ntwikitions Arthod	flooldjoorthweekeek	Muthing
0 dBm										
- 3.57 GHz			1001 pt:			10.0 MHz/			C	an 100.0 M

12:56:10 PM 02/06/2024

01:03:07 PM 02/06/2024

FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 90 of 150
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 86 of 152
©2024 ELEMENT	•	·	V3.0 1/6/2022

Note:

Per ANSI C63.26-2015 Section 5.2.5.3 and KDB 662911 v02r01 Section E)2), the power spectral density at Channel A and Channel B were first measured separately as shown in the section above. The measured values were then summed in linear power units then converted back to dBm.

Per ANSI C63.26-2015 Section 6.4.6 and KDB 662911 v02r01 Section F.2.c, since the transmissions are orthogonally polarized, the directional gain is equal to the single transmission gain of 9.00dBi

Sample MIMO Calculation:

At 3625 MHz in QPSK, 20MHz BW mode, the average conducted power spectral density was measured to be 16.53 dBm/MHz for Ant1 and 9.50 dBm/MHz for Ant2.

Ant1 + Ant2 = MIMO

(16.53 dBm + 9.50 dBm) = (44.978 mW + 8.913 mW) = 53.891 mW = 17.32 dBm

Sample e.i.r.p Power Spectral Density Calculation:

At 3625 MHz in QPSK, 20MHz BW mode, the average MIMO power density was calculated to be 17.32 dBm with directional gain of 13.00 dBi.

e.i.r.p. Power Spectral Density(dBm) = Power Spectral Density (dBm) + Ant gain (dBi)

17.32 dBm + 13.00 dBi = 30.32 dBm

FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Daga 07 of 450		
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 87 of 152		
©2024 ELEMENT					

7.6 Peak-Average Ratio

Test Overview

A peak to average ratio measurement is performed at the conducted port of the EUT. The spectrum analyzers Complementary Cumulative Distribution Function (CCDF) measurement profile is used to determine the largest deviation between the average and the peak power of the EUT in a given bandwidth. The CCDF curve shows how much time the peak waveform spends at or above a given average power level. The percent of time the signal spends at or above the level defines the probability for that particular power level.

Test Procedure Used

ANSI C63.26-2015 - Section 5.2.3.4

Test Settings

- 1. The signal analyzer's CCDF measurement profile is enabled
- 2. Frequency = carrier center frequency
- 3. Measurement BW ≥ OBW or specified reference bandwidth
- 4. The signal analyzer was set to collect one million samples to generate the CCDF curve
- 5. The spectrum analyzer is set to use an internal "RF Burst" trigger that is synced with an incoming pulse and the measurement interval is set to less than the duration of the "on time" of one burst to ensure that energy is only captured during a time in which the transmitter is operating at maximum power

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-5. Test Instrument & Measurement Setup

Test Notes

None.

FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT				
Test Report S/N:	Test Dates:	EUT Type:	Daga 80 of 150			
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRS CPE	Page 88 of 152			
©2024 ELEMENT	2024 E LEMENT					

Bandwidth	Modulation	26dB BW [MHz]	PAR at 0.1% [dB]	PAR Limit [dB]	Margin [dB]
	QPSK	38.27	6.06	13.00	-6.94
40 MHz	16QAM	38.42	6.30	13.00	-6.70
	64QAM	38.22	6.17	13.00	-6.83
	256QAM	38.54	6.06	13.00	-6.94
	QPSK	30.95	6.21	13.00	-6.79
30 MHz	16QAM	30.70	6.55	13.00	-6.45
	64QAM	30.80	6.02	13.00	-6.98
	256QAM	30.82	6.32	13.00	-6.68
	QPSK	20.76	7.46	13.00	-5.54
20 MHz	16QAM	20.88	6.12	13.00	-6.88
20 1011 12	64QAM	20.83	6.17	13.00	-6.83
	256QAM	20.72	6.14	13.00	-6.86
	QPSK	10.32	6.13	13.00	-6.87
10 MHz	16QAM	9.48	6.11	13.00	-6.89
	64QAM	10.27	6.24	13.00	-6.76
	256QAM	9.58	6.21	13.00	-6.79

Table 7-7 Peak to Average Power Ratio Measurements - ANT1

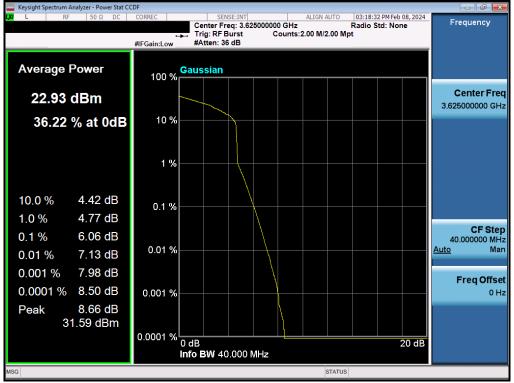
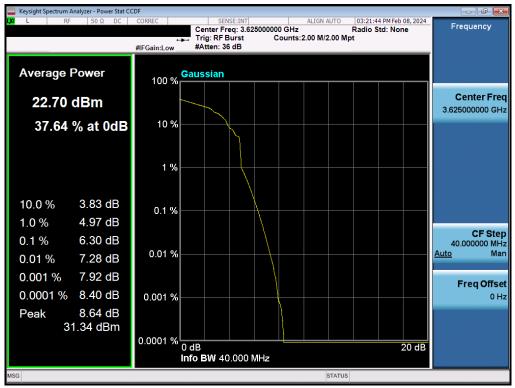
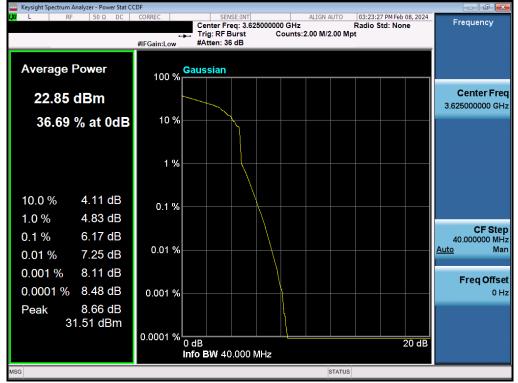
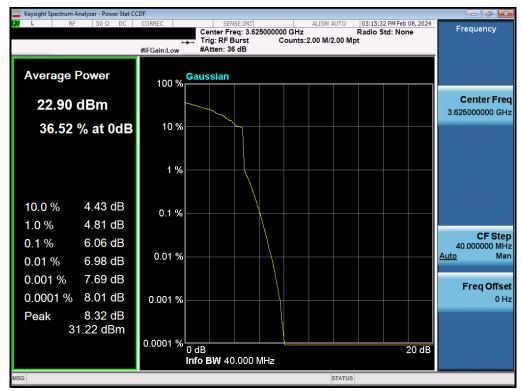

Bandwidth	Modulation	26dB BW [MHz]	PAR at 0.1% [dB]	PAR Limit [dB]	Margin [dB]
	QPSK	38.15	7.60	13.00	-5.40
40 MHz	16QAM	38.62	7.64	13.00	-5.36
	64QAM	38.38	7.80	13.00	-5.20
	256QAM	38.83	7.69	13.00	-5.31
	QPSK	30.86	7.87	13.00	-5.13
30 MHz	16QAM	30.95	7.68	13.00	-5.32
	64QAM	31.09	8.62	13.00	-4.38
	256QAM	30.83	7.70	13.00	-5.30
	QPSK	20.72	7.65	13.00	-5.35
20 MHz	16QAM	20.69	10.79	13.00	-2.21
	64QAM	20.86	7.65	13.00	-5.35
	256QAM	20.75	7.62	13.00	-5.38
	QPSK	14.32	9.90	13.00	-3.10
	16QAM	10.30	7.68	13.00	-5.32
10 MHz	64QAM	10.04	7.60	13.00	-5.40
	256QAM	9.95	10.79	13.00	-2.21

Table 7-8 Peak to Average Power Ratio Measurements – ANT2

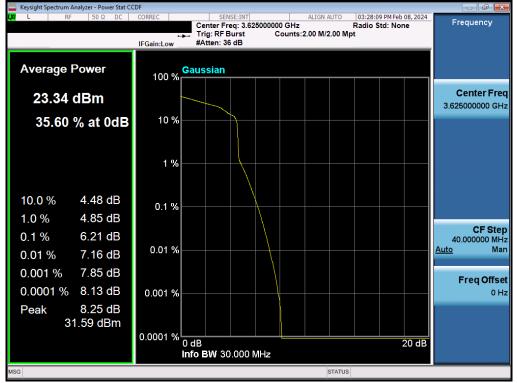

FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 90 of 450
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 89 of 152
©2024 ELEMENT	•		V3.0 1/6/2022

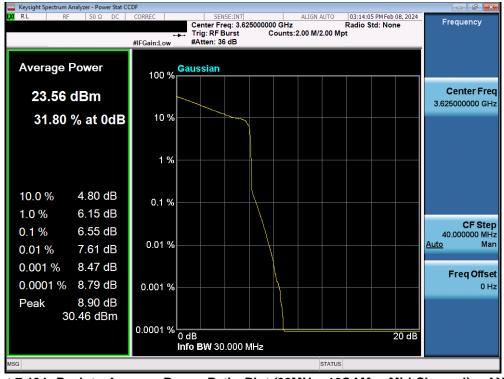
Antenna 1 Peak to Average Ratio



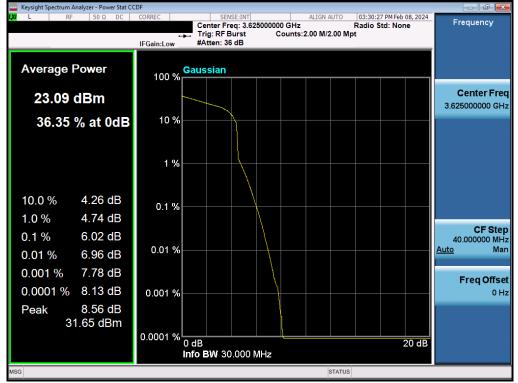

Plot 7.130. Peak to Average Power Ratio Plot (40MHz, 16QAM – Mid Channel) – ANT1

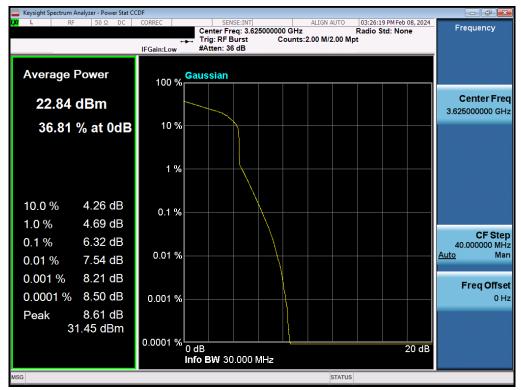
FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dago 00 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 90 of 152
©2024 ELEMENT			V3.0 1/6/2022



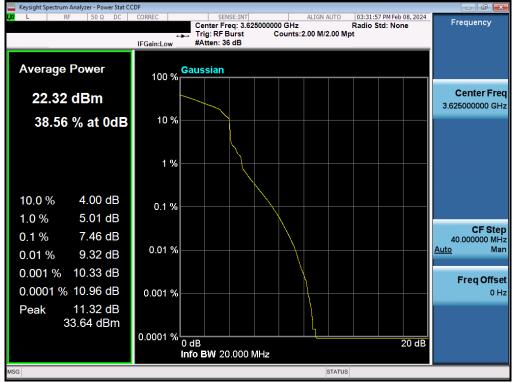

Plot 7.132. Peak to Average Power Ratio Plot (40MHz, 256QAM - Mid Channel) - ANT1

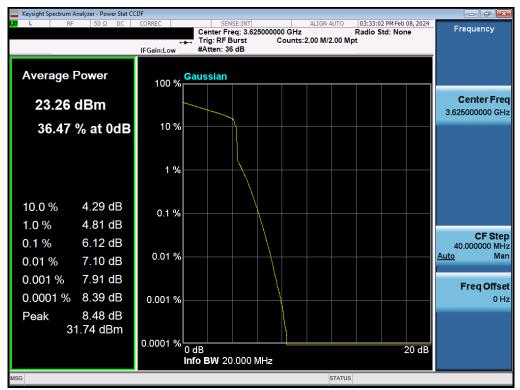
FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 91 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 91 01 152
©2024 ELEMENT	•		V3.0 1/6/2022



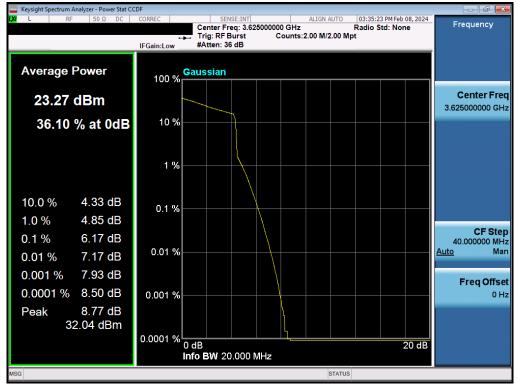

Plot 7.134. Peak to Average Power Ratio Plot (30MHz, 16QAM – Mid Channel) – ANT1

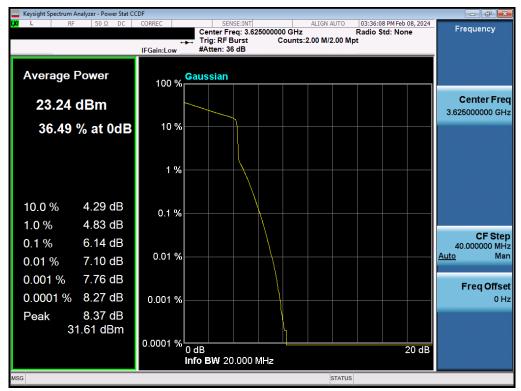
FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 02 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRSCPE	Page 92 of 152
©2024 ELEMENT			V3.0 1/6/2022



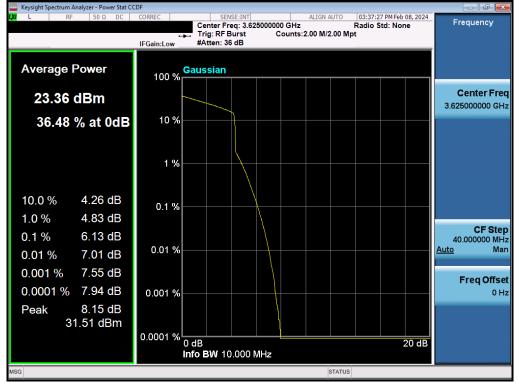

Plot 7.136. Peak to Average Power Ratio Plot (30MHz, 256QAM - Mid Channel) - ANT1

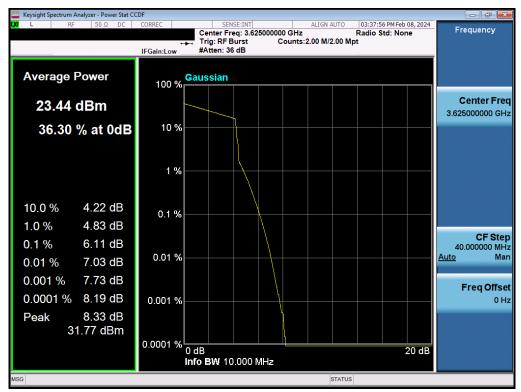
FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 02 of 152	
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 93 of 152	
©2024 ELEMENT	•		V3.0 1/6/2022	



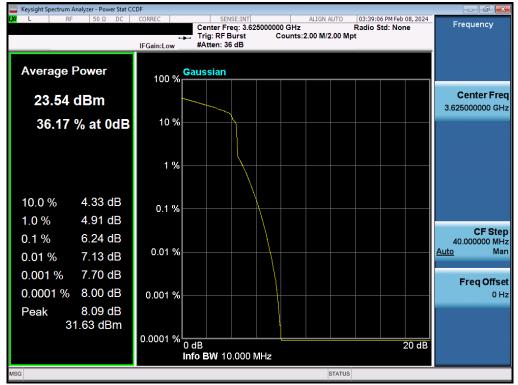

Plot 7.138. Peak to Average Power Ratio Plot (20MHz, 16QAM – Mid Channel) – ANT1

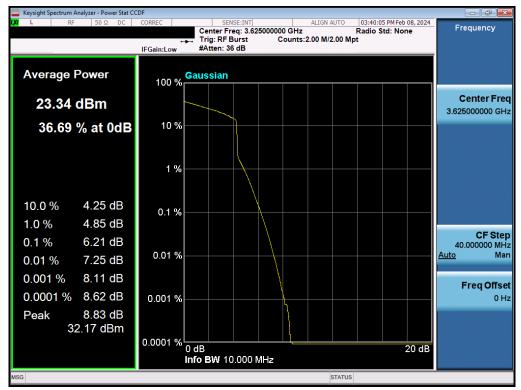
FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 94 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 94 01 152
©2024 ELEMENT			V3.0 1/6/2022



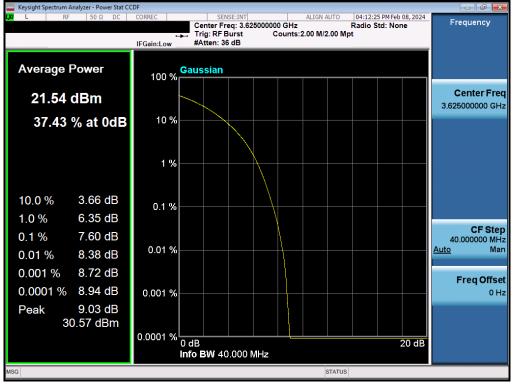

Plot 7.140. Peak to Average Power Ratio Plot (20MHz, 256QAM - Mid Channel) - ANT1

FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo OF of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRSCPE	Page 95 of 152
©2024 ELEMENT			

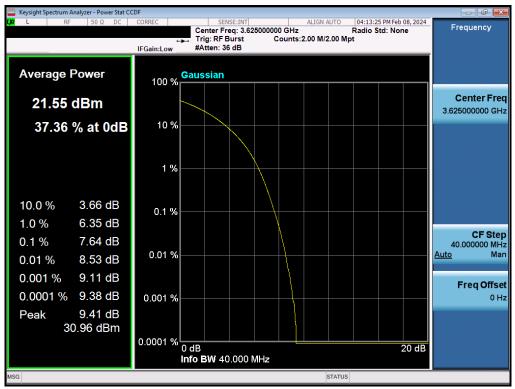



Plot 7.142. Peak to Average Power Ratio Plot (10MHz, 16QAM – Mid Channel) – ANT1

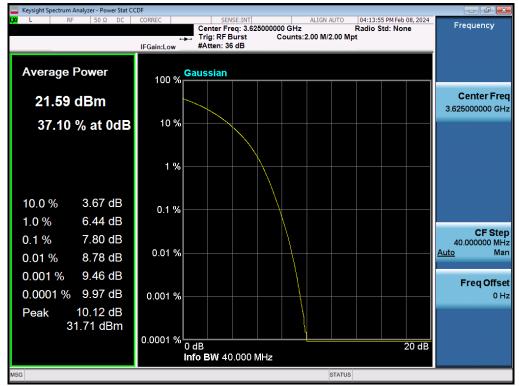
FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 96 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 96 01 152
©2024 ELEMENT			V3.0 1/6/2022

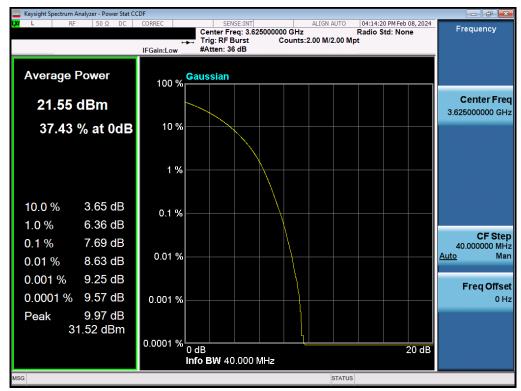


Plot 7.144. Peak to Average Power Ratio Plot (10MHz, 256QAM - Mid Channel) - ANT1

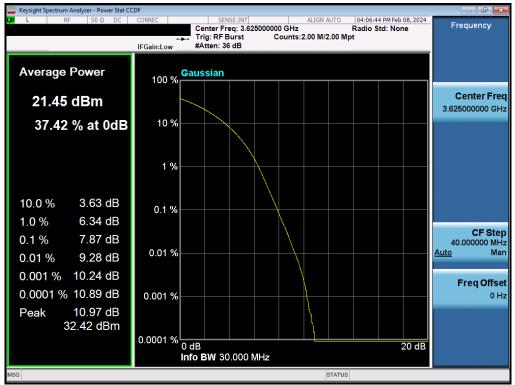

FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 07 of 152	
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 97 of 152	
©2024 ELEMENT	•		V3.0 1/6/2022	

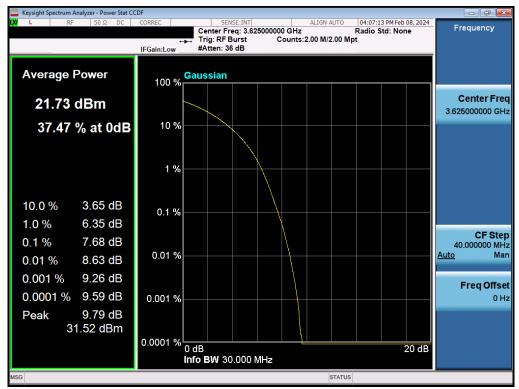
Antenna 2 Peak to Average Ratio


Plot 7.145. Peak to Average Power Ratio Plot (40MHz, QPSK - Mid Channel) - ANT2

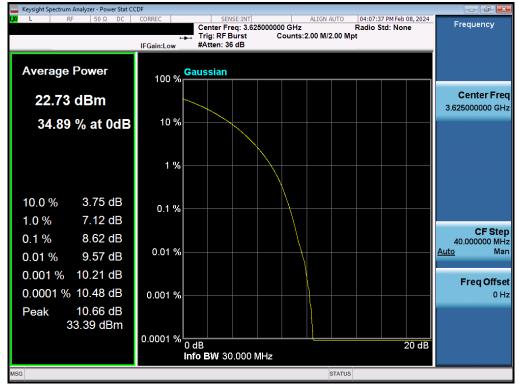

Plot 7.146. Peak to Average Power Ratio Plot (40MHz, 16QAM – Mid Channel) – ANT2

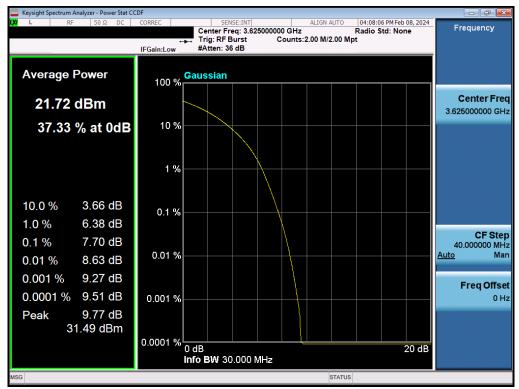
FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dama 00 of 450
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRSCPE	Page 98 of 152
©2024 ELEMENT			


Plot 7.147. Peak to Average Power Ratio Plot (40MHz, 64QAM – Mid Channel) – ANT2

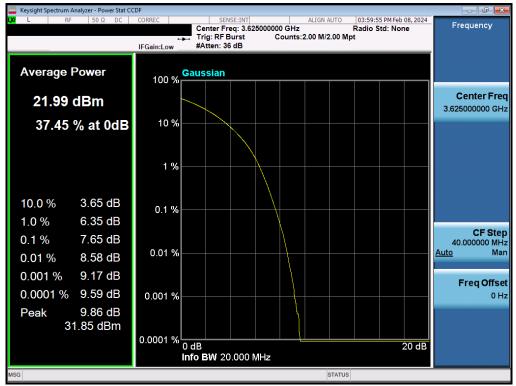

Plot 7.148. Peak to Average Power Ratio Plot (40MHz, 256QAM – Mid Channel) – ANT2

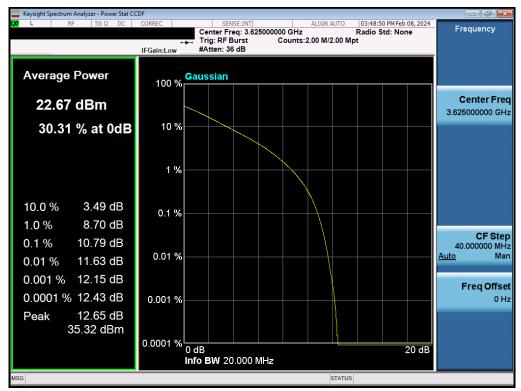
FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 00 of 152	
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRS CPE	Page 99 of 152	
©2024 ELEMENT	•		V3.0 1/6/2022	



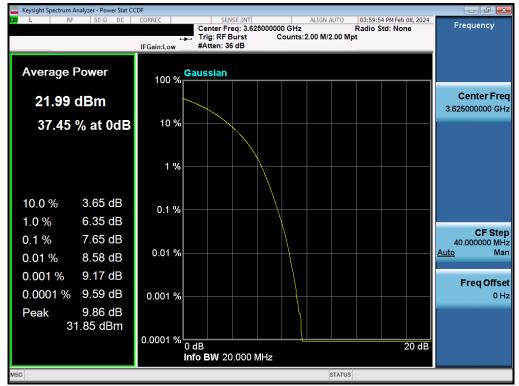

Plot 7.150. Peak to Average Power Ratio Plot (30MHz, 16QAM – Mid Channel) – ANT2

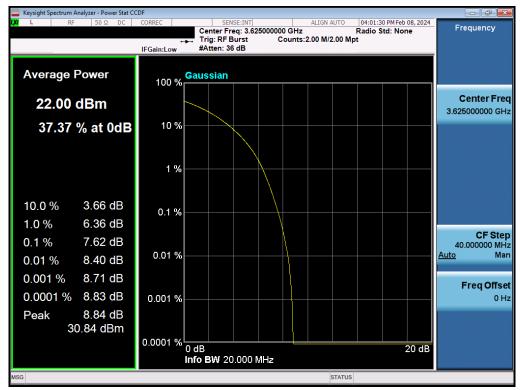
FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 100 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 100 of 152
©2024 ELEMENT			V3.0 1/6/2022


Plot 7.151. Peak to Average Power Ratio Plot (30MHz, 64QAM – Mid Channel) – ANT2

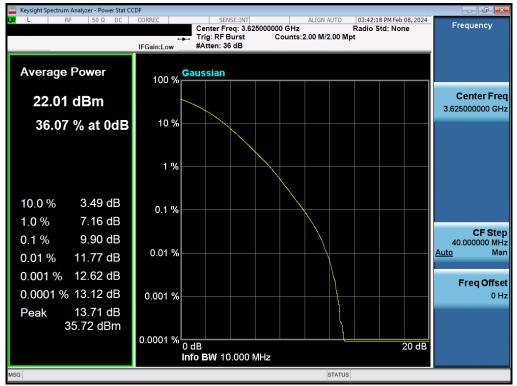

Plot 7.152. Peak to Average Power Ratio Plot (30MHz, 256QAM – Mid Channel) – ANT2

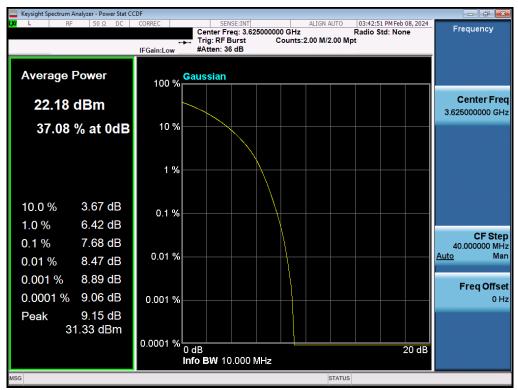
FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 101 of 152	
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRSCPE	Page 101 of 152	
©2024 ELEMENT	•	•	V3.0 1/6/2022	



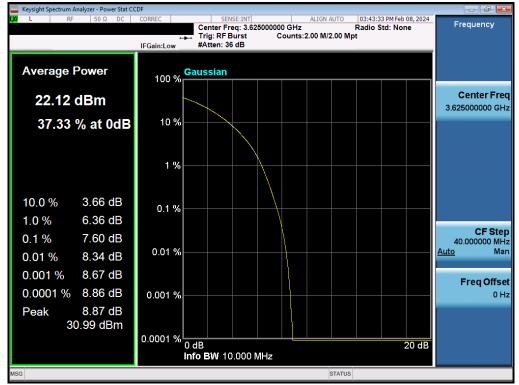

Plot 7.154. Peak to Average Power Ratio Plot (20MHz, 16QAM – Mid Channel) – ANT2

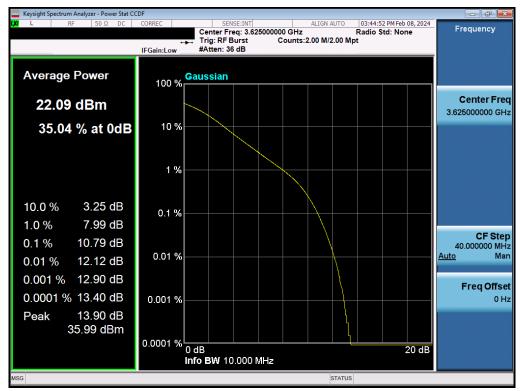
FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 102 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 102 of 152
©2024 ELEMENT			




Plot 7.156. Peak to Average Power Ratio Plot (20MHz, 256QAM - Mid Channel) - ANT2

FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 102 of 152	
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRS CPE	Page 103 of 152	
©2024 ELEMENT	•		V3.0 1/6/2022	


Plot 7.157. Peak to Average Power Ratio Plot (10MHz, QPSK - Mid Channel) - ANT2


Plot 7.158. Peak to Average Power Ratio Plot (10MHz, 16QAM – Mid Channel) – ANT2

FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 104 of 152	
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 104 of 152	
©2024 ELEMENT	©2024 ELEMENT			

Plot 7.160. Peak to Average Power Ratio Plot (10MHz, 256QAM - Mid Channel) - ANT2

FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 105 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 105 01 152
©2024 ELEMENT			V3.0 1/6/2022

7.7 Spurious and Harmonic Emissions at Antenna Terminal

Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst-case configuration. All modes of operation were investigated and the worst-case configuration.

The conducted power of any emissions below 3530 MHz or above 3720 MHz shall not exceed -40 dBm/Mhz.

Test Procedure Used

ANSI C63.26-2015 - Section 5.7.4

Test Settings

- 1. Start frequency was set to 30MHz and stop frequency was set to at least 10 * the fundamental frequency (separated into at least two plots per channel)
- 2. Detector = RMS
- 3. Trace mode = Max Hold
- 4. Sweep time = auto couple
- 5. The trace was allowed to stabilize
- 6. Please see test notes below for RBW and VBW settings

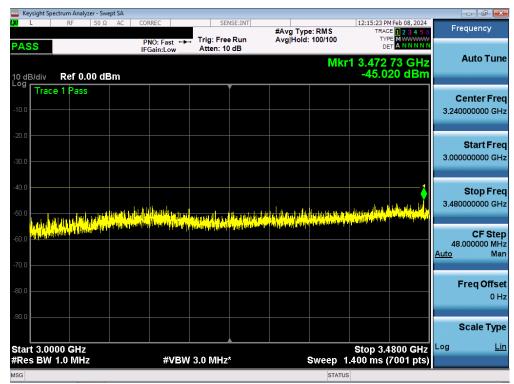
Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Free Provide State of	EUT

Figure 7-6. Test Instrument & Measurement Setup

Test Notes


- 1. Compliance with the applicable limits is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz.
- 2. The Plots in this section have a 3dB correction applied to the individual plots to address the MIMO requirements in ANSI C63.26
- 3. Unwanted emissions between 3510MHz and 3530MHz, as well as between 3720 MHz and 3740 MHz, are observed and reported in section 7.8.

FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dogo 106 of 152		
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRSCPE	Page 106 of 152		
©2024 E LEMENT					

	um Analyzer - Swe										d x
	RF 50 Ω		DRREC		Run	#Avg Typ Avg Hold		TRAC	M Feb 08, 2024 DE 1 2 3 4 5 6 PE M WWWWW	Frequ	iency
PASS	Ref 0.00 dE	I	PNO: Fast ↔ FGain:Low	Atten: 10		, righter		₀ /kr1 2.68	ET A N N N N N	AL	ito Tune
-10.0	1 Pass										iter Fre 0000 GH
30.0											art Free
-40.0									1	Si 3.00000	t ор Fre 0000 GH
-60.0	pila y kana mada andar kana a						i i se da distata		n an in dégina dia mangina dia mangina Pangina dia mangina dia mang		CF Ste D000 MH Ma
80.0										Fre	q Offse 0 H
-90.0	GHz							Stop 3	.000 GHz		ale Typ
#Res BW 1.			#VBW	3.0 MHz*	*		Sweep	3.883 ms	(7281 pts)		
ISG							STAT	rus			

Plot 7.161. Conducted Spurious Plot (10MHz QPSK, Low Channel – ANT1)

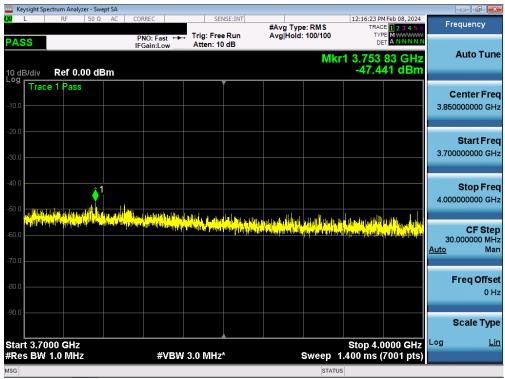
Plot 7.162. Conducted Spurious Plot (10MHz QPSK, Low Channel – ANT1)

FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 107 of 152
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRSCPE	Page 107 of 152
©2024 ELEMENT	•	•	V3.0 1/6/2022

	Analyzer - Swept SA					
LXI L RF	50 Ω AC	CORREC	SENSE:INT	#Avg Type: RMS		Frequency
PASS	e: LO	PNO: Fast ++ IFGain:Low	Trig: Free Run Atten: 10 dB	Avg Hold: 100/10	0 TYPE A WWWW DET A NNNNN kr1 3.501 784 GHz	
l od	f 0.00 dBm				-52.545 dBm	
-10.0	Pass					Center Freq 3.495000000 GHz
-20.0						Start Freq 3.480000000 GHz
-40.0						Stop Freq 3.510000000 GHz
-60.0	newenski folgelingen fan en fan en fan en fan ferste sjelen en ferste sjelen en ferste sjelen en ferste sjelen	ia, ili forge efet i son ef defen	denternesidio providente	99949999999999999999999999999999999999	i gang biligi da dala dala da katika katika katika katika da	CF Step 3.000000 MHz <u>Auto</u> Man
-80.0						Freq Offset 0 Hz
-90.0						Scale Type
Center 3.4950 #Res BW 1.0 I		#VBW	3.0 MHz*	Swee	Span 30.00 MHz p 1.400 ms (7001 pts)	
MSG				s	TATUS	

Plot 7.163. Conducted Spurious Plot (10MHz QPSK, Low Channel – ANT1)

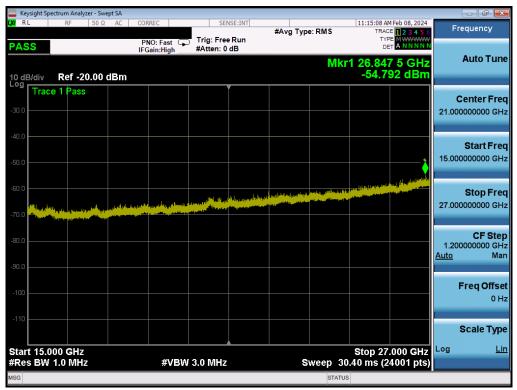
Keysight Spe	ectrum Analyzer - Sv										
	RF 50 S		REC O:Fast ↔→		Run	#Avg Typ AvalHold	pe: RMS d: 100/100	TRAI TY	M Feb 08, 2024 DE 1 2 3 4 5 6 PE A WWWWW	Fre	quency
PASS	Gate: LO		ain:Low	Atten: 10				D			
0 dB/div	Ref 0.00 d	Bm					Mkı	1 3.602 (50.9-)83 GHz 13 dBm		Auto Tun
-og Trace	e 1 Pass									C	enter Fre
10.0											000000 GH
20.0											
20.0											Start Fre
30.0										3.600	000000 GH
40.0											Stop Fre
	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>										000000 GH
50.0			. 1	1							
والمعلمية بالجريد		alara (analara)	legelige the state	بليدهل والمليدة بمأفاتهم	ani yinya Malaka Inga	es.Nelesterstranspeloy	and longing and sound		Maj Totalini pasiri		CF Ste
50.0											000000 MH
70.0										<u>Auto</u>	Ma
10.0											
30.0										F	req Offs
											0 H
90.0											
										S	scale Typ
enter 3.6	61500 GHz							Span 3	0.00 MHz	Log	Li
Res BW			#VBW	3.0 MHz*			Sweep	1.400 ms	(7001 pts)		
SG							STAT	rus			


Plot 7.164. Conducted Spurious Plot (10MHz QPSK, Low Channel – ANT1)

FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 109 of 152
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRS CPE	Page 108 of 152
©2024 ELEMENT			V3.0 1/6/2022

🔤 Keysight Spectrum Analyzer - Swept SA 👘					
LXI L RF 50 Ω AC		SENSE:INT #Avg Ty ree Run Avg Holo	pe: RMS TRA	AM Feb 08, 2024 CE 1 2 3 4 5 6 (PE MWWWWW	Frequency
PASS	PNO: Fast +++ Trig: F IFGain:Low Atten:		Mkr1 3.662	A N N N N N	Auto Tune
-10.0					Center Freq 3.66500000 GHz
-30.0					Start Freq 3.63000000 GHz
-40.0 -50.0 <mark>Harden Harden H</mark>					Stop Freq 3.70000000 GHz
-60.0					CF Step 7.000000 MHz Luto Man
-80.0					Freq Offset 0 Hz
-30.0 Start 3.63000 GHz			Stop 37	0000 GHz	Scale Type
#Res BW 1.0 MHz	#VBW 3.0 MH	Iz*	Sweep 1.400 ms	(7001 pts)	
MSG			STATUS		

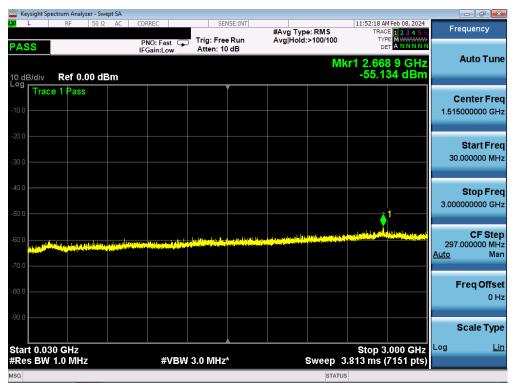
Plot 7.165. Conducted Spurious Plot (10MHz QPSK, Low Channel – ANT1)


Plot 7.166. Conducted Spurious Plot (10MHz QPSK, Low Channel – ANT1)

FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 100 of 152
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRS CPE	Page 109 of 152
©2024 ELEMENT			V3.0 1/6/2022

Keysight Spectrum Analyzer - Swept SA				
L RF 50Ω AC		#Avg Type: RMS	11:12:48 AM Feb 08, 2024 TRACE 1 2 3 4 5 6	Frequency
PASS	PNO: Fast +++ Trig: Free I IFGain:Low Atten: 10 of		DET A N N N N	
10 dB/div Ref 0.00 dBm		Mk	r1 14.204 7 GHz -56.668 dBm	Auto Tune
-10.0				Center Freq 9.50000000 GHz
-20.0				Start Freq 4.00000000 GHz
-40.0				Stop Freq 15.000000000 GHz
-60.0	Mantha (Alamba, ang pantan da pantan da pang ata an Nantha (Alamba, ang pantan da p			CF Step 1.100000000 GHz <u>Auto</u> Man
-80.0				Freq Offset 0 Hz
-90.0				Scale Type
Start 4.000 GHz #Res BW 1.0 MHz	#VBW 3.0 MHz*	Sweep 2	Stop 15.000 GHz 2.56 ms (22561 pts)	
MSG		STATU		

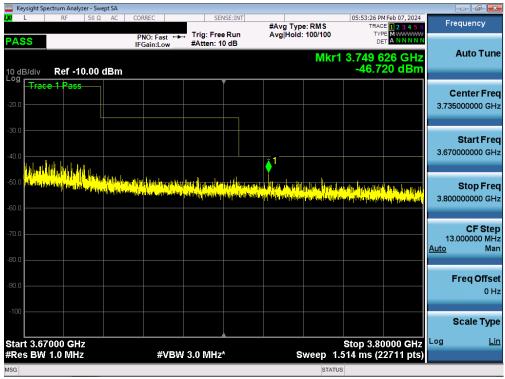
Plot 7.167. Conducted Spurious Plot (10MHz QPSK, Low Channel – ANT1)


Plot 7.168. Conducted Spurious Plot (10MHz QPSK, Low Channel – ANT1)

FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 110 of 152
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRS CPE	Page 110 of 152
©2024 ELEMENT			V3.0 1/6/2022

🔤 Keysight Spectrum Analyzer - Swept SA					
LX/RL RF 50Ω DC	CORREC SENS	EE:INT ALIGN AUTO #Avg Type: RMS	TRACE 1 2 3 4 5 6	Frequency	
PASS	PNO: Fast Trig: Free IFGain:Low Atten: 10	dB	TYPE MWWWW DET ANNNNN Kr1 37.024 5 GHz	Auto Tune	
10 dB/div Ref 0.00 dBm			-40.980 dBm		
-10.0				Center Freq 33.000000000 GHz	
-20.0				Start Freq 27.000000000 GHz	
-40.0	efn ger ^{hl} longereleter a ^{bli} n versetlendet gestertet	la presidente de la companya de la c	1 Al-phant and all all all and a phant in the phant in the phant is a straight of the phant is a strai	Stop Freq 39.000000000 GHz	
-60.0				CF Step 1.20000000 GHz <u>Auto</u> Man	
-70.0				Freq Offset 0 Hz	
-90.0				Scale Type	
Start 27.000 GHz #Res BW 1.0 MHz	#VBW 3.0 MHz	Sweep 2	Stop 39.000 GHz 20.80 ms (24001 pts)	Log <u>Lin</u>	
MSG		STAT	US		

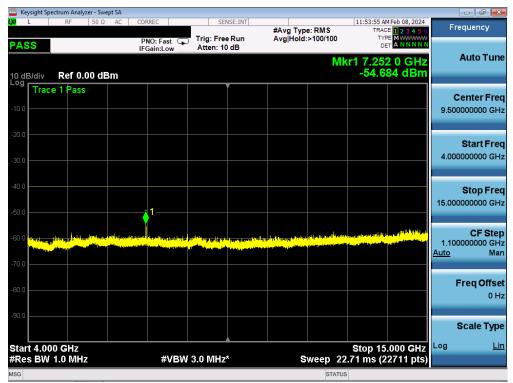
Plot 7.169. Conducted Spurious Plot (10MHz QPSK, Low Channel – ANT1)


Plot 7.170. Conducted Spurious Plot (10MHz QPSK, Mid Channel – ANT1)

FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Deep 111 of 152	
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRS CPE	Page 111 of 152	
©2024 ELEMENT			V3.0 1/6/2022	

weysight Spectrum Analyzer - Swept SA					
LX L RF 50 Ω AC		NSE:INT #Avg Typ	De: RMS TRA	PM Feb 07, 2024 CE 1 2 3 4 5 6	Frequency
PASS	PNO: Fast +++ Trig: Fre IFGain:Low Atten: 10		1: 100/100		
			Mkr1 3.416	829 GHz 18 dBm	Auto Tune
10 dB/div Ref 0.00 dBm		•	-40		
					Center Freq
-10.0					3.290000000 GHz
-20.0					
20.0					Start Freq
-30.0					3.000000000 GHz
-40.0			1 <u>1</u>	1	Stop Freq
-50.0		فتعاول أجاب المربي المراجع	a and the Well and a state of a st		3.580000000 GHz
-50.0	t i fan de fan de stere de stere de stere i fan de fan de stere i fan de stere i fan de stere i fan de stere i New fan de stere de stere de stere stere de stere i ster		an and the second of the state of the second second	IN ALL MARKED BUILD	
-60.0 -60.0	n de calater a tra				CF Step 58.000000 MHz
					<u>Auto</u> Man
-70.0					
-80.0					Freq Offset
					0 Hz
-90.0					
					Scale Type
Start 3.0000 GHz				3000 GHZ	Log <u>Lin</u>
#Res BW 1.0 MHz	#VBW 3.0 MHz	* 5	Sweep 1.514 ms (22711 pts)	
MSG			STATUS		

Plot 7.171. Conducted Spurious Plot (10MHz QPSK, Mid Channel – ANT1)


Plot 7.172. Conducted Spurious Plot (10MHz QPSK, Mid Channel – ANT1)

FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 112 of 152
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRSCPE	Page 112 of 152
©2024 ELEMENT			V3.0 1/6/2022

🤤 Keysight Spectrum Analyzer - Swept SA					
L RF 50Ω AC	CORREC	SENSE:INT	#Avg Type: RMS	12:13:23 PM Feb 08, 2024 TRACE 1 2 3 4 5 6	Frequency
PASS		g: Free Run ten: 10 dB	Avg Hold: 100/100		
10 dB/div Ref 0.00 dBm			Mkr1	3.822 633 GHz -49.627 dBm	Auto Tune
Log Trace 1 Pass		Ţ			
-10.0					Center Freq 3.900000000 GHz
-10.0					3.90000000 GHZ
-20.0					04
					Start Freq 3.80000000 GHz
-30.0					
-40.0					Stop Freq
<mark>↓</mark> 1					4.000000000 GHz
-50.0 -60.0 -60.0	ويوجون والارجوع والمحاط والمرافع المحاط			ويتعاربه التلاقية والمتحد	
-60.0	na la la la mana da da la la constitución de la constitución de la constitución de la constitución de la const	the later of the second	i al la parte de la della d Necesia della de	ana dha dha malanna dha an	CF Step 20.000000 MHz
					Auto Man
-70.0					
-80.0					Freq Offset
					0 Hz
-90.0					Scale Type
Start 3.8000 GHz #Res BW 1.0 MHz	#VBW 3.0	MU7*	Sween 1	Stop 4.0000 GHz 514 ms (22711 pts)	Log <u>Lin</u>
	#VBW 3.0	IVINZ	Sweep T.		

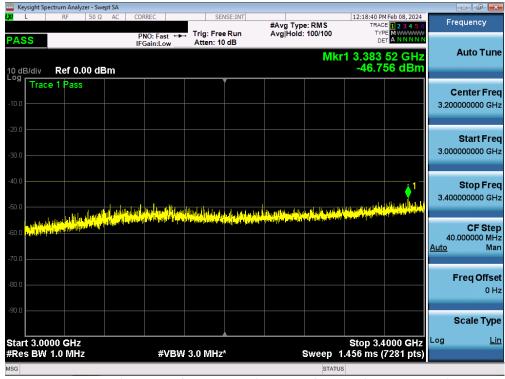
Plot 7.173. Conducted Spurious Plot (10MHz QPSK, Mid Channel – ANT1)

Plot 7.174. Conducted Spurious Plot (10MHz QPSK, Mid Channel – ANT1)

FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 112 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRSCPE	Page 113 of 152
©2024 ELEMENT			V3.0 1/6/2022

LXI RL RF 50 Ω AC CORREC SENSE:INT 11:57:35 AM Feb 08, 2024	
#Avg Type: RMS TRACE 23456 Frequ	ency
PASS PNO: Fast Trig: Free Run TYPE MWWWWW IFGain:High #Atten: 0 dB DET A NNN N	
10 dB/div Ref -20.00 dBm -55.922 dBm	ito Tune
-30.0 Trace 1 Pass Cen 21.00000	i ter Freq 0000 GHz
	a rt Freq 0000 GHz
	t op Freq 0000 GHz
	CF Step 0000 GHz Man
	q Offset 0 Hz
-110 Sca	ale Type
Start 15.000 GHz Stop 27.000 GHz Log #Res BW 1.0 MHz #VBW 3.0 MHz Sweep 30.40 ms (24001 pts)	<u>Lin</u>
MSG STATUS	

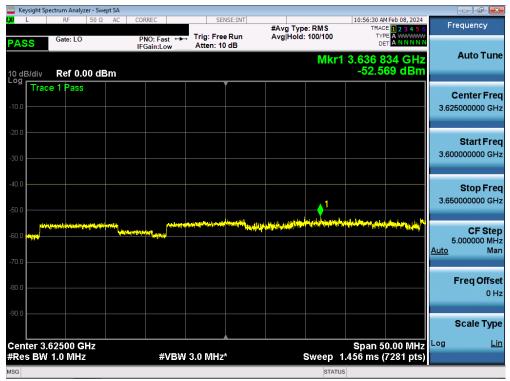
Plot 7.175. Conducted Spurious Plot (10MHz QPSK, Mid Channel – ANT1)


Plot 7.176. Conducted Spurious Plot (10MHz QPSK, Mid Channel – ANT1)

FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dama 444 of 452
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRSCPE	Page 114 of 152
©2024 ELEMENT	•		V3.0 1/6/2022

Keysight Spectrum Analyzer - Swept SA					
L RF 50 Ω AC		ENSE:INT #Avg Ty	pe: RMS	3:42 AM Feb 08, 2024 TRACE 1 2 3 4 5 6	Frequency
PASS	PNO: Fast +++ Trig: Fr IFGain:Low Atten:		d: 100/100		
			Mkr1 3	.000 0 GHz 6.386 dBm	Auto Tune
10 dB/div Ref 0.00 dBm			-3	6.386 dBm	
Trace 1 Pass		Ť I			Center Freq
-10.0					1.515000000 GHz
-20.0					Start Freq
-30.0					30.000000 MHz
-40.0					Stop Freq
-50.0					3.000000000 GHz
-30.0				1	
-60.0		n Labor, Alda secondarilar, francoistatila		en all and the set of the	CF Step 297.000000 MHz
The second se		Contraction of the contract of the second	and and shall be a set of the set		<u>Auto</u> Man
-70.0					
-80.0					Freq Offset
					0 Hz
-90.0					
					Scale Type
Start 0.030 GHz			St	op 3.000 GHz	Log <u>Lin</u>
#Res BW 1.0 MHz	#VBW 3.0 MH	Z*	Sweep 3.883	ms (7281 pts)	
MSG			STATUS		

Plot 7.177. Conducted Spurious Plot (10MHz QPSK, High Channel – ANT1)


Plot 7.178. Conducted Spurious Plot (10MHz QPSK, High Channel – ANT1)

FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 115 of 152
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRSCPE	Page 115 01 152
©2024 ELEMENT			V3.0 1/6/2022

Keysight Spectrum Analyzer - Swept SA			
L RF 50 Ω AC	CORREC SENSE:INT	10:54:58 AM Feb 08, 2024 #Avg Type: RMS TRACE 12345	Frequency
PASS	PNO: Fast ++ Trig: Free Run IFGain:Low Atten: 10 dB	Avg Hold: 100/100 TYPE MWWWW DET A NNNN	
10 dB/div Ref 0.00 dBm		Mkr1 3.420 302 GHz -44.219 dBm	Auto Tune
-10.0			Center Freq 3.500000000 GHz
-20.0			Start Freq 3.400000000 GHz
-40.0 1	eyellet the school and a second state of a second	later bestel to experience in particular and the state of t Stater bestel and the state of the	Stop Freq 3.600000000 GHz
-60.0	n na	in, mini para kan kan da na kan kan kan kan kan kan kan kan kan	CF Step 20.000000 MHz <u>Auto</u> Mar
-80.0			Freq Offse 0 Ha
-90.0			Scale Type
Start 3.4000 GHz #Res BW 1.0 MHz	#VBW 3.0 MHz*	Stop 3.6000 GHz Sweep 1.456 ms (7281 pts	
MSG		STATUS	

Plot 7.179. Conducted Spurious Plot (10MHz QPSK, High Channel - ANT1)

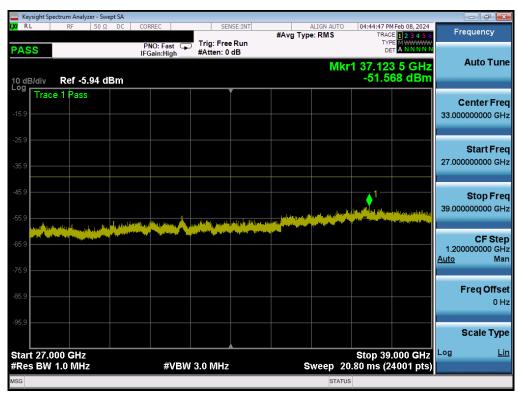
Plot 7.180. Conducted Spurious Plot (10MHz QPSK, High Channel – ANT1)

FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Page 116 of 152
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRS CPE	Page 116 01 152
©2024 ELEMENT			V3.0 1/6/2022

Keysight Spectrum Analyzer - Swept SA					
L RF 50Ω AC	CORREC	SENSE:INT	#Avg Type: RMS	10:58:33 AM Feb 08, 2024 TRACE 1 2 3 4 5 6	Frequency
PASS	PNO: Fast +++ IFGain:Low	Trig: Free Run Atten: 10 dB	Avg Hold: 100/100	DET A N N N N N	
10 dB/div Ref 0.00 dBm			Mkr1	3.744 172 GHz -44.740 dBm	Auto Tune
-10.0					Center Freq 3.870000000 GHz
-20.0					Start Freq 3.74000000 GHz
	hall de sector a				Stop Freq 4.000000000 GHz
-70.0	an Marine and Marine Marine and Antonio and Antonio and Antonio and Antonio and Antonio and Antonio and Antonio Antonio and Antonio and Anto	hin aishi uurarada yan (ashayan) ya Anya ina ay kana ay kana ay kana ay kana ay	n ha ha ha shin (da bida hida hida hida shin sa a Mana an ka ha na ga kana ya kana ya a mula ya a	el telken köperantikanna konstal konstal konstal Maniparina konstal in sakon sakon sakon sakon sakon sakon sako Maniparina konstal in sakon	CF Step 26.000000 MHz <u>Auto</u> Man
-80.0					Freq Offset 0 Hz
-90.0 Start 3.7400 GHz				Stop 4.0000 GHz	Scale Type
#Res BW 1.0 MHz	#VBW	3.0 MHz*	Sweep 1.	504 ms (22561 pts)	
MSG			STATU		

Plot 7.181. Conducted Spurious Plot (10MHz QPSK, High Channel – ANT1)

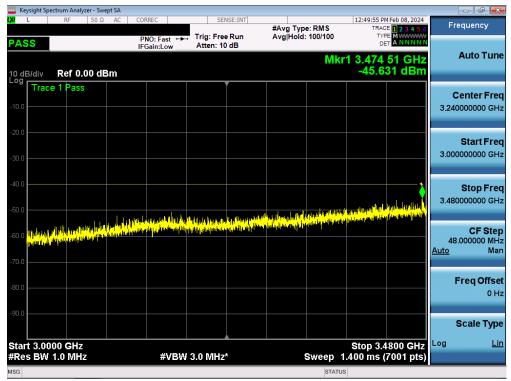
	ectrum Analyzer - Swe								
<mark>XI</mark> L	RF 50 Ω		RREC		#Avg Type Avg Hold:		TRAC	M Feb 08, 2024 CE 1 2 3 4 5 6 PE M WWWWW	Frequency
PASS	Ref 0.00 dE	IF	Gain:Low	Atten: 10			lkr1 7.38	2 9 GHz 00 dBm	Auto Tune
-10.0	e 1 Pass								Center Freq 9.500000000 GHz
-20.0									Start Freq 4.000000000 GHz
-40.0									Stop Freq 15.000000000 GHz
-60.0	and a literature	dishe ka ging sa shishi Managarayan sa shishi sa shi					then the principal property of the property of the second s		CF Step 1.100000000 GHz <u>Auto</u> Man
-80.0									Freq Offset 0 Hz
-90.0 Start 4.00							Stop 15	.000 GHz	Scale Type
#Res BW			#VBW	3.0 MHz	\$ s	weep 2	2.56 ms (2	OUC OIL	
MSG						STAT	US		


Plot 7.182. Conducted Spurious Plot (10MHz QPSK, High Channel – ANT1)

FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Page 117 of 152
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRSCPE	Page 117 01 152
©2024 E LEMENT			V3.0 1/6/2022

Keysight Spectrum Analyzer - Swept SA					
LXX RL RF 50Ω AC	CORREC SEI	NSE:INT #Avg Typ		M Feb 08, 2024 CE 1 2 3 4 5 6	Frequency
PASS	PNO: Fast Trig: Free IFGain:High #Atten: 0		TY	PE MWWWWW ET ANNNNN	
	ir Gain.riigii #/ taen: o	40	Mkr1 26.96	9 0 GHz	Auto Tune
10 dB/div Ref -20.00 dBm			-56.0	26 dBm	
Log Trace 1 Pass					Center Freq
-30.0					21.000000000 GHz
-40.0					Otherst Error
					Start Freq 15.00000000 GHz
-50.0				1	13.000000000 GHZ
-60.0				مريدية المريدية المريدية .	
-00.0		and collected from the classic south periods in		Construction of the local division of the lo	Stop Freq
-70.0		and the second			27.00000000 GHz
-80.0					CF Step 1.20000000 GHz
					<u>Auto</u> Man
-90.0					
-100					Freq Offset
					0 Hz
-110					
					Scale Type
Start 15.000 GHz			Stop 27	.000 GHz	Log <u>Lin</u>
#Res BW 1.0 MHz	#VBW 3.0 MHz	S	weep 30.40 ms (2	24001 pts)	
MSG			STATUS		

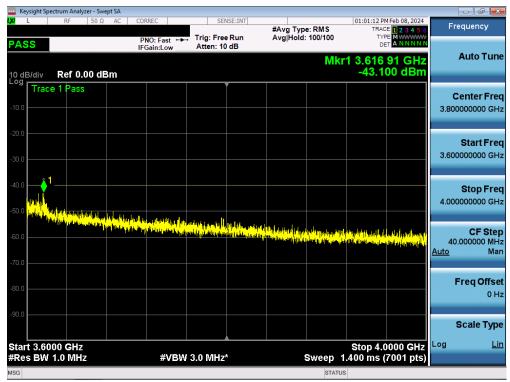
Plot 7.183. Conducted Spurious Plot (10MHz QPSK, High Channel - ANT1)


Plot 7.184. Conducted Spurious Plot (10MHz QPSK, High Channel - ANT1)

FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Deep 110 of 150
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRSCPE	Page 118 of 152
©2024 ELEMENT	-		V3.0 1/6/2022

🔤 Keysight Spectrum Analyzer - Swept SA					
L RF 50Ω AC		#Avg Typ	e: RMS TRA	M Feb 08, 2024 CE 1 2 3 4 5 6	Frequency
PASS 10 dB/div Ref 0.00 dBm	PNO: Fast 🍙 Trig: Free IFGain:Low Atten: 10		■ Mkr1 2.41	1 1 GHz 03 dBm	Auto Tune
10 dB/div Ref 0.00 dBm Log Trace 1 Pass -10.0					Center Freq 1.515000000 GHz
-20.0					Start Freq 30.000000 MHz
-40.0			1		Stop Freq 3.000000000 GHz
-60.0		nigh donn og sidden sjørg på beren Nyel	terry for data (by loss (b)) ga ng ang ang ang ang ang ang ang ang an		CF Step 297.000000 MHz <u>Auto</u> Man
-80.0					Freq Offset 0 Hz
-90.0 Start 0.030 GHz				.000 9112	Scale Type
#Res BW 1.0 MHz	#VBW 3.0 MHz*	*	Sweep 3.733 ms		
MSG			STATUS		

Plot 7.185. Conducted Spurious Plot (10MHz QPSK, Low Channel – ANT2)


Plot 7.186. Conducted Spurious Plot (10MHz QPSK, Low Channel – ANT2)

FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 110 of 152
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRSCPE	Page 119 of 152
©2024 E LEMENT			V3.0 1/6/2022

Keysight Spectrum Analyzer - Swept S				
L RF 50Ω A		SE:INT #Avg Type: RMS	01:02:47 PM Feb 08, 2024 TRACE 1 2 3 4 5 6	Frequency
Gate: LO	PNO: Fast +++ Trig: Free IFGain:Low Atten: 10		DET A WWWW	
10 dB/div Ref 0.00 dBm		Mkr1	3.497 397 1 GHz -52.102 dBm	Auto Tune
-10.0				Center Freq 3.490000000 GHz
-20.0				Start Freq 3.48000000 GHz
-40.0		and the second	1	Stop Freq 3.500000000 GHz
-60.0	ngelingengelengen komplikeligt in der forstelligt en gel			CF Step 2.000000 MHz <u>Auto</u> Man
-80.0				Freq Offset 0 Hz
-90.0				Scale Type
Center 3.49000 GHz #Res BW 1.0 MHz	#VBW 3.0 MHz*	Sweep	Span 20.00 MHz 1.400 ms (7001 pts)	
MSG		STAT		

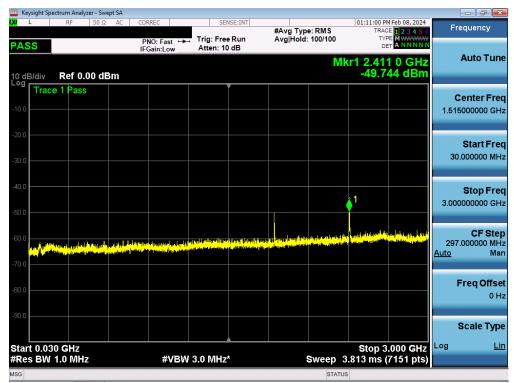
Plot 7.187. Conducted Spurious Plot (10MHz QPSK, Low Channel – ANT2)

Plot 7.188. Conducted Spurious Plot (10MHz QPSK, Low Channel – ANT2)

FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 120 of 152
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRSCPE	Page 120 of 152
©2024 ELEMENT			V3.0 1/6/2022

Keysight Spectrum Analyzer - Swept SA				
L RF 50 Ω AC		#Avg Typ	e: RMS TRAC	MFeb 08, 2024 Frequency
PASS	PNO: Fast Trig: Free IFGain:Low Atten: 10		>100/100 TYF	PE M WWWW
			Mkr1 7.10	9 9 GHz Auto Tune
10 dB/div Ref 0.00 dBm			-51.9	64 dBm
Trace 1 Pass				Center Fred
-10.0				9.50000000 GHz
-20.0				Start Fred
-30.0				4.000000000 GHz
-40.0				Stop Fred
-50.0	<u>^1</u>			15.00000000 GHz
-50.0				
-60.0			at the second by some stands of the	CF Step
A second s	فالمريخة فأعلم والمتحاص المترجلة والمتحاص والمرجع والمرجع	liter of standard at the first state of the		Auto Mar
-70.0				
-80.0				Freq Offset
-00.0				0 Hz
-90.0				
				Scale Type
Start 4.000 GHz			Stop 15	.000 GHz Log Lin
#Res BW 1.0 MHz	#VBW 3.0 MHz*	¢	Sweep 22.40 ms (7001 pts)
MSG			STATUS	

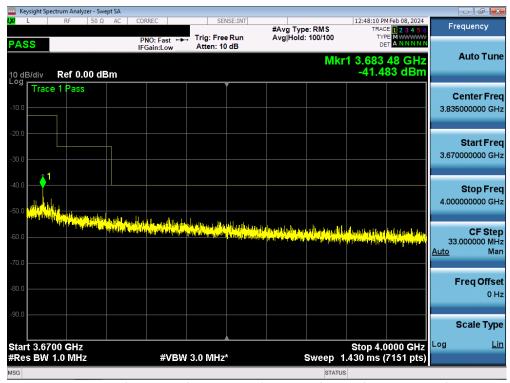
Plot 7.189. Conducted Spurious Plot (10MHz QPSK, Low Channel – ANT2)


Plot 7.190. Conducted Spurious Plot (10MHz QPSK, Low Channel – ANT2)

FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Page 121 of 152
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRS CPE	Page 121 01 152
©2024 E LEMENT	•		V3.0 1/6/2022

Keysight Spectrum Analyzer - Swept SA				_	
LXX RL RF 50Ω DC	CORREC SEN	VSE:INT #Avg Typ		M Feb 08, 2024	Frequency
PASS	PNO: Fast +++ Trig: Free IEGain:High #Atten: 0		TY		
	IFGain:High #Atten: 0	ub	Mkr1 36.99	3.5.047	Auto Tune
10 dB/div Ref -5.94 dBm			-51.6	19 dBm	
Log Trace 1 Pass					
					Center Freq
-15.9					33.000000000 GHz
-25.9					Start Freq
-35.9					27.000000000 GHz
-35.9					
-45.9					
			• • '		Stop Freq 39.00000000 GHz
-55.9	and the second	a lagge and the patient law place in the second	and a stand of the stand of the stand of the	District the second party of	39.00000000 GHZ
-55.9		interpreter to the local spin of the state o	where the strength of the strength of the	the second bearing and the	
-65.9 Martin Martin Constant State	and the second states at some				CF Step 1.20000000 GHz
				E	<u>Auto</u> Man
-75.9					
					Freq Offset
-85.9					0 Hz
-95.9					
-95.9					Scale Type
Start 27.000 GHz			Stop 39	.000 GHZ	.og <u>Lin</u>
#Res BW 1.0 MHz	#VBW 3.0 MHz	5	weep 20.80 ms (2	4001 pts)	
MSG			STATUS		

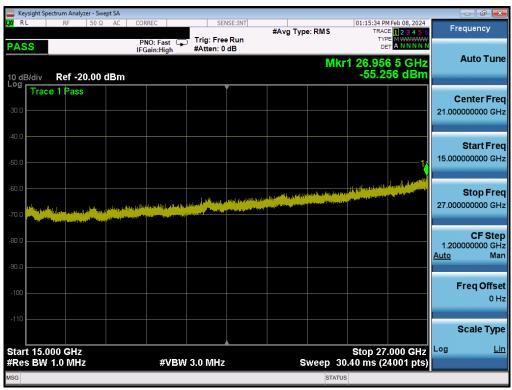
Plot 7.191. Conducted Spurious Plot (10MHz QPSK, Low Channel – ANT2)


Plot 7.192. Conducted Spurious Plot (10MHz QPSK, Mid Channel – ANT2)

FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	t Dates: EUT Type:	
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 122 of 152
©2024 ELEMENT	•	·	V3.0 1/6/2022

Keysight Spectrum Analyzer - Swept SA					
L RF 50 Ω AC		NSE:INT #Avg Type e Run Avg Hold:	e: RMS TRAC 100/100 TYP	I Feb 08, 2024 E 1 2 3 4 5 6 E MWWWWW	Frequency
PASS 10 dB/div Ref 0.00 dBm	PNO: Fast Trig: Fre IFGain:Low Atten: 10		Mkr1 3.564		Auto Tune
-10.0					Center Freq 3.290000000 GHz
-20.0					Start Freq 3.000000000 GHz
-40.0 -50.0 -60.0	. L. materzanski tesilsza dilantismi	a sa ang katalang ka	tele al analytic and a day to be a day		Stop Freq 3.580000000 GHz
-60.0 (1997) (19	n an a le constante a la constante a la constante de la constante de la constante de la constante de la constan La constante de la constante de			A	CF Step 58.000000 MHz <u>uto</u> Man
-80.0					Freq Offset 0 Hz
-90.0 Start 3.0000 GHz			Stop 3.5	800 GHz	Scale Type
#Res BW 1.0 MHz	#VBW 3.0 MHz	*	Sweep 1.430 ms (
MSG			STATUS		

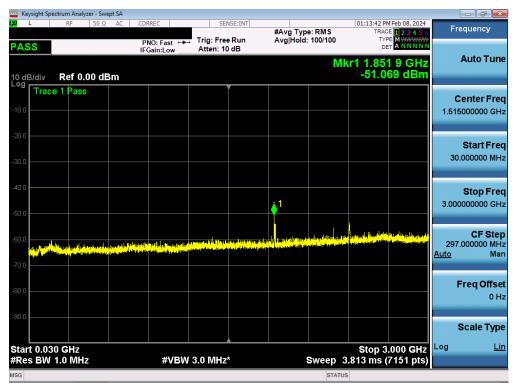
Plot 7.193. Conducted Spurious Plot (10MHz QPSK, Mid Channel – ANT2)


Plot 7.194. Conducted Spurious Plot (10MHz QPSK, Mid Channel – ANT2)

FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 122 of 152
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRS CPE	Page 123 of 152
©2024 E LEMENT			V3.0 1/6/2022

Keysight Spectrum Analyzer - Swept SA				
L RF 50Ω AC		SENSE:INT #Avg Typ	e: RMS TRAC	4Feb 08, 2024 ^E 1 2 3 4 5 6 Frequency
PASS	PNO: Fast +++ Trig: Fr IFGain:Low Atten:		: 100/100 TYP DE	PE MWWWW TANNNN
10 dB/div Ref 0.00 dBm			Mkr1 7.24 -46.0	7 7 GHz Auto Tune 39 dBm
-10.0				Center Fred 9.500000000 GHz
-20.0				Start Frec 4.000000000 GHz
-40.0	1			Stop Fred 15.000000000 GHz
-60.0	. A til stad och sa til sa sa til sa sa til sa sa sa til sa sa sa sa til sa sa sa til sa sa sa sa til sa sa sa		المحقق المحق المحقق المحقق	CF Step 1.100000000 GHz <u>Auto</u> Mar
-80.0				Freq Offset 0 Hz
-90.0				Scale Type
Start 4.000 GHz #Res BW 1.0 MHz	#VBW 3.0 MH	Z*	Stop 15 Sweep 22.40 ms (.000 0112
MSG			STATUS	

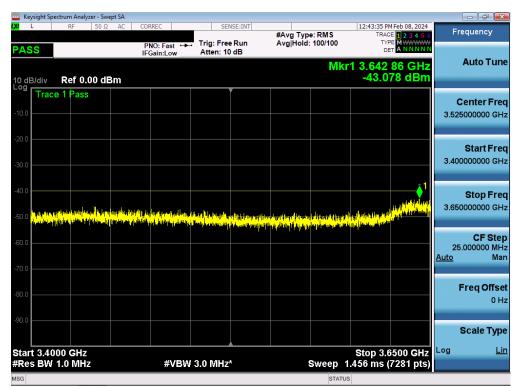
Plot 7.195. Conducted Spurious Plot (10MHz QPSK, Mid Channel – ANT2)


Plot 7.196. Conducted Spurious Plot (10MHz QPSK, Mid Channel – ANT2)

FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Page 124 of 152
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRS CPE	Page 124 01 152
©2024 E LEMENT			V3.0 1/6/2022

Keysight Spectrum Analyzer - Swept SA					
<mark>LX/ R L RF 50 Ω DC</mark>	CORREC SE	NSE:INT #Avg Typ		4 Feb 08, 2024 E 1 2 3 4 5 6	Frequency
PASS	PNO: Fast +++ Trig: Fre	e Run	TYF		
	IFGain:High #Atten: 0	uB	Mkr1 36.91		Auto Tune
10 dB/div Ref -5.94 dBm			-52 1	52 dBm	
Log Trace 1 Pass		▼			
TIACE I FASS					Center Freq
-15.9				33	3.000000000 GHz
-25.9					Start Freq
-35.9				27	.000000000 GHz
-35.9					
-45.9					ot
					Stop Freq 0.000000000 GHz
-55.9		A la participa de la de la desta de la composición de la desta de la composición de la desta de la composición	and the state of the second second	ana ang ang ang ang ang ang ang ang ang	9.000000000 GH2
Institute and all the part of the land of the second second second second second second second second second se	udhana, dharaadaa dhi jaadhadha alkaan	A STATE OF THE PARTY OF THE STATE OF THE STA	and the second	Difficult and the state of a	
-65.9	an a				CF Step 200000000 GHz
				Au	
-75.9					
					Freq Offset
-85.9					0 Hz
-95.9					
-95.9					Scale Type
Start 27.000 GHz			Stop 39	.000 GHz	g <u>Lin</u>
#Res BW 1.0 MHz	#VBW 3.0 MHz	S	weep 20.80 ms (2	4001 pts)	
MSG			STATUS		

Plot 7.197. Conducted Spurious Plot (10MHz QPSK, Mid Channel – ANT2)


Plot 7.198. Conducted Spurious Plot (10MHz QPSK, High Channel – ANT2)

FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	De 22 405 26 450		
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRS CPE	Page 125 of 152		
©2024 ELEMENT			V3.0 1/6/2022		

Specti Swept	rum Analyz : SA	zer 1 🗸	+								Frequency	- * 器
L	Sight • • • Pass	Input: RF Coupling: DC Align: Off	Input Z: Corr CC Freq Re NFE: O	orr of: Int (S)	Atten: 10 dB		#Avg Type: I Avg Hold: 10 Trig: Free R	00/100 un	1 2 3 4 5 6 M		⁻ Frequency 000000 GHz	Settings
1 Spe	ctrum	▼					Mkr		560 GHz		00000 MHz	
Scale Log	/Div 10 dE				Ref Level 0.0	00 dBm		-45	.92 dBm		wept Span ero Span	
-10.0	Trace	1 Pass									Full Span	
-20.0										Start F 3.000	req 000000 GHz	
-30.0 -40.0										Stop F 3.400	req 000000 GHz	
-50.0	1.				in a spectra da se	di di si su di kita di di si	villes freches Mitteren Villes de la Jacobra de la Compañía			A	UTO TUNE	
-60.0		n a sense a ser a ser a se a se a se a se a se	a <mark>l, alta ja kaises estat kuise</mark>							CF Ste 40.00	ep 0000 MHz	
-80.0										M	uto an	
-90.0										Freq C 0 Hz	offset	
	3.0000 GH BW 1.0 MI			;	#Video BW 3	.0 MHz*	Swe		3.4000 GHz (22561 pts)	X Axis L L	og	
	5			6, 2024 :08 AM						Signal (Span 2	Track Zoom)	

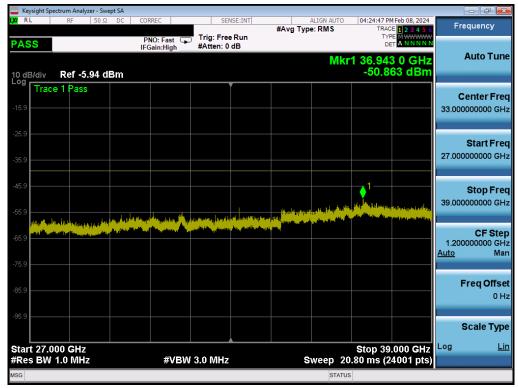
Plot 7.199. Conducted Spurious Plot (10MHz QPSK, High Channel – ANT2)


Plot 7.200. Conducted Spurious Plot (10MHz QPSK, High Channel - ANT2)

FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 100 of 150	
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 126 of 152	
©2024 ELEMENT			V3.0 1/6/2022	

🔤 Keys	ight Spectru	m Analyzer - Swe										×
L <mark>XI</mark> L		RF 50 Ω		ORREC		ISE:INT	#Avg Typ Avg Hold		TRAC	M Feb 08, 2024	Frequency	,
10 dB		ef 0.00 dE	I	PNO: Fast ↔ FGain:Low	Atten: 10		Avginoid		r 1 3.740		Auto Ti	une
-10.0 -	Trace 1	Pass									Center F 3.870000000	
-20.0 = -30.0 =											Start F 3.740000000	
-40.0	1	lina parter lini para da	theter to a	the set of an							Stop F 4.000000000	
-60.0 -		i kina ana kana na kana na kana kana kan	alar a fa a fa fa fa	dia ny kaodim-paositra dia 4.54 mili Ny kaodim-paositra dia mampiasa dia kaodim-paositra dia mampiasa dia kaodim-paositra dia kaodim-paositra dia kao	i da hada bada Mara ya kuta ana ya	in hili di bina			hida bata ng bata di	la de la forma de la Tracto popular de la forma	CF S 26.000000 I <u>Auto</u>	
-80.0 -											Freq Ofi	fset 0 Hz
	3.7400			<i>#</i>)/(D)))					Stop 4.0	0000 GHz	Scale T	ype Lin
#Res	BW 1.0	MIHZ		#VBW	3.0 MHz*			Sweep	1.456 ms (7 281 pts)		
MSG								STAT	03			

Plot 7.201. Conducted Spurious Plot (10MHz QPSK, High Channel – ANT2)


Plot 7.202. Conducted Spurious Plot (10MHz QPSK, High Channel – ANT2)

FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT	Approved by: Technical Manager			
Test Report S/N:	Test Dates:	EUT Type:	Dama 407 of 450			
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 127 of 152			
©2024 ELEMENT						

Keysight Spectrum Analyzer - Swept SA						
RL RF 50Ω AC	CORREC	SENSE:INT	#Avg Type:	RMS TI	1 PM Feb 08, 2024 RACE 1 2 3 4 5 6	Frequency
PASS		Free Run n: 0 dB				
				Mkr1 26.8	43 5 GHz 625 dBm	Auto Tune
10 dB/div Ref -20.00 dBm		•		-55.	020 UBIII	
Trace 1 Pass						Center Fred
-30.0						21.00000000 GHz
-40.0						
						Start Fred
-50.0					`	15.00000000 GHz
-60.0					Lakerally a Proto	
		and the state of the second states	ang partinan partina gan a	nen particular la complete de la comp	due la serie d'alle	Stop Freq 27.00000000 GHz
-70.0	ne politik politika da	المطاقبا استقيد عليك وروائية	الأفالة أنبار ومعكمة المتحملة إن			27.00000000 GHz
						CF Step
-80.0						1.200000000 GH
-90.0						<u>Auto</u> Mar
						Freq Offse
-100						0 Hz
-110						
						Scale Type
Start 15.000 GHz				Stop	27.000 GHz	Log <u>Lir</u>
Res BW 1.0 MHz	#VBW 3.0 M	Hz	Sw	eep 30.40 ms	(24001 pts)	
ISG				STATUS		

Plot 7.203. Conducted Spurious Plot (10MHz QPSK, High Channel – ANT2)

Plot 7.204. Conducted Spurious Plot (10MHz QPSK, High Channel – ANT2)

FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dama 120 of 152		
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRS CPE	Page 128 of 152		
©2024 ELEMENT			V3.0 1/6/2022		

7.8 Band Edge Emissions at Antenna Terminal

Test Overview

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst-case configuration. All modes of operation were investigated and the worst-case configuration results are reported in this section.

For an End User Device, the conducted power of any emission outside the fundamental emission (whether in or outside of the authorized band) shall not exceed -13 dBm/MHz within 0 to B MHz (where B is the bandwidth in MHz of the assigned channel or multiple contiguous channels of the End User Device) above the upper CBSD-assigned channel edge and within 0 to B MHz below the lower CBSD-assigned channel edge. At all frequencies greater than B MHz above the upper CBSD assigned channel edge and less than B MHz below the lower CBSD-assigned channel edge, the conducted power of any end user device emission shall not exceed -25 dBm/MHz. The conducted power of emissions below 3530 MHz or above 3720 MHz shall not exceed -40dBm/MHz.

Test Procedure Used

ANSI C63.26-2015 - Section 5.7.3

Test Settings

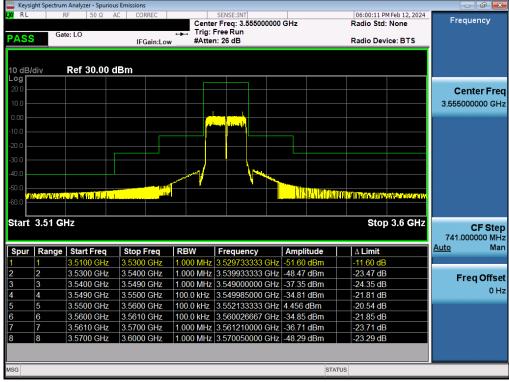
- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW > 1% of the emission bandwidth
- 4. VBW <u>></u> 3 x RBW
- 5. Detector = RMS
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = trace average
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Setup

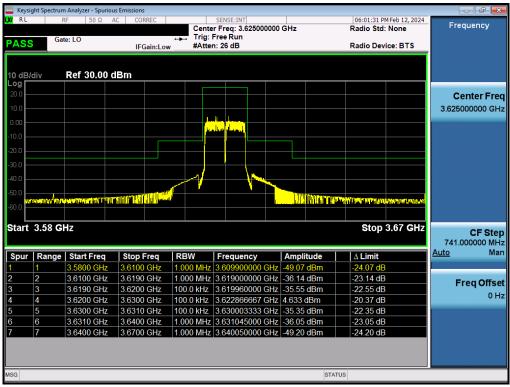
The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-7. Test Instrument & Measurement Setup

FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT					
Test Report S/N:	Test Dates:	EUT Type:	Dama 400 at 450				
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRS CPE	Page 129 of 152				
©2024 ELEMENT	92024 ELEMENT						

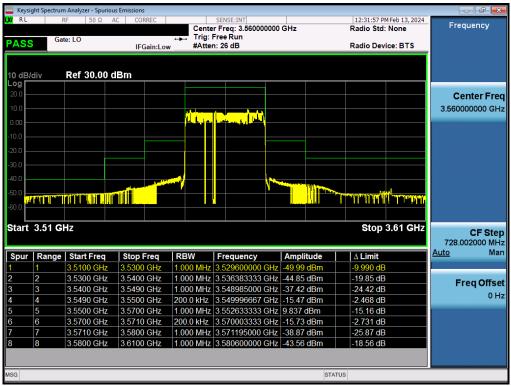

Test Notes

- 1. Per 96.41(e)(3)(i), compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's authorized frequency channel, a resolution bandwidth of no less than one percent of the fundamental emission bandwidth may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full reference bandwidth (i.e., 1 MHz or 1 percent of emission bandwidth, as specified). The fundamental emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.
- 2. The Plots in this section have a 3dB correction applied to the individual plots to address the MIMO requirements in ANSI C63.26


FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Page 130 of 152		
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 150 01 152		
©2024 ELEMENT			V3.0 1/6/2022		

Antenna 1 Band Edge Measurements

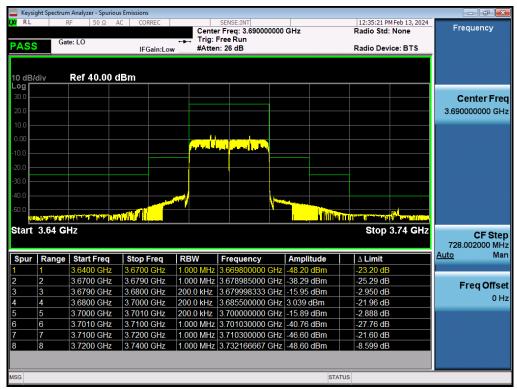
Plot 7.205. Conducted Band Edge Plot (10MHz, QPSK, Low Channel, ANT1)


Plot 7.206. Conducted Band Edge Plot (10MHz, QPSK, Mid Channel, ANT1

FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 131 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRSCPE	Page 151 01 152
©2024 ELEMENT	•		V3.0 1/6/2022

			us Emissions AC CORREC		SENSE:INT Freq: 3.69500000) GHz	10:48:37 AM Feb 13, 2024 Radio Std: None	Frequency
PASS	Gat	e: LO	IFGain:Lov		Free Run n: 26 dB		Radio Device: BTS	
10 dB/c Log	div	Ref 40.00 c						-
30.0 — 20.0 —								Center Free 3.695000000 GH
0.00								
-30.0								
-50.0			The second se	hand and a fear of the		Theilerson an an i		
Utor	വംസസ്ത 3.65 Gł	עיייייזיזוזוזויויייייי IZ	**************************************				Stop 3.74 GHz	OF SIC
start	3.65 GI	Hz		RBW	Frequency	Amplitude		741.000000 MH
start	3.65 GI	Hz	Stop Freq 3.6800 GHz	RBW	Frequency 3.68000000 GHz	Amplitude	Stop 3.74 GHz	741.000000 MH
Start Spur	3.65 G Range	-IZ Start Freq	Stop Freq	RBW 1.000 MHz		Amplitude	Stop 3.74 GHz	741.000000 M⊢ <u>Auto</u> Ma
Start	3.65 G Range	IZ Start Freq 3.6500 GHz	Stop Freq 3.6800 GHz	RBW 1.000 MHz 1.000 MHz	3.680000000 GHz	Amplitude	Stop 3.74 GHz	741.000000 M⊦ Auto Ma
Start	3.65 G	Start Freq 3.6500 GHz 3.6800 GHz	Stop Freq 3.6800 GHz 3.6890 GHz	RBW 1.000 MHz 1.000 MHz 100.0 kHz	3.68000000 GHz 3.689000000 GHz	Amplitude -51.05 dBm -46.61 dBm -36.01 dBm	Stop 3.74 GHz △ Limit -26.05 dB -33.61 dB	741.000000 M⊢ Auto Ma
Start	3.65 G Range 1 2 3 4	Start Freq 3.6500 GHz 3.6800 GHz 3.6890 GHz	Stop Freq 3.6800 GHz 3.6890 GHz 3.6900 GHz	RBW 1.000 MHz 1.000 MHz 100.0 kHz 100.0 kHz	3.68000000 GHz 3.689000000 GHz 3.689988333 GHz	Amplitude	Stop 3.74 GHz △ Limit -26.05 dB -33.61 dB -23.01 dB	741.000000 M⊢ Auto Ma
Start Spur 2 3 4 5	3.65 G Range 1 2 3 4 5	Start Freq 3.6500 GHz 3.6800 GHz 3.6890 GHz 3.6900 GHz	Stop Freq 3.6800 GHz 3.6890 GHz 3.6900 GHz 3.6900 GHz 3.7000 GHz	RBW 1.000 MHz 1.000 MHz 100.0 kHz 100.0 kHz 100.0 kHz	3.68000000 GHz 3.689000000 GHz 3.689988333 GHz 3.691550000 GHz	Amplitude - 51.05 dBm - 46.61 dBm - 36.01 dBm - 0.407 dBm - 36.11 dBm	Stop 3.74 GHz △ Limit -26.05 dB -33.61 dB -23.01 dB -24.59 dB	741.000000 MH Auto Ma
Start Spur	3.65 Gl Range 1 2 3 4 5 6	Start Freq 3.6500 GHz 3.6800 GHz 3.6890 GHz 3.6900 GHz 3.7000 GHz	Stop Freq 3.6800 GHz 3.6900 GHz 3.6900 GHz 3.7000 GHz 3.7010 GHz	RBW 1.000 MHz 1.000 MHz 100.0 kHz 100.0 kHz 100.0 kHz 100.0 kHz 100.0 kHz	3.68000000 GHz 3.689000000 GHz 3.689988333 GHz 3.691550000 GHz 3.700025000 GHz	Amplitude -51.05 dBm -46.61 dBm -36.01 dBm 0.407 dBm -36.11 dBm -38.06 dBm	Stop 3.74 GHz △ Limit -26.05 dB -33.61 dB -23.01 dB -24.59 dB -23.11 dB	741.000000 MH Auto Ma Freq Offse
Spur 1 2 3 4 5 6 7	3.65 Gl Range 1 2 3 4 5 6 7	Start Freq 3.6500 GHz 3.6800 GHz 3.6890 GHz 3.6900 GHz 3.7000 GHz 3.7010 GHz	Stop Freq 3.6800 GHz 3.6890 GHz 3.6900 GHz 3.7000 GHz 3.7010 GHz 3.7100 GHz	RBW 1.000 MHz 1.000 KHz 100.0 kHz 100.0 kHz 100.0 kHz 1.000 MHz 1.000 MHz	3.68000000 GHz 3.689000000 GHz 3.689988333 GHz 3.691550000 GHz 3.700025000 GHz 3.701045000 GHz	Amplitude - 51.05 dBm - 46.61 dBm - 36.01 dBm - 36.11 dBm - 38.06 dBm - 50.38 dBm	Stop 3.74 GHz -26.05 dB -33.61 dB -23.01 dB -24.59 dB -23.11 dB -25.06 dB	741.000000 MH
Start Spur	3.65 Gl Range 1 2 3 4 5 6 7	Start Freq 3.6500 GHz 3.6800 GHz 3.6800 GHz 3.6900 GHz 3.7000 GHz 3.7010 GHz 3.7100 GHz	Stop Freq 3.6800 GHz 3.6890 GHz 3.6900 GHz 3.7000 GHz 3.7100 GHz 3.7100 GHz 3.7200 GHz	RBW 1.000 MHz 1.000 KHz 100.0 kHz 100.0 kHz 100.0 kHz 1.000 MHz 1.000 MHz	3.68000000 GHz 3.68900000 GHz 3.689988333 GHz 3.691550000 GHz 3.700025000 GHz 3.701045000 GHz 3.710066667 GHz	Amplitude - 51.05 dBm - 46.61 dBm - 36.01 dBm - 36.11 dBm - 38.06 dBm - 50.38 dBm	Stop 3.74 GHz -26.05 dB -33.61 dB -23.01 dB -24.59 dB -23.11 dB -25.06 dB -25.38 dB	741.000000 MH Auto Ma

Plot 7.207. Conducted Band Edge Plot (10MHz, QPSK, High Channel, ANT1)


Plot 7.208. Conducted Band Edge Plot (20MHz, QPSK, Low Channel, ANT1)

FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT				
Test Report S/N:	Test Dates:	EUT Type:	Dama 400 at 450			
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 132 of 152			
©2024 ELEMENT						

	m Analyzer - Spuriou						
	RF 50Ω /	AC CORREC	+++ Trig: I	SENSE:INT r Freq: 3.62500000 Free Run	00 GHz	12:33:55 PM Feb 13, 202 Radio Std: None	Frequency
PASS		IFGain:Low	#Atter	n: 26 dB		Radio Device: BTS	
10 dB/div Log	Ref 30.00 c	dBm					
20.0							Center Fred
10.0							3.625000000 GHz
0.00							
-10.0			داريالية. (⁽)	a a da a sua sua subara			
-20.0							
-30.0							
-40.0							
-50.0	יאר דייר איז		_ ′	<u> </u>			N
-60.0	UTV IIIUU MUUI					an h troit (, that W,	
Start 3.575	<u> </u>					Oton 2 675 OH	
Start 3.373	GIIZ					Stop 3.675 GH	728.002000 MHz
Spur Range		Stop Freq	RBW	Frequency	Amplitude	∆ Limit	Auto Mar
1 1	3.5750 GHz	3.6050 GHz		3.604950000 GH		-19.86 dB	
2 2	3.6050 GHz	3.6140 GHz		3.613985000 GH		-24.36 dB	Freq Offse
3 3	3.6140 GHz	3.6150 GHz		3.614998333 GH		-2.317 dB	0 Hz
4 4	3.6150 GHz	3.6350 GHz		3.629866667 GH		-24.62 dB	
5 5	3.6350 GHz	3.6360 GHz		3.635000000 GH		-2.684 dB	
6 6	3.6360 GHz	3.6450 GHz		3.636060000 GH		-25.55 dB	
7 7	3.6450 GHz	3.6750 GHz	1.000 MHz	3.645750000 GH	z -43.49 dBm	-18.49 dB	
						ATUS	

Plot 7.209. Conducted Band Edge Plot (20MHz, QPSK, Mid Channel, ANT1)


Plot 7.210. Conducted Band Edge Plot (20MHz, QPSK, High Channel, ANT1)

FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 122 of 152	
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 133 of 152	
©2024 ELEMENT			V3.0 1/6/2022	

Plot 7.211. Conducted Band Edge Plot (30MHz, QPSK, Low Channel, ANT1)

Plot 7.212. Conducted Band Edge Plot (30MHz, QPSK, Mid Channel, ANT1)

FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 134 of 152	
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Fage 134 01 152	
©2024 ELEMENT			V3.0 1/6/2022	