

Supplemental "Transmit Simultaneously" Test Report				
Report No.:	RF161125E01H-2			
FCC ID:	PY317400403			
Test Model:	RBW30			
Received Date:	Nov. 25, 2016			
Test Date:	Nov. 29, 2016 to Jan. 07, 2017			
Issued Date:	Feb. 09, 2018			
Applicant:	nt: NETGEAR, Inc.			
Address:	: 350 East Plumeria Drive San Jose, CA 95134			
Issued By:	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory			
Lab Address:	E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C.			
Test Location :	E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C.			
FCC Registration / Designation Number:	723255 / TW2022			

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specification, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. This report should not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

.

Table of Contents

Rel	Release Control Record				
1	Certificate of Conformity 4				
2	S	Summary of Test Results	5		
	.1 .2	Measurement Uncertainty Modification Record			
3	G	General Information	6		
3 3	.1 .1.1 .2 .2.1	Description of Support Units Configuration of System under Test	8 10 10		
4	Т	est Types and Results	.11		
4	.1 .1.1	Radiated Emission and Bandedge Measurement Limits of Radiated Emission and Bandedge Measurement	.11		
4	.1.3	Test Instruments Test Procedures	14		
4	.1.5	Deviation from Test Standard Test Setup	15		
4	.1.7	EUT Operating Conditions Test Results	17		
4		Conducted Emission Measurement Limits of Conducted Emission Measurement	19		
4	.2.3	Test Instruments Test Procedures	20		
4	.2.5	Deviation from Test Standard Test Setup	20		
4	.2.7	EUT Operating Conditions Test Results	21		
4		Conducted Out of Band Emission Measurement Limits of Conducted Out of Band Emission Measurement	23		
4	.3.3	Test Setup Test Instruments	23		
4	.3.5	Test Procedures Deviation from Test Standard	23		
	.3.7	EUT Operating Conditions Test Results	23		
5		ictures of Test Arrangements			
Арр	oend	lix – Information on the Testing Laboratories	26		

Release Control Record Description Issue No. Date Issued RF161125E01H-2 Original release. Feb. 09, 2018

1 Certificate of Conformity

Product:	Orbi Wall Plug Satellite		
Brand:	NETGEAR		
Test Model:	RBW30		
Sample Status:	ENGINEERING SAMPLE		
Applicant:	NETGEAR, Inc.		
Test Date:	Nov. 29, 2016 to Jan. 07, 2017		
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.247)		
	47 CFR FCC Part 15, Subpart E (Section 15.407)		
	ANSI C63.10: 2013		

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by :	Mary Ko Mary Ko / Specialist	, Date:	Feb. 09, 2018
Approved by :	Nay Chen / Manager	, Date:	Feb. 09, 2018

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C, E (SECTION 15.247, 15.407)					
FCC Clause	Test Item Result Remarks				
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is -13.47dB at 1.40234MHz.		
15.205 / 15.209 / 15.247(d) 15.407(b) (1/2/3/4(i/ii)/6)	Radiated Emissions and Band Edge Measurement	PASS	Meet the requirement of limit. Minimum passing margin is -1.0dB at 17355.00MHz.		

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	1.83 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	5.34 dB
	1GHz ~ 6GHz	3.41 dB
Radiated Emissions above 1 GHz	6GHz ~ 18GHz	3.49 dB
	18GHz ~ 40GHz	3.30 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

3.1 General Description of EUI			
Product	Orbi Wall Plug Satellite		
Brand	NETGEAR		
Test Model	RBW30		
Status of EUT	ENGINEERING SAMPLE		
Power Supply Rating	AC 100-240V, 60/50Hz, 0.2A		
Modulation Type	CCK, DQPSK, DBPSK for DSSS 64QAM, 16QAM, QPSK, BPSK for OFDM 256QAM for OFDM in 11ac mode and VHT20/40 mode in 2.4GHz band		
Modulation Technology	DSSS,OFDM		
Transfer Rate802.11b: up to 11Mbps 802.11a/g: up to 54Mbps 802.11n: up to 300Mbps 802.11ac: up to 866.7Mbps			
	2.4GHz: 2.412 ~ 2.462GHz		
Operating Frequency	5GHz: 5.18 ~ 5.24GHz, 5.26GHz ~ 5.32GHz, 5.50GHz ~ 5.70GHz, 5.745 ~		
Number of Channel	5.825GHz 2.4GHz: 802.11b, 802.11g, 802.11n (HT20), VHT20: 11 802.11n (HT40), VHT40: 7 5GHz: 802.11a, 802.11n (HT20), 802.11ac (VHT20): 24 802.11n (HT40), 802.11ac (VHT40): 11 802.11ac (VHT80): 5		
Antenna Type	Refer to Note		
Antenna Connector	Refer to Note		
Accessory Device	NA		
Data Cable Supplied	NA		

Note:

 The EUT has three radio transceivers, radio 1 is WLAN technologies for dual band (2.4GHz & 5GHz-UNII-2C+5GHz-UNII-3), radio 2 is WLAN technology for single band (5GHz-UNII-1+ 5GHz-UNII-2A) technology only.

2. The EUT has below passive filter as following table:

Filter	With gasket
Main source filter	Х
Main source filter	V
Second source filter	Х

From the above source, the worst case was found in **Main source filter with gasket.** Therefore only the test data were recorded in this report.

3. Simultaneously transmission condition.

Condition	Technology		
1	WLAN (Radio 1)	WLAN (Radio 2)	
I	(2.4GHz) + 5GHz-UNII-2C + 5GHz-UNII-3)	(5GHz-UNII-1 + 5GHz-UNII-2A)	
Note: The emission of the simultaneous operation has been evaluated and no non-compliance was found.			

4. The Directional gain table:

Frequency range (GHz)	Directional Antenna Gain (dBi)
2.4 ~ 2.4835	5.9
5.18 ~ 5.24	4
5.26 ~ 5.32	4
5.50 ~ 5.70	5.89
5.745 ~ 5.825	5.89

5. The EUT incorporates a MIMO function.

2.4GHz Band						
MODULATION MODE	DATA RATE (MCS)	DATA RATE (MCS) TX & RX CONFI				
802.11b	1 ~ 11Mbps	2TX	2RX			
802.11g	6 ~ 54Mbps	2TX	2RX			
802.11n (HT20)	MCS 0~7	2TX	2RX			
802.1111 (1120)	MCS 8~15	2TX	2RX			
902 11n (UT 40)	MCS 0~7	2TX	2RX			
802.11n (HT40)	MCS 8~15	2TX	2RX			
VHT20	MCS0~8 Nss=1	2TX	2RX			
VH120	MCS0~8 Nss=2	2TX	2RX			
VHT40	MCS0~9 Nss=1	2TX	2RX			
VIII40	MCS0~9 Nss=2 2TX		2RX			
	5GHz Band					
MODULATION MODE	DATA RATE (MCS)	TX & RX CON	FIGURATION			
802.11a	6 ~ 54Mbps	2TX	2RX			
802.11n (HT20)	MCS 0~7	2TX	2RX			
802.1111 (11120)	MCS 8~15	2TX	2RX			
802.11n (HT40)	MCS 0~7	2TX	2RX			
002.1111 (FT 40)	MCS 8~15	2TX	2RX			
802.11ac (VHT20)	MCS0~8 Nss=1	2TX	2RX			
002.11ac (VH120)	MCS0~8 Nss=2	2TX	2RX			
802.11ac (VHT40)	MCS0~9 Nss=1	2TX	2RX			
002.11ac (VH140)	MCS0~9 Nss=2	2TX	2RX			
802.11ac (VHT80)	MCS0~9 Nss=1	2TX	2RX			
002.11ac (VH100)	MCS0~9 Nss=2	2TX	2RX			

Note:

1. All of modulation mode support beamforming function except 802.11a/b/g modulation mode.

 The modulation and bandwidth are similar for 802.11n mode for 20MHz (40MHz) and 802.11ac mode for 20MHz (40MHz), therefore investigated worst case to representative mode in test report.

6. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.1.1 Test Mode Applicability and Tested Channel Detail

EUT Configure		Applic	able To		Description	
Mode	RE≥1G	RE<1G	PLC	OB	Description	
-	\checkmark	\checkmark	\checkmark	\checkmark	-	
Where R	/here RE≥1G: Radiated Emission above 1GHz RE<1G:		RE<1G : F	Radiated Emission below 1GHz		
Р	LC: Power Line Conducted Emission OB: Cond			OB: Cond	lucted Out-Band Emission Measurement	

NOTE:

1. The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on Y-plane.

Radiated Emission Test (Above 1GHz):

Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE
802.11g	1 to 11	6	OFDM	BPSK
+ 802.11a	149 to 165	157	OFDM	BPSK
+ 802.11ac (VHT20)	36 to 48	40	OFDM	BPSK

Radiated Emission Test (Below 1GHz):

Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE
802.11g	1 to 11	6	OFDM	BPSK
802.11a	149 to 165	157	OFDM	BPSK
+ 802.11ac (VHT20)	36 to 48	40	OFDM	BPSK

Power Line Conducted Emission Test:

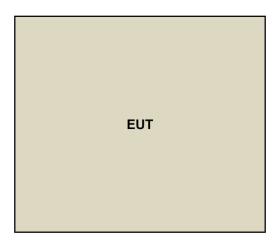
Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE
802.11g	1 to 11	6	OFDM	BPSK
+ 802.11a	149 to 165	157	OFDM	BPSK
+ 802.11ac (VHT20)	36 to 48	40	OFDM	BPSK

<u>Conducted Out-Band Emission Measurement:</u> ⊠ Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	
802.11g	1 to 11	6	OFDM	BPSK	
802.11a	149 to 165	157	OFDM	BPSK	

Test Condition:


APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY
RE≥1G	25deg. C, 70%RH	120Vac, 60Hz	Andy Ho
RE<1G	24deg. C, 62%RH	120Vac, 60Hz	Jyunchun Lin
PLC	25deg. C, 75%RH	120Vac, 60Hz	Andy Ho
ОВ	25deg. C, 60%RH	120Vac, 60Hz	Robert Cheng

3.2 Description of Support Units

The EUT has been tested as an independent unit.

3.2.1 Configuration of System under Test

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.

- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

Limits of unwanted emission out of the restricted bands

Applio	cable	То	Limit		
789033 D02 General UNII Test Procedure			Field Strer	ngth at 3m	
New Ru	les v()2r01	PK:74 (dBµV/m)	AV:54 (dBµV/m)	
Frequency Band	Applicable To		EIRP Limit	Equivalent Field Strength at 3m	
5150~5250 MHz		15.407(b)(1)			
5250~5350 MHz	15.407(b)(2)		15.407(b)(2) PK:-27 (dBm/MHz)		
5470~5725 MHz		15.407(b)(3)			
5725~5850 MHz	\boxtimes	15.407(b)(4)(i)	PK:-27 (dBm/MHz) ^{*1} PK:10 (dBm/MHz) ^{*2} PK:15.6 (dBm/MHz) ^{*3} PK:27 (dBm/MHz) ^{*4}	PK: 68.2(dBµV/m) ^{*1} PK:105.2 (dBµV/m) ^{*2} PK: 110.8(dBµV/m) ^{*3} PK:122.2 (dBµV/m) ^{*4}	
		15.407(b)(4)(ii)	Emission limits in section 15.247(d)		
 ^{*1} beyond 75 MHz or more above of the band edge. ^{*3} below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above. ^{*2} below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above. ^{*4} from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. 					

Note:

The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

 $E = \frac{1000000\sqrt{30P}}{3} \quad \mu V/m, \text{ where P is the eirp (Watts).}$

4.1.2 Test Instruments

For Radiated Emissions below 1GHz test:

DESCRIPTION &			CALIBRATED	CALIBRATED	
MANUFACTURER	MODEL NO.	SERIAL NO.	DATE	UNTIL	
Test Receiver Keysight	N9038A	MY54450088	July 20, 2016	July 19, 2017	
Pre-Amplifier ^(*) EMCI	EMC001340	980142	Jan. 20, 2016	Jan. 19, 2018	
Loop Antenna ^(*) Electro-Metrics	EM-6879	264	Dec. 16, 2014	Dec. 15, 2016	
RF Cable	NA	LOOPCAB-001 LOOPCAB-002	Jan. 18, 2016	Jan. 17, 2017	
Pre-Amplifier Mini-Circuits	ZFL-1000VH2B	AMP-ZFL-01	Nov. 10, 2016	Nov. 09, 2017	
Trilog Broadband Antenna SCHWARZBECK	VULB 9168	9168-406	Jan. 04, 2016	Jan. 03, 2017	
RF Cable	8D	966-4-1 966-4-2 966-4-3	Apr. 02, 2016	Apr. 01, 2017	
Fixed attenuator Mini-Circuits	UNAT-5+	PAD-3m-4-01	Oct. 05, 2016	Oct. 04, 2017	
Software	ADT_Radiated_V8.7.08	NA	NA	NA	
Antenna Tower & Turn Table Max-Full	MF-7802	MF780208410	NA	NA	

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. *The calibration interval of the above test instruments is 24 months and the calibrations are traceable to NML/ROC and NIST/USA.

3. The test was performed in 966 Chamber No. 4.

4. The CANADA Site Registration No. is 20331-2

5. Loop antenna was used for all emissions below 30 MHz.

6. Tested Date: Nov. 29, 2016

For other test:								
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL				
Test Receiver Keysight	N9038A	MY54450088	July 20, 2016	July 19, 2017				
Horn_Antenna SCHWARZBECK	BBHA 9120D	9120D-783	Jan. 19, 2016	Jan. 18, 2017				
Pre-Amplifier Agilent	8449B	3008A01922	Sep. 18, 2016	Sep. 17, 2017				
RF Cable	EMC104-SM-SM-2000 EMC104-SM-SM-5000 EMC104-SM-SM-5000	150318 150323 150324	Mar. 30, 2016	Mar. 29, 2017				
Pre-Amplifier EMCI	EMC184045	980143	Jan. 15, 2016	Jan. 14, 2017				
Horn_Antenna SCHWARZBECK	BBHA 9170	BBHA9170608	Jan. 08, 2016	Jan. 07, 2017				
RF Cable			Jan. 16, 2016	Jan. 15, 2017				
Software	ADT_Radiated_V8.7.08	NA	NA	NA				
Antenna Tower & Turn Table Max-Full	MF-7802	MF780208410	NA	NA				
Boresight Antenna Fixture	FBA-01	FBA-SIP02	NA	NA				
Spectrum Analyzer R&S	FSv40	100964	June 28, 2016	June 27, 2017				
Power meter Anritsu	ML2495A	1014008	May 5, 2016	May 4, 2017				
Power sensor Anritsu	MA2411B	0917122	May 5, 2016	May 4, 2017				

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. *The calibration interval of the above test instruments is 24 months and the calibrations are traceable to NML/ROC and NIST/USA.

3. The test was performed in 966 Chamber No. 4.

4. The CANADA Site Registration No. is 20331-2

5. Loop antenna was used for all emissions below 30 MHz.

6. Tested Date: Dec. 22, 2016 to Jan. 07, 2017

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Both X and Y axes of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

NOTE:

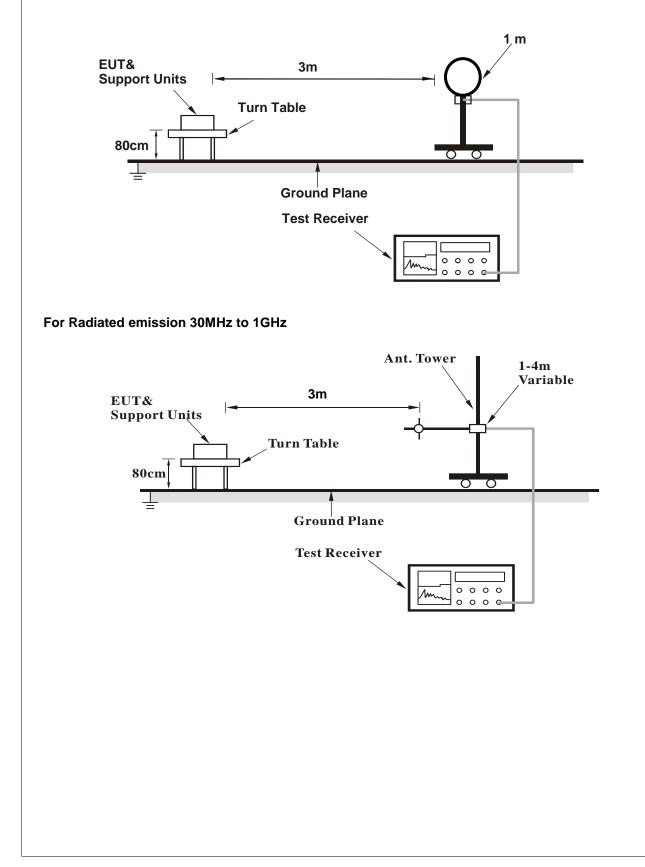
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz

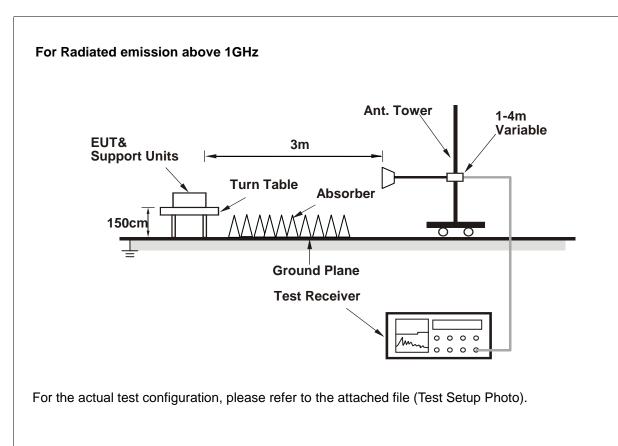
- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.


4.1.4 Deviation from Test Standard

No deviation.



4.1.5 Test Setup

For Radiated emission below 30MHz

- 4.1.6 EUT Operating Conditions
- 1 Turn on the power of EUT.
- 2 The communication partner run test program "QRCT3.0.187.0" to enable EUT under transmission/receiving condition continuously at specific channel frequency.

4.1.7 Test Results

Above 1GHz Data

|--|

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	4874.00	40.6 PK	74.0	-33.4	3.27 H	157	38.2	2.4			
2	4874.00	30.2 AV	54.0	-23.8	3.27 H	157	27.8	2.4			
3	4960.00	42.9 PK	74.0	-31.1	1.69 H	220	40.3	2.6			
4	4960.00	33.1 AV	54.0	-20.9	1.69 H	220	30.5	2.6			
5	7311.00	48.2 PK	74.0	-25.8	1.85 H	287	39.5	8.7			
6	7311.00	35.1 AV	54.0	-18.9	1.85 H	287	26.4	8.7			
7	7440.00	49.6 PK	74.0	-24.4	1.64 H	281	40.5	9.1			
8	7440.00	39.5 AV	54.0	-14.5	1.64 H	281	30.4	9.1			
9	10400.00	56.2 PK	74.0	-17.8	1.75 H	233	42.8	13.4			
10	10400.00	44.5 AV	54.0	-9.5	1.75 H	233	31.1	13.4			
11	11570.00	64.4 PK	74.0	-9.6	3.36 H	356	50.6	13.8			
12	11570.00	51.2 AV	54.0	-2.8	3.36 H	356	37.4	13.8			
13	15600.00	56.2 PK	74.0	-17.8	1.61 H	176	41.4	14.8			
14	15600.00	44.3 AV	54.0	-9.7	1.61 H	176	29.5	14.8			
15	17355.00	70.0 PK	74.0	-4.0	1.98 H	326	49.6	20.4			
16	17355.00	53.0 AV	54.0	-1.0	1.98 H	326	32.6	20.4			
		ANTENNA	POLARIT	& TEST DI	STANCE: V	ERTICAL A	Т 3 М				
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	4874.00	41.1 PK	74.0	-32.9	1.73 V	330	38.7	2.4			
2	4874.00	30.9 AV	54.0	-23.1	1.73 V	330	28.5	2.4			
3	4960.00	43.2 PK	74.0	-30.8	1.61 V	197	40.6	2.6			
4	4960.00	32.9 AV	54.0	-21.1	1.61 V	197	30.3	2.6			
5	7311.00	49.8 PK	74.0	-24.2	1.60 V	335	41.1	8.7			
6	7311.00	40.8 AV	54.0	-13.2	1.60 V	335	32.1	8.7			
7	7440.00	49.0 PK	74.0	-25.0	1.52 V	302	39.9	9.1			
8	7440.00	39.0 AV	54.0	-15.0	1.52 V	302	29.9	9.1			
9	10400.00	56.8 PK	74.0	-17.2	2.93 V	173	43.4	13.4			
10	10400.00	45.2 AV	54.0	-8.8	2.93 V	173	31.8	13.4			
11	11570.00	61.1 PK	74.0	-12.9	1.01 V	234	47.3	13.8			
12	11570.00	49.2 AV	54.0	-4.8	1.01 V	234	35.4	13.8			
13	15600.00	59.0 PK	74.0	-15.0	1.72 V	235	44.2	14.8			
14	15600.00	47.3 AV	54.0	-6.7	1.72 V	235	32.5	14.8			
15	17355.00	57.0 PK	74.0	-17.0	1.58 V	284	36.6	20.4			
16	17355.00	44.6 AV	54.0	-9.4	1.58 V	284	24.2	20.4			

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

Below 1GHz Data:

QUENCY R	ANGE	9kHz ~ 1GH	Z	DETECTOR FUNCTION		Quasi-Peak (QP)			
ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
FREQ. (MHz)	LEVE	LIMIT		ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
93.66	24.7 Q	P 43.5	-18.8	2.00 H	89	38.6	-13.9		
137.72	31.4 Q	P 43.5	-12.1	2.00 H	290	40.0	-8.6		
217.86	27.0 Q	P 46.0	-19.0	1.50 H	85	38.6	-11.6		
395.54	23.9 Q	P 46.0	-22.1	1.00 H	300	29.1	-5.2		
667.14	27.0 Q	P 46.0	-19.0	2.00 H	316	26.4	0.6		
857.09	28.0 Q	P 46.0	-18.0	1.50 H	35	24.6	3.4		
	ANTE	NNA POLAR	ITY & TEST	DISTANCE: V	ERTICAL	AT 3 M			
FREQ. (MHz)	LEVE	LIMIT		ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
30.58	32.6 Q	P 40.0	-7.4	1.00 V	270	42.3	-9.7		
135.71	27.6 Q	P 43.5	-15.9	1.00 V	348	36.5	-8.9		
216.63	25.7 Q	P 46.0	-20.3	1.50 V	42	37.2	-11.5		
278.56	24.9 Q	P 46.0	-21.1	1.00 V	309	33.0	-8.1		
540.00	28.6 Q	P 46.0	-17.4	1.00 V	209	30.5	-1.9		
766.67	29.5 Q	P 46.0	-16.5	1.00 V	209	27.1	2.4		
	FREQ. (MHz) 93.66 137.72 217.86 395.54 667.14 857.09 FREQ. (MHz) 30.58 135.71 216.63 278.56 540.00	FREQ. (MHz) EMISSIC LEVEI (dBuV/r 93.66 93.66 24.7 Q 137.72 31.4 Q 217.86 27.0 Q 395.54 23.9 Q 667.14 27.0 Q 857.09 28.0 Q ANTEI FREQ. (MHz) EMISSIC 216.63 32.6 Q 135.71 27.6 Q 216.63 25.7 Q 278.56 24.9 Q 540.00 28.6 Q	EMISSION LEVEL (MHz) LIMIT (dBuV/m) 93.66 24.7 QP 43.5 137.72 31.4 QP 43.5 217.86 27.0 QP 46.0 395.54 23.9 QP 46.0 667.14 27.0 QP 46.0 857.09 28.0 QP 46.0 857.09 28.0 QP 46.0 305.54 23.9 QP 46.0 100 667.14 27.0 QP 46.0 305.54 23.9 QP 46.0 305.54 23.9 QP 46.0 305.54 23.9 QP 46.0 30.58 32.6 QP 40.0 135.71 27.6 QP 40.0 135.71 27.6 QP 46.0 278.56 24.9 QP 46.0 540.00 28.6 QP 46.0	ANTENNA POLARITY & TEST D FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) 93.66 24.7 QP 43.5 -18.8 137.72 31.4 QP 43.5 -12.1 217.86 27.0 QP 46.0 -19.0 395.54 23.9 QP 46.0 -19.0 857.09 28.0 QP 46.0 -18.0 ANTENNA POLARITY & TEST FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) 30.58 32.6 QP 40.0 -7.4 135.71 27.6 QP 43.5 -15.9 216.63 25.7 QP 46.0 -20.3 278.56 24.9 QP 46.0 -21.1 540.00 28.6 QP 46.0 -17.4	EMISSION (MHz) LIMIT (dBuV/m) MARGIN (dBuV/m) ANTENNA HEIGHT (dBuV/m) 93.66 24.7 QP 43.5 -18.8 2.00 H 137.72 31.4 QP 43.5 -12.1 2.00 H 217.86 27.0 QP 46.0 -19.0 1.50 H 395.54 23.9 QP 46.0 -19.0 1.50 H 857.09 28.0 QP 46.0 -18.0 1.50 H 857.09 28.0 QP 46.0 -18.0 1.50 H 0.150 H 2.00 P 46.0 -18.0 1.50 H 0.150 H 2.00 P 46.0 -19.0 2.00 H 857.09 28.0 QP 46.0 -19.0 1.50 H MAREIN ANTENNA HEIGHT (dBuV/m) MARGIN (dB) MAREIN (dB) MATENNA HEIGHT (m) 30.58 32.6 QP 40.0 -7.4 1.00 V 135.71 27.6 QP 43.5 -15.9 1.00 V 216.63 25.7 QP 46.0 -21.1 1.00 V 278.56 24.9 QP <t< td=""><td>BUENCY RANGE 9KHZ ~ 1GHZ FUNCTION FUNCTION ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) TABLE ANGLE (Degree) 93.66 24.7 QP 43.5 -18.8 2.00 H 89 137.72 31.4 QP 43.5 -12.1 2.00 H 290 217.86 27.0 QP 46.0 -19.0 1.50 H 85 395.54 23.9 QP 46.0 -19.0 1.50 H 300 667.14 27.0 QP 46.0 -19.0 1.50 H 35 395.54 23.9 QP 46.0 -19.0 2.00 H 316 857.09 28.0 QP 46.0 -18.0 1.50 H 35 FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) TABLE ANGLE 30.58 32.6 QP 40.0 -7.4 1.00 V 270 135.71 27.6 QP 43.5</td><td>EXPENSION (MHz) UNCTION Quasi-Peak FUNCTION Quasi-Peak Quasi-Peak FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (dB) TABLE ANGLE (Degree) RAW VALUE (dBuV) 93.66 24.7 QP 43.5 -18.8 2.00 H 89 38.6 137.72 31.4 QP 43.5 -12.1 2.00 H 290 40.0 217.86 27.0 QP 46.0 -19.0 1.50 H 85 38.6 395.54 23.9 QP 46.0 -19.0 2.00 H 300 29.1 667.14 27.0 QP 46.0 -19.0 2.00 H 316 26.4 857.09 28.0 QP 46.0 -18.0 1.50 H 35 24.6 ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M FREQ. (MHz) EMISSION LEVEL (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) TABLE ANGLE RAW VALUE (Degree) 30.58 32.6 QP 40.0 -7.4 1.00 V 270 42.3 315.71 27.6</td></t<>	BUENCY RANGE 9KHZ ~ 1GHZ FUNCTION FUNCTION ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) TABLE ANGLE (Degree) 93.66 24.7 QP 43.5 -18.8 2.00 H 89 137.72 31.4 QP 43.5 -12.1 2.00 H 290 217.86 27.0 QP 46.0 -19.0 1.50 H 85 395.54 23.9 QP 46.0 -19.0 1.50 H 300 667.14 27.0 QP 46.0 -19.0 1.50 H 35 395.54 23.9 QP 46.0 -19.0 2.00 H 316 857.09 28.0 QP 46.0 -18.0 1.50 H 35 FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) TABLE ANGLE 30.58 32.6 QP 40.0 -7.4 1.00 V 270 135.71 27.6 QP 43.5	EXPENSION (MHz) UNCTION Quasi-Peak FUNCTION Quasi-Peak Quasi-Peak FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (dB) TABLE ANGLE (Degree) RAW VALUE (dBuV) 93.66 24.7 QP 43.5 -18.8 2.00 H 89 38.6 137.72 31.4 QP 43.5 -12.1 2.00 H 290 40.0 217.86 27.0 QP 46.0 -19.0 1.50 H 85 38.6 395.54 23.9 QP 46.0 -19.0 2.00 H 300 29.1 667.14 27.0 QP 46.0 -19.0 2.00 H 316 26.4 857.09 28.0 QP 46.0 -18.0 1.50 H 35 24.6 ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M FREQ. (MHz) EMISSION LEVEL (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) TABLE ANGLE RAW VALUE (Degree) 30.58 32.6 QP 40.0 -7.4 1.00 V 270 42.3 315.71 27.6		

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

	Conducted Limit (dBuV)						
Frequency (MHz)	Quasi-peak	Average					
0.15 - 0.5	66 - 56	56 - 46					
0.50 - 5.0	56	46					
5.0 - 30.0	60	50					

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.2 Test Instruments

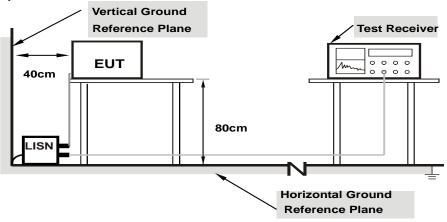
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL		
Test Receiver R&S	ESCS 30	847124/029	Oct. 24, 2016	Oct. 23, 2017		
Line-Impedance Stabilization Network (for EUT) R&S	ESH3-Z5	848773/004	Oct. 26, 2016	Oct. 25, 2017		
Line-Impedance Stabilization Network (for Peripheral) R&S	ENV216	100072	June 13, 2016	June 12, 2017		
RF Cable	5D-FB	COCCAB-001	Sep. 30, 2016	Sep. 29, 2017		
10 dB PAD Mini-Circuits	HAT-10+	CONATT-004	June 20, 2016	June 19, 2017		
SoftwareBVADT_Cond_BVADTV7.3.7.4		NA	NA	NA		

Note:

1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in Shielded Room No. 1.

3 Tested Date: Dec. 22, 2016


4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
- **NOTE:** The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

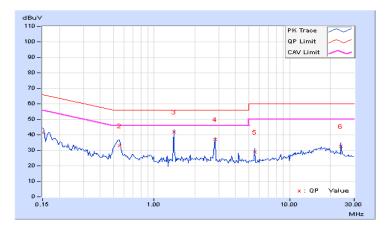
Same as 4.1.6.

4.2.7 Test Results

Phase	Line (L)	Detector Function	Quasi-Peak (QP) / Average (AV)

	Phase Of Power : Line (L)										
No			on Level Limit SuV) (dBuV)			Margin (dB)					
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.15000	10.20	31.36	21.03	41.56	31.23	66.00	56.00	-24.44	-24.77	
2	0.55234	10.26	22.68	14.01	32.94	24.27	56.00	46.00	-23.06	-21.73	
3	1.40234	10.30	31.58	22.23	41.88	32.53	56.00	46.00	-14.12	-13.47	
4	2.80859	10.30	26.71	17.54	37.01	27.84	56.00	46.00	-18.99	-18.16	
5	5.52734	10.42	18.57	9.94	28.99	20.36	60.00	50.00	-31.01	-29.64	
6	24.00391	11.76	20.85	20.83	32.61	32.59	60.00	50.00	-27.39	-17.41	

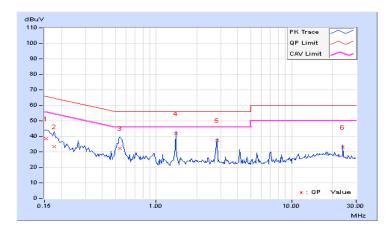
Remarks:


1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level - Limit value

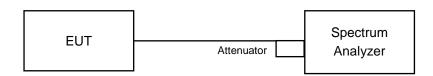
4. Correction factor = Insertion loss + Cable loss


5. Emission Level = Correction Factor + Reading Value

Phase Neutral (N)				D	Detector Function			Quasi-Peak (QP) /				
						Average (AV)						
	Phase Of Power : Neutral (N)											
Na	Frequency	Correction Factor (dB)		Reading Value I (dBuV) Q.P. AV.			Emission Level (dBuV) Q.P. AV.		Limit (dBuV) Q.P. AV.		Margin	
No	(MHz)					· ·					(dB) Q.P. AV.	
1	0.15391	10.1	,	28.21	15.17	38.4		25.36	65.79	55.79	-27.39	-30.43
2	0.17734	10.1	18	23.10	8.43	33.2	28	18.61	64.61	54.61	-31.33	-36.00
3	0.54063	10.2	24	21.94	16.81	32.1	8	27.05	56.00	46.00	-23.82	-18.95
4	1.40234	10.2	28	31.56	22.25	41.8	4	32.53	56.00	46.00	-14.16	-13.47
5	2.80859	10.2	27	27.03	18.09	37.3	80	28.36	56.00	46.00	-18.70	-17.64
6	24.00000	11.3	39	21.63	21.54	33.0)2	32.93	60.00	50.00	-26.98	-17.07

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



4.3 Conducted Out of Band Emission Measurement

4.3.1 Limits of Conducted Out of Band Emission Measurement

Below 20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedures

MEASUREMENT PROCEDURE REF

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW \ge 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE

- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep = auto couple.
- 5. Trace Mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.

4.3.5 Deviation from Test Standard

No deviation.

4.3.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.3.7 Test Results

The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.

2.4GHz_802.11g CH6 + 5GHz_802.11a CH157 Chain 0 Chain 1 Marker 1 [T1] -34.48 dBm 1.60381 GHz Marker 1 [T1] -34.00 dBm 1.63879 GHz Marker 2 [T1] 10.65 dBm RBW 100 kHz VBW 300 kHz SWT 4 s RBW 100 kHz VBW 300 kHz SWT 4 s [T1] MP VIEW [T1] MP VIEW 31.5 - Ref 31.5 dBm Offset 21.5 dB Att 20 dE 31.5 - Ref 31.5 dBm Offset 21.5 dB Att 20 dB ی است. ۲۱۱ یا 10.66 GBm 2.44318 GHz Varker 3 [T1] Marker 2 [T1] 12.58 dBm 2.42820 GHz Marker 3 [T1] -34.01 dBm 3.24758 GHz Marker 4 [T1] 9.98 dBm 20 20 2 2 D1 12 58 dBm 166 di 10 10-Marker 4 [T1] 8.87 dBm 5.78068 GHz Marker 5 [T1] -22.80 dBm 39.98001 GHz Marker 4 [T1] 9.98 dBm 5.78068 GHz Marker 5 [T1] -23.40 dBm 38.58506 GHz 0 0 D2-7.42 dB -10 -10 -20 -20 mummul -30 -30 --------40 -40 -50 -50 B U R E A U VERITAS -60 -60 -68.5 --68.5 -BUREAU VERITAS 1 3.997 GHz/ I Stop 40 GHz 1 3.997 GHz/ I Stop 40 GHz Start 30 MHz Start 30 MHz

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ----