

JianYan Testing Group Shenzhen Co., Ltd.

Report No: JYTSZB-R12-2102657

FCC REPORT (WIFI)

Applicant: SWAGTEK

Address of Applicant: 10205 NW 19th St. Suite 101, Miami, FL, 33172

Equipment Under Test (EUT)

Product Name: 6.517 inch 4G Smart Phone

Model No.: L65 LITE, ULTRAx, N65 Lite

Trade mark: LOGIC, iSWAG, UNONU

FCC ID: O55653921

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 24 Nov., 2021

Date of Test: 25 Nov., to 31 Dec., 2021

Date of report issued: 05 Jan., 2022

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	05 Jan., 2022	Original

Tested by:

Test Engineer

Date: 05 Jan., 2022

Reviewed by: Date: 05 Jan., 2022

Project Engineer

Contents

			Page
1	COVI	ER PAGE	1
2	VERS	SION	2
3		TENTS	
4	TEST	SUMMARY	4
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
		GENERAL DESCRIPTION OF E.U.T	
		TEST ENVIRONMENT AND MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	6
	5.5	MEASUREMENT UNCERTAINTY	6
		ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
		LABORATORY FACILITY	
		LABORATORY LOCATION	
	5.9	TEST INSTRUMENTS LIST	8
6	TEST	RESULTS AND MEASUREMENT DATA	10
	6.1	ANTENNA REQUIREMENT	10
	6.2	CONDUCTED EMISSION	11
	6.3	CONDUCTED OUTPUT POWER	14
	6.4	OCCUPY BANDWIDTH	15
		Power Spectral Density	
		BAND EDGE	
	6.6.1	Conducted Emission Method	
	6.6.2	Radiated Emission Method	
		Spurious Emission	
	6.7.1	Conducted Emission Method	
	6.7.2	Radiated Emission Method	_
7	TEST	SETUP PHOTO	38
0	EUT	CONSTRUCTIONAL DETAILS	40

4 Test Summary

Test Items	Section in CFR 47	Test Data	Result
Antenna requirement	15.203 & 15.247 (b)	See Section 6.1	Pass
AC Power Line Conducted Emission	15.207	See Section 6.2	Pass
Duty Cycle	ANSI C63.10-2013	Appendix A – 2.4G Wi-Fi	Pass
Conducted Peak Output Power	15.247 (b)(3)	Appendix A – 2.4G Wi-Fi	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Appendix A – 2.4G Wi-Fi	Pass
Power Spectral Density	15.247 (e)) Appendix A – 2.4G Wi-Fi	
Conducted Band Edge	45 247 (4)	Appendix A – 2.4G Wi-Fi	Pass
Radiated Band Edge	15.247 (d)	See Section 6.6.2	Pass
Conducted Spurious Emission	15 205 8 15 200	Appendix A – 2.4G Wi-Fi	Pass
Radiated Spurious Emission	15.205 & 15.209	See Section 6.7.2	

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method: ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5 General Information

5.1 Client Information

Applicant:	SWAGTEK
Address:	10205 NW 19th St. Suite 101, Miami, FL, 33172
Manufacturer/ Factory:	SWAGTEK
Address:	10205 NW 19th St. Suite 101, Miami, FL, 33172

5.2 General Description of E.U.T.

Product Name:	6.517 inch 4G Smart Phone			
Model No.:	L65 LITE, ULTRAx, N65 Lite			
Operation Frequency:	2412MHz~2462MHz: 802.11b/802.11g/802.11n(HT20)			
Channel numbers:	11: 802.11b/802.11g/802.11(HT20)			
Channel separation:	5MHz			
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)			
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)			
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps			
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps			
Data speed (IEEE 802.11n):	Up to 72.2Mbps			
Antenna Type:	Internal Antenna			
Antenna gain:	1.34dBi			
Power supply:	Rechargeable Li-ion Polymer Battery DC3.85V, 4000mAh			
AC adapter:	Model: MST-0502000-FCC Input: AC100-240V, 50/60Hz, 0.3A			
Test Sample Condition:	Output: DC 5.0V, 2000mA The test samples were provided in good working order with no visible defects.			
Remark:	Model No.: L65 LITE, ULTRAx, N65 Lite were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being trademark. LOGIC is for L65 LITE. iSWAG is for ULTRAx. UNONU is for N65 Lite.			
	There are two kinds of EUT, single SIM card slot and dual SIM card slot, EUT is the same except for the difference of the card slot. Select Test Dual Card Slots EUT.			

Operation Frequency each of channel for 802.11b/g/n(HT20)								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz	
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz	
3	3 2422MHz 6 2437MHz 9 2452MHz							
Note:								
1. Channel 1, 6 & 11 selected for 802.11b/g/n-HT20 as Lowest, Middle and Highest channel.								

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Transmitting mode	Keep the EUT in continuous transmitting with modulation			

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate, the follow list were the worst case.				
Mode Data rate				
802.11b	1Mbps			
802.11g	6Mbps			
802.11n(HT20)	6.5Mbps			

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 150KHz) for V-AMN	3.11 dB
Conducted Emission (150kHz ~ 30MHz) for V-AMN	2.62 dB
Radiated Emission (9kHz ~ 30MHz electric field) for 3m SAC	3.13 dB
Radiated Emission (9kHz ~ 30MHz magnetic field) for 3m SAC	3.13 dB
Radiated Emission (30MHz ~ 1GHz) for 3m SAC	4.45 dB
Radiated Emission (1GHz ~ 18GHz) for 3m SAC	5.34 dB
Radiated Emission (18GHz ~ 40GHz) for 3m SAC	5.34 dB
Radiated Emission (30MHz ~ 1GHz) for 10m SAC	4.32 dB

5.6 Additions to, deviations, or exclusions from the method

No

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

● ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

● CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

● A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xingiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://www.ccis-cb.com

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.9 Test Instruments list

Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
3m SAC	ETS	RFD-100	Q1984	04-14-2021	04-13-2024	
BiConiLog Antenna	SCHWARZBECK	VULB9163	9163-1246	03-07-2021	03-06-2022	
Biconical Antenna	SCHWARZBECK	VUBA 9117	9117#359	06-17-2021	06-17-2022	
Horn Antenna	SCHWARZBECK	BBHA9120D	912D-916	03-07-2021	03-06-2022	
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1067	04-02-2021	04-01-2022	
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1068	04-02-2021	04-01-2022	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022	
Spectrum analyzer	Keysight	N9010B	MY60240202	10-27-2021	10-26-2022	
Simulated Station	Anritsu	MT8820C	6201026545	03-03-2021	03-02-2022	
Low Pre-amplifier	SCHWARZBECK	BBV9743B	00305	03-07-2021	03-06-2022	
High Pre-amplifier	SKET	LNPA_0118G-50	MF280208233	03-07-2021	03-06-2022	
Cable	Qualwave	JYT3M-1G-NN-8M	JYT3M-1	03-07-2021	03-06-2022	
Cable	Qualwave	JYT3M-18G-NN-8M	JYT3M-2	03-07-2021	03-06-2022	
Cable	Qualwave	JYT3M-1G-BB-5M	JYT3M-3	03-07-2021	03-06-2022	
Cable	Bost	JYT3M-40G-SS-8M	JYT3M-4	04-02-2021	04-01-2022	
EMI Test Software	Tonscend	TS+		Version:3.0.0.1		
10m SAC	ETS	RFSD-100-F/A	Q2005	04-28-2021	04-27-2024	
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1249	04-02-2021	04-01-2022	
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1250	04-02-2021	04-01-2022	
EMI Test Receiver	R&S	ESR 3	102800	04-08-2021	04-07-2022	
EMI Test Receiver	R&S	ESR 3	102802	04-08-2021	04-07-2022	
Low Pre-amplifier	Bost	LNA 0920N	2016	04-06-2021	04-05-2022	
Low Pre-amplifier	Bost	LNA 0920N	2019	04-06-2021	04-05-2022	
Cable	Bost	JYT10M-1G-NN-10M	JYT10M-1	04-02-2021	04-01-2022	
Cable	Bost	JYT10M-1G-NN-10M	JYT10M-2	04-02-2021	04-01-2022	
Test Software	R&S	EMC32	\	/ersion: 10.50.4	0	

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI 3	101189	03-03-2021	03-02-2022	
LISN	Schwarzbeck	NSLK 8127	QCJ001-13	03-18-2021	03-17-2022	
LISN	Rohde & Schwarz	ESH3-Z5	843862/010	06-18-2020	06-17-2022	
ISN	Schwarzbeck	CAT3 8158	#96	03-03-2021	03-02-2022	
ISN	Schwarzbeck	CAT5 8158	#166	03-03-2021	03-02-2022	
ISN	Schwarzbeck	NTFM 8158	#126	03-03-2021	03-02-2022	
RF Switch	TOP PRECISION	RSU0301	N/A	03-03-2021	03-02-2022	
Cable	Bost	JYTCE-1G-NN-2M	JYTCE-1	03-03-2021	03-02-2022	
Cable	Bost	JYTCE-1G-BN-3M	JYTCE-2	03-03-2021	03-02-2022	
EMI Test Software	AUDIX	E3	Version: 6.110919b			

Conducted method:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
Spectrum Analyzer	Keysight	N9010B	MY60240202	10-27-2021	10-26-2022
Vector Signal Generator	Keysight	N5182B	MY59101009	10-27-2021	10-26-2022
Analog Signal Generator	Keysight	N5173B	MY59100765	10-27-2021	10-26-2022
Power Detector Box	MWRF-test	MW100-PSB	MW201020JYT	11-19-2021	11-18-2022
Simulated Station	Rohde & Schwarz	CMW270	102335	10-27-2021	10-26-2022
RF Control Box	MWRF-test	MW100-RFCB	MW200927JYT	N/A	N/A
PDU	MWRF-test	XY-G10	N/A	N/A	N/A
DC Power Supply	Keysight	E3642A	MY60296194	11-27-2020	11-26-2023
Temperature Humidity Chamber	Deli	8840	N/A	03-08-2021	03-07-2022
Test Software	MWRF-tes	MTS 8310	,	Version: 2.0.0.0	_

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

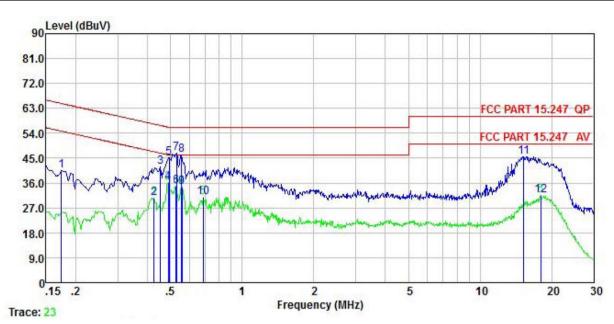
E.U.T Antenna:

The Wi-Fi antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is 1.34 dBi.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: JYTSZE2111092

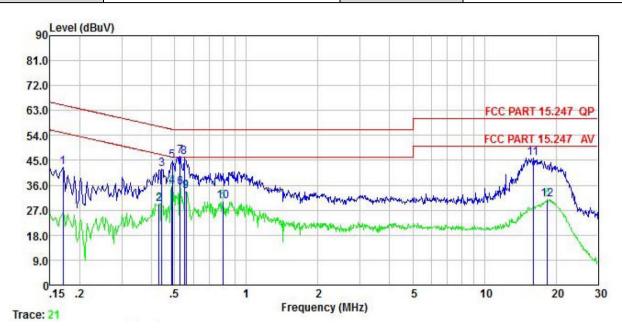
6.2 Conducted Emission


Test Requirement:	FCC Part 15 C Section 15.2	207			
Test Frequency Range:	150 kHz to 30 MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9 kHz, VBW=30 kHz				
Limit:	Fraguenov rango (MHz)	Limit (d	dBuV)		
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logarit				
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10(latest version) on conducted measurement. 				
Test setup:	LISN	st	er — AC power		
Test Instruments:	Refer to section 5.9 for deta	ails			
Test mode:	Refer to section 5.3 for deta	ails			
Test results:	Pass				

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 11 of 40

Measurement Data:

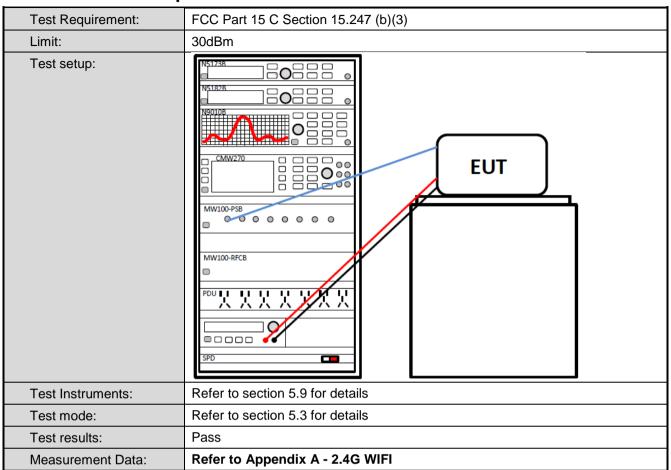
Product name:	6.517 inch 4G Smart Phone	Product model:	L65 LITE
Test by:	Mike	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
72 (17)	MHz	dBu∜	<u>dB</u>		dBu₹	dBu∜	<u>dB</u>	
1	0.174	40.47	0.04	0.01	40.52	64.77	-24.25	QP
2	0.426	30.52	0.04	0.03	30.59	47.33	-16.74	Average
3	0.454	41.63	0.04	0.03	41.70	56.80	-15.10	QP
4	0.489	36.04	0.04	0.03	36.11	46.19	-10.08	Average
5	0.494	45.20	0.04	0.03	45.27	56.10	-10.83	QP
6	0.527	34.75	0.04	0.03	34.82	46.00	-11.18	Average
7	0.529	46.70	0.04	0.03	46.77	56.00	-9.23	QP
1 2 3 4 5 6 7 8 9	0.555	46.12	0.04	0.02	46.18	56.00	-9.82	QP
9	0.558	34.36	0.04	0.02	34.42	46.00	-11.58	Average
10	0.686	30.90	0.04	0.03	30.97	46.00	-15.03	Average
11	15.226	45.18	0.27	0.14	45.59	60.00	-14.41	QP
12	17.944	31.13	0.30	0.15	31.58	50.00	-18.42	Average

Notes:

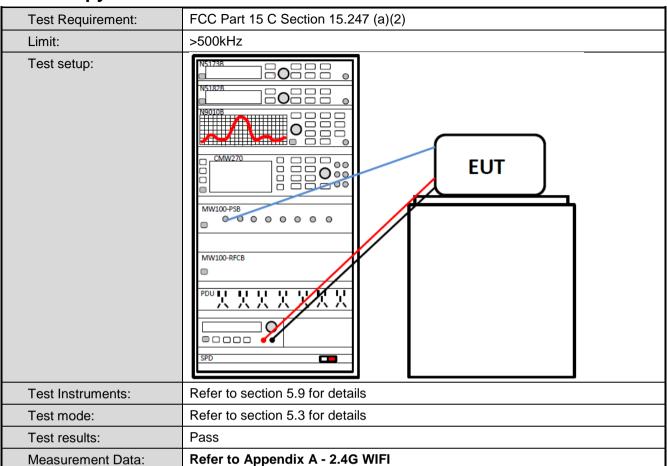
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	6.517 inch 4G Smart Phone	Product model:	L65 LITE
Test by:	Mike	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

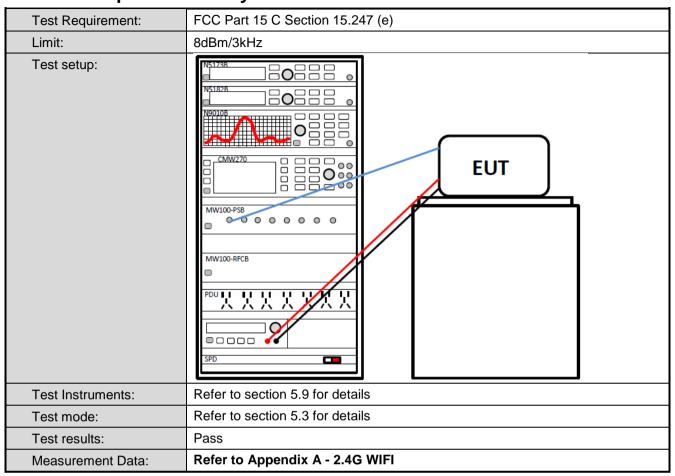

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∇	<u>d</u> B	<u>d</u> B	—dBu∀	dBu∇	<u>dB</u>	
1	0.170	42.39	0.05	0.01	42.45	64.94	-22.49	QP
1 2 3	0.431	29.27	0.04	0.03	29.34	47.24	-17.90	Average
3	0.442	41.75	0.04	0.03	41.82	57.02	-15.20	QP
4	0.486	35.43	0.04	0.03	35.50	46.23	-10.73	Average
4 5	0.489	44.74	0.04	0.03	44.81	56.19	-11.38	QP
6 7 8 9	0.527	35.23	0.04	0.03	35.30	46.00	-10.70	Average
7	0.527	46.30	0.04	0.03	46.37	56.00	-9.63	QP
8	0.549	45.95	0.04	0.02	46.01	56.00	-9.99	QP
9	0.558	33.78	0.04	0.02	33.84	46.00	-12.16	Average
10	0.796	30.19	0.04	0.03	30.26	46.00	-15.74	Average
11	16.055	45.56	0.26	0.16	45.98	60.00	-14.02	QP
12	18.426	30.61	0.29	0.15	31.05	50.00	-18.95	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.



6.3 Conducted Output Power



6.4 Occupy Bandwidth

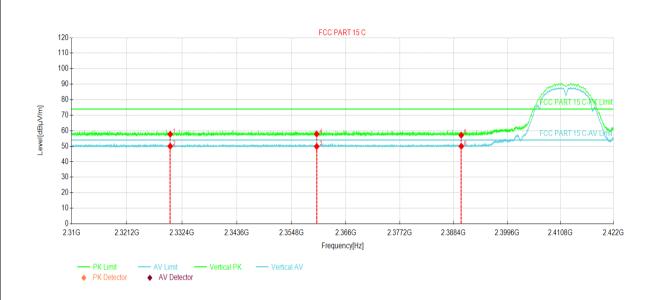
6.5 Power Spectral Density

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.				
Test setup:	NS182R NS18R NS182R NS18R NS1				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Pass				
Measurement Data:	Refer to Appendix A - 2.4G WIFI				

6.6.2 Radiated Emission Method

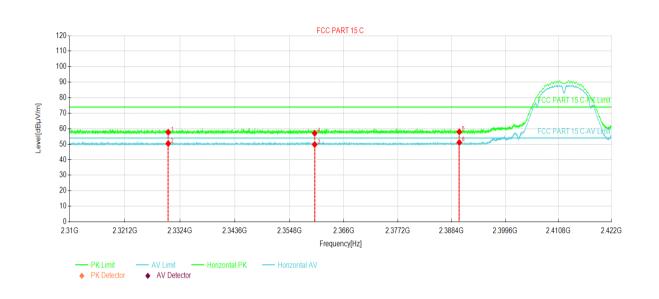

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205					
Test Frequency Range:	2310 MHz to 2390) MHz and 24	483.5 MHz to 2	500 MHz	<u>-</u>	
Test Distance:	3m					
Receiver setup:	Frequency	Detector	RBW	VBW		
	Above 1GHz	Peak	1MHz	3MH		
		RMS	<u> 1MHz</u> mit (dBuV/m @	3MH	Iz Average Value Remark	
Limit:	Frequency		54.00	3111)	Average Value	
	Above 1GH	Z	74.00		Peak Value	
Test setup:	the ground at determine the 2. The EUT was antenna, white tower. 3. The antenna ground to det horizontal an measurement 4. For each sus and then the and the rotal maximum reasonable. 5. The test-recesspecified Bail of the emission limit specified the EUT wou 10dB margin	t a 3 meter can be position of the position of the position of the position of the position and the position of the position o	amber. The take the highest rades away from the saway from the top died from one maximum value arizations of the stuned to height and from 0 deg was set to Peal Maximum Hold are EUT in peak regional could be stop d. Otherwise the saway from the take the take the saway are to the take the ta	ole was roiation. e interference of a variant eter to form of the fiewer antennation and the fiewer and the fiewer and the emission of the fiewer and the emission of the fiewer and the emission of the interference to 30 kg. The emission of the emission	s 10dB lower than the the peak values of ons that did not have g peak, quasi-peak or	
	130cm	AE EUT (Turntable)	Ground Reference Plane		enna Tower	
Test Instruments:	Refer to section 5	.9 for details				
Test mode:	Refer to section 5	.3 for details				
Test results:	Pass					

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

802.11b mode:

Product Name:	6.517 inch 4G Smart Phone	Product Model:	L65 LITE
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	DC 3.85V	Environment:	Temp: 24°C Huni: 57%

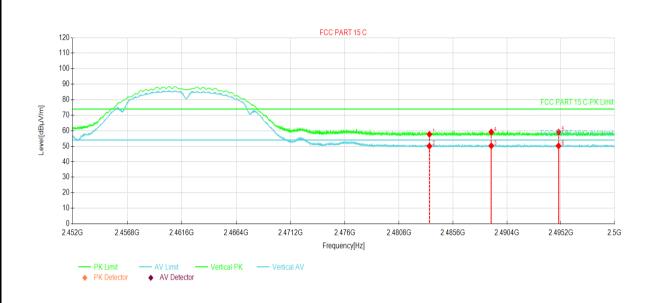
NO.₽	Freq.⊌	Reading	Level⊬	Factor	Limit⊬	Margin⊬	Traca	Polarity∂
NO.₽	[MHz]∂	[dBµV/m]∂	[dBµV/m]₽	[dB]∂	[dBµV/m]∂	[dB]∂	Trace₽	Polatity
1₽	2330.00	22.34₽	57.75₽	35.41₽	74.00₽	16.25₽	PK₽	Vertical₽
2↩	2330.00	14.59₽	50.00₽	35.41₽	54.00₽	4.00₽	AV₽	Vertical₽
3₽	2360.00	14.21₽	49.84₽	35.63₽	54.00₽	4.16₽	AV₽	Vertical₽
4₽	2360.00	22.24	57.87₽	35.63₽	74.00₽	16.13₽	PK₽	Vertical₽
5₽	2390.00	21.27₽	57.11₽	35.84₽	74.00₽	16.89₽	PK₽	Vertical₽
6₽	2390.00	14.16₽	50.00₽	35.84₽	54.00₽	4.00₽	AV₽	Vertical₽


Remark:

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 19 of 40

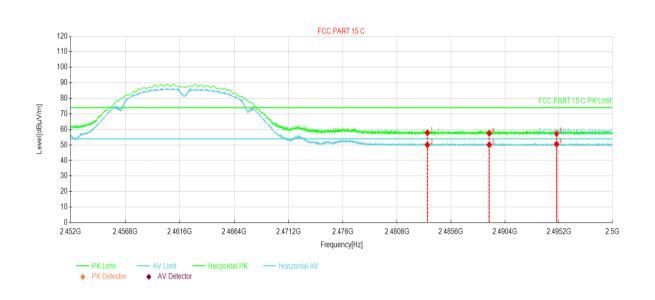
Product Name:	6.517 inch 4G Smart Phone	Product Model:	L65 LITE
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	DC 3.85V	Environment:	Temp: 24°C Huni: 57%


NO.₽	Freq.₽ [MHz]₽	Reading⊬ [dBµV/m]⊬	Level. [dBµV/m].	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]∂	Margin⊬ [dB]⊬	Trace₽	Polarity∉
1₽	2330.00	22.29₽	57.70₽	35.41₽	74.00₽	16.30₽	PK₽	Horizontal₽
2↩	2330.00	15.01₽	50.42₽	35.41₽	54.00₽	3.58₽	AV₽	Horizontal₽
3₽	2360.00	14.16₽	49.79₽	35.63₽	54.00₽	4.21₽	AV₽	Horizontal₽
4₽	2360.00	21.45₽	57.08₽	35.63₽	74.00₽	16.92₽	PK₽	Horizontal₽
5₽	2390.00	22.15₽	57.99₽	35.84₽	74.00₽	16.01₽	PK₽	Horizontal₽
6₽	2390.00	15.30₽	51.14₽	35.84₽	54.00₽	2.86₽	AV₽	Horizontal₽

Remark:

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	6.517 inch 4G Smart Phone	Product Model:	L65 LITE
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	DC 3.85V	Environment:	Temp: 24°C Huni: 57%

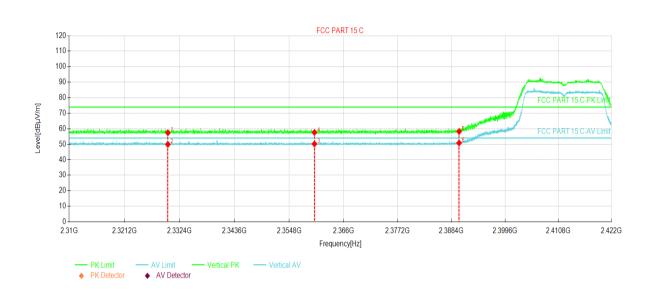

NO.₽	Freq.	Reading	Level	Factor	Limit.	Margin∉	Trace∂	Polarity∂
	[MHz]	[dBµV/m]₽	[dBµV/m]∂	[dB]₽	[dBµV/m]∂	[dB]₽		
1₽	2483.50	21.97₽	57.69₽	35.72₽	74.00₽	16.31₽	PK₽	Vertical₽
2₽	2483.50	14.34₽	50.06₽	35.72₽	54.00₽	3.94₽	AV₽	Vertical₽
3₽	2489.00	14.55₽	50.26₽	35.71₽	54.00₽	3.74₽	AV₽	Vertical₽
4₽	2489.00	23.42	59.13₽	35.71₽	74.00₽	14.87₽	PK₽	Vertical₽ -
5₽	2495.00	23.35₽	59.04₽	35.69₽	74.00₽	14.96₽	PK₽	Vertical₽
6₽	2495.00	14.51₽	50.20₽	35.69₽	54.00₽	3.80₽	AV₽	Vertical₽

Remark

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	6.517 inch 4G Smart Phone	Product Model:	L65 LITE
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Highest channel	Polarization: Horizontal	
Test Voltage:	DC 3.85V	Environment:	Temp: 24°C Huni: 57%

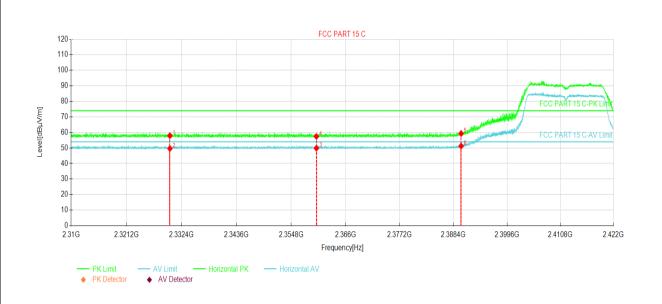
NO.₽	Freq.⊬ [MHz]	Reading√ [dBµV/m]∞	Level. [dBµV/m].	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊬	Margin⊬ [dB]⊬	Trace₽	Polarity₀
1₽	2483.50	22.12₽	57.84₽	35.72₽	74.00₽	16.16₽	PK₽	Horizontal₽
2₽	2483.50	14.36₽	50.08₽	35.72₽	54.00₽	3.92₽	AV₽	Horizontal₽
3₽	2489.00	14.41₽	50.12₽	35.71₽	54.00₽	3.88₽	AV₽	Horizontal₽
4.₽	2489.00	21.80₽	57.51₽	35.71₽	74.00₽	16.49₽	PK₽	Horizontal₽
5₽	2495.00	21.66₽	57.35₽	35.69₽	74.00₽	16.65₽	PK₽	Horizontal₽
6₽	2495.00	14.84₽	50.53₽	35.69₽	54.00₽	3.47₽	AV₽	Horizontal₽


Remark:

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

802.11g mode:

Product Name:	6.517 inch 4G Smart Phone	Product Model:	L65 LITE
Test By:	Mike	Test mode:	802.11g Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	DC 3.85V	Environment:	Temp: 24℃ Huni: 57%

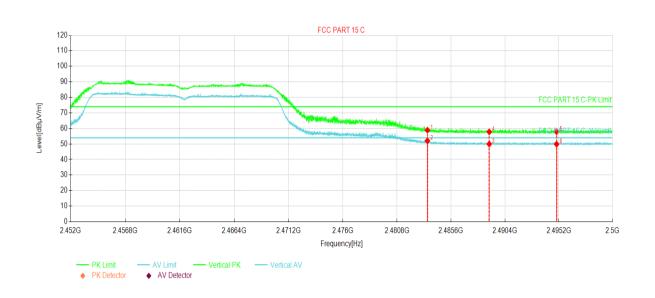

NO.₽	Freq.⊬ [MHz]∂	Reading√ [dBµV/m]∞	Level. [dBµV/m].	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]∂	Margin⊬ [dB]⊬	Trace₽	Polarity∉
1₽	2330.00	22.00₽	57.41₽	35.41₽	74.00₽	16.59₽	PK₽	Vertical₽
2₽	2330.00	14.47₽	49.88₽	35.41₽	54.00₽	4.12₽	AV₽	Vertical₽
3₽	2360.00	14.56₽	50.19₽	35.63₽	54.00₽	3.81₽	AV₽	Vertical₽
4.₽	2360.00	21.98₽	57.61₽	35.63₽	74.00₽	16.39₽	PK₽	Vertical₽
5₽	2390.00	22.37₽	58.21₽	35.84₽	74.00₽	15.79₽	PK₽	Vertical₽
6₽	2390.00	14.96₽	50.80₽	35.84₽	54.00₽	3.20₽	AV₽	Vertical₽

Remark

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	6.517 inch 4G Smart Phone	Product Model:	L65 LITE
Test By:	Mike	Test mode:	802.11g Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	DC 3.85V	Environment:	Temp: 24℃ Huni: 57%

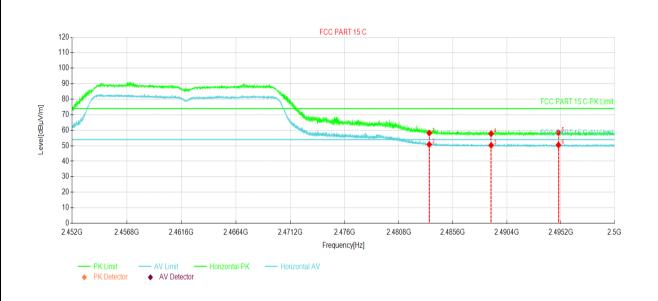
NO.∂	Freq.⊬ [MHz]∂	Reading√ [dBµV/m]∞	Level⊬ [dBµV/m]⊲	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊲	Margin⊬ [dB]⊬	Trace₽	Polarity∉
1₽	2330.00	22.48₽	57.89₽	35.41₽	74.00₽	16.11₽	PK₽	Horizontal₽
2↩	2330.00	14.21₽	49.62₽	35.41₽	54.00₽	4.38₽	AV₽	Horizontal₽
3₽	2360.00	14.22₽	49.85₽	35.63₽	54.00₽	4.15₽	AV₽	Horizontal₽
4₽	2360.00	21.78₽	57.41₽	35.63₽	74.00₽	16.59₽	PK₽	Horizontal₽
5₽	2390.00	23.47₽	59.31₽	35.84₽	74.00₽	14.69₽	PK₽	Horizontal₽
6₽	2390.00	15.41₽	51.25₽	35.84₽	54.00₽	2.75₽	AV₽	Horizontal₽


Remark:

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product Name:	6.517 inch 4G Smart Phone	Product Model:	L65 LITE
Test By:	Mike	Test mode: 802.11g Tx mode	
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	DC 3.85V	Environment:	Temp: 24°C Huni: 57%


NO.₽	Freq.↓ [MHz]↓	Reading√ [dBµV/m]∞	Level. [dBµV/m].	Factor⊬ [dB]⊬	Limit⊍ [dBµV/m]∂	Margin⊬ [dB]⊬	Trace₽	Polarity₀
1₽	2483.50	23.17₽	58.89₽	35.72₽	74.00₽	15.11₽	PK₽	Vertical₽
2↩	2483.50	16.35₽	52.07₽	35.72₽	54.00₽	1.93₽	AV₽	Vertical₽
3₽	2489.00	14.25₽	49.96₽	35.71₽	54.00₽	4.04₽	AV₽	Vertical₽
4 ₽	2489.00	22.08₽	57.79₽	35.71₽	74.00₽	16.21₽	PK₽	Vertical₽
5₽	2495.00	22.20₽	57.89₽	35.69₽	74.00₽	16.11₽	PK₽	Vertical₽
6↩	2495.00	14.19₽	49.88₽	35.69₽	54.00₽	4.12₽	AV₽	Vertical₽

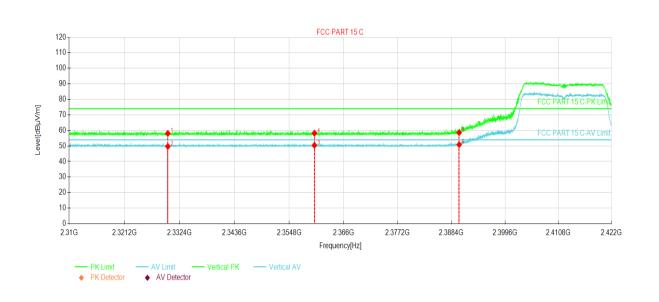
Remark

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	6.517 inch 4G Smart Phone	Product Model:	L65 LITE
Test By:	Mike	Test mode:	802.11g Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	DC 3.85V	Environment:	Temp: 24°C Huni: 57%

NO.₽	Freq.⊬ [MHz]∂	Reading√ [dBµV/m]∞	Level. [dBµV/m].	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]∂	Margin⊬ [dB]⊬	Trace₽	Polarity∂
1₽	2483.50	22.44₽	58.16₽	35.72₽	74.00₽	15.84₽	PK₽	Horizontal₽
2↩	2483.50	15.05₽	50.77₽	35.72₽	54.00₽	3.23₽	AV₽	Horizontal₽
3₽	2489.00	14.57₽	50.28₽	35.71₽	54.00₽	3.72₽	AV₽	Horizontal₽
4₽	2489.00	22.06₽	57.77₽	35.71₽	74.00₽	16.23₽	PK₽	Horizontal₽
5₽	2495.00	22.73₽	58.42₽	35.69₽	74.00₽	15.58₽	PK₽	Horizontal₽
6₽	2495.00	14.78₽	50.47₽	35.69₽	54.00₽	3.53₽	AV₽	Horizontal₽

Remark:

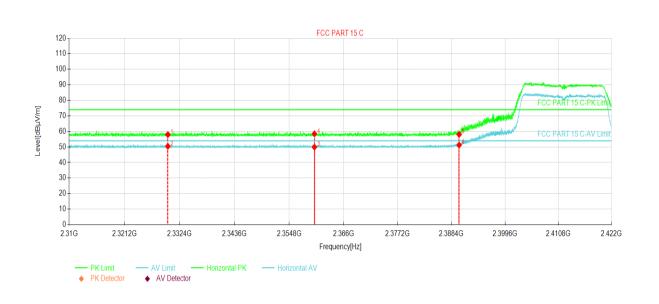

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

802.11n(HT20):

Product Name:	6.517 inch 4G Smart Phone	Product Model:	L65 LITE
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	DC 3.85V	Environment:	Temp: 24℃ Huni: 57%

NO.₽	Freq.⊬ [MHz]∂	Reading√ [dBµV/m]∞	Level. [dBµV/m].	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]∂	Margin⊬ [dB]⊬	Trace₽	Polarity∂
1₽	2330.00	22.62₽	58.03₽	35.41₽	74.00₽	15.97₽	PK₽	Vertical₽
2↩	2330.00	14.29₽	49.70₽	35.41₽	54.00₽	4.30₽	AV₽	Vertical₽
3₽	2360.00	14.79₽	50.42₽	35.63₽	54.00₽	3.58₽	AV₽	Vertical₽
4.₽	2360.00	22.59₽	58.22₽	35.63₽	74.00₽	15.78₽	PK₽	Vertical₽
5₽	2390.00	22.74₽	58.58₽	35.84₽	74.00₽	15.42₽	PK₽	Vertical₽
6₽	2390.00	15.02₽	50.86₽	35.84₽	54.00₽	3.14₽	AV₽	Vertical₽

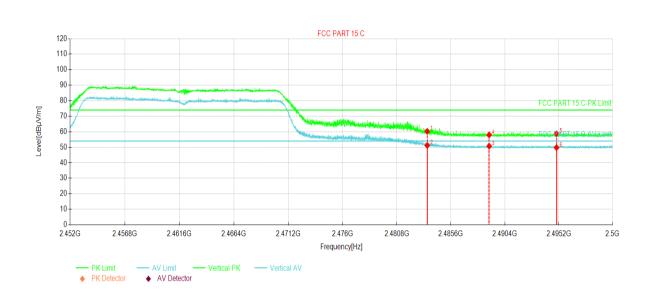

Remark:

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 27 of 40

Product Name:	6.517 inch 4G Smart Phone	Product Model:	L65 LITE
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	DC 3.85V	Environment:	Temp: 24°C Huni: 57%

NO.₽	Freq.⊬ [MHz]∂	Reading√ [dBµV/m]∞	Level [dBµV/m]₽	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]∂	Margin⊬ [dB]⊬	Trace₽	Polarity
1₽	2330.00	22.55₽	57.96₽	35.41₽	74.00₽	16.04₽	PK₽	Horizontal₽
2₽	2330.00	15.01₽	50.42₽	35.41₽	54.00₽	3.58₽	AV₽	Horizontal₽
3₽	2360.00	14.28₽	49.91₽	35.63₽	54.00₽	4.09₽	AV₽	Horizontal₽
4₽	2360.00	22.84₽	58.47₽	35.63₽	74.00₽	15.53₽	PK₽	Horizontal₽
5₽	2390.00	22.23₽	58.07₽	35.84₽	74.00₽	15.93₽	PK₽	Horizontal₽
6₽	2390.00	15.42₽	51.26₽	35.84₽	54.00₽	2.74₽	AV₽	Horizontal₽

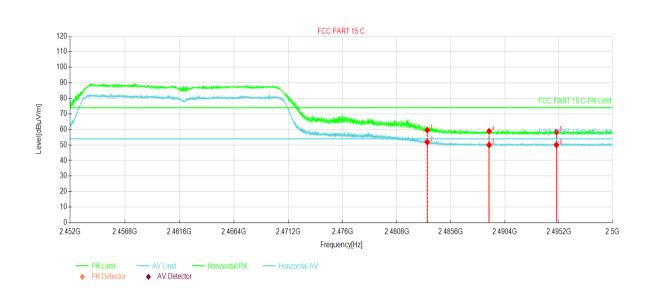

Remark

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product Name:	6.517 inch 4G Smart Phone	Product Model:	L65 LITE
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	DC 3.85V	Environment:	Temp: 24℃ Huni: 57%

NO.₽	Freq.⊬ [MHz]∂	Reading⊬ [dBµV/m]⊬	Level. [dBµV/m].	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊬	Margin⊬ [dB]⊬	Trace₽	Polarity∉
1₽	2483.50	24.47₽	60.19₽	35.72₽	74.00₽	13.81₽	PK₽	Vertical₽
2₽	2483.50	15.48₽	51.20₽	35.72₽	54.00₽	2.80₽	AV₽	Vertical₽
3₽	2489.00	14.99₽	50.70₽	35.71₽	54.00₽	3.30₽	AV₽	Vertical₽
4₽	2489.00	22.24	57.95₽	35.71₽	74.00₽	16.05₽	PK₽	Vertical₽
5₽	2495.00	23.00₽	58.69₽	35.69₽	74.00₽	15.31₽	PK₽	Vertical₽
6₽	2495.00	14.09₽	49.78₽	35.69₽	54.00₽	4.22₽	AV₽	Vertical₽


Remark

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product Name:	6.517 inch 4G Smart Phone	Product Model:	L65 LITE
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	DC 3.85V	Environment:	Temp: 24°C Huni: 57%

NO.₽	Freq.↓ [MHz]↓	Reading√ [dBµV/m]∞	Level. [dBµV/m].	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]∂	Margin⊬ [dB]⊬	Trace₽	Polarity∂
1₽	2483.50	23.89₽	59.61₽	35.72₽	74.00₽	14.39₽	PK₽	Horizontal₽
2₽	2483.50	16.10₽	51.82₽	35.72₽	54.00₽	2.18₽	AV₽	Horizontal₽
3₽	2489.00	14.27₽	49.98₽	35.71₽	54.00₽	4.02₽	AV₽	Horizontal₽
4.₽	2489.00	23.08₽	58.79₽	35.71₽	74.00₽	15.21₽	PK₽	Horizontal₽
5₽	2495.00	22.61₽	58.30₽	35.69₽	74.00₽	15.70₽	PK₽	Horizontal₽
6₽	2495.00	14.34₽	50.03₽	35.69₽	54.00₽	3.97₽	AV₽	Horizontal₽

Remark:

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 30 of 40

6.7 Spurious Emission

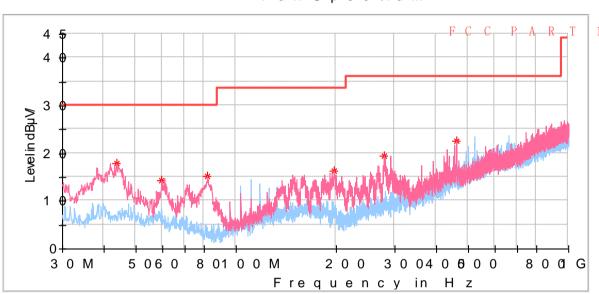
6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.					
Test setup:	NS102B NS10B NS102B NS10B NS102B NS10B NS10B NS10B NS10B NS10B NS10B NS10B NS10B NS10B					
Test Instruments:	Refer to section 5.9 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Pass					
Measurement Data:	Refer to Appendix A - 2.4G WIFI					

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.7.2 Radiated Emission Method

6.7.2 Radiated Emission Test Requirement:	FCC Part 15 C Se	ection 15.2	209 an	d 15.205			
Test Frequency Range:	9kHz to 25GHz						
Test Distance:	3m or 10m						
Receiver setup:	Frequency	Detec	tor	RBW	V	BW	Remark
·	30MHz-1GHz	Quasi-p	eak	120KHz	300KHz		Quasi-peak Value
	Above 1GHz	Peal	<	1MHz	31	ИHz	Peak Value
	Above Toriz	RMS		1MHz		ИHz	Average Value
Limit:	Frequency		Limit	(dBuV/m @10)m)		Remark
	30MHz-88MH		30.0				uasi-peak Value
	88MHz-216MH			33.5			uasi-peak Value
	216MHz-960M			36.0			uasi-peak Value
	960MHz-1GH	1Z	Limi	44.0	ma \	Q	uasi-peak Value
	Frequency		Limi	t (dBuV/m @3i 54.0	m)		Remark Average Value
	Above 1GHz	<u>z</u> -		74.0		· '	Peak Value
Test Procedure:	1. The EUT w	as place	d on		a rot	tating 1	
	 The EUT was placed on the top of a rotating table 0.8m(beld 1GHz)/1.5m(above 1GHz) above the ground at a 10 meter chambe (below 1GHz)or 3 meter chamber (above 1GHz). The table was rotat 360 degrees to determine the position of the highest radiation. The EUT was set 10 meters(below 1GHz) or 3 meters (above 1GHaway from the interference-receiving antenna, which was mounted the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst cast and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not hav 10dB margin would be re-tested one by one using peak, quasi-peak of the EUT would be re-tested one by one using peak, quasi-peak 				table was rotated adiation. ters(above 1GHz) was mounted on neters above the trength. Both e set to make the to its worst case ter to 4 meters legrees to find the ction and dB lower than the peak values of that did not have		
Test setup:	Below 1GHz EUT Turn Table Ground Pl. Above 1GHz	0.8m	1m		<i></i>	Searce Anter	nna :



Measurement Data (worst case):

Below 1GHz:

Product Name:	6.517 inch 4G Smart Phone	Product Model:	L65 LITE	
Test By:	Mike	Test mode:	Wi-Fi Tx mode	
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical & Horizontal	
Test Voltage:	AC 120V/60Hz	Environment:	Temp: 24℃ Huni: 57%	

-	Frequency↓ (MHz)₄	MaxPeak↓ (dB ₽V/m)∂	Limit↓ (dB μ V /m)∂	Margin↓ (dB)∂	Height↓ (cm)₽	Pol∂	Azimuth↓ (deg)√	Corr.↓ (dB/m)₽
	43.677000₽	18.02₽	30.00₽	11.98₽	100.0₽	V₽	133.0₽	-15.7∂
	59.488000₽	14.36₽	30.00₽	15.64₽	100.0₽	V₄⊃	302.0₽	-16.3₽
F	81.895000₽	15.19₽	30.00₽	14.81₊	100.0₽	V₄⊃	306.0∉	-20.1∉
F	196.840000₽	16.34₽	33.50₽	17.16₽	100.0₽	V₽	0.0₽	-18.1∂
	279.193000₽	19.40₽	36.00₽	16.60₽	100.0₽	V₄⊃	334.0∉	-14.3₽
	460.777000₽	22.66₽	36.00₄⁻	13.34₽	100.0₽	V₄⊃	219.0₽	-9.6∉

Remark:

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 34 of 40

Above 1GHz

		802.11b			
	Test ch	annel: Lowest ch	nannel		
	De	tector: Peak Valu	ie		
Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
56.13	-9.46	46.67	74.00	27.33	Vertical
55.26	-9.46	45.80	74.00	28.20	Horizontal
	Dete	ctor: Average Va	alue		
Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
48.56	-9.46	39.10	54.00	14.90	Vertical
48.59	-9.46	39.13	54.00	14.87	Horizontal
	Tost ch	annal: Middle ch	annol .		
Read Level (dBuV)	Factor(dB)	Level	Limit Line	Margin (dB)	Polarization
55.88	-9.11	46.77	74.00	27.23	Vertical
54.92	-9.11	45.81	74.00	28.19	Horizontal
	Dete	ctor: Average Va	alue		
Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
48.29	-9.11	39.18	54.00	14.82	Vertical
48.70	-9.11	39.59	54.00	14.41	Horizontal
	Det			1	
Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
55.87	-8.74	47.13	74.00	26.87	Vertical
55.20	-8.74	46.46	74.00	27.54	Horizontal
	Dete	ctor: Average Va	alue		
Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
48.18	-8.74	39.44	54.00	14.56	Vertical
40.10	-0.74	33.44	37.00	14.00	Vertioai
	(dBuV) 56.13 55.26 Read Level (dBuV) 48.56 48.59 Read Level (dBuV) 55.88 54.92 Read Level (dBuV) 48.29 48.70 Read Level (dBuV) 55.87 55.20 Read Level (dBuV)	Read Level (dBuV)	Test channel: Lowest channel: Lowest channel: Lowest channel: Peak Value	Test channel: Lowest channel	Test channel: Lowest channel

Remark:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 35 of 40

^{1.} Final Level = Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

		<u> </u>				
Test channel: Lowest channel						
Detector: Peak Value						
ead Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
56.21	-9.46	46.75	74.00	27.25	Vertical	
55.08	-9.46	45.62	74.00	28.38	Horizontal	
Detector: Average Value						
ead Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
48.91	-9.46	39.45	54.00	14.55	Vertical	
48.37	-9.46	38.91	54.00	15.09	Horizontal	
	(dBuV) 56.21 55.08 ead Level (dBuV) 48.91	ead Level (dBuV) Factor(dB) 56.21 -9.46 55.08 -9.46 Dete ead Level (dBuV) Factor(dB) 48.91 -9.46	ead Level (dBuV) Factor(dB) Level (dBuV/m) 56.21 -9.46 46.75 55.08 -9.46 45.62 Detector: Average Valed Level (dBuV) ead Level (dBuV) Factor(dB) Level (dBuV/m) 48.91 -9.46 39.45	Pead Level (dBuV) Factor(dB) Level (dBuV/m) Limit Line (dBuV/m) 56.21 -9.46 46.75 74.00 55.08 -9.46 45.62 74.00 Detector: Average Value Pead Level (dBuV) Level (dBuV/m) Limit Line (dBuV/m) 48.91 -9.46 39.45 54.00	Pead Level (dBuV) Factor(dB) Level (dBuV/m) Limit Line (dBuV/m) Margin (dB) 56.21 -9.46 46.75 74.00 27.25 55.08 -9.46 45.62 74.00 28.38 Detector: Average Value Pead Level (dBuV) Level (dBuV/m) Limit Line (dBuV/m) Margin (dBuV/m) 48.91 -9.46 39.45 54.00 14.55	

Test channel: Middle channel							
Detector: Peak Value							
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
4874.00	55.57	-9.11	46.46	74.00	27.54	Vertical	
4874.00	54.89	-9.11	45.78	74.00	28.22	Horizontal	
Detector: Average Value							
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
4874.00	47.91	-9.11	38.80	54.00	15.20	Vertical	
4874.00	48.66	-9.11	39.55	54.00	14.45	Horizontal	

Test channel: Highest channel							
Detector: Peak Value							
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
4924.00	56.08	-8.74	47.34	74.00	26.66	Vertical	
4924.00	55.50	-8.74	46.76	74.00	27.24	Horizontal	
	Detector: Average Value						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
4924.00	47.98	-8.74	39.24	54.00	14.76	Vertical	
4924.00	47.79	-8.74	39.05	54.00	14.95	Horizontal	

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Final Level = Receiver Read level + Factor.

The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Project No.: JYTSZE2111092

			802.11n(HT20)				
			annel: Lowest ch	nannel			
		De	tector: Peak Valu	ie			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
4824.00	55.69	-9.46	46.23	74.00	27.77	Vertical	
4824.00	55.70	-9.46	46.24	74.00	27.76	Horizontal	
Detector: Average Value							
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
4824.00	48.18	-9.46	38.72	54.00	15.28	Vertical	
4824.00	48.15	-9.46	38.69	54.00	15.31	Horizontal	
		Test ch	nannel: Middle ch	annel			
		De	tector: Peak Valu	ie			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
4874.00	56.27	-9.11	47.16	74.00	26.84	Vertical	
4874.00	54.74	-9.11	45.63	74.00	28.37	Horizontal	
		Dete	ctor: Average Va	lue	_	_	
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
4874.00	48.59	-9.11	39.48	54.00	14.52	Vertical	
4874.00	49.11	-9.11	40.00	54.00	14.00	Horizontal	
		Test ch	annel: Highest cl	nannel			
			tector: Peak Valu				
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
4924.00	56.07	-8.74	47.33	74.00	26.67	Vertical	
4924.00	54.81	-8.74	46.07	74.00	27.93	Horizontal	
Detector: Average Value							
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
4924.00	48.56	-8.74	39.82	54.00	14.18	Vertical	
4924.00	47.78	-8.74	39.04	54.00	14.96	Horizontal	
Remark: 1. Final Level = 1	Receiver Read level	+ Factor.					

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 37 of 40

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

8 EUT Constructional Details

Reference to the test report No.: JYTSZB-R12-2102653.

-----End of report-----

Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366