

Global United Technology Services Co., Ltd.

Report No.: GTS202205000201F03

TEST REPORT

Applicant: Wyrestorm Technologies LLC

Address of Applicant: 23 Wood Rd, Round Lake, New York 12151, United States

Manufacturer/Factory: Shen Zhen Proitav Technology Co., Ltd

Address of 301-401, Building 16, Hejing Industrial Park, No.87, Hexiu

Manufacturer/Factory: West Road, Zhancheng Community, Fuhai St., Baoan District,

Shenzhen, China

Equipment Under Test (EUT)

Product Name: Dongle

Model No.: APO-DG1(UDG-G109-A00)

Trade Mark: WyreStorm

FCC ID: 2A2CW-APO-DG1

FCC CFR Title 47 Part 15 Subpart E Section 15.407 Applicable standards:

Date of sample receipt: May 18, 2022

Date of Test: May 19, 2022-June 02, 2022

Date of report issued: June 02, 2022

Test Result: PASS *

Authorized Signature:

Robinson Luo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver. Page 1 of 30

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	June 02, 2022	Original

Prepared By:	Trankly	Date:	June 02, 2022
	Project Engineer		
Check By:	Reviewer	Date:	June 02, 2022

Report No.: GTS202205000201F03

3 Contents

			Page
1	CO	/ER PAGE	1
2	\/FF	RSION	
_	VER	(SIUN	∠
3	COI	NTENTS	3
4	TES	T SUMMARY	1
-			
	4.1	MEASUREMENT UNCERTAINTY	
5	GEN	NERAL INFORMATION	5
	5.1	GENERAL DESCRIPTION OF EUT	5
	5.2	TEST MODE	
	5.3	DESCRIPTION OF SUPPORT UNITS	6
	5.4	TEST FACILITY	
	5.5	TEST LOCATION	6
6	TES	T INSTRUMENTS LIST	7
7	TES	T RESULTS AND MEASUREMENT DATA	0
'			
	7.1	ANTENNA REQUIREMENT	
	7.2	CONDUCTED EMISSIONS	
	7.3	CONDUCTED PEAK OUTPUT POWER	
	7.4 7.5	CHANNEL BANDWIDTH AND 99% OCCUPIED BANDWIDTH POWER SPECTRAL DENSITY	
	7.6	BAND EDGE	
	7.6.		
	7.7	Spurious Emission	
	7.7.		
	7.8	FREQUENCY STABILITY	
8	TES	T SETUP PHOTO	30
9	EUT	CONSTRUCTIONAL DETAILS	30

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

4 Test Summary

Test Item	Section	Result
Antenna requirement	FCC part 15.203	Pass
AC Power Line Conducted Emission	FCC part 15.207	Pass
Conducted Peak Output Power	FCC part 15.407(a)(3)	Pass
Channel Bandwidth and 99% Occupied Bandwidth	FCC part 15.407(e)	Pass
Power Spectral Density	FCC part 15.407(a)(3)	Pass
Band Edge	FCC part 15.407(b)(4)	Pass
Spurious Emission	FCC part 15.205/15.209/15.407(b)(4)	Pass
Frequency Stability	FCC part 15.407(g)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013.
- 3. Test Method: KDB 662911 D01 Multiple Transmitter Output v02r01

4.1 Measurement Uncertainty

Frequency Range	Measurement Uncertainty	Notes				
9kHz-30MHz	3.1dB	(1)				
30MHz-200MHz	3.8039dB	(1)				
200MHz-1GHz	3.9679dB	(1)				
1GHz-18GHz	4.29dB	(1)				
18GHz-40GHz	3.30dB	(1)				
AC Power Line Conducted 0.15MHz ~ 30MHz 3.44dB (1)						
	9kHz-30MHz 30MHz-200MHz 200MHz-1GHz 1GHz-18GHz 18GHz-40GHz	9kHz-30MHz 3.1dB 30MHz-200MHz 3.8039dB 200MHz-1GHz 3.9679dB 1GHz-18GHz 4.29dB 18GHz-40GHz 3.30dB				

5 General Information

5.1 General Description of EUT

Product Name:	Dongle
Model No.:	APO-DG1(UDG-G109-A00)
Serial No.:	WS1635000001
Test sample(s) ID:	GTS202205000201-1
Sample(s) Status:	Engineer sample
Operation Frequency:	802.11ac(VHT20): 5745MHz~5805MHz
Channel numbers:	4
Channel bandwidth:	20MHz
Modulation technology:	Orthogonal Frequency Division Multiplexing (OFDM)
Antenna Type:	Integral Antenna
Antenna gain:	2dBi
Power supply:	Input: DC 5V, 0.25A,1.25W

Operation Frequency each of channel							
Channel Frequency Channel Frequency Channel Frequency Channel Frequence							Frequency
149	5745MHz	153	5765MHz	157	5785MHz	161	5805MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Toot obonnol	Frequency (MHz)
Test channel	802.11ac(VHT20)
Lowest channel	5745
Middle channel	5785
Highest channel	5805

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate	
802.11ac(VHT20)	6.5Mbps	

5.3 Description of Support Units

Manufacturer	Description	Model	Serial Number
ThinkVision	LCD monitor	A12670UP0	N/A
Proitav	Codec	SW-220-TX-W (FSC600-A01)	E4CE0211D5AF

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC—Registration No.: 381383 Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully d escribed in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

• IC —Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

6 Test Instruments list

Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 24 2021	June. 23 2022
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 24 2021	June. 23 2022
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 24 2021	June. 23 2022
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 24 2021	June. 23 2022
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
8	Coaxial Cable	GTS	N/A	GTS213	June. 24 2021	June. 23 2022
9	Coaxial Cable	GTS	N/A	GTS211	June. 24 2021	June. 23 2022
10	Coaxial cable	GTS	N/A	GTS210	June. 24 2021	June. 23 2022
11	Coaxial Cable	GTS	N/A	GTS212	June. 24 2021	June. 23 2022
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 24 2021	June. 23 2022
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 24 2021	June. 23 2022
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 24 2021	June. 23 2022
15	Band filter	Amindeon	82346	GTS219	June. 24 2021	June. 23 2022
16	Power Meter	Anritsu	ML2495A	GTS540	June. 24 2021	June. 23 2022
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 24 2021	June. 23 2022
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 24 2021	June. 23 2022
19	Splitter	Agilent	11636B	GTS237	June. 24 2021	June. 23 2022
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 24 2021	June. 23 2022
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 17 2021	Oct. 16 2022
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 17 2021	Oct. 16 2022
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 17 2021	Oct. 16 2022
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 24 2021	June. 23 2022

Report No.: GTS202205000201F03

Con	Conducted Emission							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.14 2022	May.13 2025		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 24 2021	June. 23 2022		
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 24 2021	June. 23 2022		
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	June. 24 2021	June. 23 2022		
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A		
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
7	Thermo meter	KTJ	TA328	GTS233	June. 24 2021	June. 23 2022		
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 24 2021	June. 23 2022		
9	ISN	SCHWARZBECK	NTFM 8158	GTS565	June. 24 2021	June. 23 2022		
10	High voltage probe	SCHWARZBECK	TK9420	GTS537	July. 09 2021	July. 08 2022		

RF C	RF Conducted Test:								
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 24 2021	June. 23 2022			
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 24 2021	June. 23 2022			
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 24 2021	June. 23 2022			
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 24 2021	June. 23 2022			
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 24 2021	June. 23 2022			
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 24 2021	June. 23 2022			
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 24 2021	June. 23 2022			
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 24 2021	June. 23 2022			

Gene	General used equipment:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)				
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 24 2021	June. 23 2022				
2	Barometer	ChangChun	DYM3	GTS255	June. 24 2021	June. 23 2022				

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The antenna is Integral antenna, the best case gain of the antenna is 2dBi, reference to the appendix II for details

7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207						
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	150KHz to 30MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9KHz, VBW=30KH	z, Sweep time=	=auto				
Limit:	- 441		Limit (dBuV)			
	Frequency range (MHz	Frequency range (MHz) Quasi-peak Ave					
	0.15-0.5		to 56*	56 to	46*		
	0.5-5		56	40			
	5-30		60	50	0		
Test setup:	* Decreases with the loga		quency.				
Test procedure:	Reference Plane LISN 40cm 80cm Filter AC power Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators are connected to the main power through a						
	 line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar						
Test voltage:	AC 120V, 60Hz						
Test results:	Pass						
		The second second second second			The Part of the Pa		

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

Measurement data

Line:

Report No.: GTS202205000201F03

Neutral:

Report No.: GTS202205000201F03

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both *limits and measurement with the average detector receiver is unnecessary.*

7.3 Conducted Peak Output Power

7.4 Channel Bandwidth and 99% Occupied Bandwidth

Test Requirement:	FCC Part15 E Section 15.407(e)				
Test Method:	ANSI C63.10:2013 and KDB 789033 D02 General U-NII Test Procedures New Rules v02r01				
Limit:	>500KHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

7.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407(a)(3)				
Test Method:	ANSI C63.10:2013 and KDB 789033 D02 General U-NII Test Procedures New Rules v02r01				
Limit:	30dBm/500kHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

7.6 Band edge

7.6.1 Radiated Emission Method

Test Frequency Range:		, only worse cas	e is reporte	-						
Test site:	Measurement D		e is reporte	The Part of the Land of the Land						
		Distance: 3m	9kHz to 40GHz, only worse case is reported							
Receiver setup:	Frequency	Measurement Distance: 3m								
		Detector	RBW	VBW	Value					
	Above 10Hz	Peak	1MHz	3MHz	Peak					
	Above 1GHz RMS 1MHz 3MHz RM									
	All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.									
Test setup:	Turn Table+ X to	< 3m	Test Antenna	1						
	the ground a determine the determine the second antenna, whi tower. 3. The antenna ground to de horizontal an measuremer 4. For each sus and then the and the rota the maximum 5. The test-rece Specified Ba 6. If the emission the limit specified by the EUT with have 10dB might peak or aversible to the second and the s	t a 3 meter came e position of the set 3 meters a che was mounted termine the maximum that wertical polarizat. Spected emission antenna was turted was turned and reading. Seiver system was not in level of the Electrical that it is not be reported and margin would be age method as set in the position of the electrical that is not be set in the position of the electrical that is not be set in the position of the electrical that is not be set in the position of the electrical that is not be set in the position of the electrical that is not be set in the position of the electrical that is not be set in the position of the electrical that is not be set in the position of the electrical that is not be set in the position of the electrical that is not be set in the position of the electrical that is not be set in the position of the electrical that is not be set in the position of the electrical that is not be set in the electr	ber. The tall highest rack way from the don the top from one natimum value zations of the cations of the cation	ole was rotadiation. The interference of a variable of the field one antennatives arrange of the field of the	r meters above the distrength. Both are set to make the ed to its worst case meter to 4 meters 0 degrees to find function and 10dB lower than ad the peak values sions that did not ising peak, quasi-					

	Report No.: GTS202205000201F03
	worst case mode is recorded in the report.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Remarks:

- 1. Only the worst case Main Antenna test data..
- 2. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.
- 5. According to KDB 789033 D02v02r01 section G) 1) d),for measurements above 1000 MHz @3m distance, the limit of field strength is computed as follows:

E[dBuV/m] = EIRP[dBm] + 95.2;

E[dBuV/m] = -27 + 95.2 = 68.2dBuV/m.

E[dBuV/m] = 10 + 95.2 = 105.2dBuV/m.

E[dBuV/m] = 15.6 + 95.2 = 110.8dBuV/m.

E[dBuV/m] = 27 + 95.2 = 122.2dBuV/m

Measurement data:

Measurement data:										
	IEEE 802.11ac(VHT20)									
Peak value:										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5650	29.83	32.36	9.72	23.83	48.08	68.2	-20.12	Horizontal		
5700	30.39	32.5	9.79	23.84	48.84	105.2	-56.36	Horizontal		
5720	28.37	32.53	9.81	23.85	46.86	110.8	-63.94	Horizontal		
5725	28.30	32.53	9.83	23.86	46.80	122.2	-75.40	Horizontal		
5850	31.18	32.7	9.99	23.87	50.00	122.2	-72.20	Horizontal		
5855	28.71	32.72	9.99	23.88	47.54	110.8	-63.26	Horizontal		
5875	30.91	32.74	10.04	23.89	49.80	105.2	-55.40	Horizontal		
5925	31.04	32.8	10.11	23.9	50.05	68.2	-18.15	Horizontal		
5650	26.39	32.36	9.72	23.83	44.64	68.2	-23.56	Vertical		
5700	31.12	32.5	9.79	23.84	49.57	105.2	-55.63	Vertical		
5720	26.21	32.53	9.81	23.85	44.70	110.8	-66.10	Vertical		
5725	28.08	32.53	9.83	23.86	46.58	122.2	-75.62	Vertical		
5850	26.16	32.7	9.99	23.87	44.98	122.2	-77.22	Vertical		
5855	30.61	32.72	9.99	23.88	49.44	110.8	-61.36	Vertical		
5875	27.15	32.74	10.04	23.89	46.04	105.2	-59.16	Vertical		
5925	30.70	32.8	10.11	23.9	49.71	68.2	-18.49	Vertical		

7.7 Spurious Emission

7.7.1 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209, Part 15E Section 15.407(b)(4)									
Test Method:	ANSI C63.10:2013									
Test Frequency Range:	9kHz to 40GHz									
Test site:	Measurement Distance: 3m									
Receiver setup:	Frequency	Frequency Detector		VBW	Value					
	9kHz-150KHz	Quasi-peak	200Hz	1kHz	Quasi-peak Value					
	150kHz-30MHz	Quasi-peak	9kHz	30kHz	Quasi-peak Value					
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value					
	Above 1GHz	Peak	1MHz	3MHz	Peak Value					
		AV	1MHz	3MHz	Average Value					
FCC Limit:	Frequency (MHz) Fiel	ld strength (microvo	lts/meter)	Measuremen	nt distance (meters)					
		00/F(kHz)	,		300					
	0.490-1.705 240	000/F(kHz)			30					
	1.705-30.0 30				30					
	30-88 100 88-216 150				3					
	216-960 200				3					
	Above 960 500)			3					
	The emission lim measurements e the frequency ba MHz. Radiated e measurements e	employing a C ands 9-90 kHz emission limits	CISPR qua z, 110-490 s in these t	si-peak de kHz and a hree band	etector except for above 1000					
Test setup:	For radiated emi	ssions from 9	kHz to 30l	MHz						
	Turn Table EUT Im Receiver									
	i oi radiated emi		JOIVII IZ LOT	O1 12	For radiated emissions from 30MHz to1GHz					

Report No.: GTS202205000201F03

For radiated emissions above 1GHz

Test Procedure:

- The EUT was placed on the top of a rotating table (0.8m for below 1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet.
- 7. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 20 of 30

		Report No.: GTS202205000201F03					
	worst case mode is recorded in the report.						
Test Instruments:	Refer to see	Refer to section 6.0 for details					
Test mode:	Refer to see	Refer to section 5.2 for details					
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar	
Test voltage:	AC 120V, 60Hz						
Test results:	Pass						

Remarks:

- 1. Only the worst case Main Antenna test data.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement Data:

9 kHz ~ 30 MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Report No.: GTS202205000201F03

Below 1GHz

Test mode: 802.11ac(VHT20) Test channel: Lowest Polarziation: Horizontal

Report No.: GTS202205000201F03

Test mode: 802.11ac(VHT20) Test channel: Lowest Polarziation: Vertical

Report No.: GTS202205000201F03

Test mode: 802.11ac(VHT20) Test channel: Middle Polarziation: Horizontal

Report No.: GTS202205000201F03

Test mode: 802.11ac(VHT20) Test channel: Middle Polarziation: Vertical

Report No.: GTS202205000201F03

Test mode: 802.11ac(VHT20) Test channel: Highest Polarziation: Horizontal

Report No.: GTS202205000201F03

Test mode: 802.11ac(VHT20) Test channel: Highest Polarziation: Vertical

Above 1GHz:

802.11ac(VHT20)					Test Frequency: 5745MHz				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)		eamp or (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
11490	26.75	39.4	8.73	3	6.3	38.58	68.2	-29.62	Horizontal
17235	26.43	41	11.37	36	5.28	42.52	68.2	-25.68	Horizontal
11490	27.59	39.4	8.73	3	6.3	39.42	68.2	-28.78	Vertical
17235	29.37	41	11.37	36	5.28	45.46	68.2	-22.74	Vertical
	802.11	ac(VHT20)				Test	Frequency:	5785MHz	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)		eamp or (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
11570	26.74	39.28	8.77	36	5.29	38.50	68.2	-29.70	Horizontal
17355	26.86	41.52	11.48	30	5.26	43.60	68.2	-24.60	Horizontal
11570	26.85	39.28	8.77	30	5.29	38.61	68.2	-29.59	Vertical
17355	28.45	41.52	11.48	36	6.26	45.19	68.2	-23.01	Vertical
	802.11	ac(VHT20)				Test	Frequency:	5805MHz	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)		eamp or (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
11610	27.38	39.12	8.79	36	6.27	39.02	68.2	-29.18	Horizontal
17415	29.28	41.9	11.58	36	6.25	46.51	68.2	-21.69	Horizontal
11610	29.11	39.12	8.79	36	6.27	40.75	68.2	-27.45	Vertical
17415	27.64	41.9	11.58	30	5.25	44.87	68.2	-23.33	Vertical

Notes:

- 1. Measure Level = Reading Level + Factor.
- 2. The test trace is same as the ambient noise (the test frequency range: 18GHz~40GHz), therefore no data appear in the report.
- 3. The test result on peak is lower than average limit, then average measurement needn't be performed.

7.8 Frequency stability

Test Requirement:	FCC Part15 C Section 15.407(g)					
Test Method:	ANSI C63.10:2013, FCC Part 2.1055					
Limit:	Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified					
Test Procedure:	The EUT was setup to ANSI C63.4, 2003; tested to 2.1055 for compliance to FCC Part 15.407(g) requirements.					
Test setup:	Spectrum analyzer Att. Note: Measurement setup for testing on A	Temperature Chamber EUT Variable Power Supply Antenna connector				
Test Instruments:	Refer to section 6 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

----END-----