

FCC 47 CFR PART 15 SUBPART C ISED RSS-210 ISSUE 9

CERTIFICATION TEST REPORT

For

Contact Sensor

MODEL NUMBER: 5AT3S2

FCC ID: 2AB2Q5AT3S2 IC: 10256A-5AT3S2

REPORT NUMBER: 4789271186.1-2

ISSUE DATE: December 10, 2019

Prepared for

LEEDARSON LIGHTING CO., LTD.
Xingtai Industrial Zone, Economic Development Zone, Changtai County,
Zhangzhou City, Fujian Province, P.R.China

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch Room 101, Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

> Tel: +86 769 33817100 Fax: +86 769 33244054 Website: www.ul.com

Test Result: PASS

*For the detail, please refer to page 11.

REPORT NO.: 4789271186.1-2 Page 2 of 40

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	12/10/2019	Initial Issue	

TABLE OF CONTENTS

1. A	TTESTATION OF TEST RESULTS	4
2. T	EST METHODOLOGY	5
3. F	ACILITIES AND ACCREDITATION	5
4. C	ALIBRATION AND UNCERTAINTY	6
4.1.	MEASURING INSTRUMENT CALIBRATION	6
4.2.	MEASUREMENT UNCERTAINTY	6
5. E	QUIPMENT UNDER TEST	7
5.1.	DESCRIPTION OF EUT	7
5.2.	MAXIMUM EMISSIONS FIELD STRENGTH	7
5.3.	THE WORSE CASE POWER SETTING PARAMETER	8
5.4.	TEST ENVIRONMENT	8
5.5.	TEST CHANNEL CONFIGURATION	8
5.6.	DESCRIPTION OF AVAILABLE ANTENNAS	9
5.7.	DESCRIPTION OF TEST SETUP	9
5.8.	MEASURING INSTRUMENT AND SOFTWARE USED	10
6. S	UMMARY OF TEST RESULTS1	12
7. A	NTENNA PORT TEST RESULTS1	13
7.1.	ON TIME AND DUTY CYCLE	13
7.2.	20 dB AND 99% BANDWIDTH	14
8. R	ADIATED TEST RESULTS1	17
8.1.	LIMITS AND PROCEDURE	17
8.2.	FIELD STRENGTH OF INTENTIONAL EMISSIONS2	23
8.3.	SPURIOUS EMISSIONS BELOW 30M2	29
8.4.	SPURIOUS EMISSIONS BELOW 1 GHz	32
8.5.	SPURIOUS EMISSIONS 1 ~ 10GHz	34
ο Λ	NTENNA REQUIREMENTS	10

REPORT NO.: 4789271186.1-2 Page 4 of 40

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: LEEDARSON LIGHTING CO., LTD.

Address: Xingtai Industrial Zone, Economic Development Zone, Changtai

County, Zhangzhou City, Fujian Province, P.R China

Manufacturer Information

Company Name: LEEDARSON LIGHTING CO., LTD.

Address: Xingtai Industrial Zone, Economic Development Zone, Changtai

County, Zhangzhou City, Fujian Province, P.R China

EUT Information

EUT Name: Contact Sensor

Model: 5AT3S2

Sample Received Date: November 27, 2019

Sample Status: Normal Sample ID: 2718943

Date of Tested: December 2~10, 2019

APPLICABLE STANDARDS

STANDARD	TEST RESULTS
CFR 47 Part 15 Subpart C	PASS
ISED RSS-210 Issue 9	PASS
ISED RSS-GEN Issue 5	PASS

Shemy les

Prepared By: Checked By:

Kebo Zhang Shawn Wen
Project Engineer Laboratory Leader

Approved By:

Kelo. zhang.

Stephen Guo Laboratory Manager

Sephenbuo

REPORT NO.: 4789271186.1-2 Page 5 of 40

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, ANSI C63.10-2013,ISED RSS-210 Issue 9 and RSS-GEN Issue 5

3. FACILITIES AND ACCREDITATION

	A2LA (Certificate No.: 4102.01)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with A2LA.
	IAS (Lab Code: TL-702)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has demonstrated compliance with ISO/IEC Standard 17025:2005,
	General requirements for the competence of testing and calibration
	laboratories
	FCC (FCC Designation No.: CN1187)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	Has been recognized to perform compliance testing on equipment subject
Accreditation	to the Commission's Delcaration of Conformity (DoC) and Certification
Certificate	rules
	IC(Company No.: 21320)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been registered and fully described in a report filed with ISED. The
	Company Number is 21320.
	VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with VCCI, the
	Membership No. is 3793.
	Facility Name:
	Chamber D, the VCCI registration No. is G-20019 and R-20004
	Shielding Room B, the VCCI registration No. is C-20012 and T-20011

Note 1: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

Note 2: The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3: For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30MHz had been correlated to measurements performed on an OFS.

REPORT NO.: 4789271186.1-2 Page 6 of 40

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty
Uncertainty for Conduction emission test	2.90dB
Uncertainty for Radiation Emission test(include Fundamental emission) (9KHz-30MHz)	2.2dB
Uncertainty for Radiation Emission test(include Fundamental emission) (30MHz-1GHz)	4.52dB
Uncertainty for Radiation Emission test	5.04dB(1-6GHz)
(1GHz to 26GHz)(include Fundamental	5.30dB (6GHz-18Gz)
emission)	5.23dB (18GHz-26Gz)

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

REPORT NO.: 4789271186.1-2 Page 7 of 40

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

Equipment	Contact Sensor		
Model Name	5AT3S2		
	908.4 MHz:40kbps/FSK		
Data Rates/Modulation	908.42 MHz:9.6kbps/FSK		
	916.0 MHz:100kbps/GFSI	К	
	Channel ID	Channel Frequency(MHz)	
Transmit Channel Tested:	1	908.40	
Transmit Chamilet Testeu.	2 908.42		
	3 916.00		
Power Supply	DC 3V		

5.2. MAXIMUM EMISSIONS FIELD STRENGTH

Frequency Band (MHz)	Number of Transmit Chains (NTX)	Operation Frequency (MHz)	Channel Number	Max. Emissions Field Strength (dBµV/m)
902-928	1	908.4-916	1[3]	92.86

REPORT NO.: 4789271186.1-2 Page 8 of 40

5.3. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 908.4~916MHz					
Test Software sscom					
Modulation Type	Transmit Antenna	Test Software Setting Value			
iviodulation Type	Number	916MHz	908.42MHz	908.4MHz	
FSK&GFSK	1	15(raw)	15(raw)	15(raw)	

Note:

- 1. raw is the test software setting description provide by customer.
- 2. All tests executed under maximum input levels.

5.4. TEST ENVIRONMENT

Environment Parameter	Selected Values During Tests		
Relative Humidity	55 ~ 65%		
Atmospheric Pressure:	1	025Pa	
Temperature	TN	23 ~ 28°C	
	VL	N/A	
Voltage :	VN	DC 3V	
	VH	N/A	

Note: VL= Lower Extreme Test Voltage

VN= Nominal Voltage

VH= Upper Extreme Test Voltage

TN= Normal Temperature

5.5. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel Number	Test Channel
Z-wave	CH 1, CH 2, CH 3/ Low, Middle, High	908.4MHz, 908.42MHz, 916MHz

REPORT NO.: 4789271186.1-2 Page 9 of 40

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Ant.	Frequency (MHz)	Antenna Type	Antenna Gain (dBi)
1	908.4~916	IFA Antenna	-1

5.7. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name
1	Laptop	ThinkPad	T460S
2	USB to Serial Conversion board	N/A	N/A

I/O CABLES

No.	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	N/A	N/A	N/A	N/A	N/A


ACCESSORY

Item	Accessory	Brand Name	Model Name	Description
1	N/A	N/A	N/A	N/A

TEST SETUP

The EUT can work in an engineer mode with a software through a table PC.

SETUP DIAGRAM FOR TESTS

REPORT NO.: 4789271186.1-2 Page 10 of 40

5.8. MEASURING INSTRUMENT AND SOFTWARE USED

For the previous calibration information

	For the previous calibration information Conducted Emissions								
	Instrument								
Used	Equipment	Manufacturer		del 1		Seri	al No.	Last Cal.	Next Cal.
⊠ ⊠	EMI Test Receiver	R&S		ESR			1961	Dec.10,2018	Dec.10,2019
\boxtimes	Two-Line V- Network	R&S		NV2			1983	Dec.10,2018	Dec.10,2019
\boxtimes	Artificial Mains Networks	Schwarzbeck	NS	LK 8	126	812	6465	Dec.10,2018	Dec.10,2019
	Software								
Used	Des	cription			Man	ufactu	ırer	Name	Version
\boxtimes	Test Software for C	Conducted distu	rband	се	F	arad		EZ-EMC	Ver. UL-3A1
	Radiated Emissions								
Instrument									
Used	Equipment	Manufacturer	Мс	del 1	No.	Seri	al No.	Last Cal.	Next Cal.
V	MXE EMI Receiver	KESIGHT	N	N9038A			56400 36	Dec.10,2018	Dec.10,2019
V	Hybrid Log Periodic Antenna	TDK	HLF	- 300	03C	130	0960	Sep.17, 2018	Sep.17, 2021
V	Preamplifier	HP	8	3447[D		1A090 99	Dec.10,2018	Dec.10,2019
V	EMI Measurement Receiver	R&S	Е	SR2	:6	10 ⁻	1377	Dec.10,2018	Dec.10,2019
$\overline{\checkmark}$	Horn Antenna	TDK	HR	N-01	118	130	0939	Sep.17, 2018	Sep.17, 2021
V	Preamplifier	TDK	PA-	02-0	118		S-305- 066	Dec.10,2018	Dec.10,2019
V	Preamplifier	TDK	P	A-02	-2		3-307- 003	Dec.10,2018	Dec.10,2019
\checkmark	Loop antenna	Schwarzbeck	1	519I	В	00	800	Jan.07, 2019	Jan.07, 2022
V	High Pass Filter	Wi		WHJ10-882- 980- 10000-40SS		82	345	Dec.10,2018	Dec.10,2019
	Software								
Used	Descr	ription		Man	ufac	turer		Name	Version
V	Test Software for R	adiated disturba	ince	F	Fara	b		EZ-EMC	Ver. UL-3A1
		Ot	her ir	nstrui	ment	S			
Used	Equipment	Manufacturer	Mod	el No	o. S	Serial	No.	Last Cal.	Next Cal.
\checkmark	Spectrum Analyzer	Keysight	N90)30A	M'	Y554′	10512	Dec.10,2018	Dec.10,2019

REPORT NO.: 4789271186.1-2 Page 11 of 40

For the last calibration information

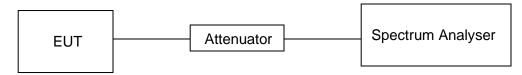
Conducted Emissions									
			Insti	rum	ent				
Used	Equipment	Manufacturer	Мо	del	No.	Seria	al No.	Last Cal.	Next Cal.
X	EMI Test Receiver	R&S	E	ESR	R3	101	1961	Dec.05,2019	Dec.05,2020
X	Two-Line V- Network	R&S	El	NV2	216	10	1983	Dec.05,2019	Dec.05,2020
X	Artificial Mains Networks	Schwarzbeck	NSI	LK 8	8126	812	6465	Dec.05,2019	Dec.05,2020
	Software								
Used	Des	cription			Mar	nufactu	ırer	Name	Version
\boxtimes	Test Software for C	Conducted distu	rband	е		Farad		EZ-EMC	Ver. UL-3A1
	Radiated Emissions								
			Insti	rum	ent				
Used	Equipment	Manufacturer	Мо	del	No.	Seria	al No.	Last Cal.	Next Cal.
V	MXE EMI Receiver	KESIGHT	N:	903	88A		6400 36	Dec.06,2019	Dec.06,2020
V	Hybrid Log Periodic Antenna	TDK	HLF	-30	03C	130	960	Sep.17, 2018	Sep.17, 2021
V	Preamplifier	HP	8	3447	7D		1A090 99	Dec.05,2019	Dec.05,2020
V	EMI Measurement Receiver	R&S	E	SR	26	101	1377	Dec.05,2019	Dec.05,2020
V	Horn Antenna	TDK	HR	N-C)118	130	939	Sep.17, 2018	Sep.17, 2021
V	Preamplifier	TDK	PA-	02-	0118	00	3-305- 066	Dec.05,2019	Dec.05,2020
V	Preamplifier	TDK	P	A-02	2-2		5-307- 003	Dec.05,2019	Dec.05,2020
$\overline{\checkmark}$	Loop antenna	Schwarzbeck	1	519	9B	00	800	Jan.07, 2019	Jan.07, 2022
V	High Pass Filter	Wi	WHJ10-882- 980- 10000-40SS		82	345	Dec.05,2019	Dec.05,2020	
			Sof	ftwa	are				
Used	Used Description			Ма	nufa	cturer		Name	Version
V	Test Software for R	adiated disturba	ance		Fara	ad		EZ-EMC	Ver. UL-3A1
		Ot	her in	nstru	umer	nts			
Used	Equipment	Manufacturer	Mode	el N	lo.	Serial	No.	Last Cal.	Next Cal.
V	Spectrum Analyzer	Keysight	N90)30/	A N	1Y5541	0512	Dec.06,2019	Dec.06,2020

REPORT NO.: 4789271186.1-2 Page 12 of 40

6. SUMMARY OF TEST RESULTS

	Summary of Test Results					
Clause	Test Items	FCC/IC Rules	Test Results			
1	20dB Bandwidth	FCC Part 15.215(c)	Pass			
2	99%dB Bandwidth	RSS-Gen Clause 6.7	Pass			
3	TX Spurious Emission	FCC 15.249 (a)(d)(e) FCC 15.209 FCC 15.205 RSS-GEN Clause 8.9 RSS-GEN Clause 8.10	Pass			
4	Conducted Emission Test for AC Power Port	FCC 15.207 RSS-GEN Clause 8.8	N/A			
5	Antenna Requirement	FCC Part 15.203 RSS-GEN Clause 6.8	Pass			
	"N/A" denotes test is not applicable in this test report					

REPORT NO.: 4789271186.1-2 Page 13 of 40


7. ANTENNA PORT TEST RESULTS

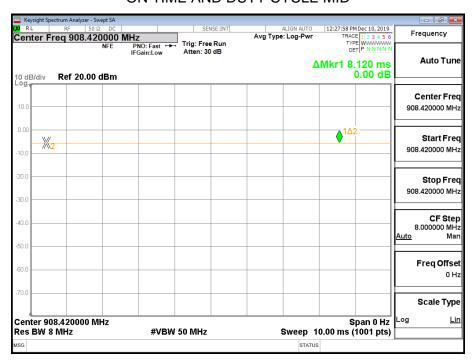
7.1. ON TIME AND DUTY CYCLE

LIMITS

None; for reporting purposes only

TEST SETUP

RESULTS


Test Channel	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (db)	minimum VBW 1/T (KHz)
MID	1	1	1	100%	0	0.01

Note: Duty Cycle Correction Factor=10log(1/x).

Where: x is Duty Cycle (Linear)

Where: T is On Time (transmit duration)

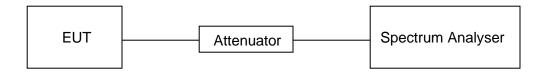
ON TIME AND DUTY CYCLE MID

REPORT NO.: 4789271186.1-2 Page 14 of 40

7.2. 20 dB AND 99% BANDWIDTH

LIMITS

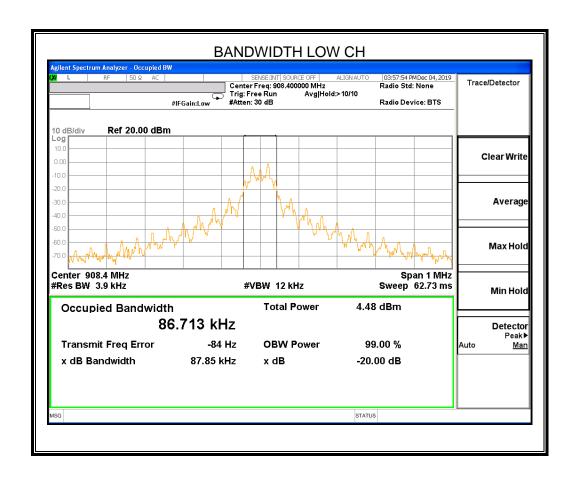
FCC Part15 (15.249) , Subpart C						
Section	Test Item	Limit	Frequency Range (MHz)			
FCC 15.215(c)	20dB Bandwidth	for reporting purposes only	902-928 MHz			
RSS-Gen Clause 6.7	99% Bandwidth	N/A	902-928MHz			


TEST PROCEDURE

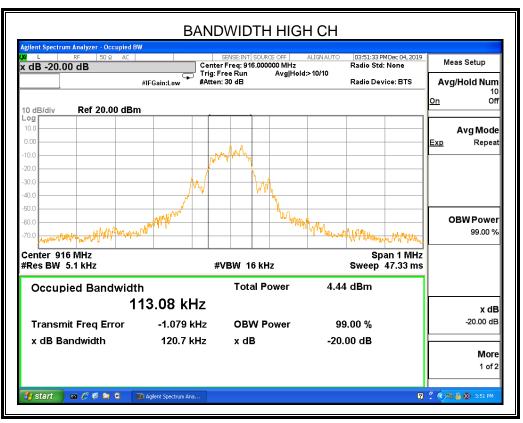
Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	1% to 5% of the occupied bandwidth
VBW	≥ 3×RBW
Trace	Max hold
Sweep	Auto couple

Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.


TEST SETUP




REPORT NO.: 4789271186.1-2 Page 15 of 40

RESULTS

Channel	20dB bandwidth (KHz)	99% bandwidth (KHz)	Result
Low	87.85	86.713	Pass
Middle	98.90	89.161	Pass
High	120.7	113.08	Pass

REPORT NO.: 4789271186.1-2 Page 17 of 40

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

LIMITS

Please refer to FCC §15.205 and §15.209 Please refer to FCC §15.249 (a)(d)(e) RSS-210 Issue 9 Clause Annex B B.10

Please refer to ISED RSS-GEN Clause 8.9 and Clause 8.10

The field strength of emissions from intentional radiators operated within these frequency bands					
Frequency (MHz)	Field strength of Fundamental	Field strength of Harmonics	Distance (m)		
902 - 928	50 mV/m (94dBuV/m)	500 uV/m (54dBuV/m)	3		
2400 – 2483.5	50 mV/m (94dBuV/m)	500 uV/m (54dBuV/m)	3		
5725 – 5875	50 mV/m (94dBuV/m)	500 uV/m (54dBuV/m)	3		

Radiation Disturbance Test Limit for FCC (Class B)(9kHz-1GHz)

and Distance Feet Emilities Feet (State B) (State B)						
Frequency	Field Strength	Measurement Distance				
(MHz)	(microvolts/meter)	(meters)				
0.009~0.490	2400/F(kHz)	300				
0.490~1.705	24000/F(kHz)	30				
1.705~30.0	30	30				
30~88	100	3				
88~216	150	3				
216~960	200	3				
960~1000	500	3				

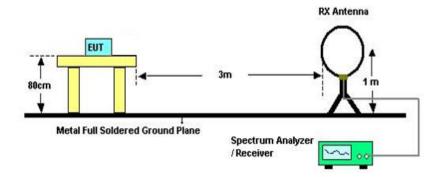
Note: 1) At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. Measurements shall not be performed at a distance greater than 30 meters unless it can be further demonstrated that measurements at a distance of 30 meters or less are impractical. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

(2) At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation

REPORT NO.: 4789271186.1-2 Page 18 of 40

factor (40 dB/decade). This paragraph (f) shall not apply to Access BPL devices operating below 30 MHz.

Radiation Disturbance Test Limit for FCC (Above 1GHz)

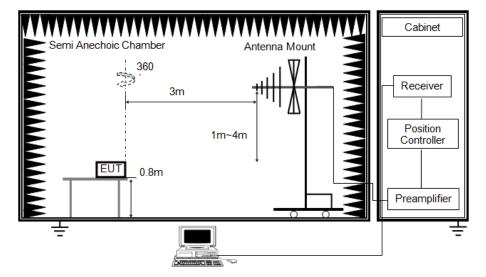

Frequency (MHz)	dB(uV/m) (at 3 meters)		
r requericy (ivil iz)	Peak	Average	
Above 1000	74	54	

About Restricted bands of operation please refer to RSS-Gen section 8.10 and FCC §15.205 (a)

REPORT NO.: 4789271186.1-2 Page 19 of 40

TEST SETUP AND PROCEDURE

Below 30MHz

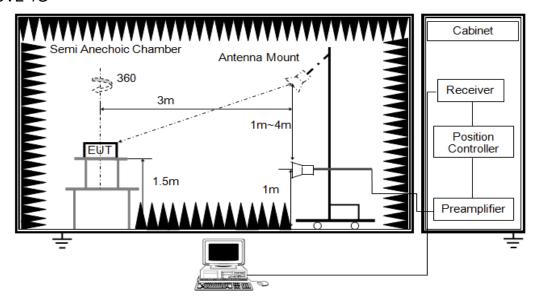

The setting of the spectrum analyser

RBW	200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz)
VBW	200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz)
Sweep	Auto
Detector	Peak/QP/ Average
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013
- 2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Measurement = Reading Level + Correct Factor
- 6. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 7. For the actual test configuration, please refer to the related item in this test report (Photographs of the Test Configuration)
- 8. Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

REPORT NO.: 4789271186.1-2 Page 20 of 40

Below 1G

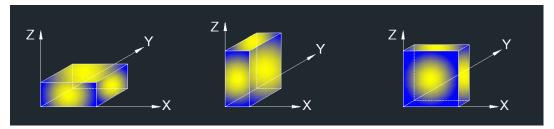

The setting of the spectrum analyser

RBW	120K
VBW	300K
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 0.8 meter above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Measurement = Reading Level + Correct Factor
- 6. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 7. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration)

REPORT NO.: 4789271186.1-2 Page 21 of 40

ABOVE 1G

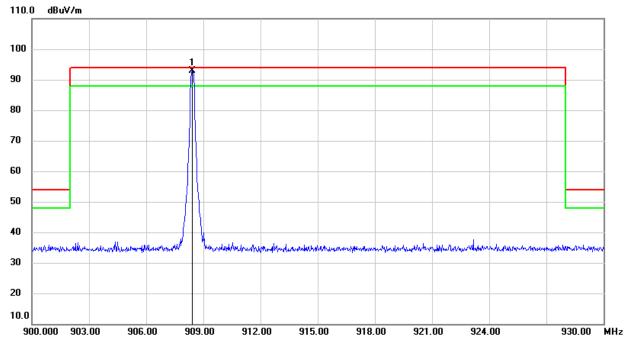

The setting of the spectrum analyser

RBW	1M MHz
1VBW	PEAK: 3M AVG: See Note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 1.5m above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement above 1GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.
- 6. For average power measurement, set the detector to AVG, while maintaining all of the other instrument settings, if the duty cycle of the EUT is less than 98%, the Duty Cycle Correction Factor shall be added to the measured emission levels. For the Duty Cycle and Correction Factor please refer to clause 7.1.ON TIME AND DUTY CYCLE.
- 7. For the actual test configuration, please refer to the related item in this test report (Photographs of the Test Configuration)

REPORT NO.: 4789271186.1-2 Page 22 of 40

X axis, Y axis, Z axis positions:

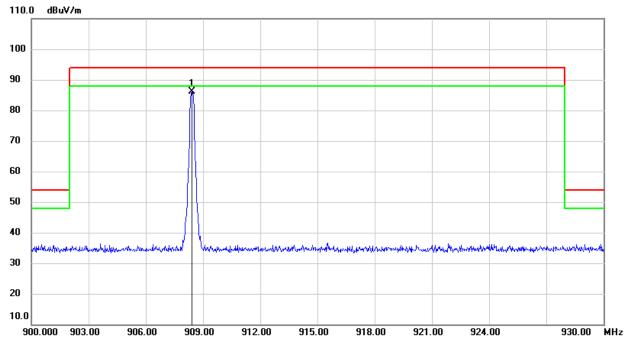


Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

REPORT NO.: 4789271186.1-2 Page 23 of 40

8.2. FIELD STRENGTH OF INTENTIONAL EMISSIONS

FIELD STRENGTH OF INTENTIONAL EMISSIONS (LOW CHANNEL, HORIZONTAL)

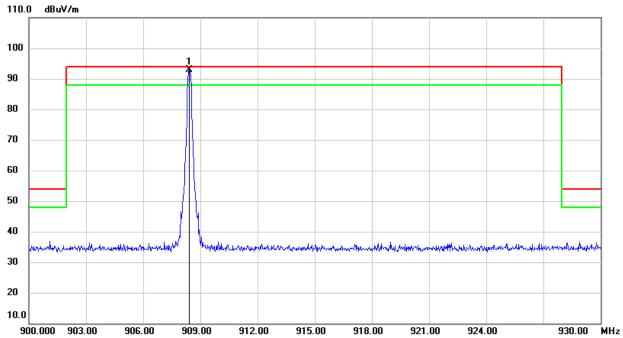


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	908.4000	96.85	-3.99	92.86	94.00	-1.14	QP

Note: 1. Measurement = Reading Level + Correct Factor.

REPORT NO.: 4789271186.1-2 Page 24 of 40

FIELD STRENGTH OF INTENTIONAL EMISSIONS (LOW CHANNEL, VERTICAL)



No.	Frequency Reading		Correct Result		Limit Margin		Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	908.4000	90.21	-4.00	86.21	94.00	-7.79	QP

Note: 1. Measurement = Reading Level + Correct Factor.

REPORT NO.: 4789271186.1-2 Page 25 of 40

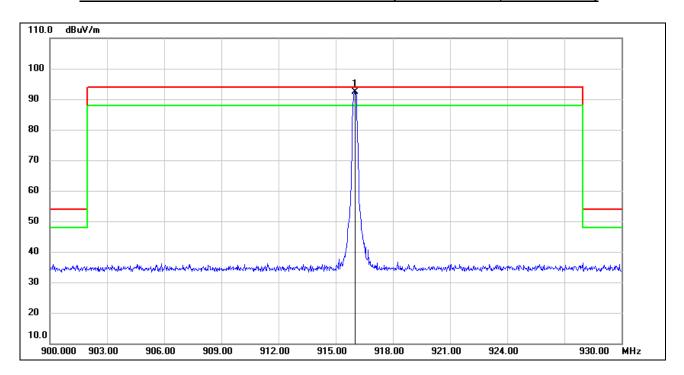


No.	Frequency Reading		Correct Result		Limit Margin		Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	908.4200	96.77	-3.99	92.78	94.00	-1.22	QP

Note: 1. Measurement = Reading Level + Correct Factor.

REPORT NO.: 4789271186.1-2 Page 26 of 40

FIELD STRENGTH OF INTENTIONAL EMISSIONS (MIDDLE CHANNEL, VERTICAL)

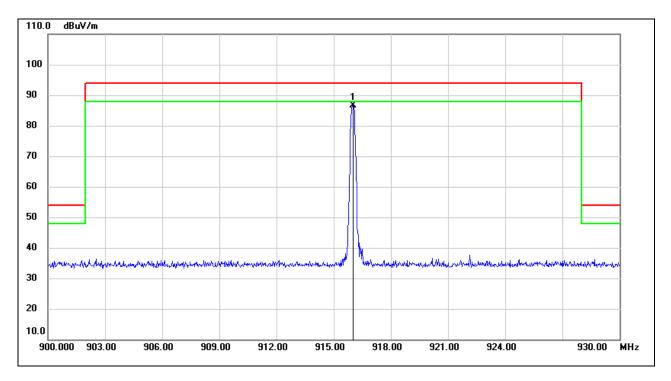


No.	Frequency Reading		Correct Result		Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	908.4200	90.07	-3.99	86.08	94.00	-7.92	QP

Note: 1. Measurement = Reading Level + Correct Factor.

REPORT NO.: 4789271186.1-2 Page 27 of 40

FIELD STRENGTH OF INTENTIONAL EMISSIONS (HIGH CHANNEL, HORIZONTAL)



No.	Frequency Reading		Correct	Correct Result		Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	916.0200	96.33	-3.89	92.44	94.00	-1.56	QP

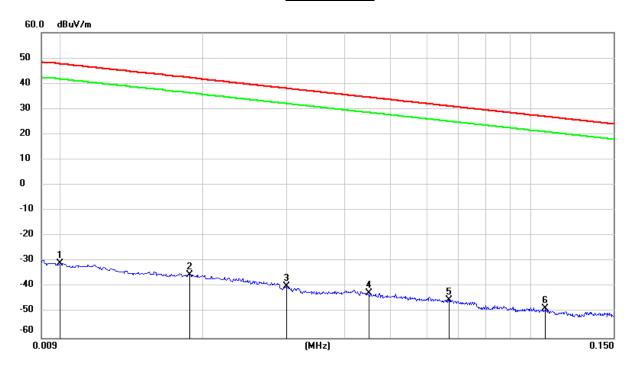
Note: 1. Measurement = Reading Level + Correct Factor.

REPORT NO.: 4789271186.1-2 Page 28 of 40

FIELD STRENGTH OF INTENTIONAL EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency Reading		Reading Correct Result		Limit Margin		Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	916.0200	90.51	-3.89	86.62	94.00	-7.38	QP

Note: 1. Measurement = Reading Level + Correct Factor.

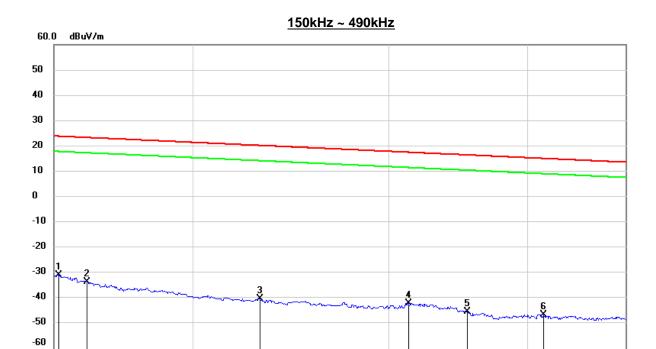

REPORT NO.: 4789271186.1-2 Page 29 of 40

8.3. SPURIOUS EMISSIONS BELOW 30M

SPURIOUS EMISSIONS

(LOW CHANNEL, LOOP ANTENNA FACE ON TO THE EUT, WORST-CASE CONFIGURATION)

9kHz~ 150kHz


No.	Frequency	Reading	Correct	FCC	FCC	ISED	ISED	Margin	Remark
				Result	Limit	Result	Limit		
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.0100	70.72	-101.40	-30.68	47.60	-82.18	-3.9	-78.28	peak
2	0.0187	66.20	-101.35	-35.15	42.16	-86.65	-9.34	-77.31	peak
3	0.0300	61.68	-101.39	-39.71	38.06	-91.21	-13.44	-77.77	peak
4	0.0451	59.09	-101.46	-42.37	34.52	-93.87	-16.98	-76.89	peak
5	0.0666	56.43	-101.55	-45.12	31.13	-96.62	-20.37	-76.25	peak
6	0.1073	53.30	-101.77	-48.47	26.99	-99.97	-24.51	-75.46	peak

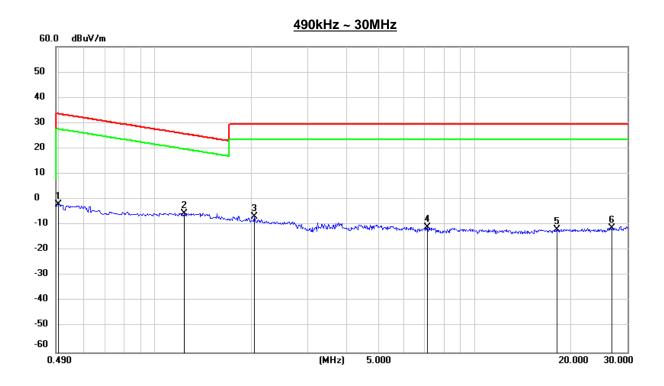
Note: 1. Measurement = Reading Level + Correct Factor.

- 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
- 3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.
 - 4. $dBuA/m = dBuV/m 20log10(120\pi) = dBuV/m 51.5$.

REPORT NO.: 4789271186.1-2 Page 30 of 40

0.490

No.	Frequency	Reading	Correct	FCC Result	FCC Limit	ISED Result	ISED Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.1514	71.18	-101.63	-30.45	24.00	-81.95	-27.50	-54.45	peak
2	0.1607	68.61	-101.65	-33.04	23.48	-84.54	-28.02	-56.52	peak
3	0.2298	62.05	-101.77	-39.72	20.37	-91.22	-31.13	-60.09	peak
4	0.3125	60.33	-101.87	-41.54	17.70	-93.04	-33.8	-59.24	peak
5	0.3528	57.00	-101.91	-44.91	16.65	-96.41	-34.85	-61.56	peak
6	0.4132	56.05	-101.98	-45.93	15.28	-97.43	-36.22	-61.21	peak


(MHz)

Note: 1. Measurement = Reading Level + Correct Factor.

0.150

- 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
- 3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.
 - 4. $dBuA/m = dBuV/m 20log10(120\pi) = dBuV/m 51.5$.

REPORT NO.: 4789271186.1-2 Page 31 of 40

No.	Frequency	Reading	Correct	FCC	FCC	ISED	ISED	Margin	Remark
				Result	Limit	Result	Limit		
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.5000	60.02	-62.07	-2.05	33.62	-53.55	-17.88	-35.67	peak
2	1.2361	56.76	-62.16	-5.40	25.76	-56.9	-25.74	-31.16	peak
3	2.0430	54.95	-61.82	-6.87	29.54	-58.37	-21.96	-36.41	peak
4	7.1298	50.17	-61.19	-11.02	29.54	-62.52	-21.96	-40.56	peak
5	18.0181	49.19	-60.91	-11.72	29.54	-63.22	-21.96	-41.26	peak
6	26.8719	49.04	-60.27	-11.23	29.54	-62.73	-21.96	-40.77	peak

Note: 1. Measurement = Reading Level + Correct Factor.

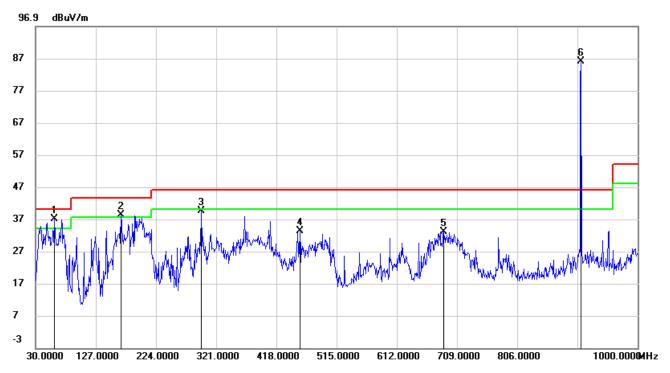
- 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
- 3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.
 - 4. $dBuA/m = dBuV/m 20log10(120\pi) = dBuV/m 51.5$.

Note: All the modes had been tested, but only the worst data recorded in the report.

REPORT NO.: 4789271186.1-2 Page 32 of 40

8.4. SPURIOUS EMISSIONS BELOW 1 GHz

SPURIOUS EMISSIONS BELOW 1GHZ (WORST-CASE LOW CHANNEL, HORIZONTAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	71.7100	54.68	-20.27	34.41	40.00	-5.59	QP
2	186.1700	55.27	-16.62	38.65	43.50	-4.85	QP
3	279.2900	55.29	-14.90	40.39	46.00	-5.61	QP
4	491.7200	45.42	-10.63	34.79	46.00	-11.21	QP
5	694.4500	43.97	-6.73	37.24	46.00	-8.76	QP
6	908.4200	96.62	-3.99	92.63	/	/	Fundamental

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss.

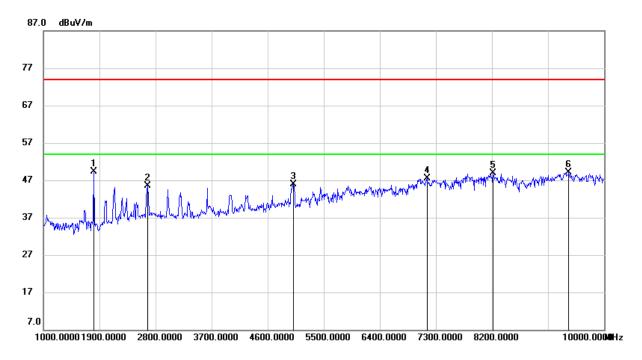
- 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.
- 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.
- 4. About the Fundamental emission test result please refer to section 8.2.

REPORT NO.: 4789271186.1-2 Page 33 of 40

SPURIOUS EMISSIONS BELOW 1GHz (WORST-CASE LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	60.0700	56.43	-19.46	36.97	40.00	-3.03	QP
2	167.7400	55.34	-17.14	38.20	43.50	-5.30	QP
3	296.7500	53.58	-14.04	39.54	46.00	-6.46	QP
4	455.8300	44.73	-11.42	33.31	46.00	-12.69	QP
5	687.6599	40.04	-6.90	33.14	46.00	-12.86	QP
6	908.8200	89.91	-3.98	85.93	/	/	Fundamental

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss.

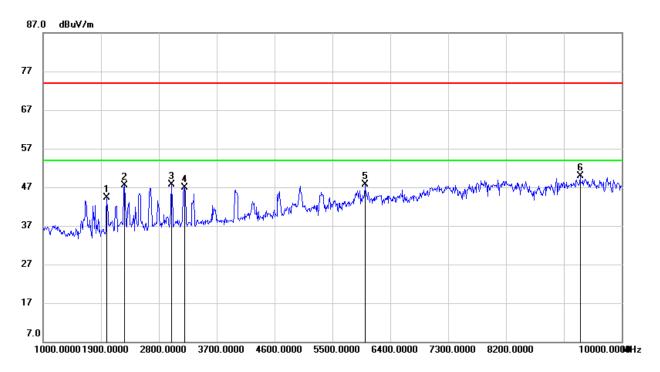

- 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.
- 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto
- 4. About the Fundamental emission test result please refer to section 8.2.

Note: All the modes had been tested, but only the worst data recorded in the report.

REPORT NO.: 4789271186.1-2 Page 34 of 40

8.5. SPURIOUS EMISSIONS 1 ~ 10GHz

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

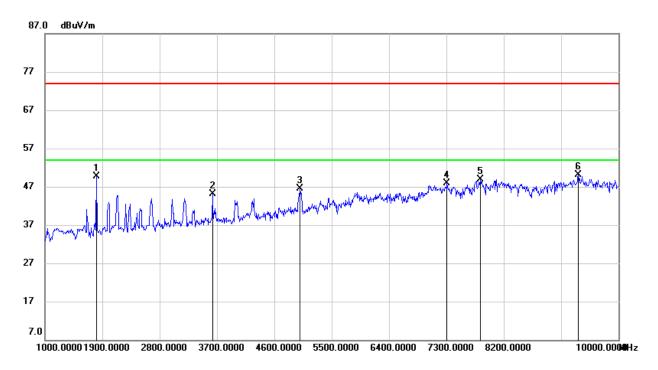


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1810.000	60.21	-10.90	49.31	74.00	-24.69	peak
2	2674.000	53.56	-8.08	45.48	74.00	-28.52	peak
3	5014.000	45.96	-0.03	45.93	74.00	-28.07	peak
4	7156.000	41.03	6.44	47.47	74.00	-26.53	peak
5	8218.000	39.66	9.21	48.87	74.00	-25.13	peak
6	9433.000	38.86	10.30	49.16	74.00	-24.84	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

REPORT NO.: 4789271186.1-2 Page 35 of 40

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

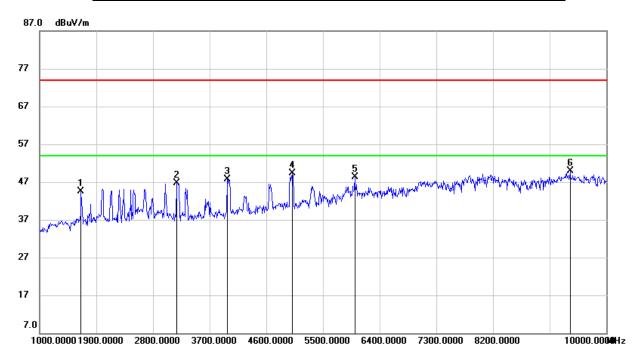


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1990.000	55.10	-10.86	44.24	74.00	-29.76	peak
2	2260.000	57.06	-9.63	47.43	74.00	-26.57	peak
3	2998.000	53.97	-6.27	47.70	74.00	-26.30	peak
4	3196.000	52.81	-5.96	46.85	74.00	-27.15	peak
5	6004.000	44.43	3.30	47.73	74.00	-26.27	peak
6	9352.000	39.88	10.00	49.88	74.00	-24.12	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

REPORT NO.: 4789271186.1-2 Page 36 of 40

HARMONICS AND SPURIOUS EMISSIONS (MIDDLE CHANNEL, HORIZONTAL)

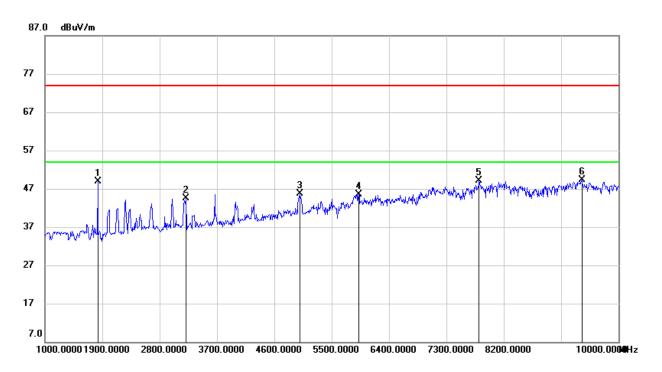


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1810.000	60.51	-10.90	49.61	74.00	-24.39	peak
2	3628.000	49.66	-4.63	45.03	74.00	-28.97	peak
3	5005.000	46.61	-0.04	46.57	74.00	-27.43	peak
4	7309.000	40.96	6.91	47.87	74.00	-26.13	peak
5	7831.000	40.58	8.39	48.97	74.00	-25.03	peak
6	9370.000	40.06	10.10	50.16	74.00	-23.84	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

REPORT NO.: 4789271186.1-2 Page 37 of 40

HARMONICS AND SPURIOUS EMISSIONS (MIDDLE CHANNEL, VERTICAL)

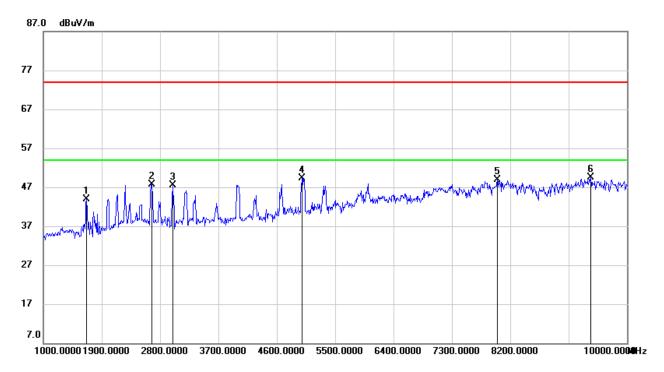


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1657.000	56.59	-12.10	44.49	74.00	-29.51	peak
2	3178.000	52.64	-5.91	46.73	74.00	-27.27	peak
3	3979.000	51.80	-4.10	47.70	74.00	-26.30	peak
4	5014.000	49.43	-0.03	49.40	74.00	-24.60	peak
5	6004.000	45.10	3.30	48.40	74.00	-25.60	peak
6	9424.000	39.61	10.28	49.89	74.00	-24.11	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

REPORT NO.: 4789271186.1-2 Page 38 of 40

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1828.000	59.71	-10.88	48.83	74.00	-25.17	peak
2	3214.000	50.44	-5.93	44.51	74.00	-29.49	peak
3	4996.000	45.77	-0.09	45.68	74.00	-28.32	peak
4	5923.000	41.10	4.50	45.60	74.00	-28.40	peak
5	7813.000	40.61	8.49	49.10	74.00	-24.90	peak
6	9424.000	39.02	10.28	49.30	74.00	-24.70	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

REPORT NO.: 4789271186.1-2 Page 39 of 40

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1666.000	56.08	-12.09	43.99	74.00	-30.01	peak
2	2674.000	55.82	-8.08	47.74	74.00	-26.26	peak
3	2998.000	53.80	-6.27	47.53	74.00	-26.47	peak
4	4987.000	49.42	-0.16	49.26	74.00	-24.74	peak
5	8002.000	41.06	7.91	48.97	74.00	-25.03	peak
6	9442.000	39.29	10.30	49.59	74.00	-24.41	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

REPORT NO.: 4789271186.1-2 Page 40 of 40

9. ANTENNA REQUIREMENTS

APPLICABLE REQUIREMENTS

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

RESULTS

Complies

END OF REPORT