

Report No.:182512C400544104

FCC ID: 2BCAX-HY320M

FCC Test Report

Applicant **GuangDong SINOY Smart Technology CO., LTD**

5TH Floor, Building #2, RunFengZhiGu

Industrial Park Changpin Town, Dong Guan City, **Address**

Guangdong, 523000, China

Product Name Smart Projector

Report Date Aug. 27, 2024

Anbotek Anbotek Shenzhen Anbotek Compliance Laboratory Limited

Anbolek

Contents

1. General Information	Kupo _{lek}	Vup.	Anbotek	Auporg	
1. General Information	During Test	Anoole Anoole Anoole Anoole		A 100 00 00 00 00 00 00 00 00 00 00 00 00	
2.1. EUT Operation		^{We} vjek re _k	hotek	kapon ka	
3. Duty Cycle	100. E		Aupo _{te.}	Vu.,	17
3.1. EUT Operation 3.2. Test Setup 3.3. Test Data	Vipoles Vipoles	VIDO OFOR	16 ¹ 411	wak nabol	
4. Emission bandwidth and occupied	d bandwidth.		2016k	Vupo _{le} , Vu	1
4.1. EUT Operation	^U PO _{IES} PU _O	Vunotek Oper V	VIII OF SE	Pupore _k	
5. Maximum conducted output powe	r _o tek	Anbor		k boles	5
5.1. EUT Operation 5.2. Test Setup 5.3. Test Data	Alborek Alborek	k Vipo _{te} ,	otek vu	000 Kappa	22 22
6. Power spectral density		olek	Vupo _{ler}	Vu _n	bo ^{tek}
6.1. EUT Operation	Yupojek Pul	Auparek Vipolek	Aniotek Aniotek	Aupolek Aupolek	24 22
7. Channel Move Time, Channel Clo	sing Transm	ission Time	k Aupo	e. Yun	,.a
7.1. EUT Operation7.2. Test Setup7.3. Test Data				Vijorek Vijorek Vijorek	
8. DFS Detection Thresholds	olek V	10°		- Aupor	27
8.1. EUT Operation 8.2. Test Setup 8.3. Test Data	Vun	Anbore. Anborek	4	lek Willoke	28 28
9. Band edge emissions (Conducted	1)otek	Aupor	- VIII	Tek VV	29
9.1. EUT Operation 9.2. Test Setup		ie _k Vi	^{''p} o _{fer} l	Anbotak Anbotak	kupotek 3.

Aupolek

Anbolek

Anbolek

Anbotek

Anbotek

Anbotek

Anborek

Anbolek

Aupolek

Anbotek

Anbolek

Anbotek

Anbolek

Anbotek

Anbolek

Anbolek

Anbolek

Anbotek

Anbotek

Anbolek

Anbolek

Anbolek

Anbolek

nbotek

Anbolek

Anbotek

Anbolek

Anboiek

Anbotek

Anbolek

Anbotek

Anbotek

Anbolek

Anbotek

Anbotek

Anbolek

Anboiek

Anbotek

'upolek

otek

Aupolek

potek

Anbolek

Anbolek

'upotek

otek

Anbotek

otek

Anbolek

Anbolek

Anbotek

Aupolek

Aupolek

Anbotek

Anboiek

Anbotek

Aupotek

Anbotek

Anbotek

Anbotek

Aupolek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anboiek

Anbolek

Anbotek

Anbotek

Anbotek

Anbolek

Anbotek

Anbolek

Anbolek

Anbotek

Aupolek

Anbolek

Aupolek

Anboiek

Anboiek

Anbotek

Anbotek

Anbotek

Anbotek

Anbolek

Anbolek

Anbolek

Anbotek

Anbolek

Anbolek

Anbolek

Aupolek

Report No.:182512C400544104 FCC ID: 2BCAX-HY320M

"pole.	Alla	"Olek	Anib. 2001	0.000	apolo	W.	Poles
Alla	Aupolek	Aupa	abotek	Aupor	Work.	Anbore	Vur.
Anbo Q 3	3 Test Data	Anboro	V. Olek	Aupoles	Aug.	abolek	32 ^{Anbo}
ek "up"	-V-	atoote)	Ano	, o'Y	K Aupo,	. 10	02
10. Bar	nd edge emissions	(Radiated)		010 V		40K 4000	33
botek 10	.1. EUT Operation	tek Aup	olo. VII.	191	ooter Aug		~?35
	.2. Test Setup		"olek	Anberek An	784	Upole VI	36
	.3. Test Data		VU.	Polek	Anbo	tek.	37
11 Line	desirable emission	limits (helow	1GHz)	VIII	abotek	Anbe	45° ^{tek}
V-	holo	Br.	Ter	Vupoy.	10K		<u>H</u> O
	1. EUT Operation.		A <u>n</u> 0				47 _{. nb} ot ^e
			/k/00/c	And	الان المناسب المناسب المناسب	k Pupor	47
17.	3. Test Data	e Rapore	,		er Vun		<u>.e.t 48 🕍</u>
. 12. Und	desirable emission	limits (above	1GHz)	DO1.	na You	Ote. Vur	50
upo	10 - 10 - 10 m	Or VI	V	"polek V	700	"Olek V	52 _v
12.	.1. EUT Operation .2. Test Setup	, otek	Aupor	.A	1940 dn	Ken	52
	.3. Test Data	V40	······································	Aupor		" "poke;	503 54
V Upo	40.	"poley		holek	Aup.o.	, tek	04 ofe.
	IDIX I TEST SET			Ans A		dn.4	58
	IDIX II EXTERNA	DV.	. 7	9k/p _{0/e}	Vur.	/k	58 Anbo
APPEN	IDIX III INTERNA	AL PHOTOGE	RAPH		,564	Yu.	58

Anbotek

Anbolek

Anbotek

Anboiek

Anbotek

TEST REPORT

Applicant : GuangDong SINOY Smart Technology CO., LTD

Manufacturer : GuangDong SINOY Smart Technology CO., LTD

Product Name : Smart Projector

Model No. HY320, HY320A, HY320B, HY320C, HY320D, HY320E, HY320F,

HY320G, HY320H, HY320I

Trade Mark : N/A

Rating(s) : Input: 110-240V~, 2.5A, 80W

47 CFR Part 15E

Test Standard(s)

ANSI C63.10-2020

KDB 789033 D02 General UNII Test Procedures New Rules v02r01

KDB 905462 D03 Client Without DFS New Rules v01r02

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with above listed standard(s) requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt:	Jul. 22, 2024
Date of Test:	Jul. 22, 2024 to Aug. 13, 2024
Prepared By:	Nian xiu Chen
abotek Anbotek Amotek	(Nianxiu Chen)
Anbotek Anbotek Anbotek	Bolward pan
Approved & Authorized Signer:	h notek Anbols All Jek Anbols
Anbos Anb	(Edward Pan)

Anbotek

Anbotek

Anbotek

Anbotek

Anbolek

Anbotek

'upolek

Aupolek

Anbotek

Anbolek

Anbotek

Anbotek

Anbolek

Anbolek

Anbotek

Anbolek

Anbolek

Anbolek

Anbolek

Anbolek

Anborek

Anbotek

Aupolek

Aupolek

Anbolek

Anboiek

Anboiek

Anbotek

Anbotek

Anbolek

Anbotek

Report No.:182512C400544104 Anbolek

Anbotek

Anbotek

Anbolek

Anbolek

Aupolek

Anboiek

FCC ID: 2BCAX-HY320M

Anbolek

Anboick Anbolek Page 5 of 58 AND

Anbolek

Anbolek

Anbolek

Anbolek

nbotek

Anbolek

Anbolek

Anbotek

Anbolek

Anbotek

Anbolek

Anbolek

Anbolek

Anbotek

Anbotek

Anbolek

Anbotek

Anbotek

Revision History

Anbo	rek Anborek	riek Aupo	Revision H	listory	k Vupotek	Anboier
<i>i</i> k	Report Version	on	Description	on	Issued	Date
DONSK	R00	Au Vupotek	Original Iss	ue.	Aug. 27	, 2024
Vypolek	Aupolek	Aupolek	Auport. Otek	Vupolek Vin	Vupoles b	"upotek
Aupore	rek vupore	k Vupolok	Vap apolek	Aupolek	Vupor Olek	Aupolek
Y V	boiek Anh	Josek Wup,	ofer Vupore	k Aupole	Vipa Pupa	Aupole

Anbolek

Anbolek

Anbotek

Anbotek

Anbotek

Anbolek

Anbolek

Anbotek

Anbolek

Anbotek

Anbolek Anbolek Anbotek Anboiek Anbotek Anbolek Anbotek Anbotek Anbotek Anbotek Anbotek Anbolek Anbotek Anborek Anbolek Anbotek Anbolek Anbolek Anbotek Aupolek Anbotek Aupolek Anbotek Aupolek Anbotek Anbotek Anbotek Anbotek Anbotek Anboiek Anbotek Anbotek Anborek Anbolek Anbolek Anbolek Anbotek Anbotek Anbotek Anbotek Anbolek Anboiek Anbotek Aupotek Anbotek Anbolek Anbotek Anbotek Anbolek hotek Anborek Anbotek Anbolek Anbolek Anbotek Anbolek Anbotek Anbotek Anbolek Anbotek Anbolek Anbotek Anbotek Anbolek Anbolek Anbotek Anbotek Anbotek Anbolek Anbotek Anbotek Anbotek Anbolek Anbotek Anbotek Anbolek Anbotek Anbotek Anbolek Anboiek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbolek Anbotek Anbolek Aupolek Anbotek Anbotek Anbotek Anbotek Anbolek Anbotek Anbolek Anbotek Anbotek Anbotek Anbolek Anbotek Anbotek Anbotek Anbolek Anbotek Anbotek Anbotek Anbolek Anbotek Anbolek Anbolek Anbotek Anbolek Anbotek Anbotek Anbotek Anbolek Anbotek Anborek Anbotek Anbolek Anbolek Anbotek Anbotek Anbotek Anbolek Anbolek Anbotek Anbotek Anbotek Aupolek Anbolek Anbolek Anbolek Aupolek Anbotek Anbolek Anbolek Anbolek Anbolek Anbotek Anbotek Anbolek Aupolek Anbotek Anbotek Anbolek Anbolek Anbotek Anbotek Anbolek Anbotek Anboiek upotek 1001ek

1. General Information

1.1. Client Information

Dr.	16. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10
Applicant	: GuangDong SINOY Smart Technology CO., LTD
Address	5TH Floor, Building #2, RunFengZhiGu Industrial Park Changpin Town,DongGuan City, Guangdong, 523000, China
Manufacturer	: GuangDong SINOY Smart Technology CO., LTD
Address	5TH Floor, Building #2, RunFengZhiGu Industrial Park Changpin Town,DongGuan City, Guangdong, 523000, China
Factory	: GuangDong SINOY Smart Technology CO., LTD
Address	5TH Floor, Building #2, RunFengZhiGu Industrial Park Changpin Town,DongGuan City, Guangdong, 523000, China

1.2. Description of Device (EUT)

1.2. Description of		SALAR (TRI)
Product Name	:	Smart Projector
Model No.	:	HY320, HY320A, HY320B, HY320C, HY320D, HY320E, HY320F, HY320G, HY320H, HY320I (Note: All samples are the same except the model number, so we prepare "HY320" for test only.)
Trade Mark	:	N/A hotek Aupotek Aupotek Aupotek Aupotek Aupotek
Test Power Supply	:	AC 120V/60Hz
Test Sample No.	:	1-2-1(Normal Sample), 1-2-2(Engineering Sample)
Adapter	:	N/A Aupotek Aupotek Aupotek Aupotek Aupotek
RF Specification		
Operation Frequency	:	802.11a/n(HT20)/ac(VHT20)/ax(HEW20): U-NII Band 1: 5180MHz to 5240MHz; U-NII Band 2A: 5260MHz to 5320MHz; U-NII Band 2C: 5500MHz to 5700MHz; U-NII Band 3: 5745MHz to 5825MHz 802.11n(HT40)/ac(VHT40)/ax(HEW40): U-NII Band 1: 5190MHz to 5230MHz; U-NII Band 2A: 5270MHz to 5310MHz; U-NII Band 2C: 5510MHz to 5670MHz; U-NII Band 3: 5755MHz to 5795MHz
Number of Channel	:	802.11a/n(HT20)/ac(VHT20)/ax(HEW20): U-NII Band 1: 4; U-NII Band 2A: 4; U-NII Band 2C: 11; U-NII Band 3: 5 802.11n(HT40)/ac(VHT40)/ax(HEW40): U-NII Band 1: 2;

VII.		- AD A VENT A VE
		U-NII Band 2A: 2;
		U-NII Band 2C: 5;
		U-NII Band 3: 2
		802.11a: OFDM(BPSK, QPSK, 16QAM, 64QAM);
Modulation Type	l :	802.11n: OFDM (BPSK, QPSK, 16QAM, 64QAM);
, , , , , , , , , , , , , , , , , , ,		802.11ac: OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM);
		802.11ax: OFDMA (BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM)
Device Type	:	Client Devices
DFS Type	:	Slave without Radar detection
TPC Function	:	Without TPC
Antenna Type	:	FPC Antenna Andotek Andotek Andotek Andotek Andotek Andotek
		WiFi 5.2G: 2.92dBi
Antenna Gain(Peak)		WiFi 5.3G: 2.76dBi
	•	WiFi 5.6G: 3.61dBi
		WiFi 5.8G: 3.97dBi
Domorki V	~0,	, all 100 miles

Remark:

- (1) All of the RF specification are provided by customer.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

1.3. Auxiliary Equipment Used During Test

Title	Manufacturer	Model No.	Serial No.
ROG Rapture Quad- band Gaming Router	ASUSTeK Computer Inc	GT-AXE16000 (FCC ID: MSQ-RTAX5D00 IC: 3568A-RTAX5D00)	RAIG5D2020695NL

1.4. Operation channel list

Operation Band: U-NII Band 1

Bandwidth:	20MHz	Bandwidth:	40MHz	Bandwidth:	80MHz
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel note	Frequency (MHz)
Abotek 36 Anbote	5180	38	5190	Anbotek/ An	1 200
nbotel 40 Ant	5200	kek 46 _{Anbokek}	5230	V upoky	Aupor
44	Anbote 5220	work / Anbore	k Vupo	hotek	Aupote
48 ₀₁₆ k	5240	morek/ An	olek / Vupo	lek Inbotek	Vukorg.

Operation Band: U-NII Band 2A

Bandwidth:	20MHz	Bandwidth:	40MHz	Bandwidth:	80MHz
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
hotek 52 Anbote	5260	54 vek	5270 F	abotek/ An	ole, I Vun
otek56 Anh	5280	62 nbotek	5310	abolek.	Aupoles / Aug
60	5300	tek / whole	K Anbore	/ botek	Anboren
64 tek	5320	'upo	ootek Vupote	ok hotek	VIX OFER

Operation Band: U-NII Band 2C

Operation Band:	U-MII Band 20	"por	W.	POLE. VILLE	, tek
Bandwidth:	20MHz	Bandwidth:	40MHz	Bandwidth:	80MHz
Channel	Frequency (MHz)	Channel otek	Frequency (MHz)	Channel	Frequency (MHz)
100	5500	nbotek 102 Anbo	5510	r Yupolek	And Lotek
104	5520	110 A	5550	otek / Aupoter	A no solek
otek 108 Anbotek	5540	118	5590	polek Aupo	I AUD
otek 112 Anbo	5560	126	5630	An. Potek	upolek / Aupo.
116	100 tek 5580 Ando	134 nbotek	5670	Alla	Aupolek Au
120	5600	bos 1 Pr	Jek / Wipole	K Viek	Vup diek
124	5620	Aupores, Wur	abotek / Aupor	Ans botel	Whotek
128	5640	Auporg	" upotek Ar	Poss. Y Vun	otek / Anbotek
botek 132 Ando	5660 100 100 100 100 100 100 100 100 100	Autoron	W. Wek	Anbotek / Anb	Motek / Anboli
Anbotek 136 Anbo	5680	sk Aupoten	Al. Jokek	Anbote	YUR FEAT
And 140	5700	Ipolek / Vupole,	ok Ali	MAJOREK	Aupor

Operation Band: U-NII Band 3

V6V	- 07		70. L		VII.
Bandwidth:	20MHz	Bandwidth:	40MHz	Bandwidth:	80MHz
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
149	Anbotek 5745 Anbo	151	5755	And	Auporek V
153 k	5765	159	otek 5795 Anbotes	An Motek	Anyorek
157	5785	Aupolo A	botek / Anb	Ver V Vun	yk Anboiek
161 nbb	5805	Aupole	VII.	Vupoles \ \	otek / Anbotek
nbotek 165 Anbos	5825 more	Woole	Vin Potek	Anborek Ar	los Viek Viet

1.5. Description of Test Modes

All Color	~p, // // // // // // // // // // // // //
Pretest Modes	Descriptions
otek Anbotek Anbotek	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
Anbotek TM2 Anbotek	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
Potek Vupotek Vupotek	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
Anbotek TM4hotek An	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
ek AnboreTM5 Anborek	Keep the EUT works in normal operating mode and connect to companion device

Note: 80211ax mode only support full resource unit size.

1.6. Measurement Uncertainty

, not have a second of the sec	ale. Alla
Parameter	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	3.4dB Anbotek Anbotek
Occupied Bandwidth	925Hz Anbadek Anbadek Anbadek
Conducted Output Power	0,76dB Andotek Andotek Andotek
Power Spectral Density	0.76dBotek Anbotek Anbotek Anbotek
Conducted Spurious Emission	1.24dB _{Anb} otek Andotek An
Radiated spurious emissions (above 1GHz)	1G-6GHz: 4.78dB; 6G-18GHz: 4.88dB 18G-40GHz: 5.68dB
Radiated emissions (Below 30MHz)	3.53dB
Radiated spurious emissions (30MHz~1GHz)	Horizontal: 3.92dB; Vertical: 4.52dB

The measurement uncertainty and decision risk evaluated according to AB/WI-RF-F-032. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7. Test Summary

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		- 101
Test Items	Test Modes	Status
Conducted Emission at AC power line	Mode1,2,3,4	Anbo 16k
Duty Cycle And	Mode1,2,3,4	P ^{nbo}
Emission bandwidth and occupied bandwidth	Mode1,2,3,4	P And
Maximum conducted output power	Mode1,2,3,4	potek P
Power spectral density	Mode1,2,3,4	Anborgh
Channel Move Time, Channel Closing Transmission Time	Mode5	An Prick
DFS Detection Thresholds	Anboren Mode5	Panbole
Band edge emissions (Conducted)	Mode1,2,3,4	ek P An
Band edge emissions (Radiated)	Mode1,2,3,4	hotek P
Undesirable emission limits (below 1GHz)	Mode1,2,3,4	No Per
Undesirable emission limits (above 1GHz)	Mode1,2,3,4	Pur Potek
Note:	Vupotek Vupoter	Ans
N: N/A, not applicable	abotek Anbote.	Y Alle

1.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 434132

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 434132.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China.

1.9. Disclaimer

- 1. The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- 2. The test report is invalid if there is any evidence and/or falsification.
- 3. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- 4. This document may not be altered or revised in any way unless done so by Anbotek and all revisions are duly noted in the revisions section.
- 5. Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- 6. The authenticity of the information provided by the customer is the responsibility of the customer and the laboratory is not responsible for its authenticity.

The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

1.10. Test Equipment List

Cond	ucted Emission at A	C power line	Aupolek.	Vupo, Viek	Anborek	Vupore
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
10K	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	2024-01-18	2025-01-17
^K Zpo ^t	Three Phase V- type Artificial Power Network	CYBERTEK	EM5040DT	E215040D T001	2024-01-17	2025-01-16
3 8	Software Name EZ-EMC	Farad Technology	ANB-03A	N/A	Aug Josek	Aupliek
4	EMI Test Receiver	Rohde & Schwarz	ESPI3	100926	2023-10-12	2024-10-11

Maximum conducted output power

Power spectral density

Channel Move Time, Channel Closing Transmission Time

DFS Detection Thresholds

Band edge emissions (Conducted)

Duty Cycle

Anbotek

Anbotek

Emission bandwidth and occupied bandwidth

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
Audotek	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ- KHWS80B	potekN/A	2023-10-16	2024-10-15
2 ^{A,nb}	DC Power Supply	IVYTECH	IV3605	1804D360 510	2023-10-20	2024-10-19
3	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102150	2024-05-06	2025-05-05
001 4 1	MXA Spectrum Analysis	KEYSIGHT	N9020A	MY505318 23	2024-02-22	2025-02-21
5,00	Oscilloscope	Tektronix	MDO3012	C020298	2023-10-12	2024-10-11
6 A 11	MXG RF Vector Signal Generator	Agilent	N5182A	MY474206 47	2024-02-04	2025-02-03

Anboick

Anbolek

Anbolek

nbotek

Aupolek

Anbolek

Anbotek

Anbolek

Anbotek

Aupolek

Aupolek

Aupolek

Anbotek

Anbotek

Anbo

Anbote

Anbotek

Aupok

Anbotek

Anbotek

Anbolek

Aupolek

Anboiek

Aupolek

Report No.:182512C400544104 Anbotek FCC ID: 2BCAX-HY320M

	edge emissions (Ra		Anbotek A	inpolek.	Augorek	Auporek
Unde	esirable emission limi Equipment	ts (above 1GHz) Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2024-01-23	2025-01-22
2 ^k	EMI Preamplifier	SKET Electronic	LNPA- 0118G-45	SKET-PA- 002	2024-01-17	2025-01-16
3,00	Double Ridged Horn Antenna	SCHWARZBECK	BBHA 9120D	02555	2022-10-16	2025-10-15
4	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	Vupole rek	VIII.
5	Horn Antenna	A-INFO	LB-180400- KF	J21106062 8	2023-10-12	2024-10-11
6	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102150	2024-05-06	2025-05-05
^{nb} 7	Amplifier	Talent Microwave	TLLA18G40 G-50-30	23022802	2024-05-07	2025-05-06

~ C	by.	76. VU	0000	20.	~60	¥1.
VUD	k hotek	Anbo	19K	Aupole	VI.	apolek
Unde	sirable emission limi	ts (below 1GHz)	Vup.	Anboiek	Auporg	b. spotek
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
tet.	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2024-01-23	2025-01-22
2,104	Pre-amplifier	SONOMA	310N	186860	2024-01-17	2025-01-16
3 Anb	Bilog Broadband Antenna	Schwarzbeck	VULB9163	345	2022-10-23	2025-10-22
4	Loop Antenna (9K- 30M)	Schwarzbeck	FMZB1519 B	00053	2023-10-12	2024-10-11
5	EMI Test Software EZ-EMC	SHURPLE SHURPLE	N/A	N/A	Vupor	k Anbotek
O!EK	k Votek	Vupojek Vupoje	iek Vupo	tek Wup.	olek Vup.	bolek Anbo

Aupolek

Anbolek

nbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbolek

Anbolek

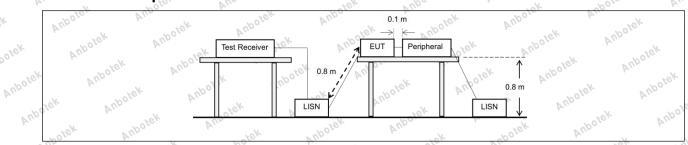
Anbotek

Anbotek

Anbotek

Anbotek

Report No.:182512C400544104 FCC ID: 2BCAX-HY320M

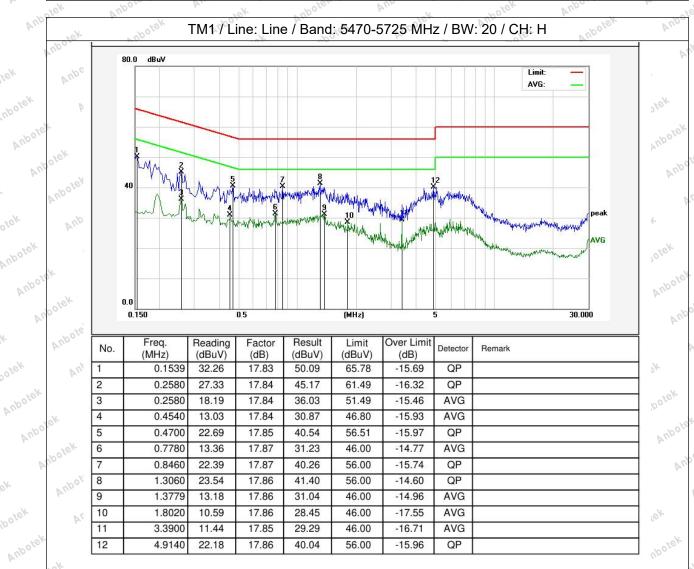

2. Conducted Emission at AC power line

Test Requirement:	47 CFR Part 15.207(a)	Augore Augore	Aup.
Crek D	Frequency of emission (MHz)	Conducted limit (dBµV)	otek Aupo.
VIEW VUDO	otek Auport W.	Quasi-peak	Average
- sek	0.15-0.5	66 to 56*	56 to 46*
Test Limit:	0.5-5	56 And	46
Pupore Vupore	5-30	60	50×nb
And tek antotel	*Decreases with the logarithm of th	ne frequency.	Aupolek
Test Method:	ANSI C63.10-2020 section 6.2	Aupolek Aupo	ek abolek

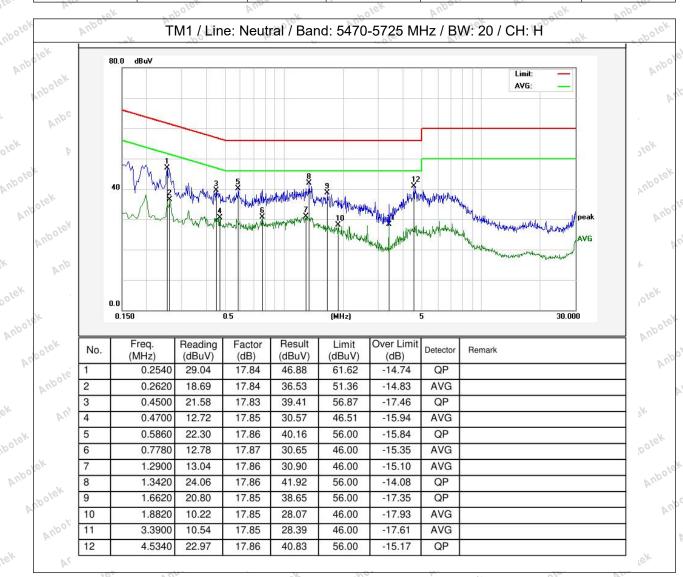
2.1. EUT Operation

2.11. E01 Opt	Anbo	r.	"pole.	Alla	Polek	Anbo
Operating Envir	ronment:	Anbot	hotek.	Vupole.	Vun Viek	anb ^c
ek Anbotek Anbotek Anbotek	1: 802.11a mode transmitting mode found the data rarecorded in the re 2: 802.11n mode transmitting mode been tested and	e with 802.11a r te @ 6Mbps is beport. : Keep the EUT e with 802.11n r	nodulation type the worst case. connect to AC nodulation type	e. All data rates Only the data power line and e. All bandwidth	has been test of worst case i works in conti and data rate	ed and s inuously s has
Test mode: hour	worst case is rec 3: 802.11ac mode continuously tran data rates has be the data of worst 4: 802.11ax mode continuously tran data rates has be	e: Keep the EU smitting mode veen tested and f case is recorde e: Keep the EU smitting mode v	Γ connect to AC vith 802.11ac mound the data red in the report. Γ connect to AC vith 802.11ax m	nodulation type rate @ MCS0 is C power line an nodulation type	. All bandwidth s the worst cas d works in . All bandwidth	se. Only and
ISE VULL	the data of worst	case is recorde	d in the report.	anbore.	VIII	abote e

2.2. Test Setup



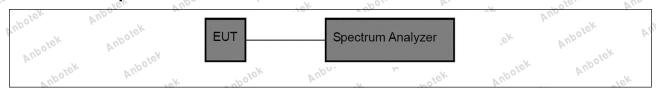
2.3. Test Data


Temperature: 24.9 °C Humidity: 53 % Atmospheric Pressure: 101 kPa

Temperature: 24.9 °C Humidity: 53 % Atmospheric Pressure: 101 kPa

Note:Only record the worst data in the report.

3. Duty Cycle


ρ(Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.
-	Test Limit:	No limits, only for report use.
	Test Method:	ANSI C63.10-2020 section 12.2 (b)
e)	Aupotek Aupot	 i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value.
15	Procedure: No. 1	iii) Set VBW >= RBW. iv) Set detector = peak. v) The zero-span measurement method shall not be used unless both RBW
	Anbotek Anbotek	and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.

3.1. EUT Operation

Ja.	" " " " " " " " " " " " " " " " " " "
Operating Envir	onment: Notek Anbotek Anbotek Anbotek
Popek Valore	1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
Aupotek Vupotek	2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of
Test mode:	worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and
Anbotek Ar	data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and
Aupolek Aus	data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

3.2. Test Setup

Anbotek

3.3. Test Data

V	Temperature:	26.3 °C	rek	Humidity:	45 %	Atmospheric Pressure:	101 kPa	~0
10.	do 4o.	olek	Aup		tek Aupor	P.	upole	VUP

Please Refer to Appendix for Details.

Totak Aupole Ann

otek an	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Requirement:	G-IVII 1, G-IVII 2A, G-IVII 2G. IVO IIIIIIG, GIIIy IOI ICPOIT UGG.
tek vapanetilent:	U-NII 3, U-NII 4: 47 CFR Part 15.407(e)
r Polek	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Doct Limite And	potek Aupor Aupor An lek
Test Limit:	U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands,
Aupo	the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.
Test Method:	ANSI C63.10-2020, section 6.9 & 12.5
A A	KDB 789033 D02, Clause C.2
VII.	Emission bandwidth:
rek anbore	a) Set RBW = approximately 1% of the emission bandwidth.
Clek	b) Set the VBW > RBW.
Thorek Ambe	c) Detector = peak.
in abotek	d) Trace mode = max hold.
Vupore VIII	e) Measure the maximum width of the emission that is 26 dB down from the
otek Pupo	peak of the emission.
Aup	Compare this with the RBW setting of the instrument. Readjust RBW and
. Spoker b	repeat measurement
All	as needed until the RBW/EBW ratio is approximately 1%.
rek Aupore	Ar. rek upoter And
Otek.	Occupied bandwidth:
Spoker Aupa	a) The instrument center frequency is set to the nominal EUT channel center
VII.	frequency. The
Anbore	frequency span for the spectrum analyzer shall be between 1.5 times and
otek Aup	5.0 times the OBW.
VUD.	b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to
k apolen	5% of the OBW,
b.	and VBW shall be approximately three times the RBW, unless otherwise
Anbor.	specified by the
Procedure:	applicable requirement.
"upoler Aug	c) Set the reference level of the instrument as required, keeping the signal
W. Vek "Upore	from exceeding the
Aupor	maximum input mixer level for linear operation. In general, the peak of the
holek An	spectral envelope
Am	shall be more than [10 log (OBW/RBW)] below the reference level. Specific
sk Wupore.	guidance is given
b.	in 4.1.5.2. d) Step a) through step c) might require iteration to adjust within the
"olek Aupo"	
in hotek	specified range.
"upoier Vun	e) Video averaging is not permitted. Where practical, a sample detection and
Ek upol	single sweep mode
Aupor	shall be used. Otherwise, peak detection and max hold mode (until the trace
"Olek AL	stabilizes) shall be
And	used. f) Lee the 00% power handwidth function of the instrument (if available) and
iek upoler	f) Use the 99% power bandwidth function of the instrument (if available) and
V. V.	report the measured
Polek Vupore	bandwidth.
'Up. K "Olek	g) If the instrument does not have a 99% power bandwidth function, then the
upoler Aupo	trace data points are
B	recovered and directly summed in linear power terms. The recovered

amplitude data points,

beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached;

that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the

total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is

the difference between these two frequencies.

h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument

display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may

be reported in addition to the plot(s).

6 dB emission bandwidth:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) ≥ 3 >= RBW
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

4.1. EUT Operation

Operating Environment:

1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Test mode:

Anbolek

Anbotek

Anbolek

Aupolek

Aupolek

Anbotek

Aupolek

Anbotek

Anboiek

Anbotek

Anbotek

Anbolek

Report No.:182512C400544104 Anbotek FCC ID: 2BCAX-HY320M

Aupolek Page 20 of 58

Anbolek

Anbolek

Aupolek

Anbotek

Anbolek

Anbotek

Anbolek

Anbotek

Anbotek

Aupolek

Anbotek

Anbolek

Anbolek

Anbotek

Anbolek

Anbolek

Anbotek

Anbotek

Anbotek

Anbolek

Anbotek

Anbotek

Anbotek

Anbolek

Anbotek

Anbotek

Anbotek

Anbotek

Anbolek

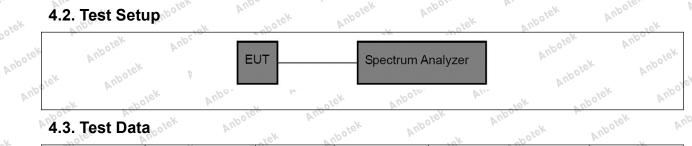
Anbotek

Anbolek

Anbolek

Anbolek

Anbolek


Anbotek

Anbolek

Anbotek

Anbotek

4.2. Test Setup

Aupolek

Aupolek

Anboiek

Aupolek

Anbotek

Anbolek

Anbolek

Anbolek

Anbotek

Anbotek

Anbolek

Anbotek

Anbolek

4.3. Test Data

Anbotek

Anbotek

Anboiek

Anbolek

Anbotek

Anbotek

Anboiek

Anborek

Anbotek

4.3. Test Dat	a _{botek}	Aupole	Aupotek	Auporek Aupo	shotek An	potek Au
Temperature:	26.3 °C	Humid	ity: 45 %	Atmospheric	Pressure: 1	01 kPa
Anbo	, otel	Anbolo	rek.	" upoles	Vup	holek
Please Refer to	o Appendix	for Details.	ek vupor	b.	"pole"	Ans

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbolek

Anbolek

Anbotek

Anbotek

Anbolek

Anbotek

Anboiek

Please Refer to Appendix for Details.

Anbotek

Shenzhen Anbotek Compliance Laboratory Limited

Anbotek

Anbolek

Anbolek

Anbolek

AND

Anbotek

nbotek

Aupolek

Anbolek

Anbolek

Anbotek

Anbotek

Aupolek

Anbotek

Aupolek

Anbotek

Report No.:182512C400544104 Anbotek FCC ID: 2BCAX-HY320M

5. Maximum conducted output power

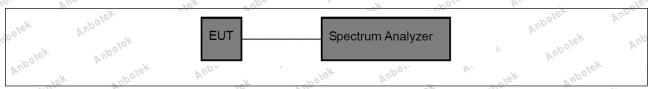
Test Requirement:	47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)
Anbotek Anbotek	For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 m provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB th the directional gain of the antenna exceeds 6 dBi. For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducte output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB th the directional gain of the antenna exceeds 6 dBi. For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB th the directional gain of the antenna exceeds 6 dBi.
ek Anbotek Anbotek Anbotek	However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment professionally installed, the installer, is responsible for ensuring that system employing high gain directional antennas are used exclusively for fixed,
Test Method:	point-to-point operations. ANSI C63.10-2020, section 12.4
Procedure:	Refer to ANSI C63.10-2020 section 12.4

Anbotek

5.1. EUT Operation

Operating Environment:

1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.


2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Test mode: N

3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

5.2. Test Setup

5.3. Test Data

Temperature: 26.3 °C	Humidity: 45 %	Atmospheric Pressure: 101 kPa	
----------------------	----------------	-------------------------------	--

Please Refer to Appendix for Details.

Anbolek

upotek

otek

AND

Anbotek

Anbolek

upotek

Aupolek

Anbolek

Anbotek

Anborek

Aupolek

Aupolek

Anbotek

Anbotek

Anbotek

Anbolek

Anbolek

Anbolek

Report No.:182512C400544104 Anbotek FCC ID: 2BCAX-HY320M

Anbotek

6. Power spectral density

Anbotel

Anbotek

Test Requirement:	47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	For client devices in the 5.15-5.25 GHz band, the maximum power specidensity shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB to the directional gain of the antenna exceeds 6 dBi. For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power
otek Aupotek	spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB to
Test Limit:	the directional gain of the antenna exceeds 6 dBi. For the band 5.725-5.850 GHz, the maximum power spectral density shanot exceed 30 dBm in any 500-kHz band.
otek Aupotek Ar	If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB to the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting anter-
Whotek Aupotek	with directional gain greater than 6 dBi without any corresponding reduction transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint
Aupotek Vupo	systems, omnidirectional applications, and multiple collocated transmitte transmitting the same information. The operator of the U-NII device, or if equipment is professionally installed, the installer, is responsible for ensurthat systems employing high gain directional antennas are used exclusive.
Test Method:	for fixed, point-to-point operations. ANSI C63.10-2020, section 12.6
Procedure:	Refer to ANSI C63.10-2020, section 12.6

Anbotek

Anbolek

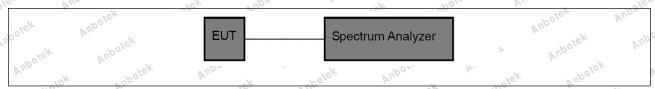
Hotline

Anbotek

6.1. EUT Operation

Operating Environment:

1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.


2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Test mode: N

3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

6.2. Test Setup

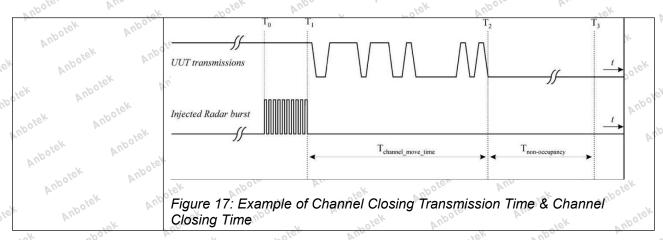
6.3. Test Data

Temperature: 26.3 °C	Humidity: 45 %	Atmospheric Pressure: 101 kPa	
----------------------	----------------	-------------------------------	--

Please Refer to Appendix for Details.

Report No.:182512C400544104

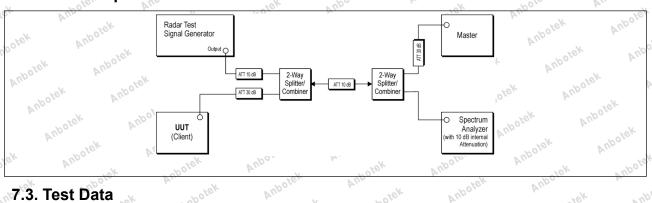
FCC ID: 2BCAX-HY320M


7. Channel Move Time, Channel Closing Transmission Time

Test Requirement:	47 CFR Part 15.407(h)(2)(iii)
Test Limit: Anborek Anborek Anborek	Channel Move Time: within 10 seconds Channel Closing Transmission Time: 200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. (The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.)
Test Method:	KDB 905462 D02, Clause 7.8.3
otek Anbotek	The steps below define the procedure to determine the above-mentioned parameters when a radar <i>Burst</i> with a level equal to the <i>DFS Detection Threshold</i> + 1dB is generated on the <i>Operating Channel</i> of the U-NII device (<i>In- Service Monitoring</i>). 1. One frequency will be chosen from the <i>Operating Channels</i> of the UUT within the 5250-5350 MHz or 5470-5725 MHz bands. For 802.11 devices, the test frequency must contain control signals. This can be verified by disabling channel loading and monitoring the spectrum analyzer. If no control signals are detected, another frequency must be selected within the emission bandwidth where control signals are detected. 2. In case the UUT is a U-NII device operating as a <i>Client Device</i> (with or without DFS), a U-NII device operating as a <i>Master Device</i> will be used to allow the UUT (Client device) to <i>Associate</i> with the <i>Master Device</i> . In case the UUT is a <i>Master Device</i> , a U-NII device operating as a <i>Client Device</i> will be used and it is assumed that the Client will <i>Associate</i> with the UUT (Master). In both cases for conducted tests, the <i>Radar Waveform</i> generator will be connected to the <i>Master Device</i> . For radiated tests, the emissions of the <i>Radar Waveform</i> generator will be directed towards the <i>Master Device</i> .
Procedure: Anbotek Anbotek Anbotek Anbotek Anbotek	If the <i>Master Device</i> has antenna gain, the main beam of the antenna will be directed toward the radar emitter. Vertical polarization is used for testing. 3. Stream the channel loading test file from the <i>Master Device</i> to the <i>Client Device</i> on the test <i>Channel</i> for the entire period of the test. 4. At time T0 the <i>Radar Waveform</i> generator sends a <i>Burst</i> of pulses for one of the Radar Type 0 in Table 5 at levels defined in Table 3 , on the <i>Operating Channel</i> . An additional 1 dB is added to the radar test signal to ensure it is at or above the <i>DFS Detection Threshold</i> , accounting for
nbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	equipment variations/errors. 5. Observe the transmissions of the UUT at the end of the radar <i>Burst</i> on the <i>Operating Channel</i> for duration greater than 10 seconds. Measure and record the transmissions from the UUT during the observation time (<i>Channel Move Time</i>). Measure and record the <i>Channel Move Time</i> and <i>Channel Closing Transmission Time</i> if radar detection occurs. Figure 17 illustrates <i>Channel Closing Transmission Time</i> . 6. When operating as a <i>Master Device</i> , monitor the UUT for more than 30 minutes following instant T2 to verify that the UUT does not resume any transmissions on this <i>Channel</i> . Perform this test once and record the measurement result. 7. In case the UUT is a U-NII device operating as a <i>Client Device</i> with <i>In-</i>

7.1. EUT Operation

Operating Environment:


Test mode:

Anbolek

Aupotek

5: Normal Operating: Keep the EUT works in normal operating mode and connect to companion device

7.2. Test Setup

7.3. Test Data

-									
	Temperature:	26.3 °C	dno	Humidity:	45 %	Ψ.	Atmospheric Pressure:	101 I	кРа

Please Refer to Appendix for Details.

8. DFS Detection Thresholds

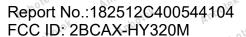
Test Requirement:	KDB 905462 D02, Clause 5.2 Table 3	"Upolek Aupo							
ek upotek	Table 3: DFS Detection Thresholds for Master I	Devices and Client Devices							
b. K.	with Radar Detection	, AV							
ipotek Aupor	Table 3: DFS Detection Thresholds for Master Devices and Client Devices with Radar Detection								
stek vupoter	Maximum Transmit Power	Value							
Anbo	TYPE AND THE	(See Notes 1, 2, and 3)							
rick Aupor	EIRP ≥ 200 milliwatt	-64 dBm							
Test Limit:	EIRP < 200 milliwatt and power spectral density < 10 dBm/MHz	-62 dBm							
abolek Ant	EIRP < 200 milliwatt that do not meet the power spectral density	-64 dBm							
VI.	requirement	100							
ick "pole.	Note 1: This is the level at the input of the receiver assuming a 0 dl								
P.	Note 2: Throughout these test procedures an additional 1 dB has be test transmission waveforms to account for variations in measurement.								
lek vupote	the test signal is at or above the detection threshold level to trigger								
upo. B.	Note3: EIRP is based on the highest antenna gain. For MIMO devi								
rek vupore	662911 D01.								
- Vupo 10	LKDD 005 00 D00 OL 70 4 4 4 100 15	Vu. Viek							
Test Method:	KDB 905462 D02, Clause 7.4.1.1	hotek And							
And	1) A 50 ohm load is connected in place of the sp	pectrum analyzer, and the							
"Otek An	spectrum analyzer is connected to place of the								
And	2) The interference Radar Detection Threshold								
r polek									
Pier Vur	had been taken into account the output power r								
ok choker	3) The following equipment setup was used to d	787							
apole, Aur	waveform. A vector signal generator was utilize	d to establish the test signal							
y, sk spoter	level for radar type 0. During this process, there	were no transmissions by							
- Upole Aug	either the master or client device. The spectrum	1O.,							
Procedure:	the zero spans (time domain) at the frequency of	V 1.01							
Vupore VIII	The state of the s								
W.	generator. Peak detection was used. The spect								
A Whore A	bandwidth (RBW) and video bandwidth (VBW)								
rek.	spectrum analyzer had offset -1.0dB to compen	sate RF cable loss 1.0dB.							
stek Aupor	4) The vector signal generator amplitude was s	et so that the power level							
o. rek	measured at the spectrum analyzer was TH + 0								
Olek Vupor	the spectrum analyzer plots on short pulse rada								
Anbo	Note: TH=-64 dBm or -62 dBm	ii Wavelollii.							
rek nbo.	INULE. I II 04 UDIII UI -02 UDIII	Total August							

8.1. EUT Operation

Anbo

Anbotek

Operating Envir	onment:	Vun Viek	* upotek	Aupo	r spotek	Anbore
Test mode:	5: Normal Operat	ing: Keep the EU	Γ works in	normal operating	mode and	connect to
rest mode.	companion device	e hotek	Aupo	rek	Aupolo	W



Hotline

www.anbotek.com

400-003-0500

Anbotek

Anbolek

Aupolek

Aupolek

Page 28 of 58

Anbolek

Anbolek

Anbotek

Anbolek

Anbolek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbolek

Anbolek

Anbotek

Anbolek

Anbotek

Anbotek

Anbotek

Anbotek

Aupolek

Aupolek

Anbolek

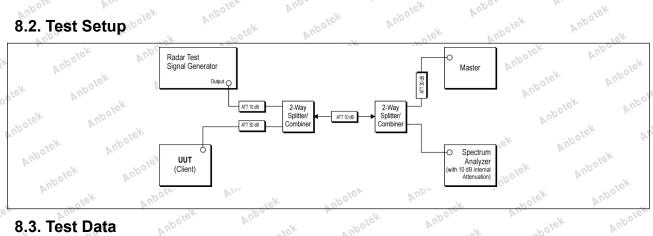
Anbotek

Anbolek

Anbotek

Anbotek

Anbolek


Anbolek

Anbotek

Anbolek

Anbolek

8.2. Test Setup

8.3. Test Data

	8.3. Test Data	Anbore	All	P	'upoler	And	Anbot	Sk VL	1000
10	Temperature:	26.3 °C	Humidity:	45 %	Aupole,	Atmospheric Pr	essure:	101 kPa	Aupo
	Please Refer to	Appendix for Det	ails.x	nbotek	Anb	otek Aupo	otek	Aupolek	P,

Anbotek

Anbotek

Anbotek

Anbolek

Anbolek

Anbotek

Anbolek

Anbotek

Anbotek

Anbolek

Anbotek

Anbolek

Aupolek

Anbolek

Anbolek

Anbolek

Anbolek

Anbotek

Shenzhen Anbotek Compliance Laboratory Limited

Anbotek

Anbotek

Anbotek

Anbotek

Test Limit:

Report No.:182512C400544104

FCC ID: 2BCAX-HY320M

9. Band edge emissions (Conducted)

	Dr.	-16.		-00		
×	abotek Anb	47 CFR Part 15.407(b)(1)	DOLO. D	"In.	"Upolek	AUD
2.	VII.	47 CFR Part 15.407(b)(2)	rojek	Anbore	A. tek	Vupo is.
	Test Requirement:	47 CFR Part 15.407(b)(3)	AUD	Potek	Aupo	. Y
<i>(</i> 0)	Stek	47 CFR Part 15.407(b)(4)	apoler	AND	hotek	Anbo
	Upolek Wupp	47 CFR Part 15.407(b)(10)	W.	upoien	Anti	K
- 1	181	* Un	200		. 010	D.

For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.

For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.

For transmitters operating solely in the 5.725-5.850 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

MHz	MHz Anbote	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-	608-614	5.35-5.46
k Vupor	16.69525	Ann	-polek
2.1735-2.1905	16.80425-	960-1240	7.25-7.75
ore, Aur	16.80475	,	stek Anbore
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-	9.3-9.5
Vur.	lek Vupo	1646.5	Anbore
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-	13.25-13.4
ek Aupo	otek Anbore	1722.2	k apoler
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-	2483.5-2500	17.7-21.4
Ande	156.52525	P. rek	*upole, Vi
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2) Moote
13.36-13.41	Vu.	POICK VUDE	

The field strength of emissions appearing within these frequency bands shall

Shenzhen Anbotek Compliance Laboratory Limited

² Above 38.6

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.

Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field strength	Measurement
spotek Aupotek A	(microvolts/meter)	distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30,010 A
1.705-30.0	30 Stok Aupore	30
30-88	100 ** 100	3 Anbore
88-216	150 ** Notes And	3 Jotek
216-960	200 **	3 And
Above 960	500 Anbo	3. "pope"

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.

In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

Test Method:

Procedure:

ANSI C63.10-2020, section 12.7.4, 12.7.6, 12.7.7

Above 1GHz:

- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

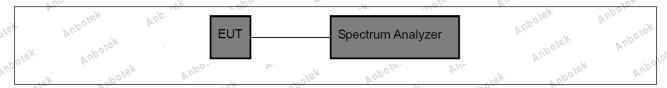
 b. The EUT was set 3 meters away from the interference-receiving antennal.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified

and then reported in a data sheet.

- g. Test the EUT in the lowest channel, the middle channel, the Highest
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

9.1. EUT Operation

Operating Environment:


1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Test mode:

- 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
- 4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

9.2. Test Setup

Aupolek

Anbolek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbolek

Anbotek

Anbotek

Anbotek

Anbotek

Anbolek

Aupolek

Aupolek

Anbotek

Anbolek

Anbotek

Anbotek

Anbolek

Report No.:182512C400544104 FCC ID: 2BCAX-HY320M

Anbotek

Anbolek

Aupolek Page 32 of 58

Anbolek

Anbotek

Anbotek

Anbolek

Anbolek

Anbolek

Anbolek

Anbotek

Anbolek

Aupolek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbolek

Anbolek

Anbotek

Anbotek

Anbolek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbolek

Anbotek

Anbotek

Anbotek

Anbolek

Anbotek

Anbotek

Anbolek

Anbotek

Anbolek

9.3. Test Data

.\/-	Temperature:	26.3 °C	Humidity:	45 %	Atmospheric Pr	essure:	101 kPa
	A. Viek	Aupolen	And	abolek	Aupo	hotel	Anbore
o s	Please Refer to	Appendix for De	tails. _{Mo} ote	VI.	"pole"	AUD	.vvo

Anbolek

Anbolek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Aupolek

Anbolek

Anbolek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbolek

Anbolek

Anboiek

Anbolek

Anbolek

Anbolek

Anbotek

Anbotek

Anbotek

Anbolek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Aupolek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbolek

Anbotek

Anbolek

Anbolek

Anbotek

Anbotek

Anbotek

Anbotek

Anbolek

Anbotek

Aupolek

Anbotek

Aupolek

Anbotek

Anbolek

Anbotek

Anbolek

Anbotek

Anbolek

Shenzhen Anbotek Compliance Laboratory Limited

Anbotek

abolek

Anbotek

Test Limit:

Report No.:182512C400544104

FCC ID: 2BCAX-HY320M

10. Band edge emissions (Radiated)

	Dr.	16.		-00		- 01
γ.	sporek Aug	47 CFR Part 15.407(b)(1)	ole. V	"Ek	"Upotek	VUD.
	VII.	47 CFR Part 15.407(b)(2)	"otek	Anbor	A. tek	" upole.
	Test Requirement:	47 CFR Part 15.407(b)(3)	And	Potek	Vupo.	
Ò,	atek	47 CFR Part 15.407(b)(4)	poler	VUD.	hotek	Anbo
	Sporek Aups	47 CFR Part 15.407(b)(10)	Vi.	· Vuporer	VUL	./-
- VI	/s. /S.	V Up	-60	- T		D)

For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating solely in the 5.725-5.850 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

MHz	MHz Anbo	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-	608-614	5.35-5.46
The Auport	16.69525	Ans	Polek
2.1735-2.1905	16.80425-	960-1240	7.25-7.75
coper Aug	16.80475		rek Aupole
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-	9.3-9.5
Ans ak	lek Vupe	1646.5	Anbore
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8- 1718.8	13.25-13.4
ick Vup.	otek Anbore	1722.2	k "poier
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-	2483.5-2500	17.7-21.4
Aup. Ciel	156.52525	b.,	"upole" VL
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	e(2) Anbore
13.36-13.41	Alla	Polek Vupo	
100. K.	: 0/o. V.		16k "Up

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

The field strength of emissions appearing within these frequency bands shall

² Above 38.6

not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.

Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field strength	Measurement
spotek Aupotek A	(microvolts/meter)	distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30,010 A
1.705-30.0	30 Stok Aupore	30
30-88	100 ** 100	3 Anbore
88-216	150 ** Notes And	3 Jotek
216-960	200 **	3 And
Above 960	500 Anbo	3. "pope"

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.

In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

Test Method:

ANSI C63.10-2020, section 12.7.4, 12.7.6, 12.7.7

Above 1GHz:

- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna.
- which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified

Procedure:

and then reported in a data sheet.

- g. Test the EUT in the lowest channel, the middle channel, the Highest
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

10.1. EUT Operation

Operating Environment:

1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

3: 802.11ac mode: Keep the EUT connect to AC power line and works in

- continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
- 4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Test mode:

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbolek

Anbolek

Anbotek

Anbolek

Anbolek

Anbotek

Anbotek

Anbolek

Anbolek

Aupolek

Anbotek

Anboiek

Anbotek

Anborek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anboiek

Anbolek

Anbotek

Anbotek

Anbolek

Report No.:182512C400544104 FCC ID: 2BCAX-HY320M

Anbolek

Aupolek

Anbotek

Aupolek

Anbolek

Anbolek

Anbolek

Anbolek

Anbolek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anboiek

Anbotek

Anbotek

Anbotek

Anbotek

Anbolek

Anbotek

Anbolek

Page 36 of 58

Anbolek

Anbolek

Anbotek

Anbolek

Anbotek

Anbotek

Anbotek

Anbolek

Anbotek

Anbotek

Anbotek

Aupolek

Anbolek

Anbolek

Anbolek

Anbotek

Anbotek

Anbolek

Anbotek

Aupolek

Anbolek

Aupolek

Anbotek

Anbolek

Anbotek

Anbotek

Anbolek

Anbotek

Anbotek

Anbotek

Anbolek

Anbotek

Anbolek

Anbolek

Anbolek

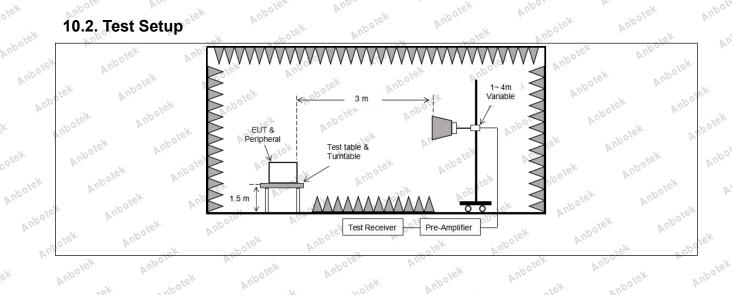
Anbotek

Anbotek

Anbotek

Anbolek

Anbolek


Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbolek

Shenzhen Anbotek Compliance Laboratory Limited

Anbotek

Hotline 400-003-0500 www.anbotek.com

Anbolek

AND

Report No.:182512C400544104 FCC ID: 2BCAX-HY320M

10.3. Test Data

Temperature:	26.3 °C	Humidity:	45 %	Atmospheric Pressure:	101 kPa
~000	- V	1-0/0	-001	164	1/2

Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detect				
5150.00	37.26	15.99	53.25	68.20	-14.95 nb°	Н	Peak				
5150.00	39.38	15.99	55.37	68.20	12.83	upoles. A	Peak				
5150.00	27.12	15.99	o ¹⁶¹ 43.11 A	54.00	-10.89	Anbolek	AVG				
5150.00	29.25	15.99	45.24	54.00	-8.76	Wolek	AVG				
	TM1 / Band: 5150-5350 MHz / BW: 20 / H										
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detect				
5350.00	37.63	16.43	54.06 NO	68.20	-14.14	^{upotek} H	Peak				
5350.00	40.76	16.43	57.19	68.20	11.01	Ž.	Peak				
5350.00	29.06	16.43	45.49	54.00	-8.51	And H **	AVG				
5350.00	29.85	16.43	46.28	54.00	-7.72	k Vupor	AVG				

Anbol

Aupolek

100	V 410	40.	200.	h.	V v	Olo. VII	*					
	TM2 / Band: 5150-5350 MHz / BW: 20 / L											
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector					
5150.00	36.10	15.99	52.09	68.20	-16.11	Hotek	Peak					
5150.00	37.57	15.99	53.56	68.20	-14.64	V Not	Peak _{Anbo} '					
5150.00	26.82	15.99	42.81	54.00	-11.19 [%]	H	AVG					
5150.00	27.79	15.99	43.78	54.00	0101-10.22 N	poles A V	AVG					
		TM2 / B	and: 5150-53	350 MHz / BV	V: 20 / H							
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector					
5350.00	37.98	16.43	54.41	68.20	-13.79	H ^{no}	Peak					
5350.00	38.96	16.43	55.39	68.20	-12.81	iek V Aupo	Peak					
5350.00	28.03	16.43	44.46	54.00	-9.54	Nek H	nbole AVG					
5350.00	29.56	16.43	45.99	54.00	-8.01	V V	AVG					

Remark: 1. Result=Reading + Factor

Anboiek

Anbotek

Anbotek

 Au_k

Anbotek

Anbotek

Anbotek

Report No.:182512C400544104 FCC ID: 2BCAX-HY320M

	TM2 / Band: 5150-5350 MHz / BW: 40 / L											
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector					
5150.00	36.78	15.99	52.77	68.20	-15.43	Hobotek	Peak					
5150.00	38.60	15.99	54.59	68.20	-13.61	V V	Peak And					
5150.00	27.37	15.99	43.36	54.00	-10.64 nbo	Н	AVG					
5150.00	28.87	15.99,000	44.86	54.00	9.14	Upole A	AVG					
		TM2 / B	and: 5150-53	350 MHz / BV	V: 40 / H							
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector					
5350.00	38.28	16.43	54.71	68.20	-13.49	HAnn	Peak					
5350.00	37.07	16.43	53.50	68.20	-14.70	otek A Vup	Peak					
5350.00	28.62	16.43	45.05	54.00 M	-8.95	Hyar	nb ^o AVG					
5350.00	29.88	16.43 nbo	46.31	54.00	7.69	rups Ar	AVG					
Remark: 1. F	Result=Readi	ng + Factor	hotek A	Vipo tek	Aupotek	Aupotek	Aupotek					

Remark: 1. Result=Reading + Factor

	Ule. VII		181	" Up.		NO.	by .	
∇u_{i}			TM3 / B	and: 5150-5	350 MHz / BV	V: 20 / L		
	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
<i>.</i> //	5150.00	37.26	15.99	16× 53.25 And	68.20 And	-14.95	Anbore H	Peak
	5150.00	× 39.07 _{Anbo}	15.99	55.06	68.20	-13.14	Nok	Peak
01	5150.00	26.73	15.99	42.72	54.00	-11.28	Hotek	AVG
PU	5150.00	29.03	15.99	45.02	54.00	-8.98	V NO	ek AVG _{An} b
			TM3 / B	and: 5150-53	350 MHz / BV	V: 20 / H		
	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
4,	5350.00	38.05	16.43 And	54.48	68.20	-13.72	Hick	Peak
00	5350.00	38.28	16.43	54.71	68.20	-13.49	VUB.	Peak
	5350.00	28.02	16.43	44.45	54.00	-9.55	Hupole	AVG
P	5350.00	28.68	16.43	45.11	54.00	-8.89	od V 40	AVG AN

Remark: 1. Result=Reading + Factor

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Report No.:182512C400544104 FCC ID: 2BCAX-HY320M

equency	Reading		and: 5150-53	50 MHz / BW	V: 40 / L								
	Dooding			TM3 / Band: 5150-5350 MHz / BW: 40 / L									
(MHz)	(dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector						
150.00	36.19 And	15.99	52.18	68.20	-16.02	HOM	Peak						
150.00	36.53	15.99	52.52	68.20	-15.68	Kupole.	Peak						
150.00	26.50	15.99	42.49	54.00	-11.51	iek H Anbo	AVG AN						
150.00	27.11	15.99	43.10	54.00 m	-10.90	Vok V	nb ^{ote} AVG						
		TM3 / B	and: 5150-53	50 MHz / BW	/: 40 / H								
• • •	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector						
350.00	38.28	16.43	54.71	68.20	-13.49	H abotel	Peak						
350.00	37.35	16.43	53.78	68.20	-14.42	V	tek Peak An						
350.00	27.66	16.43	44.09	54.00	,ek -9.91 nb	JIGH H AND	AVG						
350.00	27.87	16.43	44.30	54.00	-9.70	*hotekV	AVG						
	150.00 150.00 150.00 150.00 equency (MHz) 350.00 350.00 350.00	150.00 36.53 150.00 26.50 150.00 27.11 equency Reading (dBuV) 350.00 38.28 350.00 37.35 350.00 27.66	150.00 36.53 15.99 150.00 26.50 15.99 150.00 27.11 15.99 TM3 / B equency (MHz) (dBuV) (dB/m) 350.00 38.28 16.43 350.00 27.66 16.43	150.00 36.53 15.99 52.52 150.00 26.50 15.99 42.49 150.00 27.11 15.99 43.10 TM3 / Band: 5150-53 equency Reading (dBuV) (dB/m) (dBuV/m) 350.00 38.28 16.43 54.71 350.00 37.35 16.43 53.78 350.00 27.66 16.43 44.09	150.00 36.53 15.99 52.52 68.20 150.00 26.50 15.99 42.49 54.00 150.00 27.11 15.99 43.10 54.00 TM3 / Band: 5150-5350 MHz / BW equency (dBuV) (dB/m) (dBuV/m) (dBuV/m) 350.00 38.28 16.43 54.71 68.20 350.00 37.35 16.43 53.78 68.20 350.00 27.66 16.43 44.09 54.00	150.00 36.53 15.99 52.52 68.20 -15.68 150.00 26.50 15.99 42.49 54.00 -11.51 150.00 27.11 15.99 43.10 54.00 -10.90 TM3 / Band: 5150-5350 MHz / BW: 40 / H equency Reading (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 350.00 38.28 16.43 54.71 68.20 -13.49 350.00 37.35 16.43 53.78 68.20 -14.42 350.00 27.66 16.43 44.09 54.00 -9.91	150.00 36.53 15.99 52.52 68.20 -15.68 V 150.00 26.50 15.99 42.49 54.00 -11.51 H 150.00 27.11 15.99 43.10 54.00 -10.90 V TM3 / Band: 5150-5350 MHz / BW: 40 / H equency (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) Pol. 350.00 38.28 16.43 54.71 68.20 -13.49 H 350.00 37.35 16.43 53.78 68.20 -14.42 V 350.00 27.66 16.43 44.09 54.00 -9.91 H						

AND

	100	0	-\/-	NO.	b.	V18.	VLID	1.0
VUL			TM4 / B	and: 5150-53	350 MHz / BV	V: 20 / L		
	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
	5150.00	37.19	15.99	53.18	10 ⁰ 68.20 M	-15.02	Hejod	Peak
ek	5150.00	38.98	15.99	54.97	68.20	-13.23	Viek	Peak
yod!	5150.00	26.69	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	42.68	54.00	-11.32	Aug H Jick	AVG
60	5150.00	28.96	15.99	44.95	54.00	-9.05	V _{Up}	AVG
V-			TM4 / B	and: 5150-53	350 MHz / BW	V: 20 / H		
	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
Yek.	5350.00	38.01	16.43 NO	54.44 Ani	68.20	-13.76	Anbo H	Peak
	5350.00 °	38.24 And	16.43	54.67	68.20	-13.53	AnVie	Peak
Upo	5350.00	27.96	16.43	44.39	54.00	-9.61	Hupolek	AVG
6	5350.00	28.61	16.43	45.04	54.00	-8.96	V	AVG MO

Anbotek

Remark: 1. Result=Reading + Factor

Anbolek

Anbotek

Anboiek

Anbolek

Anbolek

Anbolek

Anbolek

Anbotek

Anbotek

Anbotek

Anboiek

Anbotek

Anbotek

Anborek

Anbolek

Aupolek

Anbolek

Anbolek

Anbotek

Aupolek

Anbolek

Anbolek

Anbotek

Anbotek

'upotek

Anbolek

Anbotek

Anbolek

nbotek

Anbotek

Anbolek

Anbolek

Aupolek

Aupolek

Aupolek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Aupolek

Anbotek

Anbotek

Anbotek

Anbotek

Anbolek

Anbotek

Anbotek

Anbotek

Anbotek

Anbote

 Δu_k

Anbotek

Anbolek

Anbotek

Anbotek

 An^{b}

Report No.:182512C400544104 Anbotek FCC ID: 2BCAX-HY320M

Anbotek

Anborek

Anbotek

Anbotek	Aupor	V.	Vupote.	Ann	You's Y	ek Vupo	
Aura	Anboiek	Aupo	Aupole	k Aupoli	"ek All"	bolek A	upoler An
		TM4 / B	and: 5150-53	350 MHz / BV	V: 40 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	36.12	15.99	52.11	68.20	-16.09	Habotek	Peak
5150.00	36.48	15.99	52.47	68.20	-15.73	ek V no	Peak Mark
5150.00	26.40	15.99	42.39	54.00	-11.61 nb	H	AVG
5150.00	27.04	15.99	43.03	54.00	-10.97	Upor A	AVG
		TM4 / B	and: 5150-53	350 MHz / BV	V: 40 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5350.00	38.22	16.43	54.65	68.20	-13.55	Н	vek Peak who
5350.00	37.31	16.43	53.74	68.20	-14.46 nb	Sier A VIL	Peak
5350.00	27.62	16.43	44.05	54.00	-9.95	abote ^k H	AVG
5350.00	27.78	16.43 nb0	44.21	54.00	-9.79	P.L.	AVG
Remark: 1. F	Result=Readi	ng + Factor	100 le.	Wupofek	Aupolek	Vupo,	upotek
tek ni	pore. V.	11-	Polek	AUD	rek	Auporg	P.

Anbolek

Aupolek

Aupolek

Anbolek

Anbolek

Anbotek

upotek

Anbolek

Anbotek

Anbotek

Anbolek

Aupolek

Anbolek

Anbotek

Anbotek

Anbolek

Anbolek

Anboiek

Anbotek

Anbotek

Anbolek

Anbolek

Anbotek

Anborek

Anbolek

Anbotek

Anboiek

Anbotek

Anbotek

Anbotek

Anbolek

Anbotek

Aupolek

Aupolek

Aupolek

Aupolek

Aupolek

Anbotek

abotek

Anbotek

Anbol

Anbotek

Aupolek

Anbotek

Report No.:182512C400544104 Anbotek FCC ID: 2BCAX-HY320M

upo.	Anboiek	Anbore	VIII	" Upolek	Anb	ek Anbol	iek Vupo
Anbotek	And	Spokek	Anbo	, , , , , , , , , , , , , , , , , , ,	k Aupol	VIII.	rek .
		TM1 / B	and: 5470-58	350 MHz / BV	V: 20 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5460.00	18.38 And	16.37	54.75	68.20	-13.45	Pick	Peak
5460.00	39.83	16.37	56.20	68.20	-12.00	V Stek	Peak
5470.00	39.31	16.70	56.01	68.20	-12.19	H _{up}	Peak
5470.00	40.12	16.70	56.82	68.20	-11.38	ick A Vup.	Peak
5460.00	28.91	16.37	45.28	54.00	-8.72	H	AVG
5460.00	28.80	16.37,001	45.17	54.00	~~~~~8.83	Upor A	AVG
5470.00	29.18	16.70	45.88	54.00	-8.12	Hook	AVG
5470.00	30.31	o ^{ten} 16.70 An	47.01	54.00	-6.99	Votek	AVG
		TM1 / B	and: 5470-58	350 MHz / BV	V: 20 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	39.36	17.21	56.57	68.20	~ -11.63 N	Pur H Pur	Peak
5850.00	39.76	17.21	56.97	68.20	-11.23	NotekV	Peak
5850.00	29.31	17.21	46.52	54.00	-7.48	Hr	AVG
5850.00	29.28	17.21	46.49	54.00	-7.51	PuρΛ,	AVG
Remark: 1. F	Result=Readi	ng + Factor	Anbotek	Aupole	Anborek	Aupoles	K Vup
40.	"polek	AUD	tek	Anbore	b.,	k upoke	And

-05	- UD		70.	No.	7/6	VIII	
		TM2 / B	and: 5470-58	850 MHz / BV	V: 20 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5460.00	38.37	× 16.37 00°	54.74	68.20	-13.46	AUP H	Peak
5460.00	39.00	16.37	55.37	68.20	-12.83	Aup Die	Peak
5470.00	38.48	16.70	55.18	68.20	-13.02	Hotek	Peak
5470.00	38.95	16.70	55.65	68.20	-12.55	V	⊬ Peak ∾
5460.00	27.27	16.37	43.64	54.00	-10.36	H Anbo	AVG
5460.00	27.75	16.37	44.12	54.00	-9.88	Nek V AT	NOTE AVG
5470.00	27.71	16.70	44.41	54.00	-9.59 N	H	AVG
5470.00	28.29	16.70	1 ¹⁰ 44.99 h	54.00	-9.01	Anbolo	AVG
		TM2 / B	and: 5470-58	350 MHz / BV	V: 20 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	37.60	17.21	54.81	68.20	-13.39	ek H No	Peak Miles
5850.00	38.15	17.21	55.36	68.20	-12.84 nbo	V	Peak
5850.00	27.92	17.21	45.13 45.13	54.00	-8.87	Upolon H b	AVG
5850.00	28.68	17.21	45.89	54.00	-8,11	~~.V-	AVG

Remark: 1. Result=Reading + Factor

Anbotek

Anbolek

Anbotek

Anbo

Anbotek

Report No.:182512C400544104 FCC ID: 2BCAX-HY320M

	Vic.	VIII	-01	- 4D	1	V	NO.	*
			TM2 / B	and: 5470-58	850 MHz / BV	V: 40 / L		
tek	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
odn,	5460.00	37.95	16.37	54.32	68.20	-13.88	ATH LOK	Peak
	5460.00	38.88	16.37	55.25	68.20	-12.95	Kuporg	Peak
P	5470.00	38.78	16.70	55.48	68.20	-12.72	ek H No	Peak Mark
Ī	5470.00	39.49	16.70	56.19	68.20	-12.01 no	V	Peak
	5460.00	27.01	16.37	43.38	54.00	-10.62	Uporer H	AVG
	5460.00	28.83	16.37	45.20	54.00	-8.80	"oAx	AVG
16/4	5470.00	27.21	o ^{tek} 16.70 💅	43.91	54.00	-10.09	H rek	AVG
~	5470.00	28.51	16.70	45.21	54.00	-8.79	V/O	AVG
Un			TM2 / B	and: 5470-58	350 MHz / BV	V: 40 / H		
	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
	5850.00	38.31	17.21	55.52	68.20 kg/c	-12.68	H	Peak
	5850.00	38.63	17.21	55.84	68.20	-12.36	rup. A	Peak
, te	5850.00	28.50	17.21	45.71	54.00	-8.29	Hong	AVG
ote	5850.00	~~ ^{29.53} №	17.21	46.74	54.00	-7.26	Votek	AVG
AUD	Remark: 1. F	Result=Readii	ng + Factor	Anbotek	Anbolek	Auporo	k Aupole	k Aupor
	Vupo,	B.	abolen	Aur	botel	Aupo	8.	rek n

Anbore	VII.	abolek	Anb	hotel	Aupor	A.	liek Vi
		TM3 / B	and: 5470-58	350 MHz / BV	V: 20 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5460.00	37.55 NO	16.37	53.92	68.20	-14.28	""PHek	Peak
5460.00	37.62	16.37	53.99	68.20	-14.21	A Nek	Peak
5470.00	38.13	16.70	54.83	68.20	-13.37	H	Peak
5470.00	38.42	16.70	55.12	68.20	-13.08	K A Vupo,	Peak
5460.00	28.14	16.37	44.51	54.00	-9.49	, _o ⊬ H	AVG
5460.00	28.86	16.37	45.23	54.00	o ^{tek} -8.77 M	, A	AVG
5470.00	28.42	16.70	nek 45.12 no	54.00	-8.88	Anbot H	AVG
5470.00	29.32 M	16.70	46.02	54.00	-7.98	Rick	AVG
		TM3 / B	and: 5470-58	350 MHz / BV	V: 20 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	38.29	17.21	55.50	68.20	-12.70	H W	Peak
5850.00	39.14	17.21	56.35 00 V	68.20	-11.85	Polek A b	Peak
5850.00	28.13	17.21	45.34	54.00	-8.66	, H	AVG
5850.00	29.28	17.21 AN	46.49	54.00	-7.51	Aupon	AVG

Remark: 1. Result=Reading + Factor

Anbotek

Anbotek

Report No.:182512C400544104 FCC ID: 2BCAX-HY320M

'upo	Anborek	Anbore	VI.	apolen	AUG	ek Anbol	ek Vupo.
Vupotek	Anbo	spotek	Anboro	b.	K Anbol	V. V.	16K
	****	TM3 / B	and: 5470-58	350 MHz / BV	V: 40 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5460.00	36.48	16.37	52.85	68.20	-15.35	Piek	Peak
5460.00	37.95	16.37	54.32	68.20	-13.88	V OFEK	Peak
5470.00	36.91	16.70	53.61	68.20	-14.59	Hups	Peak
5470.00	38.29	16.70	54.99	68.20	-13.21	lek V Aupo	Peak
5460.00	27.45	16.37	43.82	54.00	-10.18	H	AVG
5460.00	27.56	16.37	43.93	54.00	10.07	Upor A	AVG
5470.00	27.70	16.70	44.40	54.00	-9.60	Hode	AVG
5470.00	28.37	16.70 An	45.07	54.00	-8.93	Votek	AVG
o'		TM3 / B	and: 5470-58	350 MHz / BV	V: 40 / H		-
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	37.81	17.21	55.02	68.20	_w -13.18 _{√0}	oren H And	Peak
5850.00	38.72	17.21	55.93	68.20	-12.27	Valor	Peak
5850.00	27.83	17.21 nbo	45.04	54.00	-8.96	H.	AVG
5850.00	27.51	17.21	44.72	54.00	-9.28	Aup ∧	AVG

Remark: 1. Result=Reading + Factor

10/0	VI.	16/	V UD.		, no.	h	
		TM4 / B	and: 5470-58	350 MHz / BV	V: 20 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5460.00	5460.00	37.63	16.37	54.00	68.20	Her.	Peak
5460.00	5460.00	37.66	16.37	54.03	68.20	<i>Puβ</i> Λ	Peak
5470.00	5470.00	38.21	16.70	54.91	68.20	Hipology	Peak
5470.00	5470.00	38.46	16.70	55.16	68.20	V vo	Peak No
5460.00	5460.00	28.20	16.37	44.57	54.00	Н	AVG
5460.00	5460.00	28.95	16.37	45.32	54.00	botek V Ar	AVG
5470.00	5470.00	28.48	16.70	√e ³ 45.18 🙀	54.00	NeH.	AVG
5470.00	5470.00	29.41	16.70	46.11	54.00	Aupo A	AVG
		TM4 / B	and: 5470-58	350 MHz / BV	V: 20 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	38.37	17.21	55.58	68.20	-12.62	ick H Mupo	Peak
5850.00	39.21	17.21	56.42	68.20	-11.78	V V	, Peak
5850.00	28.20	17.21,00te	45.41	54.00	8.59 A	Upor H	AVG
5850.00	29.37	17.21	46.58	54.00	-7.42	Vodn.	AVG

Remark: 1. Result=Reading + Factor

Anbotek

Anbotek

Anbolek

Anbolek

Anbolek

bolek

Aupolek

Anbolek

Anbotek

Anboiek

Anbolek

Anbolek

Anbotek

Anbolek

Anbolek

upotek

Anbolek

Anbotek

Anbotek

Anbotek

'upotek

Anbolek

Anbotek

Anbotek

Anbotek

Anbotek

nbotek

Anbotek

Anbotek

Anbolek

Aupolek

Anbotek

Anbotek

Anbolek

Anbotek

Anbote

 Δu_k

Anbotek

Anbotek

Anb

Anbotek

Aupolek

Aupolek

Aupolek

Report No.:182512C400544104 FCC ID: 2BCAX-HY320M

apole, V	Ula	181		AX-111320N	II hope.	VIII	
Anbotek .	Aupolek	Aupotek	A. Spotek	Aupole,	r Vur	Sk Aupo	ek Anbo
Vupo.	r ok	"pole"	Alle	· ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	The VUD	·	16K
		TM4 / B	and: 5470-58	350 MHz / BV	V: 40 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5460.00	36.56	16.37	52.93	68.20	-15.27	Hick	Peak
5460.00	38.00	16.37	54.37	68.20	-13.83	V Viek	Peak
5470.00	36.99	16.70	53.69	68.20	-14.51	H ^{nb}	Peak
5470.00	38.34	16.70	55.04	68.20	-13.16	ick A Vupo	Peak
5460.00	27.51	16.37	43.88	54.00	-10.12	H	AVG
5460.00	27.61	16.37,000	43.98	54.00	10.02	Upor A	AVG
5470.00	27.76	16.70	44.46	54.00	-9.54	Hodin	AVG
5470.00	28.42	16.70 An	45.12	54.00	-8.88	Votek	AVG
3		TM4 / B	and: 5470-58	350 MHz / BV	V: 40 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	37.88	17.21	55.09	68.20	رواد -13.11 مراد الم	H And	Peak
5850.00	38.81	17.21	56.02	68.20 M	-12.18	NotekV	An ^{bo} Peak
5850.00	27.91	17.21 nbo	45.12	54.00	8.88-°°	H/k	AVG
5850.00	27.60	17.21	44.81	54.00	-9.19	AnbV	AVG

Anbotek

Anbolek

Anbotek

Anborek

Remark: 1. Result=Reading + Factor

Anbolek

Anbotek

Anbotek

ipolek

Anbolek

Anbotek

11. Undesirable emission limits (below 1GHz)

Test Requirement:	47 CFR Part 15.407(b)(9)	upore Au. Orek	Anbore Alle
tek Aupolek	Unwanted emissions below strength limits set forth in §	w 1 GHz must comply with t § 15.209.	he general field
in Aupotek		nere in this subpart, the emi ot exceed the field strength	
Aupor P.	following table:	rek Vupoter Vuo	ok spotek
Auporek Au	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
All	0.009-0.490	2400/F(kHz)	300
ick Vupo,	0.490-1.705	24000/F(kHz)	30
iek "upolek	1.705-30.0	30 400	30
upore Ar.	30-88	4 100 ** nbolek	3 "Otek
Test Limit:	88-216 No. 100 Miles	150 **	olek 3 Vupa
All do	216-960	200 **	stell 3 Anbotes
Aupore. VIII	Above 960	500	Anbo 3 stek
otek Aupotek	intentional radiators opera frequency bands 54-72 MH	aragraph (g), fundamental e ting under this section shall Hz, 76-88 MHz, 174-216 MI these frequency bands is p SS 15 231 and 15 241	not be located in the Iz or 470-806 MHz.
Aupotek Aupotek	In the emission table above The emission limits shown employing a CISPR quasi-	e, the tighter limit applies a in the above table are base peak detector except for th	ed on measurements e frequency bands 9–
k Anbotek		above 1000 MHz. Radiated ed on measurements emplo	
Test Method:	ANSI C63.10-2020, sectio	n 12 7 4 12 7 5	Auporen Aug
ok work	Below 1GHz:	Aupole 10 Aup	ek upotek
Aupolek Aupole	a. For below 1GHz, the EU meters above the ground a	JT was placed on the top of at a 3 meter semi-anechoic o determine the position of	chamber. The table
Aupore Av.		0 meters away from the inte	erference-receiving
		ted on the top of a variable.	
sk Aupore			height antenna tower.
sk Vupose.	c. The antenna height is va	aried from one meter to found in the field seem one the field seem of the field seem	height antenna tower. meters above the
Potek Vupotek	c. The antenna height is va ground to determine the m	aried from one meter to fou	height antenna tower. meters above the trength. Both horizonta
K 2010	c. The antenna height is va ground to determine the m and vertical polarizations of	aried from one meter to fou naximum value of the field s	height antenna tower. meters above the trength. Both horizonta lke the measurement.
K 2010	c. The antenna height is va ground to determine the m and vertical polarizations of d. For each suspected em and then the antenna was	aried from one meter to foun naximum value of the field so of the antenna are set to ma ission, the EUT was arrang tuned to heights from 1 me	height antenna tower. meters above the trength. Both horizontalike the measurement. ed to its worst case ter to 4 meters (for the
K 2010	c. The antenna height is variously ground to determine the mand vertical polarizations of d. For each suspected emand then the antenna was test frequency of below 30	aried from one meter to found aximum value of the field so of the antenna are set to maission, the EUT was arrang tuned to heights from 1 med MHz, the antenna was tuned	height antenna tower. If meters above the trength. Both horizonta like the measurement. Hed to its worst case ter to 4 meters (for the led to heights 1 meter)
K 2010	c. The antenna height is variously ground to determine the mand vertical polarizations of d. For each suspected emand then the antenna was test frequency of below 30 and the rotatable table was	aried from one meter to foun naximum value of the field so of the antenna are set to ma ission, the EUT was arrang tuned to heights from 1 me	height antenna tower. If meters above the trength. Both horizontalike the measurement, ed to its worst case ter to 4 meters (for the ed to heights 1 meter)
K 2010	c. The antenna height is variously ground to determine the mand vertical polarizations of d. For each suspected emand then the antenna was test frequency of below 30 and the rotatable table was maximum reading.	aried from one meter to found aximum value of the field so of the antenna are set to maission, the EUT was arrang tuned to heights from 1 med MHz, the antenna was tuned so turned from 0 degrees to	height antenna tower. If meters above the trength. Both horizontalike the measurement, ed to its worst case ter to 4 meters (for the ed to heights 1 meter) 360 degrees to find the
Procedure: Anbotek Anbotek Anbotek Anbotek Anbotek	c. The antenna height is varied ground to determine the mand vertical polarizations of d. For each suspected emand then the antenna was test frequency of below 30 and the rotatable table was maximum reading. e. The test-receiver system	aried from one meter to foun maximum value of the field so of the antenna are set to ma ission, the EUT was arrang tuned to heights from 1 me MHz, the antenna was tune s turned from 0 degrees to m was set to Peak Detect Fu	height antenna tower. If meters above the trength. Both horizontal like the measurement, ed to its worst case ter to 4 meters (for the ed to heights 1 meter) 360 degrees to find the
Procedure: Anborek Anborek Anborek Anborek Anborek Anborek Anborek Anborek	c. The antenna height is varied ground to determine the mand vertical polarizations of d. For each suspected emand then the antenna was test frequency of below 30 and the rotatable table was maximum reading. e. The test-receiver system Bandwidth with Maximum	aried from one meter to four naximum value of the field so of the antenna are set to maission, the EUT was arrang tuned to heights from 1 med MHz, the antenna was tuned so turned from 0 degrees to make set to Peak Detect For Hold Mode.	height antenna tower. If meters above the trength. Both horizontal like the measurement, ed to its worst case ter to 4 meters (for the ed to heights 1 meter) 360 degrees to find the function and Specified
K 2010	c. The antenna height is varied ground to determine the mand vertical polarizations of d. For each suspected emand then the antenna was test frequency of below 30 and the rotatable table was maximum reading. e. The test-receiver system Bandwidth with Maximum f. If the emission level of the	aried from one meter to found in aximum value of the field so of the antenna are set to maission, the EUT was arrang tuned to heights from 1 med MHz, the antenna was tuned so turned from 0 degrees to make set to Peak Detect Form Hold Mode. The EUT in peak mode was 1	theight antenna tower. If meters above the trength. Both horizontal like the measurement, and to its worst case ter to 4 meters (for the ed to heights 1 meter) and degrees to find the function and Specified.
k 2010	c. The antenna height is varied ground to determine the mand vertical polarizations of d. For each suspected emand then the antenna was test frequency of below 30 and the rotatable table was maximum reading. e. The test-receiver system Bandwidth with Maximum f. If the emission level of the limit specified, then testing would be reported. Otherw	aried from one meter to four naximum value of the field so of the antenna are set to maission, the EUT was arrang tuned to heights from 1 med MHz, the antenna was tuned so turned from 0 degrees to make set to Peak Detect For Hold Mode.	theight antenna tower. If meters above the trength. Both horizontal like the measurement. He do not be do

then reported in a data sheet.

- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 9kHz to 30MHz, the disturbance below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. The disturbance below 1GHz was very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

Above 1GHz:

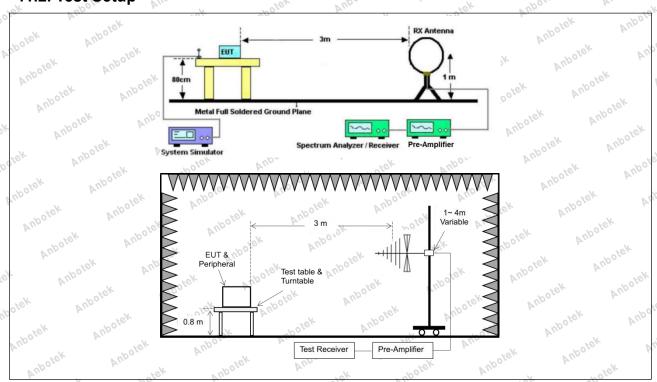
- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength

limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

11.1. EUT Operation

Operating Environment:

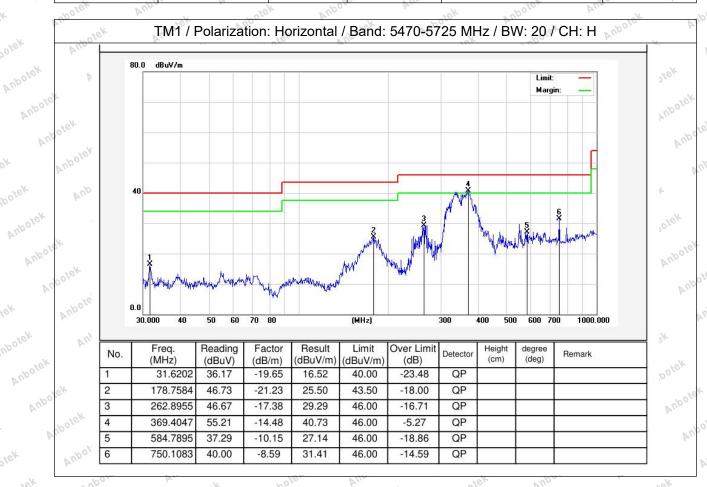

1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Test mode:

- 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
- 4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

11.2. Test Setup

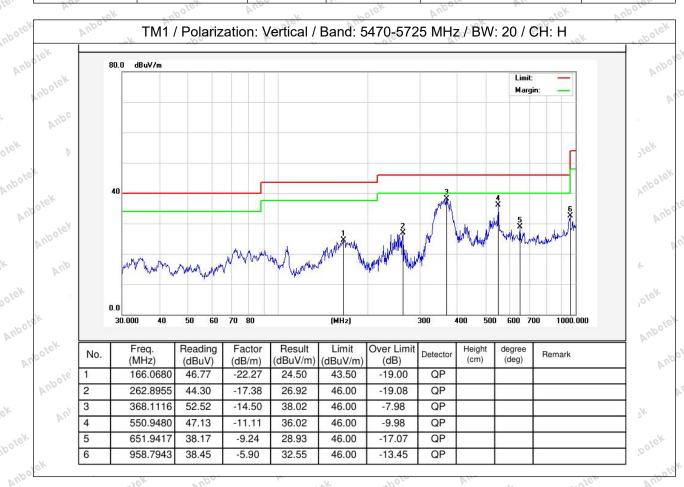

Aupolek

Report No.:182512C400544104 FCC ID: 2BCAX-HY320M

11.3. Test Data

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Temperature: 20.3 °C Humidity: 46 % Atmospheric Pressure: 101 kPa



Anbotek

Report No.:182512C400544104 FCC ID: 2BCAX-HY320M

Temperature: 20.3 °C Humidity: 46 % Atmospheric Pressure: 101 kPa

Note:Only record the worst data in the report.

Test Limit:

Report No.:182512C400544104

FCC ID: 2BCAX-HY320M

12. Undesirable emission limits (above 1GHz)

	DV.	16. " "		-/00		
.V.	spotek Aup	47 CFR Part 15.407(b)(1)	ole.	VII.	"Upolek	AUDO
7	All	47 CFR Part 15.407(b)(2)	"Olek	Anbor	K.	" upole.
	Test Requirement:	47 CFR Part 15.407(b)(3)	AUD	"olek	Aupo.	h.,
0,	Clek	47 CFR Part 15.407(b)(4)	upolen	And	hotek	Anbo
	Sporek Wupe	47 CFR Part 15.407(b)(10)	b.	ik upoker.	Ans	.//
- 1	1.	_ VU_	_ 2/2		Y	

For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.

For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating solely in the 5.725-5.850 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

MHz	MHz Anbote	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-	608-614	5.35-5.46
k Vupor	16.69525	Ann	-polek
2.1735-2.1905	16.80425-	960-1240	7.25-7.75
ore, Aur	16.80475	,	stek Anbore
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-	9.3-9.5
Vur.	lek Aupo	1646.5	Anbore
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-	13.25-13.4
ek Aupo	otek Anbore	1722.2	k apoler
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-	2483.5-2500	17.7-21.4
Ande	156.52525	P. rek	* upole, Vi
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2) Moote
13.36-13.41	Vu.	POICK VUDE	

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

The field strength of emissions appearing within these frequency bands shall

² Above 38.6

not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.

Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

- No	The second secon
Field strength	Measurement
(microvolts/meter)	distance
hotek Ando	(meters)
2400/F(kHz)	300
24000/F(kHz)	30,010 P
30 Nok Amboro	30
100 ** 100	3 Anbor
150 ** Note: And	3 hotek
200 **	3 Am
500 Anbo	3. "pole.
	(microvolts/meter) 2400/F(kHz) 24000/F(kHz) 30 100 ** 150 ** 200 **

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.

In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

Test Method:

Procedure:

ANSI C63.10-2020, section 12.7.4, 12.7.6, 12.7.7

Above 1GHz:

- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified

and then reported in a data sheet.

- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

12.1. EUT Operation

Operating Environment:

1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Test mode:

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbolek

Anbolek

Anbotek

Anbolek

Anbolek

Anbotek

Anbotek

Anbolek

Anbolek

Aupolek

Anbotek

Anboiek

Anbotek

Anborek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anboiek

Anbotek

Anbotek

Anbotek

Anbotek

Anbolek

Report No.:182512C400544104 FCC ID: 2BCAX-HY320M

Anbolek

Aupolek

Anbotek

Aupolek

Anbolek

Anbotek

Anbolek

Anbolek

Anbolek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anboiek

Anbotek

Anbotek

Anbotek

Anbotek

Anbolek

Anbotek

Anbolek

Page 53 of 58

Anbolek

Anbolek

Anbotek

Anbotek

Anbolek

Anbotek

Anbotek

Anbotek

Anbolek

Anbotek

Anbotek

Anbotek

Anbolek

Anbolek

Anbolek

Anbolek

Anbotek

Anbotek

Anbolek

Anbotek

Aupolek

Anbolek

Anbotek

Anbotek

Anbolek

Anbotek

Anbotek

Anbolek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbolek

Anbotek

Anbolek

Anbolek

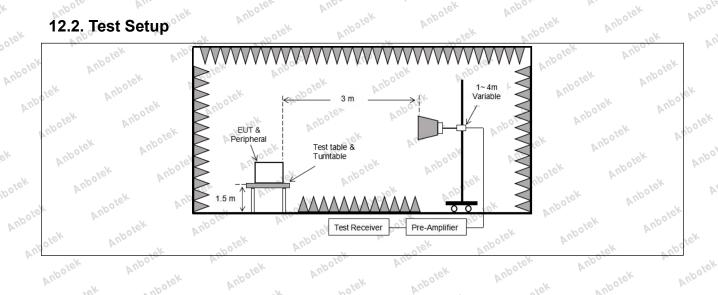
Anboiek

Anbotek

Anbolek

Anbolek

Anbotek


Anbotek

Anbotek

Anbotek

12.2. Test Setup

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbolek

Shenzhen Anbotek Compliance Laboratory Limited

Anbotek

Hotline 400-003-0500 www.anbotek.com

12.3. Test Data

Temperature:	20.3 °C	Humidity:	46 %	Atmospheric Pressure:	101 kPa	
romporatoro.	20.0	i idiiiidity.	1.000	, minospitorio i roccaro.	101111 G	

10 15 10	equency (MHz) 0360.00 5540.00 0360.00	Reading (dBuV) 31.28 32.46 31.44	Factor (dB/m) 23.81 28.68	d: 5150-5250 Result (dBuV/m) 55.09	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
10 15	0360.00 5540.00 0360.00 5540.00	31.28 32.46 31.44	23.81	1-0°	(dBuV/m)	(dB)	Dal	Detector
15	5540.00 0360.00 5540.00	32.46 31.44	PUD.	55.09		(42)	PUI.	
10	0360.00 5540.00	31.44	28.68		68.20	e ^x -13.11 _{An} bo	V Am	Peak
	5540.00	P.,		61.14 ₀ 001	68.20	7.06	nbotek V	Peak
1.5		,	23.81	55.25	68.20	-12.95	" HA	Peak
	0000	32.62	28.68	61.30	68.20	-6.90	Am H rek	Peak
_c e\10	0360.00	20.511	23.81	44.32	54.00	-9.68	N	AVG
15	5540.00	21.440	28.68	50.12	54.00	-3.88	· VAnbore	AVG
10	360.00	20.631	23.81	44.44	54.00	-9.56	iek H an	otek AVG A
15	5540.00	21.383	28.68	50.06	54.00	-3.94 h ^{nb}	Н	AVG
			TM2 / Ban	d: 5150-5250	MHz / BW:	20 / CH: M		
8	equency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
o di C	0400.00	30.64	23.81	54.45	68.20	-13.75	Npo	Peak
15	600.00	31.99	29.13	61.12	68.20	-7.08	k A V V V V V	Peak
10	0400.00	30.93	23.81	54.74	68.20	-13.46	H No.	o ^{vek} Peak N
1,5	5600.00	32.14	29.13	61.27	68.20	orek -6.93 ky	H	Peak
10	0400.00	20.781	23.81	44.59 And	54.00	-9.41	Aupole	AVG
15	5600.00	21.560	29.13	50.69	54.00	-3.31	$^{up}N_{ie_{K}}$	AVG
10	0400.00	20.621	23.81	44.43	54.00	-9.57	H wer	AVG
o 15	600.00	21.463	29.13	50.59	54.00	-3.41	And	AVG NO
			TM2 / Ban	d: 5150-5250	MHz / BW:	20 / CH: H		
	equency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
10	0480.00	30.21	23.80	otek 54.01 Ant	68.20	-14.19	Aupoich	Peak
15	5720.00	e ^k 31.47 _{kn} bc	30.03	61.50	68.20	-6.70	Nick	Peak
10	0480.00	30.57	23.80	54.37	68.20	-13.83	H wek	Peak
015	720.00	31.05	30.03	61.08	68.20	-7.12	H	Peak
10	0480.00	19.45	23.80	43.25	54.00	-10.75	ick A Vup	AVG
15	5720.00	20.32	30.03	50.35	54.00 nbo	-3.65	Vek V	AVG
10	0480.00	19.83	23.80	43.63	54.00	10.37	H	AVG
15	5720.00	20.25	30.03	50.28	54.00	-3.72	AnboH	AVG

Remark: N

- 1. Result =Reading + Factor
- 2. Only the worst case(802.11n(HT20)) is recorded in the report.

AND

Report No.:182512C400544104 FCC ID: 2BCAX-HY320M

3/4	V Upo	40.	20010	br.	, oV	34 VUD		18/
40.		W 57. 1	TM4 / Ban	d: 5250-5350	MHz / BW:	40 / CH: L		
Anbotek Anbotek	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
	10540.00	26.97 Miles	23.83	50.80	68.20	-17.40	V.A.	Peak
Aupo	15810.00	28.71	30.70	59.41	68.20	-8.79	Vapolek	Peak
P.	10540.00	27.56	23.83	51.39	68.20	-16.81	H	nek Peak Mal
ek	15810.00	28.92	30.70	59.62	68.20	-8.58 nbc	H AUG	Peak
	10540.00	16.89	23.83	40.72 not	54.00	-13.28	upotek V	AVG
hotek	15810.00	17.85	30.70	48.55	54.00	-5.45	N.	AVG
Anbolek	10540.00	17.21	23.83	41.04	54.00	-12.96	And H **	AVG
	15810.00	18.29	30.70	48.99	54.00	-5.01	PHO.	AVG
Anbo			TM4 / Ban	d: 5250-5350	MHz / BW:	40 / CH: H		
ntek p	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
	10620.00	27.64	23.90	51.54 no	68.20	-16.66	Valorek	Peak
upotek	15930.00	27.72 ₀₀ 016	31.83	59.55	68.20	-8.65	No.	Peak
Anborel	10620.00	28.36	23.90	52.26	68.20	-15.94	And H .ak	Peak
br.	15930.00	28.47	31.83	60.30	68.20	-7.90	Hport	Peak
Ann	10620.00	17.94	23.90	41.84	54.00	-12.16	k V Aupor	AVG
	15930.00	17.32	31.83	49.15	54.00	-4.85	V V	ove ^K AVG
otek	10620.00	18.43	23.90	42.33	54.00	otek-11.67 An	H	AVG
49,	15930.00	17.54	31.83	10 ^k 49.37 And	54.00	-4.63	Anboreh	AVG

Anbol

Anbotek

Aupolek

Anbotek

- Remark: 1. Result =Reading + Factor
 - 2. Only the worst case (802.11ax(HEW40)) is recorded in the report.

Anbotek

VUDO	40.	20010	Br.	v ~ ~ ~ ~ ~	Su Vuo		18K
		TM1 / Ban	d: 5470-572	5 MHz / BW:	20 / CH: L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
11000.00	26.84	24.15	50.99	68.20	-17.21	VUA.	Peak
16500.00	28.84	33.05	61.89	68.20	-6.31	Vapotek	Peak
11000.00	28.57	24.15	52.72	68.20	-15.48	H	tek Peak And
16500.00	29.05	33.05	62.10	68.20	ek -6.10 noc	H Ans	Peak
11000.00	16.407	24.15	40.56 not	54.00	-13.44	"polek A	AVG
16500.00	17.632	33.05	50.68	54.00	-3.32	N.	AVG
11000.00	16.560	24.15 M	40.71	54.00	-13.29	And H Lek	AVG
16500.00	16.612	33.05	49.66	54.00	-4.34	AH ^o	AVG
		TM1 / Ban	d: 5470-572	MHz / BW:	20 / CH: M		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
11200.000	26.52	23.83	50.35 NO	68.20	-17.85	<i>Notel</i> V	Peak
16800.000	27.01 ₀₀ 016	32.16	59.17	68.20	-9.03	V.	Peak
11200.000	27.50	23.83	51.33	68.20	-16.87	Anoth Lek	Peak
16800.000	27.66	32.16	59.82	68.20	-8.38	Hport	Peak
11200.000	16.657	23.83	40.49	54.00	-13.51	k A V Vupor	AVG
16800.000	18.032	32.16	50.19	54.00	-3.81	V	ove ^N AVG N
11200.000	17.060	23.83	40.89	54.00	otek-13.11 ph	Н	AVG
16800.000	18.472	32.16	10.63 And	54.00	-3.37	Anboiet H	AVG
		TM1 / Ban	d: 5470-572	5 MHz / BW:	20 / CH: H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
11400.000	25.61	23.51	49.12	68.20	-19.08	ok V Anbo	Peak And
17100.000	26.90	31.73	58.63	68.20,00	-9.57 ^{nb}	V	Peak
11400.000	26.40	23.51	49.91	68.20	ove ¹ 418.29 №	H P	Peak
17100.000	27.66	31.73	nek 59.39 Ant	68.20	-8.81	Anboten	Peak
11400.000	16.04 NO	23.51	39.55	54.00	-14.45	Potok	AVG
17100.000	17.24	31.73	48.97	54.00	-5.03	V vek	AVG
11400.000	19.85	23.51	43.36	54.00	-10.64	H _{uport}	AVG
17100.000	18.26	31.73	49.99	54.00	-4.01	rek H Anb	AVG
-0.74							as Was

Remark:

- 1. Result =Reading + Factor
- 2. Only the worst case (802.11a) is recorded in the report.

VUDO	You	20010	Dr.	v ~ ~ ~ ~	Su. VUD		10K
		TM2 / Ban	d: 5725-585	0 MHz / BW:	20 / CH: L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
11490.000	28.38	23.36	51.74	68.20	-16.46	V/Asie	Peak
17235.000	29.60	31.97	61.57	68.20	-6.63	Vapotek	Peak
11490.000	28.65	23.36	52.01	68.20	-16.19	H	rek Peak Ant
17235.000	29.89	31.97	61.86	68.20	ek -6.34 M	H Ans	Peak
11490.000	17.55	23.36	40.91 not	54.00	-13.09	"polek A	AVG
17235.000	18.20	31.97	50.17	54.00	-3.83	N.	AVG
11490.000	17.68	23.36 M	41.04	54.00	-12.96	And H Lek	AVG
17235.000	17.91	31.97	49.88	54.00	-4.12	AH ^o	AVG
		TM2 / Ban	d: 5725-5850	MHz / BW:	20 / CH: M		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
11570.000	28.96	23.42	52.38	68.20 And	-15.82	<i>obote</i> ^k ∨	Peak
17355.000	29.48	32.18	61.66	68.20	-6.54	Vek	Peak
11570.000	28.85	23.42	52.27	68.20	-15.93	And H "ok	Peak
17355.000	29.98	32.18	62.16	68.20	-6.04	Hoore	Peak
11570.000	18.825	23.42	42.24	54.00	-11.76	k A Vupor	AVG
17355.000	18.523	32.18	50.70	54.00	-3.30	V V	ove ^k AVG N
11570.000	18.674	23.42	42.09	54.00	otek-11.91 An	H	AVG
17355.000	18.287	32.18	50.47 And	54.00	-3.53	Anboter	AVG
		TM2 / Ban	d: 5725-5850	MHz/BW:	20 / CH: H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
11650.000	28.47	23.49	51.96	68.20	-16.24	ek V Anbo	Peak And
17475.000	29.72	32.39	62.11	68.20	-6.09	V	Peak
11650.000	28.59	23.49	52.08	68.20	ove*16.12 N	H P	Peak
17475.000	29.59	32.39	ne 61.98 ha	68.20	-6.22	Anbote H	Peak
11650.000	17.89 NO	23.49	41.38	54.00	-12.62	Pick	AVG
17475.000	18.32	32.39	50.71	54.00	-3.29	V. Orek	AVG
11650.000	17.85	23.49	41.34	54.00	-12.66	H _{upo}	AVG
17475.000	18.26	32.39	50.65	54.00	-3.35	tek H And	AVG

Remark:

- 1. Result =Reading + Factor
- 2. Only the worst case (802.11n(HT20)) is recorded in the report.

Anbotek

Anbolek

Anboick

Anboick

Anbotek

Anbotek

Anbotek

Anbotek

Anbolek

Anbotek

Anbotek

Anbolek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbolek

Anbolek

Anbolek

Anbolek

Anbolek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbolek

Anbotek

Aupotek

Aupolek

Anbolek

Aupolek

Anbotek

Anbolek

Anbotek

Anbotek

Anbotek

Aupolek

Report No.:182512C400544104 FCC ID: 2BCAX-HY320M

APPENDIX I -- TEST SETUP PHOTOGRAPH

Aupolek

Anbotek

Anboiek

Please refer to separated files Appendix I -- Test Setup Photograph RF

Anbolek

APPENDIX II -- EXTERNAL PHOTOGRAPH

Please refer to separated files Appendix II -- External Photograph

APPENDIX III -- INTERNAL PHOTOGRAPH

Please refer to separated files Appendix III -- Internal Photograph

Anbotek

Anbolek

Anbolek

Anboiek

----- End of Report

Anbolek

Anbotek

Anbotek

Anbolek

Anbolek

Anbolek

Anbotek

Aupolek

Anbotek

Anbotek

Anbolek

Anbotek

Anbotek

Shenzhen Anbotek Compliance Laboratory Limited

Anbotek

Anboiek

