

TEST REPORT

Report No.:	D.: BCTC2410189364E						
Applicant:	Hoco technology development (SHE co.,Ltd	NZHEN)					
Product Name:	ne: Wireless earphone						
Test Model:	ES62	CHENZH					
Tested Date:	2024-10-18 to 2024-11-06						
Issued Date:	2024-11-06						
She	enzhen BCTC Testing Co., Ltd.						
No. : BCTC/RF-EMC-005	Page: 1 of 67	Edition : B.2					

FCC ID: 2AX2T-GBEJ

Product Name:	Wireless earphone
Trademark:	hoco.
Model/Type Reference:	ES62 ES64, ES71, ES72, ES73, ES74, ES75, ES76, ES77, ES78, ES79, ES80, ES81, ES82, ES83, ES84, ES85, ES86, ES87, ES88
Prepared For:	Hoco technology development (SHENZHEN) co.,Ltd
Address:	Rm 408, Block A, Weidonglong Business Building, 2125 Meilong Road, Tsinghua Community, Longhua Street, Longhua District, Shenzhen, P. R. China
Manufacturer:	Hoco technology development (SHENZHEN) co.,Ltd
Address:	Rm 408, Block A, Weidonglong Business Building, 2125 Meilong Road, Tsinghua Community, Longhua Street, Longhua District, Shenzhen, P. R. China
Prepared By:	Shenzhen BCTC Testing Co., Ltd.
Address:	1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Sample Received Date:	2024-10-18
Sample Tested Date:	2024-10-18 to 2024-11-06
Issue Date:	2024-11-06
Report No.:	BCTC2410189364E
Test Standards:	FCC Part15.247 ANSI C63.10-2013
Test Results:	PASS
Remark:	This is Bluetooth Classic radio test report.

Tested by: Min zhi Cheng

Min Zhi Cheng/ Project Handler

Approved by:

Zero Zhou/Reviewer

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

Page: 2 of

Table Of Content

Test	Report Declaration Pa	age
1.	Version	5
2.	Test Summary	6
3.	Measurement Uncertainty	7
4.	Product Information And Test Setup	
4.1	Product Information	
4.2	Test Setup Configuration	9
4.3	Support Equipment	
4.4	Channel List	
4.5	Test Mode	10
4.6	Table Of Parameters Of Text Software Setting	10
5.	Test Facility And Test Instrument Used	
5.1	Test Facility	11
5.2	Test Instrument Used	11
6.	Conducted Emissions	13
6.1	Block Diagram Of Test Setup	13
6.2	Limit	13
6.3	Test procedure	13
6.4	EUT operating Conditions	13
6.5	Test Result	
7.	Radiated emissions	
7.1	Block Diagram Of Test Setup	
7.2	Limit	
7.3	Test procedure	
7.4	EUT operating Conditions	
7.5	Test Result	
8.	Radiated Band Emission Measurement And Restricted Bands Of Operation	
8.1	Block Diagram Of Test Setup	
8.2	Limit	
8.3	Test procedure	
8.4	EUT operating Conditions	
8.5	Test Result	
9.	Spurious RF Conducted Emissions	
9.1 9.2	Block Diagram Of Test Setup	
9.2 9.3	Toet procedure	
9.3 9.4	Test Procedule	
9.4 10.	20 dB Bandwidth	<u>2</u> 1 12
10.1	Test procedure Test Result 20 dB Bandwidth Block Diagram Of Test Setup	
10.1	L imit	42
10.2	Test procedure	42
10.3		42
11.	Maximum Peak Output Power	46
11.1	Block Diagram Of Test Setup	
11.2	Limit	
11.3		46
11.4		

Edition : B.2

,TC 3C

PR

еро

12. Hopping Channel Separation	
12.1 Block Diagram Of Test Setup	
12.2 Limit	
12.3 Test procedure	
12.4 Test Result	
13. Number Of Hopping Frequency	
13.1 Block Diagram Of Test Setup	
13.2 Limit	
13.3 Test procedure	
13.4 Test Result	
14. Dwell Time	
14.1 Block Diagram Of Test Setup	
14.2 Limit	
14.3 Test procedure	
14.4 Test Result	
15. Antenna Requirement	
15.1 Limit	
15.2 Test Result	63
16. EUT Photographs	64
17. EUT Test Setup Photographs	

(Note: N/A Means Not Applicable)

No. : BCTC/RF-EMC-005

Page: 4 of 67

Edition : B.2

t Sea

1. Version

Report No.	Io. Issue Date Description		Approved
BCTC2410189364E	2024-11-06	Original	Valid

Page: 5 of 67

2. Test Summary

The Product has been tested according to the following specifications:

No.	Test Parameter	Clause No	Results
1	Conducted emission AC power port	§15.207	PASS
2	Conducted peak output power for FHSS	§1 5.247(b)(1)	PASS
3	20dB Occupied bandwidth	§15.247(a)(1)	PASS
4	Hopping channel separation	§15.247(a)(1)	PASS
5	Number of hopping frequencies	§1 5.247(a)(1)(iii)	PASS
6	Dwell Time	§1 5.247(a)(1)(iii)	PASS
7	Spurious RF conducted emissions	§15.247(d)	PASS
8	Band edge	§15.247(d)	PASS
9	Spurious radiated emissions for transmitter	§15.247(d) & §15.209 & §15.205	PASS
10	Antenna Requirement	15.203	PASS

3. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

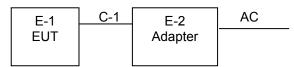
No.	Item	Uncertainty
1	3m chamber Radiated spurious emission(30MHz-1GHz)	U=4.3dB
2	3m chamber Radiated spurious emission(9KHz-30MHz)	U=3.7dB
3	3m chamber Radiated spurious emission(1GHz-18GHz)	U=4.5dB
4	3m chamber Radiated spurious emission(18GHz-40GHz)	U=3.34dB
5	Conducted Emission (150kHz-30MHz)	U=3.20dB
6	Conducted Adjacent channel power	U=1.38dB
7	Conducted output power uncertainty Above 1G	U=1.576dB
8	Conducted output power uncertainty below 1G	U=1.28dB
9	humidity uncertainty	U=5.3%
10	Temperature uncertainty	U=0.59°C

4. Product Information And Test Setup

4.1 Product Information

Madal/Turna Dafaranaa	F000
Model/Type Reference:	ES62 ES64, ES71, ES72, ES73, ES74, ES75, ES76, ES77, ES78, ES79, ES80, ES81, ES82, ES83, ES84, ES85, ES86, ES87, ES88
Model Differences:	All the model are the same circuit and RF module, except model names and appearance color.
Hardware Version:	N/A
Software Version:	N/A
Operation Frequency:	2402-2480MHz
Type of Modulation:	GFSK, π/ 4 DQPSK
Number Of Channel:	79CH
Antenna installation:	Internal antenna
Antenna Gain:	-0.63 dBi
	Remark:
	customer, and the test data is affected by the customer information.
	The antenna gain of the product is provided by the customer, and the test data is affected by the customer information.
Ratings:	Charging: DC 5V From Adapter
	Battery: DC 3.7V
	$\langle \cdot \cdot \cdot \rangle = \langle \cdot \cdot \cdot \cdot \rangle = \langle \cdot \cdot \cdot \circ = \langle \cdot \cdot \cdot \rangle = \langle \cdot \cdot \circ = \langle \cdot \cdot \cdot \rangle = \langle \cdot \cdot \circ = \langle \circ = \langle \cdot \circ = \langle \circ = \langle \cdot \circ = \langle \to = \langle \circ = $
	$\sim \sim $
	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$
	$= - \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} $
	$\sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{i$
	$\sim \sim $
	The state of the second s

Page: 8 of 67


E

4.2 Test Setup Configuration

See test photographs attached in *EUT TEST SETUP PHOTOGRAPHS* for the actual connections between Product and support equipment.

Conducted Emission:

Radiated Spurious Emission:

4.3 Support Equipment

No.	Device Type	Brand	Model	Series No.	Note
E-1	Wireless earphone	hoco.	ES62	N/A	EUT
E-2	Adapter	UGREEN	CD122	N/A	Auxiliary

Item	Shielded Type	Ferrite Core	Length	Note
C-1	N/A	N/A	1M	DC cable unshielded

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

ТC

4.4 Channel List

СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)
0	2402	1	2403	2	2404	3	2405
4	2406	5	2407	6	2408	7	2409
8	2410	9	2411	10	2412	11	2413
12	2414	13	2415	14	2416	15	2417
16	2418	17	2419	18	2420	19	2421
20	2422	21	2423	22	2424	23	2425
24	2426	25	2427	26	2428	27	2429
28	2430	29	2431	30	2432	31	2433
32	2434	33	2435	34	2436	35	2437
36	2438	37	2439	38	2440	39	2441
40	2442	41	2443	42	2444	43	2445
44	2446	45	2447	46	2448	47	2449
48	2450	49	2451	50	2452	51	2453
52	2454	53	2455	54	2456	55	2457
56	2458	57	2459	58	2460	59	2461
60	2462	61	2463	62	2464	63	2465
64	2466	65	2467	66	2468	67	2469
68	2470	69	2471	70	2472	71	2473
72	2474	73	2475	74	2476	75	2477
76	2478	77	2479	78	2480	79	/

4.5 Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

		· · · · · ·		
Test Mode	Test mode	Low channel	Middle channel	High channel
1	Transmitting(GFSK)	2402MHz	2441MHz	2480MHz
2	Transmitting(π/ 4 DQPSK)	2402MHz	2441MHz	2480MHz
3	Transmitting (Conduct	ted emission & F	Radiated emission)	

Note:

(1) The measurements are performed at the highest, middle, lowest available channels.

(2) Fully-charged battery is used during the test

4.6 Table Of Parameters Of Text Software Setting

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters

Test software Version	SecureCRT
Frequency	2402 MHz 2441 MHz 2480 MHz
Parameters	DEF DEF DEF

5. Test Facility And Test Instrument Used

5.1 Test Facility

All measurement facilities used to collect the measurement data are located at Shenzhen BCTC Testing Co., Ltd. Address:1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards.

FCC Test Firm Registration Number: 712850

A2LA certificate registration number is: CN1212

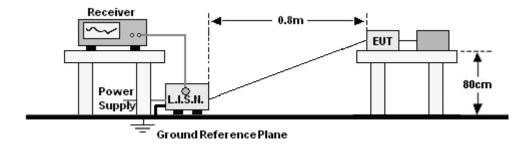
ISED Registered No.: 23583

ISED CAB identifier: CN0017

5.2 Test Instrument Used

	Conducted Emissions Test									
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.					
Receiver	R&S	ESR3	102075	May 16, 2024	May 15, 2025					
LISN	R&S	ENV216	101375	May 16, 2024	May 15, 2025					
Software	Frad	EZ-EMC	EMC-CON 3A1	١	\					
Pulse limiter	Schwarzbeck	VTSD9561-F	01323	May 16, 2024	May 15, 2025					

		RF Cond	ucted Test		
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.
Power Metter	Keysight	E4419		May 16, 2024	May 15, 2025
Power Sensor (AV)	Keysight	E9300A	The second	May 16, 2024	May 15, 2025
Signal Analyzer20kH z-26.5GHz	Keysight	N9020A	MY49100060	May 16, 2024	May 15, 2025
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40	100363	May 16, 2024	May 15, 2025
Radio frequency control box	MAIWEI	MW100-RFC B		N N	
Software	MAIWEI	MTS 8310			


	Radia	ated Emissions	Test (966 Chaml	oer02)	
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.
966 chamber	SKET	966 Room	966	Oct. 31. 2024	Oct. 30. 2027
Receiver	R&S	ESR3	102075	May 16, 2024	May 15, 2025
Receiver	R&S	ESRI7	100010	Oct. 31. 2024	Oct. 30. 2025
Amplifier	SKET	LNPA-30M01 G-30	SK2021082004	Oct. 31. 2024	Oct. 30. 2025
TRILOG Broadband Antenna	Schwarzbeck	VULB9168	1323	May 21, 2024	May 20, 2025
Loop Antenna(9KHz -30MHz)	Schwarzbeck	FMZB1519B	00014	May 21, 2024	May 20, 2025
Amplifier	SKET	LAPA_01G1 8G-45dB	SK202104090 1	May 16, 2024	May 15, 2025
Horn Antenna	Schwarzbeck	BBHA9120D	1541	May 21, 2024	May 20, 2025
Amplifier(18G Hz-40GHz)	MITEQ	TTA1840-35- HG	2034381	May 16, 2024	May 15, 2025
Horn Antenn(18GH z-40GHz)	Schwarzbeck	BBHA9170	00822	May 21, 2024	May 20, 2025
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40	100363	May 16, 2024	May 15, 2025
Software	Frad	EZ-EMC	FA-03A2 RE	١ :	Λ

2 CO.,LTA

6. Conducted Emissions

6.1 Block Diagram Of Test Setup

6.2 Limit

	Limit (Limit (dBuV)							
Frequency (MHz)	Quas-peak	Average							
0.15 -0.5	66 - 56 *	56 - 46 *							
0.50 -5.0	56.00	46.00							
5.0 -30.0	60.00	50.00							

Notes:

1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

6.3 Test procedure

Receiver Parameters		Setting	
Attenuation		10 dB	
Start Frequency		0.15 MHz	
Stop Frequency		30 MHz	
IF Bandwidth		9 kHz	

a. The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).

b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.

c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.

6.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

6.5 Test Result

Temperature: 26 °C							Relative Humidity:								54%RH																	
Pressure: 101KPa			J1KPa Te				Tes	est Voltage:						AC 120V/60Hz																		
Tes	t M	lode:		Μ	Mode 3 Polarization:					L																						
90.0																																
																															1	
80	<u> </u>					-	\square											_		-	_	_	_		+				<u> </u>			
70																																
																										FCC	oart 1	15 B	QP			
60																				r											1	
50	-					_			-											-	_				_	FCC	art	15 B	AV.			
40	ľ	< 																														
	M	41.1.1.			3																											
30		<u> </u>	1444		Ŵ			5	į			_									-	_	9						11 X			
20			<u>V v VV</u>	μm		Ma	MAN	аЦ	₩.	ult.	ыll	7 X	la n	الر	WP L	UN PA	w.	4.	- AND	u de de	wh	٨Ŋ	4	v~∕ 0	٦M,	VVM/m	ANM.	Maple	1.	harth	De	eak
10	M	νννγγ	WW	pri	₩₩		<u>е</u> .			WWW	MM	8		4/T	איזי				<u>~</u>	June	~	Ν		m	M	Mara	AMM	MARINA.	12 X			
			··· ¥			[¥WA	WM	aaaa	μų	hilling	et f		WHIPPAN A	A	WY.,	N. ARM	ara ta	1								4.1004			11~	naut i	` A\	VG
0						-	\square		H			\vdash													+							
-10 0.	150												1	MH	zì																 30.0)00
Ren	nar	k:													-																	_
		eadings a tor = Insei									e١	val	ue	S.													:			1		
3. N	lea	surement	: = Re	adin	ng L	eve					t F	ac	tor		•.			•.						:								
4. C)ve	r = Meası	ireme	ent -		nit Re	20	dir	nc	1	0		orre	20	<u></u> t	N	lea	<u>.</u>	ur	<u> </u>										;	/	
N	э.	Mk.	Fre	q.			.e\		_	9			act			IV			en			Li	m	it		0	ve	r				
			MH	z									dB				dB	8u`	V			d	Bu	١V		C	B		D	eteo	cto	r
	1	*	0.1	725	5	2	3.	78	3		2	20	0.0	7		4	43.	8	5		(64	3.	34		-2	0.9	99		Q	>	
	2		0.1	725	5	(0.2	25)		2	20	0.0	7		2	20.	3	2		;	54	3.	34		-3	4.5	52		AV	G	
	3		0.5	639	9	1	0.	24	4			20	0.0	8		;	30.	3	2			56	6.C	0		-2	5.6	88		Q	>	
	4		0.5	639	9	-	1.:	29)		2	20	0.0	8			18.	7	9			46	6.C	0		-2	7.2	21		AV	G	
	5		0.9	060)	4	4.4	16	;				0.0			2	24.	5	5		;	56	6.C	0		-3	1.4	5		Q	>	—
(6		0.9				7.						0.0				12.	5	0			46					3.5			AV		
	7		1.4				0.3						0.0				20.					56				-3				Q		—
	8		1.4				10.						0.0				9.4					46					6.5			AV		—
	9		7.8				4.2).1				24.					60				-3				Q		
			7.8				5.0).1				- ·· 14.					50					5.4			AV		
1									*										-												\sim	

No.: BCTC/RF-EMC-005

21.3855

12

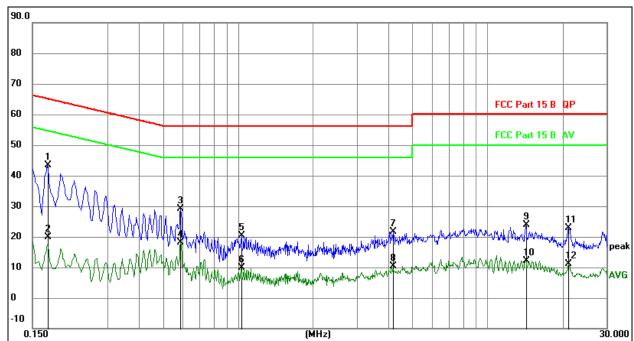
Page: 14 of 67

20.32

11.11

50.00

-38.89


-9.21

Edition: B.2

AVG

Temperature:	26 ℃	Relative Humidity:	54%RH
Pressure:	101KPa	Test Voltage:	AC 120V/60Hz
Test Mode:	Mode 3	Polarization:	Ν

Remark:

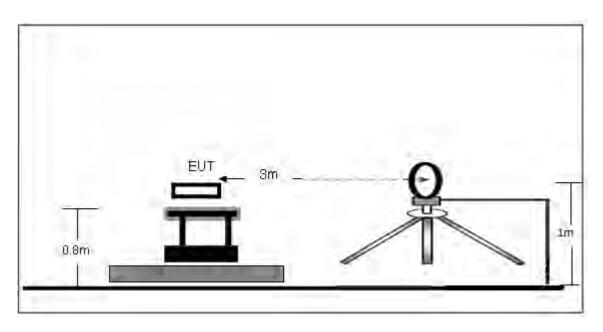
1. All readings are Quasi-Peak and Average values.

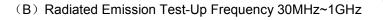
2. Factor = Insertion Loss + Cable Loss.

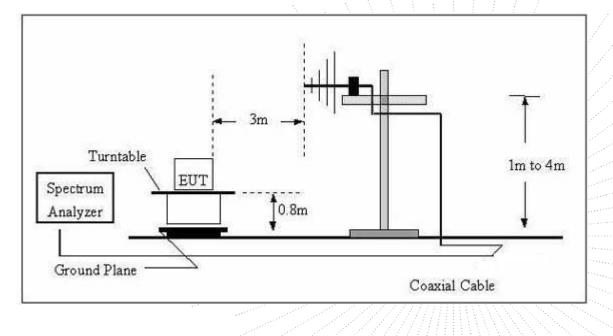
3. Measurement = Reading Level + Correct Factor

4. Ove	i – ivieasi	irement - Li	1111			1		
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz		dB	dBuV	dBuV	dB	Detector
1	*	0.1722	23.22	20.07	43.29	64.85	-21.56	QP
2		0.1722	-0.22	20.07	19.85	54.85	-35.00	AVG
3		0.5885	9.17	20.08	29.25	56.00	-26.75	QP
4		0.5885	-1.99	20.08	18.09	46.00	-27.91	AVG
5		1.0320	0.17	20.09	20.26	56.00	-35.74	QP
6		1.0320	-10.24	20.09	9.85	46.00	-36.15	AVG
7		4.2018	1.57	20.14	21.71	56.00	-34.29	QP
8		4.2018	-9.75	20.14	10.39	46.00	-35.61	AVG
9		14.2127	3.60	20.29	23.89	60.00	-36.11	QP
10		14.2127	-8.16	20.29	12.13	50.00	-37.87	AVG
11	:	21.1471	2.63	20.32	22.95	60.00	-37.05	QP
12		21.1471	-9.25	20.32	11.07	50.00	-38.93	AVG

JC JC PPR

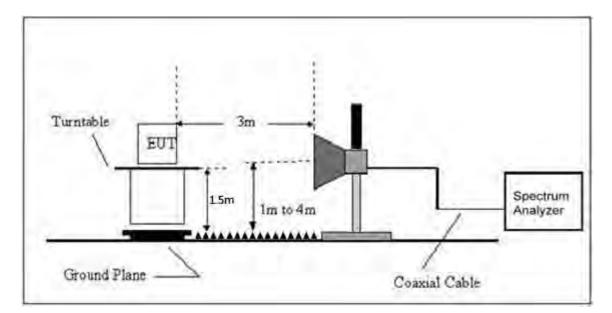

Page: 15 of 67




7. Radiated emissions

7.1 Block Diagram Of Test Setup

(A) Radiated Emission Test-Up Frequency Below 30MHz



t Sea

(C) Radiated Emission Test-Up Frequency Above 1GHz

7.2 Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Field Strength	Distance	Field Strength Li	imit at 3m Distance				
uV/m	(m)	uV/m	dBuV/m				
2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80				
24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40				
30	30	100 * 30	20log ⁽³⁰⁾ + 40				
100	3	100	20log ⁽¹⁰⁰⁾				
150	3	150	20log ⁽¹⁵⁰⁾				
200	3	200	20log ⁽²⁰⁰⁾				
500	3	500	20log ⁽⁵⁰⁰⁾				
	uV/m 2400/F(kHz) 24000/F(kHz) 30 100 150 200	uV/m (m) 2400/F(kHz) 300 24000/F(kHz) 30 30 30 100 3 150 3 200 3	uV/m (m) uV/m 2400/F(kHz) 300 10000 * 2400/F(kHz) 24000/F(kHz) 30 100 * 24000/F(kHz) 30 30 100 * 24000/F(kHz) 30 30 100 * 30 100 3 100 150 3 150 200 3 200				

Limits Of Radiated Emission Measurement (Above 1000MHz)

	Limit (dBuV/m) (at 3M)
Frequency (MHz)	Peak	Average
Above 1000		54

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C

(2)The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

ΞD

Frequency Range Of Radiated Measurement

(a) For an intentional radiator the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the frequency shown in this paragraph:
(1) If the intentional radiator operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

(2) If the intentional radiator operates at or above 10 GHz and below 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower.

(3) If the intentional radiator operates at or above 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 200 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.

(4) If the intentional radiator operates at or above 95 GHz: To the third harmonic of the highest fundamental frequency or to 750 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.

(5) If the intentional radiator contains a digital device, regardless of whether this digital device controls the functions of the intentional radiator or the digital device is used for additional control or function purposes other than to enable the operation of the intentional radiator, the frequency range shall be investigated up to the range specified in paragraphs (a) (1)through (4) of this section or the range applicable to the digital device, as shown in paragraph (b)(1) of this section, whichever is the higher frequency range of investigation.

7.3 Test procedure

Receiver Parameter	Setting
Attenuation	Auto
9kHz~150kHz	RBW 200Hz for QP
150kHz~30MHz	RBW 9kHz for QP
30MHz~1000MHz	RBW 120kHz for QP

Spectrum Parameter	Setting
1-25GHz	RBW 1 MHz /VBW 1 MHz for Peak, RBW 1 MHz / VBW 10Hz for Average

Below 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b.The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the middlest channel, the Highest channel. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

7.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

7.5 Test Result

Below 30MHz

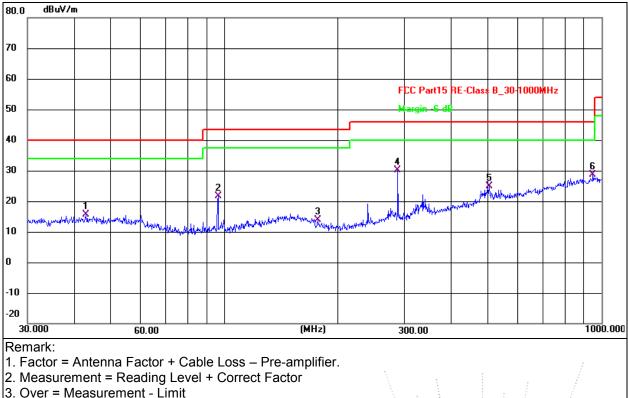
Temperature:	26 °C	Relative Humidity:	54%RH
Pressure:	101KPa	Test Voltage:	DC 3.7V
Test Mode:	Mode 3	Test voltage.	DC 3.7V

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB); Limit line = specific limits(dBuv) + distance extrapolation factor.



				r				В	etwe	en 3	30MH													
	npera			26 ℃				,					54%RH DC 3.7V											
	ssure		101KPa																					
les	t Mod	e:		NIO	de 3						PC	lariz	zatio	on:			H	oriz	onta	I				
80.0	dBu	V/m				_						_			_			_		1				
70												_												
60																								
50														F			5 RE-C	lass	B_30	1000	MHz			
						_						┶		4				-						
40												P	3 X	ſ				F						
30							2							AN MARCH	M	M.		5			adament	1 Contraction	why	
20		1										+	N	vdi. A	Ŵ	r 7	, _t ay he	M.	Multipleus	Whenthy			\square	
10	norman	hand	manhola	mark	wash	All	w.W	hatta	MULANN	/4/ 74/~448	muhner	harm					+	_			-		\square	
0							_								-		-	_			-		\square	
-10																	_							
-20																								
	.000 nark:		60).00							(MHz)			3	300.0	0							100	0.000
1. F 2. N	actor leasu	= Antenr rement =	Read	ding	Lev							r.				1						/	:	
3. O	ver =	Measure								_		_			Ť							/		_
N	lo.	Freq (M	uenc Hz)	су			ldir u∖	-		ac B/ı			Le Bu	vel V/m	1)		.imi uV			arg dB		De	tect	tor
	1	42.1	1542	2		27	.87	7	-'	12.1	14		15.	73	1	4	0.0	0	-2	.4.2	27	(QP	
2	2	96.0	0986	;		37	.90)	- '	15.	52		22.	38	1	4	3.5	0	-2	21.1	2	(QP	
	3	239.	9874	4	4	46	.49	9	- '	12.8	32		33.	67	1	4	6.0	0	-1	2.3	33	(QP	
4	. *	287.	9904	4	ų	52	.43	3	- '	11.	18		41.	25		4	6.0	0		4.7	5	(QP	
Ę	5	480.	5276	6		35	.57	7	-	6.0	1		29.	56		4	6.0	0	-1	6.4	4	(QP	
e	3	866.	0879	9		26	.68	3		0.9	5		27	63	\uparrow	4	6.0	0	-1	8.3	37	(QP	

No. : BCTC/RF-EMC-005

Temperature:	26 ℃	Relative Humidity:	54%RH
Pressure:	101KPa	Test Voltage:	DC 3.7V
Test Mode:	Mode 3	Polarization:	Vertical

No.Frequency (MHz)Reading (dBuV)Factor (dB/m)Level (dBuV/m)Limit (dBuV/m)Margin (dB)Detector142.899827.85-12.1515.7040.00-24.30QP296.098637.25-15.5221.7343.50-21.77QP3176.887827.09-13.2513.8443.50-29.66QP4*287.990441.35-11.1830.1746.00-15.83QP5502.939530.36-5.4724.8946.00-21.11QP6948.761026.562.1828.7446.00-17.26QP	3. Over =	Measurement - LI	mit					
296.098637.25-15.5221.7343.50-21.77QP3176.887827.09-13.2513.8443.50-29.66QP4 *287.990441.35-11.1830.1746.00-15.83QP5502.939530.36-5.4724.8946.00-21.11QP	No.							Detector
3176.887827.09-13.2513.8443.50-29.66QP4 *287.990441.35-11.1830.1746.00-15.83QP5502.939530.36-5.4724.8946.00-21.11QP	1	42.8998	27.85	-12.15	15.70	40.00	-24.30	QP
4 *287.990441.35-11.1830.1746.00-15.83QP5502.939530.36-5.4724.8946.00-21.11QP	2	96.0986	37.25	-15.52	21.73	43.50	-21.77	QP
5 502.9395 30.36 -5.47 24.89 46.00 -21.11 QP	3	176.8878	27.09	-13.25	13.84	43.50	-29.66	QP
	4 *	287.9904	41.35	-11.18	30.17	46.00	-15.83	QP
6 948.7610 26.56 2.18 28.74 46.00 -17.26 QP	5	502.9395	30.36	-5.47	24.89	46.00	-21.11	QP
	6	948.7610	26.56	2.18	28.74	46.00	-17.26	QP

JC JC JC

Between 1GHz – 25GHz

Polar	Frequency	Reading Level	Correct Factor	Measure- ment	Limits	Over	Detector
(H/V)	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
			GFSK Low ch	annel			
V	4804.00	70.62	-19.99	50.63	74.00	-23.37	PK
V	4804.00	60.95	-19.99	40.96	54.00	-13.04	AV
V	7206.00	62.79	-14.22	48.57	74.00	-25.43	PK
V	7206.00	52.52	-14.22	38.30	54.00	-15.70	AV
Н	4804.00	68.59	-19.99	48.60	74.00	-25.40	PK
Н	4804.00	57.72	-19.99	37.73	54.00	-16.27	AV
Н	7206.00	61.14	-14.22	46.92	74.00	-27.08	PK
Н	7206.00	52.57	-14.22	38.35	54.00	-15.65	AV
		G	FSK Middle c	hannel			
V	4882.00	69.40	-19.84	49.56	74.00	-24.44	PK
V	4882.00	62.33	-19.84	42.49	54.00	-11.51	AV
V	7323.00	61.97	-13.90	48.07	74.00	-25.93	PK
V	7323.00	52.16	-13.90	38.26	54.00	-15.74	AV
Н	4882.00	68.30	-19.84	48.46	74.00	-25.54	PK
Н	4882.00	57.57	-19.84	37.73	54.00	-16.27	AV
Н	7323.00	59.08	-13.90	45.18	74.00	-28.82	PK
Н	7323.00	51.49	-13.90	37.59	54.00	-16.41	AV
			GFSK High ch	annel			
V	4960.00	71.78	-19.68	52.10	74.00	-21.90	PK
V	4960.00	61.83	-19.68	42.15	54.00	-11.85	AV
V	7440.00	65.12	-13.57	51.55	74.00	-22.45	PK
V	7440.00	55.18	-13.57	41.61	54.00	-12.39	AV
Н	4960.00	69.41	-19.68	49.73	74.00	-24.27	PK
Н	4960.00	59.73	-19.68	40.05	54.00	-13.95	AV
Н	7440.00	63.82	-13.57	50.25	74.00	-23.75	PK
Н	7440.00	56.08	-13.57	42.51	54.00	-11.49	AV

Remark:

1. Measurement = Reading Level + Correct Factor, Correct Factor = Antenna Factor + Cable Loss – Pre-amplifier. Over= Measurement - Limit

2.If peak below the average limit, the average emission was no test.

In restricted bands of operation, The spurious emissions below the permissible value more than 20dB
 The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

No.: BCTC/RF-EMC-005

Page: 22 of 67

TE, T(OV

Polar	Frequency	Reading Level	Correct Factor	Measure- ment	Limits	Over	Detector
(H/V)	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
		π/4	DQPSK Low	channel			
V	4804.00	72.28	-19.99	52.29	74.00	-21.71	PK
V	4804.00	62.13	-19.99	42.14	54.00	-11.86	AV
V	7206.00	63.71	-14.22	49.49	74.00	-24.51	PK
V	7206.00	53.61	-14.22	39.39	54.00	-14.61	AV
Н	4804.00	68.69	-19.99	48.70	74.00	-25.30	PK
Н	4804.00	59.66	-19.99	39.67	54.00	-14.33	AV
Н	7206.00	60.98	-14.22	46.76	74.00	-27.24	PK
Н	7206.00	53.86	-14.22	39.64	54.00	-14.36	AV
		π/4	DQPSK Middl	e channel			
V	4882.00	69.04	-19.84	49.20	74.00	-24.80	PK
V	4882.00	62.61	-19.84	42.77	54.00	-11.23	AV
V	7323.00	61.44	-13.90	47.54	74.00	-26.46	PK
V	7323.00	51.55	-13.90	37.65	54.00	-16.35	AV
Н	4882.00	66.14	-19.84	46.30	74.00	-27.70	PK
Н	4882.00	55.54	-19.84	35.70	54.00	-18.30	AV
Н	7323.00	59.52	-13.90	45.62	74.00	-28.38	PK
Н	7323.00	51.29	-13.90	37.39	54.00	-16.61	AV
			DQPSK High	channel			
V	4960.00	71.77	-19.68	52.09	74.00	-21.91	PK
V	4960.00	63.70	-19.68	44,02	54.00	-9.98	AV
V	7440.00	62.90	-13.57	49.33	74.00	-24.67	PK
V	7440.00	53.29	-13.57	39.72	54.00	-14.28	AV
Н	4960.00	69.87	-19.68	50.19	74.00	-23.81	PK
Н	4960.00	60.07	-19.68	40.39	54.00	-13.61	AV
Н	7440.00	60.40	-13.57	46.83	74.00	-27.17	PK
Н	7440.00	53.18	-13.57	39.61	54.00	-14.39	AV

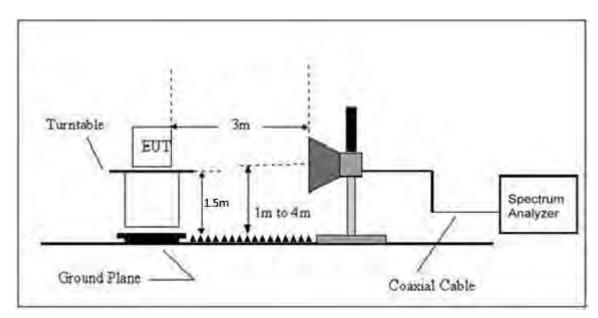
Remark:

1. Measurement = Reading Level + Correct Factor, Correct Factor = Antenna Factor + Cable Loss – Pre-amplifier. Over= Measurement - Limit

2.If peak below the average limit, the average emission was no test.

3. In restricted bands of operation, The spurious emissions below the permissible value more than 20dB 4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible

value has no need to be reported.


6

8. Radiated Band Emission Measurement And Restricted Bands Of Operation

8.1 Block Diagram Of Test Setup

Radiated Emission Test-Up Frequency Above 1GHz

8.2 Limit

FCC Part15 C Section 15.209 and 15.205

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²
13.36-13.41			

CO., LTA

Limits Of Radiated Emission Measurement (Above 1000MHz)

Frequency (MHz)	Limit (dBuV/m) (at 3M)					
Frequency (MHz)	Peak	Average				
Above 1000	74	54				

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2)The tighter limit applies at the band edges.

(3)Emission level (dBuV/m)=20log Emission level (uV/m).

8.3 Test procedure

Receiver Parameter	Setting
Attenuation	Auto
Start Frequency	2300MHz
Stop Frequency	2520
RB / VB (Emission In Restricted Band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b.The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the Highest channel.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

8.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

8.5 Test Result

Test mode	Polar (H/V)	Frequency (MHz)	Reading Level (dBuV/m)	Correct Factor (dB)	Measure- ment (dBuV/m)	Limits (dBuV/m)		Over	Result
			(ubuv/iii)	(ub)	PK	PK	AV	PK	
GFSK	Low Channel 2402MHz								
	Н	2390.00	73.56	-25.43	48.13	74.00	54.00	-25.87	PASS
	Н	2400.00	75.11	-25.40	49.71	74.00	54.00	-24.29	PASS
	V	2390.00	74.50	-25.43	49.07	74.00	54.00	-24.93	PASS
	V	2400.00	75.50	-25.40	50.10	74.00	54.00	-23.90	PASS
	High Channel 2480MHz								
	Н	2483.50	72.20	-25.15	47.05	74.00	54.00	-26.95	PASS
	Н	2500.00	70.36	-25.10	45.26	74.00	54.00	-28.74	PASS
	V	2483.50	73.88	-25.15	48.73	74.00	54.00	-25.27	PASS
	V	2500.00	70.24	-25.10	45.14	74.00	54.00	-28.86	PASS
π/4DQPSK	Low Channel 2402MHz								
	Н	2390.00	73.25	-25.43	47.82	74.00	54.00	-26.18	PASS
	Н	2400.00	75.18	-25.40	49.78	74.00	54.00	-24.22	PASS
	V	2390.00	72.43	-25.43	47.00	74.00	54.00	-27.00	PASS
	V	2400.00	72.27	-25.40	46.87	74.00	54.00	-27.13	PASS
	High Channel 2480MHz								
	Н	2483.50	73.74	-25.15	48.59	74.00	54.00	-25.41	PASS
	Н	2500.00	68.89	-25.10	43.79	74.00	54.00	-30.21	PASS
	V	2483.50	72.64	-25.15	47.49	74.00	54.00	-26.51	PASS
	V	2500.00	69.47	-25.10	44.37	74.00	54.00	-29.63	PASS

Remark:

Measurement = Reading Level + Correct Factor, Correct Factor = Antenna Factor + Cable Loss – Pre-amplifier.
 If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

3. In restricted bands of operation, The spurious emissions below the permissible value more than 20dB

4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

DOI

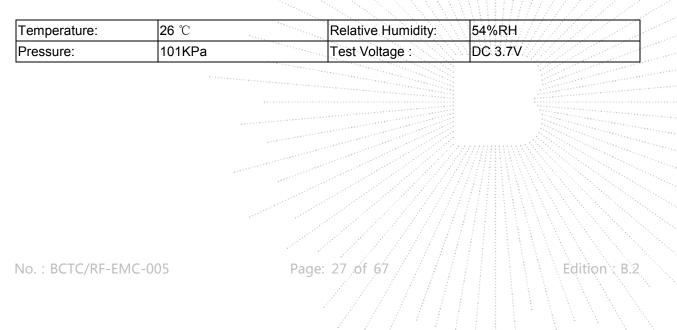
9. Spurious RF Conducted Emissions

9.1 Block Diagram Of Test Setup

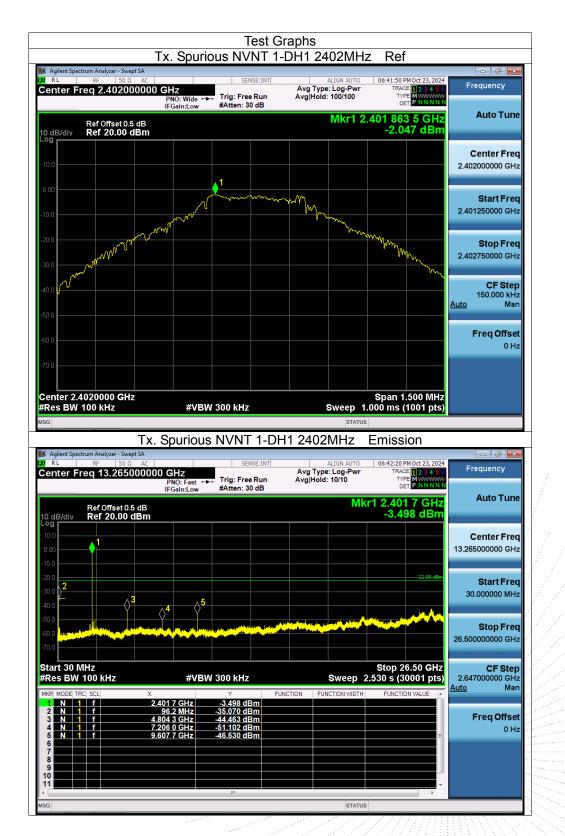
9.2 Limit

Regulation 15.247 (d),In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c))

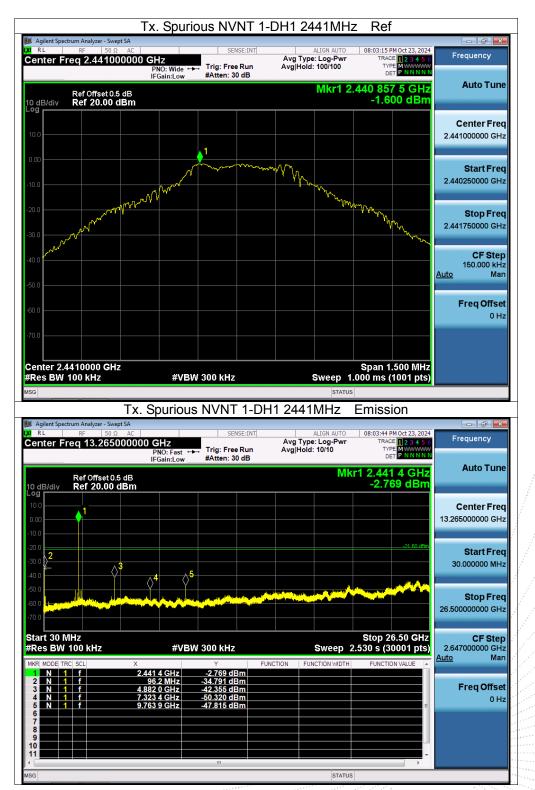
9.3 Test procedure

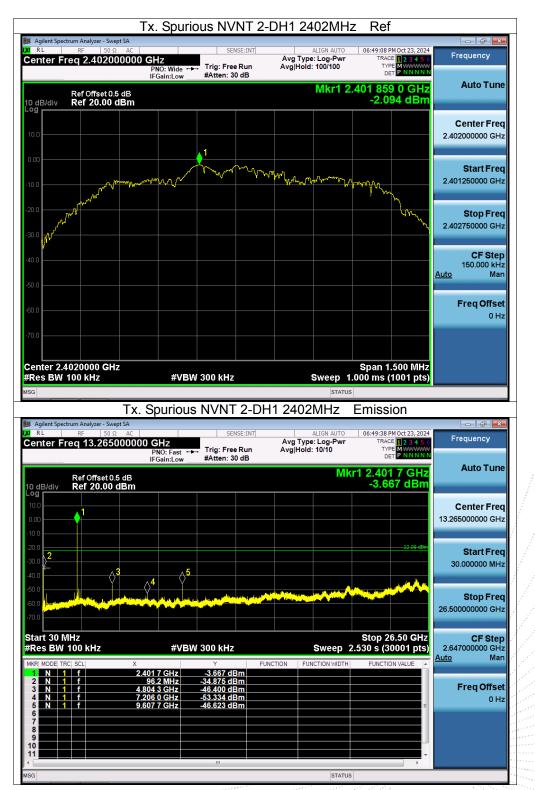

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer:

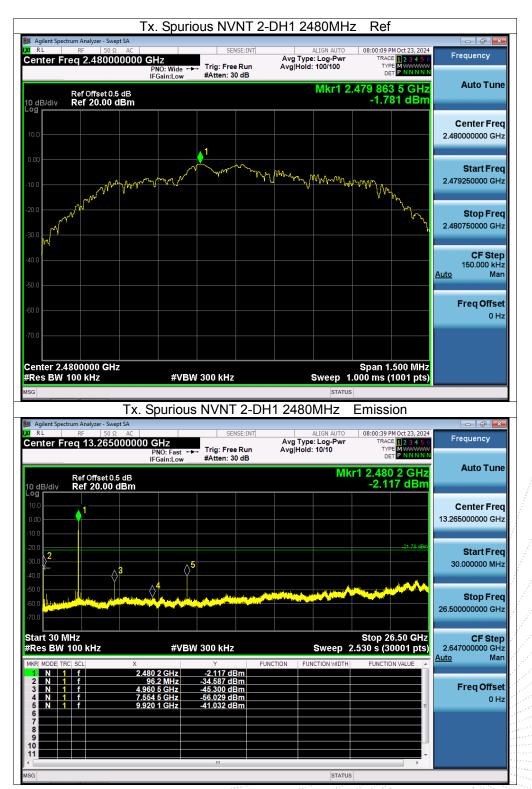

RBW = 100kHz, VBW = 300kHz, Sweep = auto

Detector function = peak, Trace = max hold

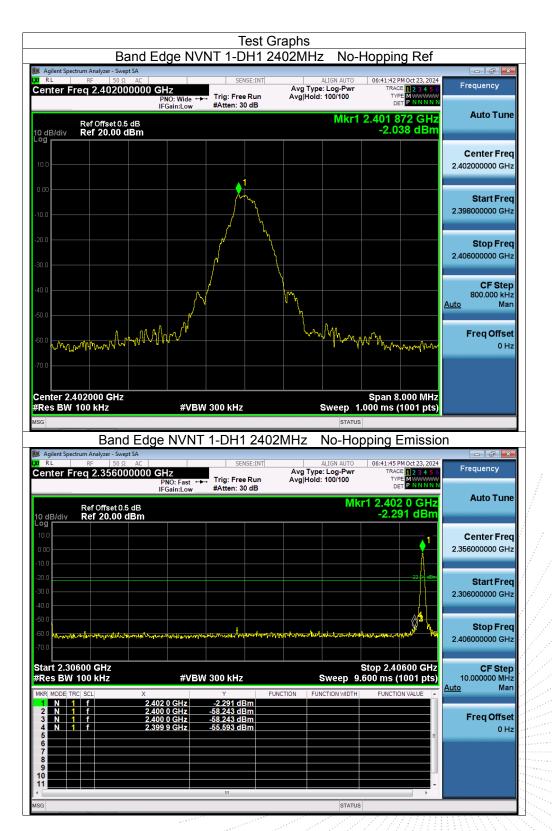

9.4 Test Result



No.: BCTC/RF-EMC-005

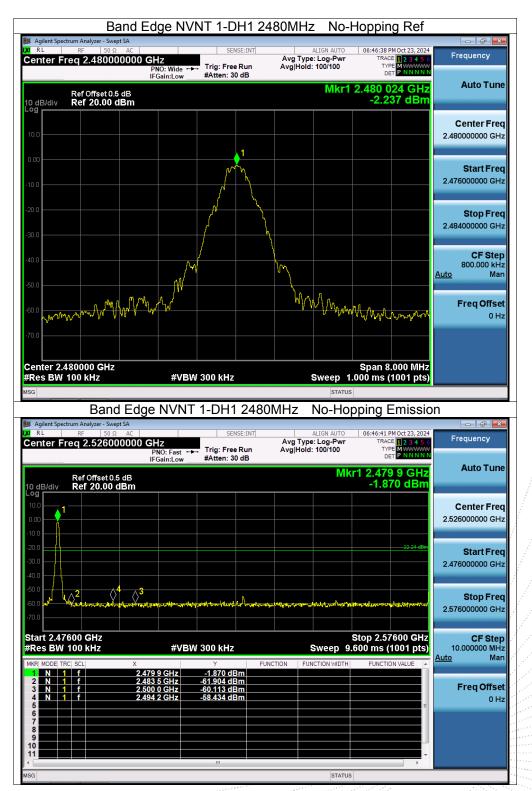


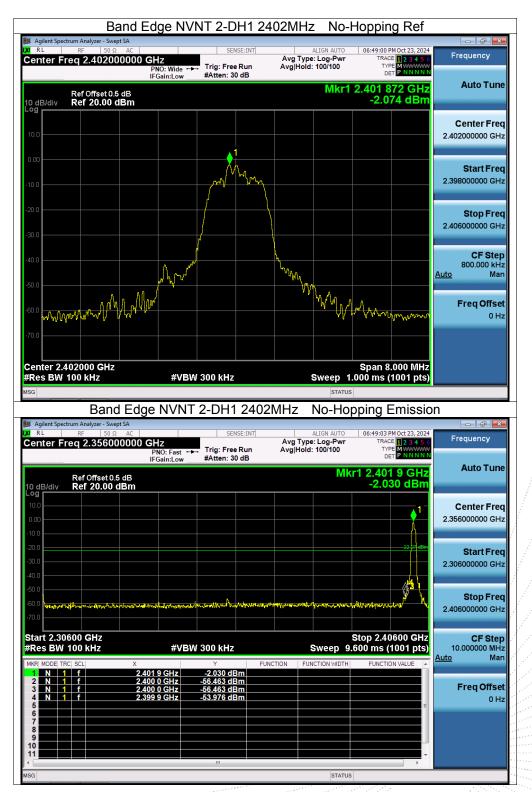
No.: BCTC/RF-EMC-005



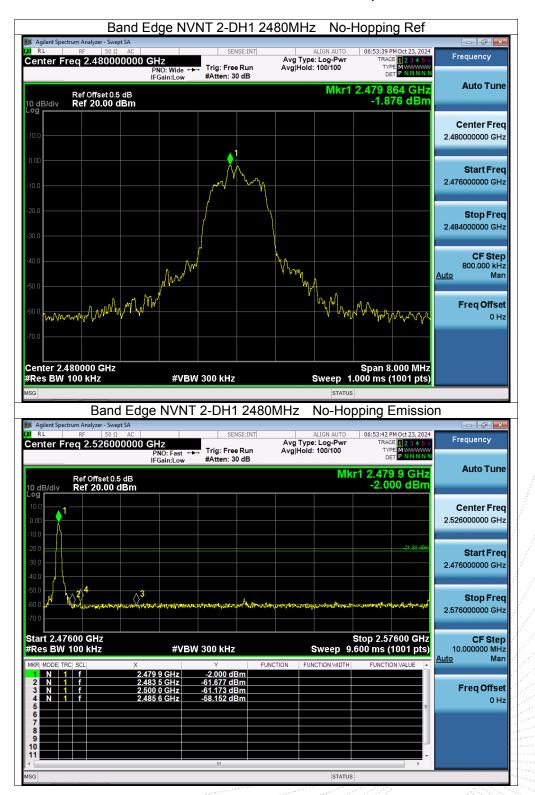
JC JC PPR

еро




Edition : B.2

No.: BCTC/RF-EMC-005



No.: BCTC/RF-EMC-005

JC JC PPR

ероі

10. 20 dB Bandwidth

10.1 Block Diagram Of Test Setup

10.2 Limit

N/A

10.3 Test procedure

1. Set RBW = 30kHz.

2. Set the video bandwidth (VBW) \ge 3 x RBW.

3. Detector = Peak.

4. Trace mode = max hold.

5. Sweep = auto couple.

6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

10.4 Test Result

Temperature:	26 ℃	Relative Humidity:	54%RH
Pressure:	101KPa	Test Voltage :	DC 3.7V

Condition	Mode	Frequency (MHz)	-20 dB Bandwidth (MHz)	Verdict
NVNT	1-DH1	2402	0.857	Pass
NVNT	1-DH1	2441	0.867	Pass
NVNT	1-DH1	2480	0.972	Pass
NVNT	2-DH1	2402	1.246	Pass
NVNT	2-DH1		1.236	Pass
NVNT	2-DH1	2480	1.269	Pass

,TC 3C PPR

еро

11. Maximum Peak Output Power

11.1 Block Diagram Of Test Setup

11.2 Limit

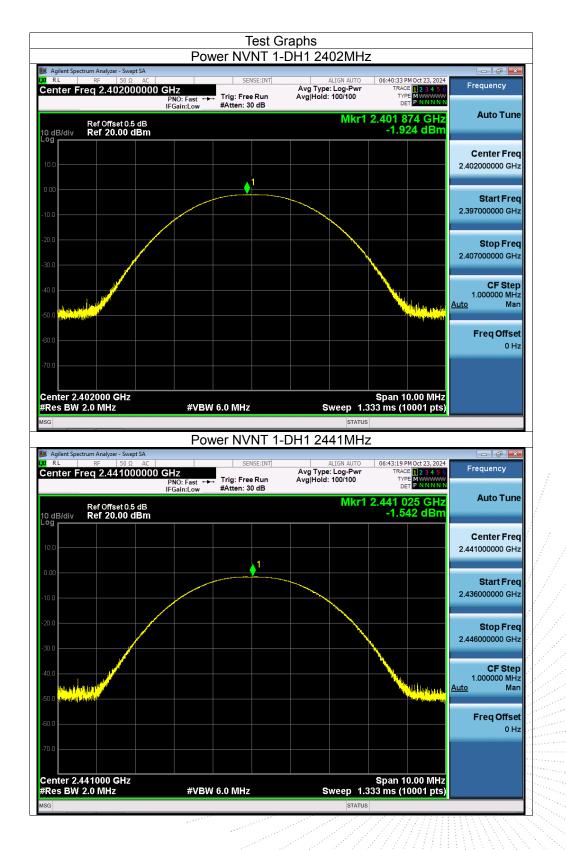
	FCC Part15 (15.247) , Subpart C					
Section	Test Item Limit		Frequency Range (MHz)	Result		
15.247(b)(1)	Peak Output Power	0.125 watt or 21dBm	2400-2483.5	PASS		

11.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 2MHz. VBW = 6MHz. Sweep = auto; Detector Function = Peak.

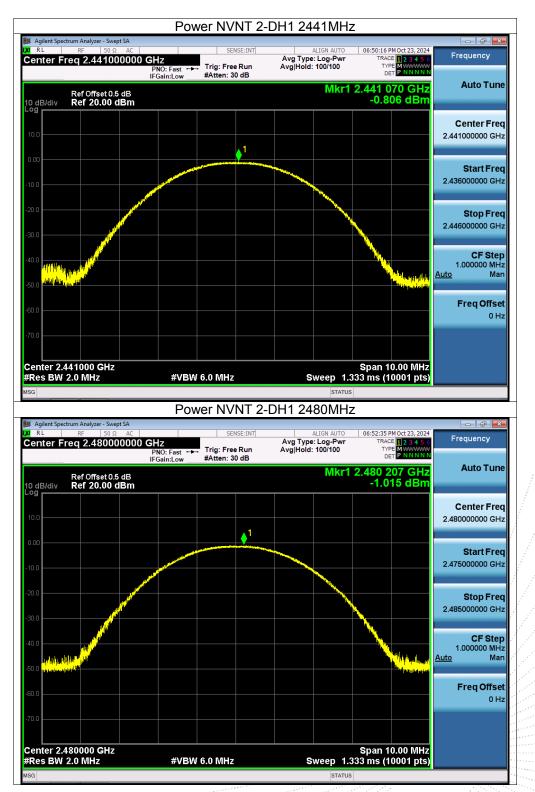
3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.


11.4 Test Result

Temperature:	26 °C	Relative Humidity:	54%RH
Pressure:	101KPa	Test Voltage :	DC 3.7V


ode DH1 DH1	Frequency (MHz) 2402 2441	Conducted Power (dBm) -1.92 -1.54	Limit (dBm) 21	Verdict Pass
			21	
DH1	2441	-1.54	21	
			4 1	Pass
DH1	2480	-1.76	21	Pass
DH1	2402	-1.13	21	Pass
DH1	2441	-0.81	21	Pass
DH1	2480	-1.01	21	Pass

No. : BCTC/RF-EMC-005



No.: BCTC/RF-EMC-005

CHENZHE

12. Hopping Channel Separation

12.1 Block Diagram Of Test Setup

12.2 Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 0.125W.

12.3 Test procedure

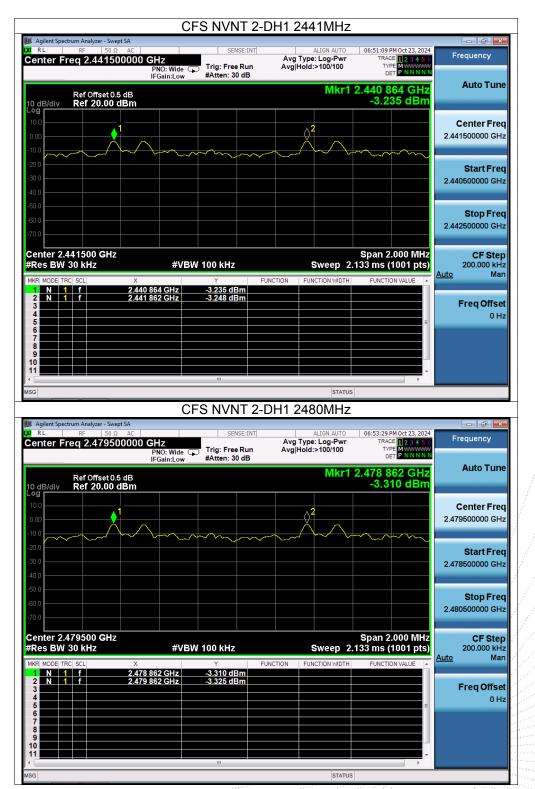
1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 30kHz. VBW = 100kHz , Span = 2.0MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

Mode	Test Channel	Separation (MHz)	Limit(MHz)	Result
1-DH1	Low Man	1.000	0.571	PASS
1-DH1	Middle	1.000	0.578	PASS
1-DH1	High ····	0.998	0.648	PASS
2-DH1	Low	1.000	0.831	PASS
2-DH1	Middle	0.998	0.824	PASS
2-DH1	High		0.846	PASS
	High	1.000		

12.4 Test Result


JC JC PPR

ероі

13. Number Of Hopping Frequency

13.1 Block Diagram Of Test Setup

13.2 Limit

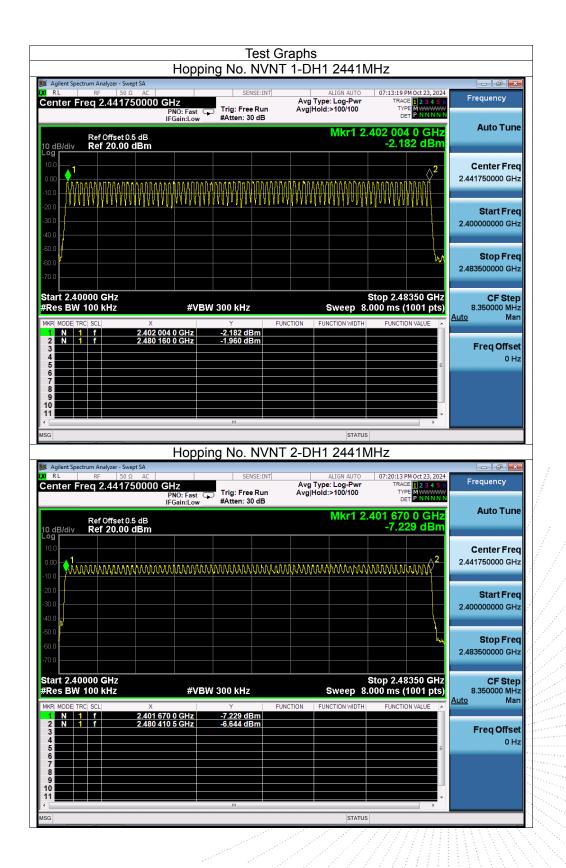
Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

13.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 100kHz. VBW = 300kHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.


4. Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.4835GHz, Sweep=auto;

13.4 Test Result

Condition	Mode	Hopping Number Limit Verdict	
NVNT	1-DH1	79 15 Pass	
NVNT	2-DH1	79 15 Pass	

CHENZHE.

14. Dwell Time

14.1 Block Diagram Of Test Setup

14.2 Limit

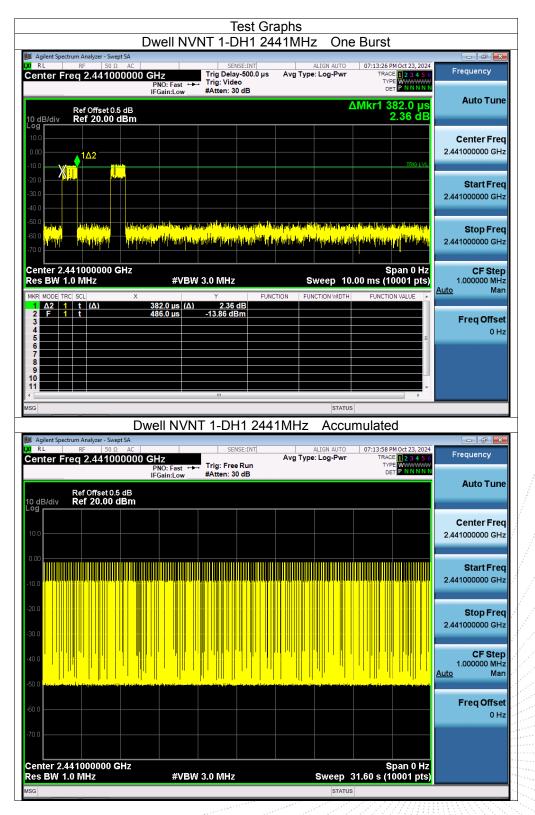
Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

14.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set spectrum analyzer span = 0. Centred on a hopping channel;

3. Set RBW = 1MHz and VBW = 3MHz.Sweep = as necessary to capture the entire dwell time per hopping channel. Set the EUT for DH5, DH3 and DH1 packet transmitting.


4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

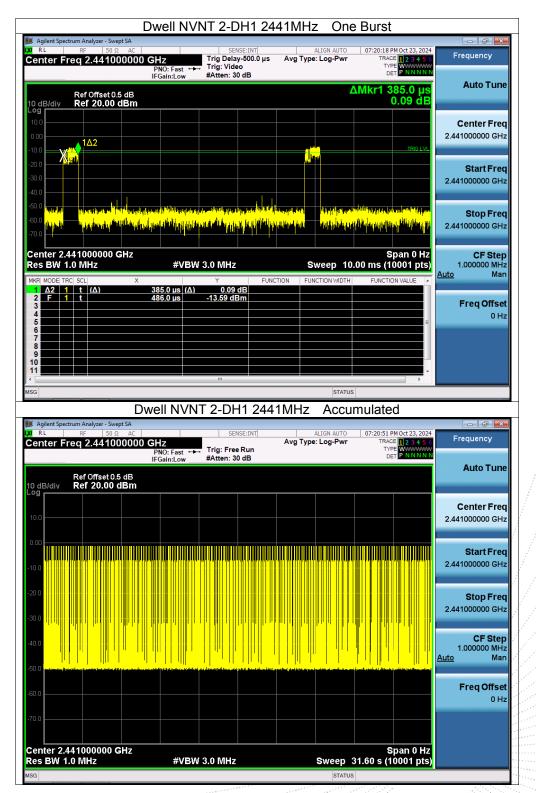
Mode	Frequency (MHz)	Pulse Time (ms)	Total Dwell Time (ms)	Burst Count	Period Time (ms)	Limit (ms)	Verdict
1-DH1	2441	0.382	119.948	314	31600	400	Pass
1-DH3	2441	1.638	281.736	172	31600	400	Pass
1-DH5	2441	2.887	355.101	123	31600	400	Pass
2-DH1	2441	0.385	122.815	319	31600	400	Pass
2-DH3	2441	1.643	251.379	153	31600	400	Pass
2-DH5	2441	2.891	283.318	98	31600	400	Pass

14.4 Test Result

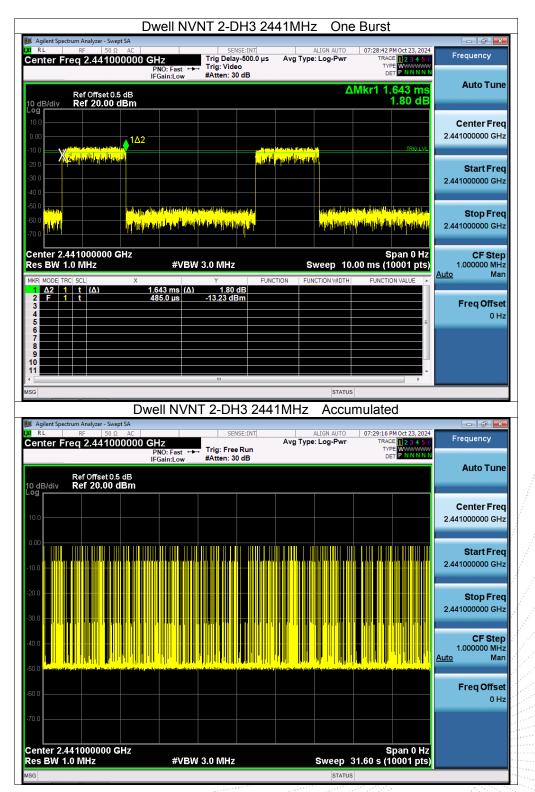
Note: Total Dwell Time (ms) = Pulse Time (ms)*Burst Count

ероі

No.: BCTC/RF-EMC-005


		VNT 1-DH3 24	441MHz On	e Burst	
Agilent Spectrum Analyzer - 3 RL RF 5 Center Freq 2.441	0 Ω AC	SENSE:INT Trig Delay-500.0 µs ▶ Trig: Video	ALIGN AUTO Avg Type: Log-Pwr	07:26:44 PM Oct 23, 2024 TRACE 1 2 3 4 5 6 TYPE WWWWWW DET P NNNN	Frequency
Ref Offset 10 dB/div Ref 20.0		#Atten: 30 dB	L	∆Mkr1 1.638 ms -2.57 dB	Auto Tune
- og 10.0 0.00					Center Freq 2.441000000 GHz
-10.0 -20.0 -30.0					Start Freq 2.441000000 GHz
40.0 50.0 70.0 70.0 70.0	and a first state of the state	and the second	na ang tang tani kata kata mang pang Ng Ng N	the second s	Stop Fred 2.441000000 GHz
enter 2.44100000 es BW 1.0 MHz		W 3.0 MHz	Sweep 10	Span 0 Hz 0.00 ms (10001 pts)	CF Step 1.000000 MHz <u>Auto</u> Mar
IKR MODE TRC SCL 1 Δ2 1 t (Δ) 2 F 1 t (Δ) 3 - - - - 4 - - - - 5 - - - -	X 1.638 ms (Δ 484.0 μs		NCTION FUNCTION WIDTH	FUNCTION VALUE	Freq Offset
6 7 8 9 0					
11 6		m	STATU	JS VIEW AND	
	Dwell NV	NT 1-DH3 244	41MHz Accı	umulated	
RL RF 5 enter Freq 2.441	0 Ω AC	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	07:27:17 PM Oct 23, 2024 TRACE 1 2 3 4 5 6 TYPE WWWWW	Frequency
Ref Offset dB/div Ref 20.0	IFGain:Low _	#Atten: 30 dB		DET PNNNNN	Auto Tune
dB/div Ref 20.0		·			
0.0					
					2.441000000 GH: Start Free
					2.441000000 GH: Start Free 2.441000000 GH: Stop Free
					2.441000000 GH; Start Free 2.441000000 GH; Stop Free 2.441000000 GH; CF Step 1.000000 MH;
					Center Frec 2.441000000 GHz 2.441000000 GHz 2.441000000 GHz 2.441000000 GHz 1.000000 MHz Auto Mar Freq Offset 0 Hz
				Span 0 Hz	2.441000000 GH2 Start Free 2.441000000 GH2 Stop Free 2.441000000 GH2 CF Step 1.000000 MH2 <u>Auto</u> Mar Freq Offset

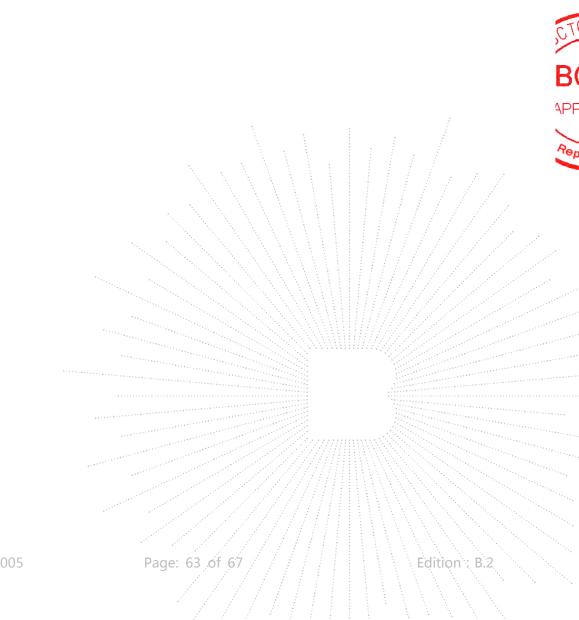
TE OVE



	ell NVNT 1-DH5 24	41MHz One E	Burst	
M Agilent Spectrum Analyzer - Swept SA RL RF 50 Ω AC Center Freq 2.441000000 GH	Trig Delay-500.0 µs	ALIGN AUTO	07:27:49 PM Oct 23, 2024 TRACE 1 2 3 4 5 6	Frequency
PN	0: Fast ↔ Trig: Video ain:Low #Atten: 30 dB	Ang Type. Log T m		
Ref Offset 0.5 dB		ΔΜ	(r1 2.887 ms -1.36 dB	Auto Tune
10 dB/div Ref 20.00 dBm			-1.00 aB	Conton Fro
0.00				Center Fred 2.441000000 GH;
-10.0 2			TRIG L VL	
-20.0				Start Free 2.441000000 GH;
-40.0				
-50.0 (y m) -60.0 Julia	n belang pang kana palan na kana bara pala bara pala baran pala baran pala baran pala baran pala baran pala ba Ann dara ar sa dara mara kana dara baran pala			Stop Free
70.0	. Her de la cal president de la fille de presidente	and the second		2.441000000 GH
Center 2.441000000 GHz Res BW 1.0 MHz	#VBW 3.0 MHz	Sween 10.00	Span 0 Hz ms (10001 pts)	CF Stej 1.000000 MH
MKR MODE TRC SCL X	Y FUN			Auto Ma
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	l7 ms (Δ) -1.36 dB '.0 μs -5.56 dBm			Freq Offse
4 5			E	0 Н
6 7 8				
9				
	m			
sg		STATUS		
DWE	I NVNT 1-DH5 244	1MHz Accumu	llated	- 6 -
RL RF 50 Ω AC Senter Freq 2.441000000 GH	Z SENSE:INT	ALIGN AUTO (Avg Type: Log-Pwr	07:28:22 PM Oct 23, 2024 TRACE 1 2 3 4 5 6	Frequency
	0: Fast ↔ Trig: Free Run ain:Low #Atten: 30 dB		DET PNNNN	Auto Tun
Ref Offset 0.5 dB 0 dB/div Ref 20.00 dBm				Auto Tuli
og				Center Fre
10.0				2.441000000 GH
).00				
10.0 - 91 - 9649 - 64 - 96 - 96 - 96 - 6 - 6 - 6 - 6 - 6 - 6				Start Fre 2.441000000 GH
20.0				Stop Fre 2.441000000 G⊢
0.0				2.441000000 81
0.0				CF Ste 1.000000 MH
				Auto Ma
				Freq Offse
60.0				0 Н
70.0				
Contor 2 111000000 CH2			Snop 0 He	
enter 2.441000000 GHz es BW 1.0 MHz	#VBW 3.0 MHz	Sweep 31.6	Span 0 Hz 50 s (10001 pts)	
G		STATUS		

SUTENZHS

	Dwell NVNT 2-DH5	2441MHz On	e Burst	
Agilent Spectrum Analyzer - Swept SA RL RF 50 Ω AC	SENSE:INT	ALIGN AUTO	07:29:38 PM Oct 23, 2024	
enter Freq 2.441000000			TRACE 1 2 3 4 5 6 TYPE WWWWW DET P N N N N	Frequency
Ref Offset 0.5 dB 0 dB/div Ref 20.00 dBm	IFGam:Low #Fitten: 00 dB	1	∆Mkr1 2.891 ms 3.20 dB	Auto Tune
				Center Fre
			TRIG LVL	2.441000000 GH
0.0 <mark>Xidan lakilar lakilar dalamat</mark>				Start Free
0.0				2.441000000 GH
0.0		n provid a part i por si ili i por il stato por por a part a por si	an analise and a surface of the state of the	Stop Fro
0.0 <mark>miliint</mark>			the second s	Stop Fre 2.441000000 GH
enter 2.441000000 GHz			Span 0 Hz	CESto
es BW 1.0 MHz	#VBW 3.0 MHz	Sweep 1	0.00 ms (10001 pts)	CF Stej 1.000000 MH <u>Auto</u> Ma
KR MODE TRC SCL X 1 Δ2 1 t (Δ)	2.891 ms (Δ) 3.20 dB	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	
2 F 1 t 3	484.0 µs -14.60 dBm			Freq Offse 0 H
5			=	0 H
7 8 9 9 9 9 9				
0 1			-	
G	m	STATU	JS	
 D'	well NVNT 2-DH5 24	441MHz Accu	umulated	
Agilent Spectrum Analyzer - Swept SA RL RF 50 Ω AC enter Freq 2.441000000		ALIGN AUTO Avg Type: Log-Pwr	07:30:12 PM Oct 23, 2024 TRACE 1 2 3 4 5 6 TYPE WWWWWWW	Frequency
	PNO: Fast + Trig: Free Run IFGain:Low #Atten: 30 dB		DET PNNNNN	Auto Tun
Ref Offset 0.5 dB dB/div Ref 20.00 dBm				There i an
a la				Center Fre
0,0				2.441000000 GH
				-
	a se alla de la companya de la superior de la seconda d			Start Fre 2.441000000 GH
10				Stop Fre 2.441000000 GH
1.0		.		2.44 1000000 011
1.0 <mark> 1. 1 </mark>				CF Step 1.000000 MH
				Auto Ma
				Freq Offse
0.0				0 Н
0.0				1
			0	
enter 2.441000000 GHz es BW 1.0 MHz	#VBW 3.0 MHz	Sweep	Span 0 Hz 31.60 s (10001 pts)	1
S BH IN INTE				


15. Antenna Requirement

15.1 Limit

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

15.2 Test Result

The EUT antenna is Internal antenna, fulfill the requirement of this section.

No.: BCTC/RF-EMC-005

16. EUT Photographs

EUT Photo

NOTE: Appendix-Photographs Of EUT Constructional Details

No. : BCTC/RF-EMC-005

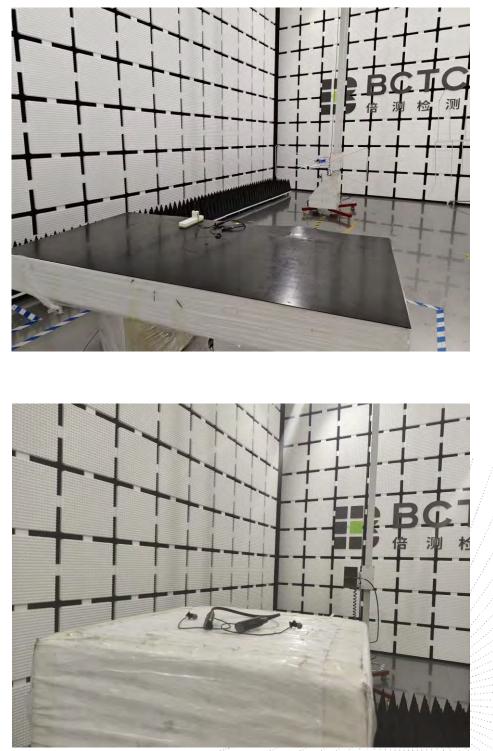
Page: 64 of 67

Edition : B.2

RC

ort

17. EUT Test Setup Photographs


Conducted emissions

IC VE Sea

Radiated Measurement Photos

No. : BCTC/RF-EMC-005

STATEMENT

- 1. The equipment lists are traceable to the national reference standards.
- 2. The test report can not be partially copied unless prior written approval is issued from our lab.
- 3. The test report is invalid without the "special seal for inspection and testing".
- 4. The test report is invalid without the signature of the approver.
- 5. The test process and test result is only related to the Unit Under Test.

6. Sample information is provided by the client and the laboratory is not responsible for its authenticity.

7. The quality system of our laboratory is in accordance with ISO/IEC17025.

8. If there is any objection to this test report, the client should inform issuing laboratory within 15 days from the date of receiving test report.

Address:

1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

TEL: 400-788-9558

P.C.: 518103

FAX: 0755-33229357

Website: http://www.chnbctc.com

Consultation E-mail: bctc@bctc-lab.com.cn

Complaint/Advice E-mail: advice@bctc-lab.com.cn

***** END *****

No. : BCTC/RF-EMC-005

Page: 67 of 6