

Page 1 of 44 JQA File No. : KL80130670 Issue Date : March 27, 2014

TEST REPORT

Applicant Address	:	Sharp Corporation, Communication Systems Division 2-13-1, Iida Hachihonmatsu, Higashi-Hiroshima City, Hiroshima, 739-0192, JAPAN
Products	:	Cellular Phone
Model No.	:	304SH
Serial No.	:	004401/11/507693/3
		004401/11/508298/0
FCC ID Test Standard	:	APYHRO00205 CFR 47 FCC Rules and Regulations Part 24
Test Results	:	Passed
Date of Test	:	March 10 ~ 18, 2014

Kousei Shibata Manager Japan Quality Assurance Organization KITA-KANSAI Testing Center SAITO EMC Branch 7-3-10, Saito-asagi, Ibaraki-shi, Osaka 567-0085, Japan

- The measurement values stated in Test Report was made with traceable to National Institute of Advanced Industrial Science and Technology (AIST) of Japan and National Institute of Information and Communications Technology (NICT) of Japan.
- The applicable standard, testing condition and testing method which were used for the tests are based on the request of the applicant.
- The test results presented in this report relate only to the offered test sample.
- The contents of this test report cannot be used for the purposes, such as advertisement for consumers.
- $\bullet~$ This test report shall not be reproduced except in full without the written approval of JQA.
- VLAC does not approve, certify or warrant the product by this test report.

JAPAN QUALITY ASSURANCE ORGANIZATION

TABLE OF CONTENTS

Page 2 of 44

Page

1	Description of the Equipment Under Test	. 3
2	Summary of Test Results	. 4
3	Test Procedure	. 5
4	Test Location	. 5
5	Recognition of Test Laboratory	. 5
6	Details of the Equipment Under Test	. 6
7	Details of the Test Item	. 9

DEFINITIONS FOR ABBREVIATION AND SYMBOLS USED IN THIS TEST REPORT

EUT	: Equipment Under Test	EMC	: Electromagnetic Compatibility
AE	: Associated Equipment	EMI	: Electromagnetic Interference
N/A	: Not Applicable	EMS	: Electromagnetic Susceptibility

- N/T : Not Tested
- \boxtimes indicates that the listed condition, standard or equipment is applicable for this report.
- □ indicates that the listed condition, standard or equipment is not applicable for this report.

1 Description of the Equipment Under Test

1. Manufacturer : Sharp Corporation, Communication Systems Division 2-13-1, Iida Hachihonmatsu, Higashi-Hiroshima City, Hiroshima, 739-0192, JAPAN Products 2. : Cellular Phone Model No. : 304SH3. : Serial No. 4. 004401/11/507693/3 : 004401/11/508298/0 Product Type : Pre-production 5.Date of Manufacture : January, 2014 6. 7. Power Rating : 4.0VDC (Lithium-ion Battery UBATIA243AFN1 2600mAh) : 8. EUT Grounding None 9. **Transmitting Frequency** : 1850.2 MHz(512CH) - 1909.8MHz(810CH) 1930.2 MHz(512CH) - 1989.8MHz(810CH) 10. Receiving Frequency : 11. Emission Designations 245KGXW : : 1.122W (EIRP) 12. Max. RF Output Power : 13. Category Broadband PCS 14. EUT Authorization : Certification 15. Received Date of EUT : March 4, 2014

16. Channel Plan

The carrier spacing is 200 kHz.

The carrier frequency is designated by the absolute frequency channel number (ARFCN). The carrier frequency is expressed in the equation shown as follows:

 $\begin{array}{ll} \mbox{Transmitting Frequency (in MHz)} &= 1850.2 + 0.2 \times (n-512) \\ \mbox{Receiving Frequency (in MHz)} &= 1930.2 + 0.2 \times (n-512) \\ \mbox{where, n : channel number } (512 \le n \le 810) \end{array}$

Page 3 of 44

Page 4 of 44

2 Summary of Test Results

Applied Standard : CFR 47 FCC Rules and Regulations Part 24 Subpart E - Broadband PCS

The EUT described in clause 1 was tested according to the applied standard shown above. Details of the test configuration is shown in clause 6.

The conclusion for the test items of which are required by the applied standard is indicated under the test result.

 \boxtimes - The test result was **passed** for the test requirements of the applied standard.

 \Box - The test result was **failed** for the test requirements of the applied standard.

□ - The test result was **not judged** the test requirements of the applied standard.

In the approval of test results,

- Determining compliance with the limits in this report was based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.
- No deviations were employed from the applied standard.
- No modifications were conducted by JQA to achieve compliance to the limitations.

Reviewed by:

Shigeru Kinoshita Deputy Manager JQA KITA-KANSAI Testing Center SAITO EMC Branch

Tested by:

gern Osawa

Shigeru Osawa Deputy Manager JQA KITA-KANSAI Testing Center SAITO EMC Branch

Page 5 of 44

3 Test Procedure

Test Requirements	:	CFR 47 FCC Rules and Regulations Part 2 §2.1046, §2.1047, §2.1049, §2.1051, §2.1053, §2.1055 and §2.1057
Test Procedure	:	ANSI C63.4–2003, TIA/EIA–603-C-2004 FCC KDB 971168 D01 Licensed DTS Guidance v02r01, released June 7, 2013

4 Test Location

Japan Quality Assurance Organization (JQA) KITA-KANSAI Testing Center 7-7, Ishimaru, 1-chome, Minoh-shi, Osaka, 562-0027, Japan SAITO EMC Branch 7-3-10, Saito-asagi, Ibaraki-shi, Osaka 567-0085, Japan

5 Recognition of Test Laboratory

JQA KITA-KANSAI Testing Center SAITO EMC Branch is accredited under ISO/IEC 17025 by following accreditation bodies and the test facility is registered by the following bodies.

VLAC Accreditation No.	:	VLAC-001-2 (Expiry date : March 30, 2014)
VCCI Registration No.	:	A-0002 (Expiry date : March 30, 2014)
BSMI Registration No.	:	SL2-IS-E-6006, SL2-IN-E-6006, SL2-R1/R2-E-6006, SL2-A1-E-6006
		(Expiry date : September 14, 2016)
IC Registration No.	:	2079E-3, 2079E-4 (Expiry date : July 20, 2014)

Accredited as conformity assessment body for Japan electrical appliances and material law by METI. (Expiry date : February 22, 2016)

Page 6 of 44

6 Details of the Equipment Under Test

6.1 Operating Condition

The test were carried under one modulation type shown as follows: Modulation Burst Signal : DATA TSC 5 in accordance with GSM 05.02.

The Radiated Emission test were carried under 3 test configurations shown in clause 6.3. In all tests, the fully charged battery is used for the EUT.

Other Clock Frequency 32.768 kHz, 19.2 MHz, 24 MHz, 27 MHz, 27.12 MHz, 48 MHz

The EUT was rotated through three orthogonal axis (X, Y and Z axis) in radiated measurement. The EUT with temporary antenna port was used in conducted measurement.

6.2 Test Configuration

Page 7 of 44

The equipment	under test	(EUT) consists of	£∶
---------------	------------	-------------------	----

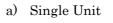
	Item	Manufacturer	Model No.	Serial No.	FCC ID
А	Cellular Phone	Sharp	304SH	004401/11/ 507693/3 *1) 004401/11/ 508298/0 *2)	APYHRO00205
В	AC Adapter	Sharp	SHCEJ1		N/A
С	Earphone	Softbank Mobile	ZTCAA1		N/A

*1) Used for Field Strength of Spurious Emission

*2) Used for Antenna Conducted Emission and Frequency Stability

The auxiliary equipment used for testing :

None


Type of Cable:

No.	Description	Identification	Connector	Cable	Ferrite	Length
INO.	Description	(Manu. etc.)	Shielded	Shielded	Core	(m)
1	DC Power Cord			NO	NO	1.5
2	Earphone Cable			NO	NO	0.5

6.3 Test Arrangement (Drawings)

Page 8 of 44

b) AC Adapter used

c) Earphone used

Page 9 of 44

7 Details of the Test Item

7.0 Summary of the Test Results

Test Item	FCC Specification	Reference of the Test Report	Results	Remarks
RF Power Output	Section 24.232(c)	Section 7.1	Passed	-
ERP / EIRP RF Power	Section 24.232(c)	Section 7.2	Passed	-
Output				
Modulation Characteristics	-	-	-	-
Occupied Bandwidth	Section 24.238	Section 7.4	Passed	-
Spurious Emissions at Antenna Terminals	Section 24.238	Section 7.5	Passed	-
Band-Edge Emission	Section 24.238	Section 7.6	Passed	-
Field Strength of Spurious Radiation	Section 24.238	Section 7.7	Passed	-
Frequency Stability	Section 22.235	Section 7.8	Passed	-

7.1 RF Power Output (§2.1046)

For the requirements, \boxtimes - Applicable $[\boxtimes$ - Tested. \square - Not tested by applicant request.] \square - Not Applicable

7.1.1 Worst Point and Measurement Uncertainty

Transmitter Power is	912.0	mW	at	1880.000	MHz
Uncertainty of Measurement Results at Amplitude				+/-0.7	dB(2σ)

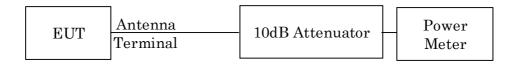
Remarks :

7.1.2 Test Site and Instruments

KITA-KANSAI Testing Center

7.1.2.1 Test Site

Test site : SAITO	 Anechoic chamber (A1) Measurement room (M2) Shielded room (S1) Shielded room (S3) 	 Measurement room (M1) Measurement room (M3) Shielded room (S2) Shielded room (S4)
	- Shielded room (S3)	\boxtimes - Shielded room (S4)


Page 10 of 44

7.1.2.2 Test Instruments

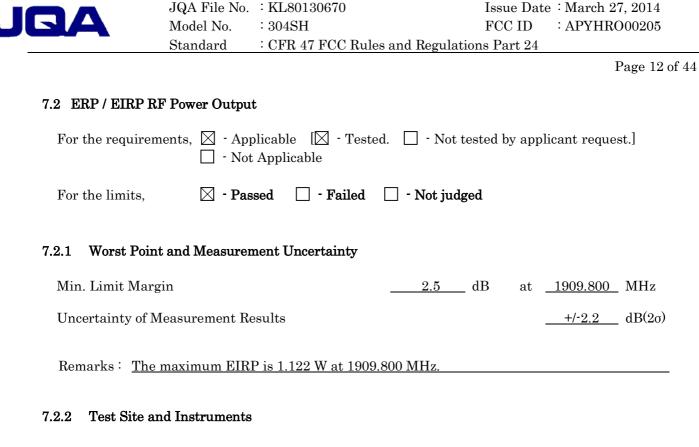
Туре	Model	Manufacturer	ID No.	Last Cal.	Interval
Power Meter	N1911A	Agilent	B-63	2013/7	1 Year
Power Sensor	N1921A	Agilent	B-64	2013/7	1 Year
Attenuator	54A-10	Weinschel	D-28	2013/9	1 Year
RF Cable	SUCOFLEX102	SUHNER	C-52	2013/7	1 Year

7.1.3 Test Method and Test Setup (Diagrammatic illustration)

The Conducted RF Power Output was measured with a power meter, one 10dB attenuator and a short, low loss cable.

Г

Page 11 of 44


7.1.4 Test Data

(GSM-PCS1900)

<u>Test Date: March 12, 2014</u> Temp.: 21 °C, Humi: 25 %

Transn	nitting Frequency	Correction Factor	Meter Reading (Peak)	Results	s (Peak)
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]
512	1850.200	9.98	19.57	29.55	901.6
661	1880.000	9.98	19.62	29.60	912.0
810	1909.800	9.98	19.55	29.53	897.4

Correction Factor	=	9.98	dB
+) Meter Reading	=	19.62	dBm
Result	=	29.60	dBm = 912.0 mW

7.2.2.1 Test Site

KITA-KANSAI Testing Center SAITO EMC Branch

 \Box - Anechoic chamber A1 \boxtimes - Anechoic chamber A2

7.2.2.2 Test Instruments

Туре	Model	Manufacturer	ID No.	Last Cal.	Interval
Test Receiver	ESU 26	Rohde & Schwarz	A-6	2013/4	1 Year
Signal Generator	E8257D	Agilent	B-39	2013/8	1 Year
Power Meter	N1911A	Agilent	B-63	2013/7	1 Year
Power Sensor	N1921A	Agilent	B-64	2013/7	1 Year
Attenuator(RX)	2-10	Weinschel	D-79	2013/11	1 Year
Attenuator(TX)	2-10	Weinschel	D-80	2013/11	1 Year
RF Cable(RX)	SUCOFLEX104	SUHNER	C-66	2014/1	1 Year
RF Cable(TX)	SUCOFLEX 102/E	SUHNER	C-70	2013/11	1 Year
Horn Antenna(TX)	91889-2	EATON	C-40-2	2013/7	1 Year
Horn Antenna(RX)	91889-2	EATON	C-41-2	2013/6	1 Year

Page 13 of 44

7.2.3 Test Method and Test Setup (Diagrammatic illustration)

Step 1:

In order to obtain the maximum emission, the EUT was placed at the height 1.5 m on the non-conducted support and was varying at three orthogonal axes, at the distance 3 m from the receiving antenna and rotated around 360 degrees.

The receiving antenna height was varied from 1 m to 4 m.

The EUT on the table was placed to be maximum emission against at the receiving antenna polarized (vertical and horizontal).

Then the meter reading of the spectrum analyzer at the maximum emission was A dB(μ V).

Step 2:

The EUT was replaced to substitution antenna at the same polarized under the same condition as step 1.

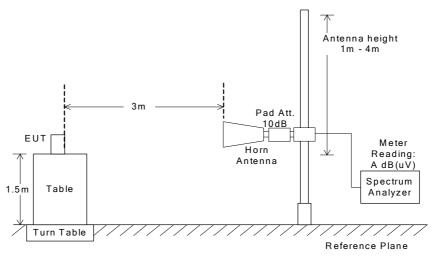
The RF power was fed to the transmitting antenna through the RF amplifier from the signal generator.

In order to obtain the maximum emission level, the height of the receiving antenna was varied from 1 m to 4 m.

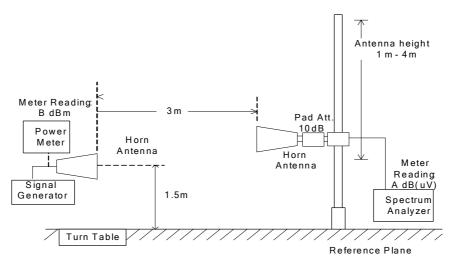
The level of maximum emission was A dB(μ V), same as the recorded level in the step 1.

Then the RF power into the substitution horn antenna was P (dBm).

The ERP/EIRP output power was calculated in the following equation.


 $\begin{array}{l} {\rm ERP}\;({\rm dBm})={\rm P}\;({\rm dBm})-{\rm Balun\;loss\;of\;the\;tuned\;dipole\;antenna\;({\rm dB})+{\rm Cable\;loss\;({\rm dB})}\\ {\rm EIRP}\;({\rm dBm})={\rm P}\;({\rm dBm})+{\rm Gh\;({\rm dBi})} \end{array} \end{array}$

where, Gh(dBi): Gain of the substitution horn antenna.



Page 14 of 44

(b) Substitution Horn Antenna

Page 15 of 44

7.2.4 Test Data

(GSM-PCS1900)

1. Measurement Results

Test Date: March 11, 2014 Temp.: 19 °C, Humi: 35 %

Transmitting Frequency		Emission Measurement [dB(uV)]		Substitution Measurement [dB(uV)]		Supplied Power to Substitution Antenna	Gain of Substitution Antenna
СН	[MHz]	Hori. (Mh)	Vert. (Mv)	Hori. (Msh)	Vert. (Msv)	[dB m]	[dB]
512	1850.200	92.6	91.6	72.1	72.4	- 5.0	14.3
661	1880.000	92.9	92.5	72.3	72.6	- 5.0	14.3
810	1909.800	93.6	93.1	72.5	72.6	- 5.0	14.4

2. Calculation Results

Transm	itting Frequency	Peak EII	RP [dBm]	Maximum Peak EIRP	Limits	Margin
СН	[MHz]	Hori. (EIRPh)	Vert. (EIRPv)	[W]	[dBm]	[dB]
512	1850.200	29.8	28.5	0.955	33.0	+ 3.2
661	1880.000	29.9	29.2	0.977	33.0	+ 3.1
810	1909.800	30.5	29.9	1.122	33.0	+ 2.5

	Emission Measurment (Mh)		=	93.6	dB(uV)
Substitution Measurement (Msh)			=	-72.5	dB(uV)
Supplied Power to Substitution Antenna			=	-5.0	dBm
+) Gain of Substitution Antenna			=	14.4	dB
Result (EIRPh)			=	30.5	dBm = 1.122 W
Minimu	m Margin: 33.0 - 30.5 = 2.5 (dB)				
NOTE :	Setting of measuring instrument(s)	:			
NOTE:			DIT	V.B.W.	Sweep Time
NOTE:	Detector Function	Resolutio	on B.W.	V.D.W.	Sweep Time

	JQA File No. Model No.	: KL80130670 : 304SH			March 27, 2014 APYHRO00205
	Standard	: CFR 47 FCC Ru	les and Regulatio		AF 111000205
	Standard	· 0111 47 1 00 114		115 1 al t 24	Page 16 of 44
7.3 Modulation Ch	aracteristics (§	2.1047)			
For the requirem		licable [🗌 - Tes Applicable	ted. 🗌 - Not tes	sted by applica	ant request.]
For the limits,	🗌 - Pas	sed 🗌 - Failed	🗌 - Not judge	d	
7.4 Occupied Band	lwidth (§2.1049)			
For the requirem		licable [🛛 - Tes Applicable	ted. 🗌 - Not tes	sted by applica	ant request.]
For the limits,	🛛 - Pas	sed 🗌 - Failed	🗌 - Not judge	d	
7.4.1 Worst Point	and Measuren	nent Uncertainty			
The 99% Bandwi The 26dB Bandw					80.0/1909.8 MHz 909.800 MHz
Uncertainty of M	easurement Re	sults			+/-0.9 %(20)
Remarks :					
7.4.2 Test Site an	d Instruments				
7.4.2.1 Test Site					
KITA-KANSAI T	esting Center				
Test site : SAIT		Anechoic chambeMeasurement ro	· · · =	Aeasurement Aeasurement	

- □ Shielded room (S1) □ - Shielded room (S3)
- ☐ Shielded room (S2) ⊠ Shielded room (S4)


Page 17 of 44

7.4.2.2 Test Instruments

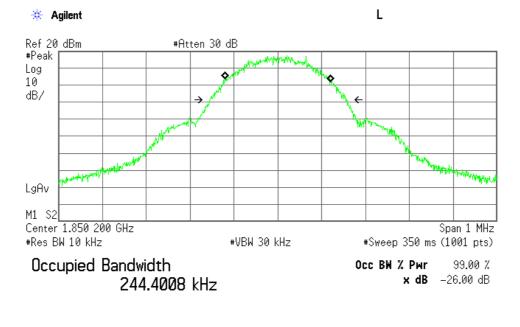
Туре	Model	Manufacturer	ID No.	Last Cal.	Interval
Spectrum Analyzer	E4446A	Agilent	A-39	2013/9	1 Year
Attenuator	54A-10	Weinschel	D-28	2013/9	1 Year
RF Cable	SUCOFLEX102	SUHNER	C-52	2013/7	1 Year

7.4.3 Test Method and Test Setup (Diagrammatic illustration)

The test system is shown as follows:

The setting of the spectrum analyzer are shown as follows:

Res. Bandwidth	10 kHz
Video Bandwidth	30 kHz
Span	1 MHz
Sweep Time	AUTO
Trace	Maxhold

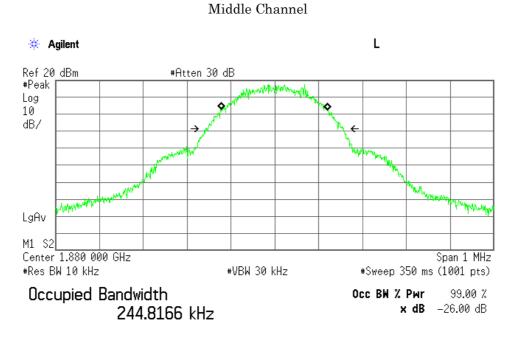

Page 18 of 44

7.4.4 Test Data

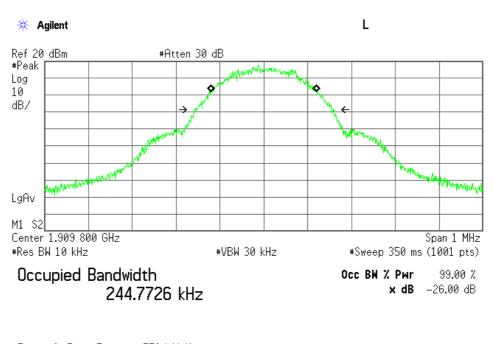
The resolution bandwidth was set to about 1% of emission bandwidth, -26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

<u>Test Date : March 12, 2014</u> <u>Temp.:21°C, Humi:25%</u>

Channel	Frequency (MHz)	99% Bandwidth (kHz)	-26dBc Bandwidth (kHz)
512	1850.200	244.4	316.4
661	1880.000	244.8	318.0
810	1909.800	244.8	322.3



Low Channel


Transmit Freq Error483.933 HzOccupied Bandwidth316.415 kHz

Page 19 of 44

Transmit Freq Error	-612.433 Hz	
Occupied Bandwidth	318.031 kHz	

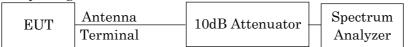
High Channel

Transmit Freq Error	570.141 Hz
Occupied Bandwidth	322.294 kHz

	JQA File No. : KL80130670 Model No. : 304SH			Issue Date : March 27, FCC ID : APYHRO0		
	Standard	CFR 47 FCC Rule	es and Regulatio			
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Page 20 c	
7.5 Spurious	Emissions at Anter	na Terminals (§2.10	51)			
For the req	-	plicable [🛛 - Teste t Applicable	ed. 🗌 - Not tes	sted by appl	licant request.]	
For the lim	its, 🛛 - Pa	ssed 🗌 - Failed	🗌 - Not judge	ed		
7.5.1 Worst	Point and Measure	ment Uncertainty				
Min. Limit	Margin		32.6	dB at	9549.000 MHz	
Uncertainty of Measurement Results			1GHz ·	$\begin{array}{ccc} 9 \ \mathrm{kHz} - 1 \mathrm{GHz} & \underline{+/\text{-}1.0} & \mathrm{dB(2\sigma)} \\ 1 \mathrm{GHz} - 18 \mathrm{GHz} & \underline{+/\text{-}1.2} & \mathrm{dB(2\sigma)} \\ 18 \mathrm{GHz} - 40 \mathrm{GHz} & \underline{+/\text{-}1.6} & \mathrm{dB(2\sigma)} \end{array}$		
Remarks :						
7.5.2 Test S 7.5.2.1 Test	Site and Instruments	3				
7.5.2.1 Iest	Site					
KITA-KAN	SAI Testing Center					
Test site :	SAITO	- Anechoic chamber   - Measurement roor   - Shielded room (S1   - Shielded room (S3	$\begin{array}{c} m (M2) & \square & - M \\ m & - M \\ m & \square & - M \\ m & - M $			



Page 21 of 44


### 7.5.2.2 Test Instruments

Туре	Model	Manufacturer	ID No.	Last Cal.	Interval
Spectrum Analyzer	E4446A	Agilent	A-39	2013/9	1 Year
Attenuator	54A-10	Weinschel	D-28	2013/9	1 Year
RF Cable	SUCOFLEX102	SUHNER	C-52	2013/7	1 Year
HPF	HPM13899	MICRO-TRONICS	D-96	2014/2	1 Year

### 7.5.3 Test Method and Test Setup (Diagrammatic illustration)

The Antenna Conducted Emission was with a spectrum analyzer. The test system is shown as follows:

a) Frequency Range : 9kHz - 2GHz



### b) Frequency Range : 2GHz - 20GHz



The setting of the spectrum analyzer are shown as follows:

Frequency Range	9 kHz - 150 kHz	150 kHz - 30 MHz	30 MHz - 20 GHz
Res. Bandwidth	$200~{\rm Hz}$	$10 \mathrm{kHz}$	1 MHz
Video Bandwidth	1 kHz	30 kHz	$3 \mathrm{~MHz}$
Sweep Time	AUTO	AUTO	AUTO
Trace	Maxhold	Maxhold	Maxhold



Page 22 of 44

### 7.5.4 Test Data

## (GSM-PCS1900)

<u>Test Date: March 12, 2014</u> <u>Temp.: 21 °C, Humi: 25 %</u>

	rans mitting Fre que ncy	Measured Frequency [MHz]	Corr. Factor [dB]	Meter Readings [dBm]	Limits [dB m]	Results [dBm]	Margin [dB]	Remarks
Сп	[MHz]		נמשן					
512	1850.200	3700.400	11.0	< -63.0	-13.0	< -52.0	> +39.0	С
		5550.600	11.1	< -63.0	-13.0	< -51.9	> +38.9	С
		7400.800	11.6	-59.8	-13.0	-48.2	+35.2	С
		9251.000	12.0	-58.9	-13.0	-46.9	+33.9	С
		11101.200	12.4	< -63.0	-13.0	< -50.6	> +37.6	С
		12951.400	12.6	< -63.0	-13.0	< -50.4	> +37.4	С
		14801.600	12.9	< -63.0	-13.0	< -50.1	> +37.1	С
		16651.800	13.2	< -63.0	-13.0	< -49.8	> +36.8	С
		18502.000	13.5	< -63.0	-13.0	< -49.5	> +36.5	С
661	1880.000	3760.000	11.0	< -63.0	-13.0	< -52.0	> +39.0	С
		5640.000	11.1	< -63.0	-13.0	< -51.9	> +38.9	С
		7520.000	11.6	< -63.0	-13.0	< -51.4	> +38.4	С
		9400.000	12.0	-58.4	-13.0	-46.4	+33.4	С
		11280.000	12.4	< -63.0	-13.0	< -50.6	> +37.6	С
		13160.000	12.7	< -63.0	-13.0	< -50.3	> +37.3	С
		15040.000	12.9	< -63.0	-13.0	< -50.1	> +37.1	С
		16920.000	13.2	< -63.0	-13.0	< -49.8	> +36.8	С
		18800.000	13.5	< -63.0	-13.0	< -49.5	> +36.5	С
810	1909.800	3819.600	11.0	< -63.0	-13.0	< -52.0	> +39.0	С
		5729.400	11.2	< -63.0	-13.0	< -51.8	> +38.8	С
		7639.200	11.6	< -63.0	-13.0	< -51.4	> +38.4	С
		9549.000	12.2	-57.8	-13.0	-45.6	+32.6	С
		11458.800	12.4	< -63.0	-13.0	< -50.6	> +37.6	С
		13368.600	12.7	< -63.0	-13.0	< -50.3	> +37.3	С
		15278.400	12.9	< -63.0	-13.0	< -50.1	> +37.1	С
		17188.200	13.3	< -63.0	-13.0	< -49.7	> +36.7	С
		19098.000	13.5	< -63.0	-13.0	< -49.5	> +36.5	С



Page 23 of 44

#### NOTES

1. The spectrum was checked from 9 kHz to 20 GHz.

2. Applied limits : -13.0 [dBm] =  $10\log(TP[mW]) - (43 + 10\log(tp[W])) = 10\log(TP[mW]) - (43 + (10\log(TP[mW]) - 30))$ where, tp[W] = TP[mW] / 1000 : Transmitter power at anttena terminal

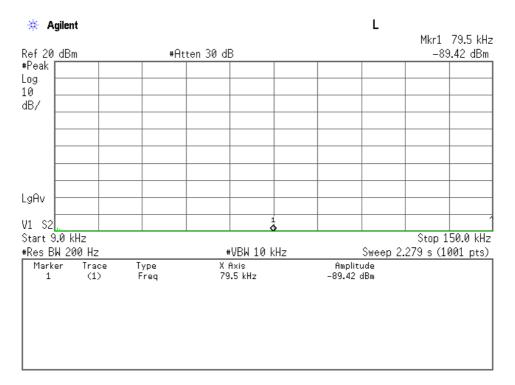
3. The correction factor is shown as follows:

Corr. Factor [dB] = Cable Loss + 10dB Pad Att. [dB] (9 kHz - 2 GHz)

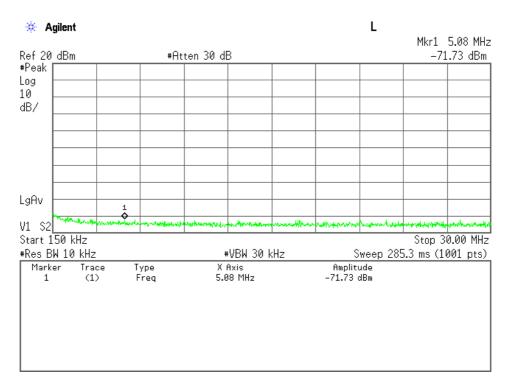
Corr. Factor [dB] = Cable Loss + 10dB Pad Att. + High Pass Filter Loss (D-96) [dB] (over 2 GHz)

4. The symbol of "<" means "or less".

5. The symbol of ">" means "more than".


6. Setting of measuring instrument(s) :

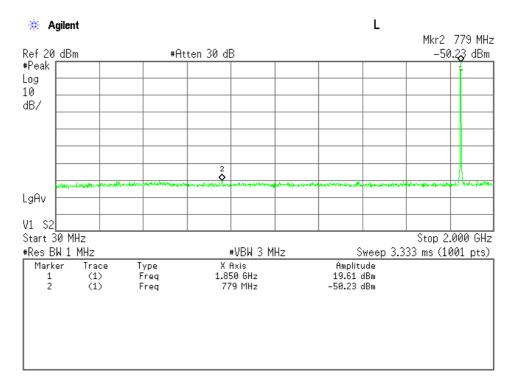
	Detector Function	RES B.W.	V.B.W.	Sweep Time
А	Peak	200 Hz	1 kHz	AUTO
В	Peak	10 kHz	30 kHz	AUTO
С	Peak	1 MHz	3 MHz	AUTO



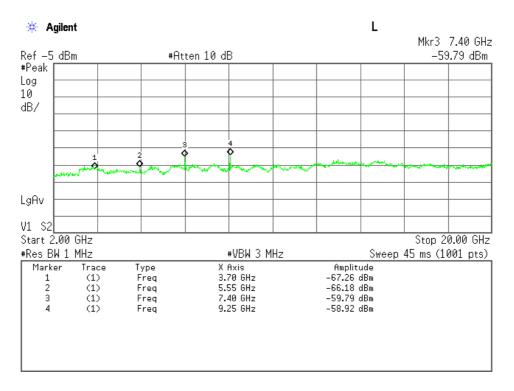

# Page 24 of 44

### Low Channel, Out-Of-Band Emissions (9 kHz – 150 kHz)




### Low Channel, Out-Of-Band Emissions (150 kHz - 30 MHz)

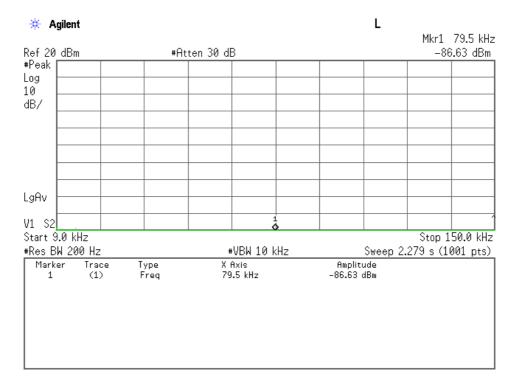




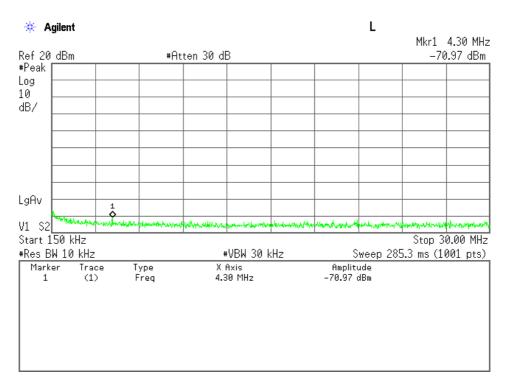

Page 25 of 44

### Low Channel, Out-Of-Band Emissions (30 MHz - 2 GHz)




### Low Channel, Out-Of-Band Emissions (2 GHz - 20 GHz)

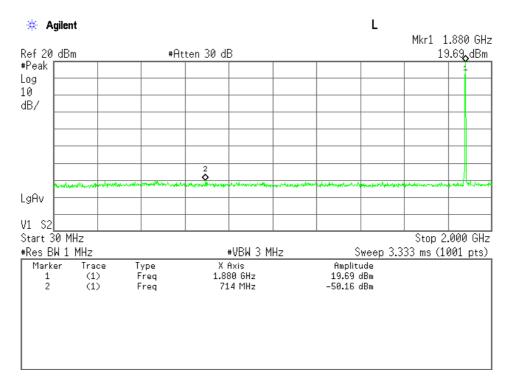




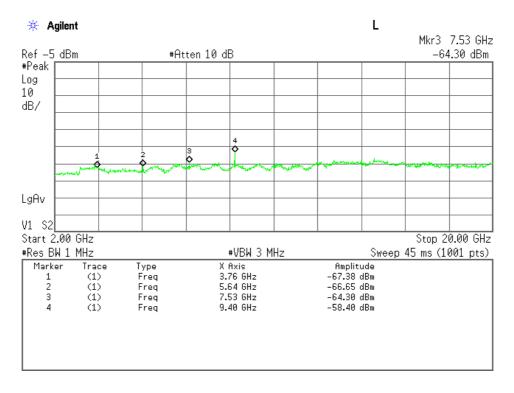

### Page 26 of 44

### Middle Channel, Out-Of-Band Emissions (9 kHz – 150 kHz)





### Middle Channel, Out-Of-Band Emissions (150 kHz - 30 MHz)

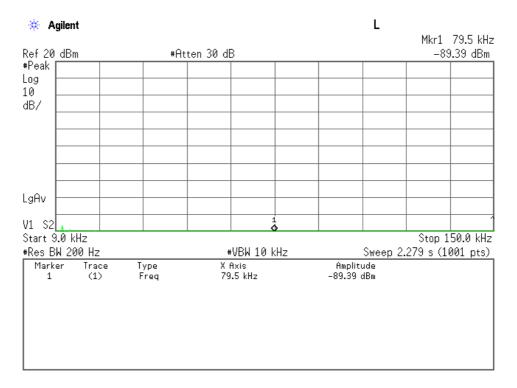




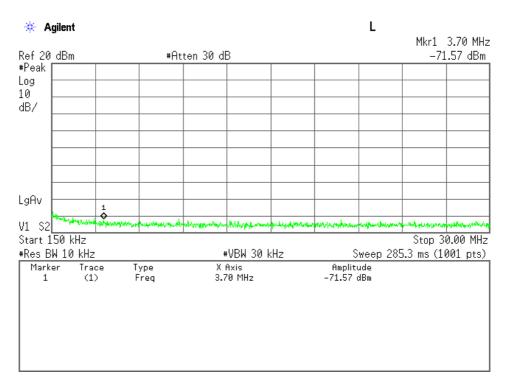

Page 27 of 44





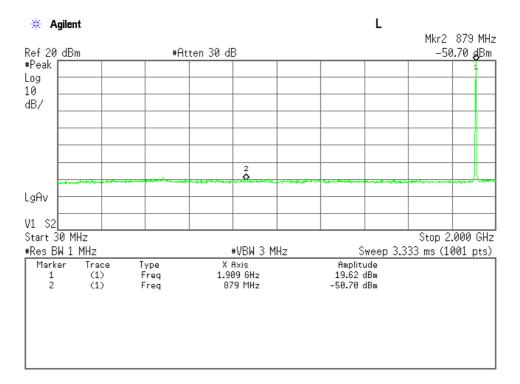

### Middle Channel, Out-Of-Band Emissions (2 GHz - 20 GHz)



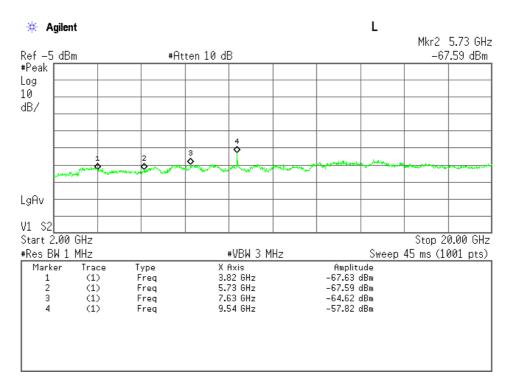



### Page 28 of 44

### High Channel, Out-Of-Band Emissions (9 kHz – 150 kHz)




### High Channel, Out-Of-Band Emissions (150 kHz - 30 MHz)






### High Channel, Out-Of-Band Emissions (30 MHz – 2 GHz)



### High Channel, Out-Of-Band Emissions (2 GHz - 20 GHz)



7.6 Band-Edge Emi	Standard	: CFR 47 FCC R	1		ID		000205
7.6 Band-Edge Emi			ules and Regula	tions Part	t 24		Page 30
	ssion (§2.1051	)					
For the requireme		licable [⊠ - T∉ Applicable	ested. 🗌 - Not	tested by	appli	cant reque	st.]
For the limits,	🛛 - Pas	sed 🗌 - Faile	d 🗌 - Not jud	ged			
7.6.1 Worst Point a	and Measuren	nent Uncertainty					
Min. Limit Margir	ı		1.7	_ dB	at _	1850.0	MHz
The Band-Edge lev	vel is		-14.7	_ dBm	at _	1850.0	MHz
Uncertainty of Me	asurement Re	esults			_	+/-1.2	_ dB(2σ)
Remarks :							
7.6.2 Test Site and	Instruments						
7.6.2.1 Test Site							
KITA-KANSAI Te	sting Center						
Test site : SAITO		<ul> <li>Anechoic cham</li> <li>Measurement r</li> <li>Shielded room</li> <li>Shielded room</li> </ul>	room (M2)		ement d roon		
7.6.2.2 Test Instru	ments						
<b>Type</b> Spectrum Analyze	er E444		<mark>Manufacturer</mark> Agilent	ID N A-39		<b>Last Cal.</b> 2013/9	Interval

Туре	Model	Manufacturer	ID No.	Last Cal.	Interval
Spectrum Analyzer	E4446A	Agilent	A-39	2013/9	1 Year
Attenuator	54A-10	Weinschel	D-28	2013/9	1 Year
RF Cable	SUCOFLEX102	SUHNER	C-52	2013/7	1 Year



Page 31 of 44

### 7.6.3 Test Method and Test Setup (Diagrammatic illustration)

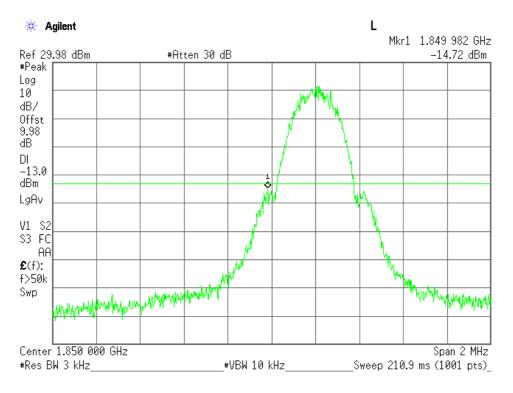
The test system is shown as follows:



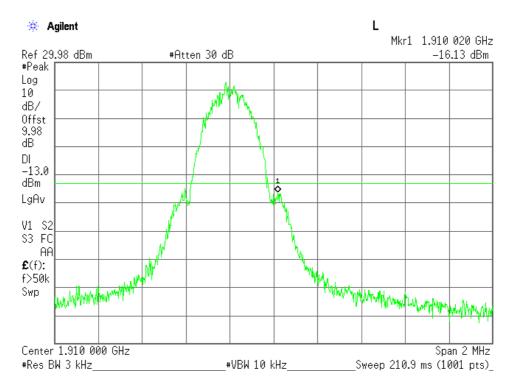
The setting of the spectrum analyzer are shown as follows:

TX Frequency	1850.20 MHz / 1909.80 MHz
Band-Edge Frequency	1850.00 MHz / 1910.00 MHz
Res. Bandwidth	3 kHz
Video Bandwidth	$10 \mathrm{kHz}$
Span	2 MHz
Sweep Time	AUTO
Trace	Maxhold

### 7.6.4 Test Data


<u>Test Date : March 12, 2014</u> <u>Temp.:21°C, Humi:25%</u>

Channel	Frequency (MHz)	Band-Edge Frequency (MHz)	Band-Edge Level (dBm)	Limits (dBm)	Margin (dB)
512	1850.200	1850.00	-14.7	-13.0	+1.7
810	1909.800	1910.00	-16.1	-13.0	+3.1




### Low Channel, Band-Edge Emission

Page 32 of 44



### High Channel, Band-Edge Emission



	•	: KL80130670		te : March 27, 2014
	Model No.	: 304SH	FCC ID	APYHRO00205
	Standard	· OFK 47 FOO Kule	s and Regulations Part 24	Page 33 of 44
7.7 Field Strength	of Spurious Ra	diation (§2.1053)		
For the requirem		licable [🛛 - Teste Applicable	d. 🗌 - Not tested by app	olicant request.]
For the limits,	🛛 - Pas	sed 🗌 - Failed	🗌 - Not judged	
7.7.1 Worst Point	and Measuren	nent Uncertainty		
Min. Limit Marg	in		<u>&gt;22.9</u> dB at <u>1</u>	<u>3368.600</u> MHz
Uncertainty of M	easurement Re	sults	30 MHz – 1000 MHz above 1 GHz	<u>+/-1.4</u> dB(2σ) <u>+/-2.2</u> dB(2σ)
Remarks :				
7.7.2 Test Site an	d Instruments			
7.7.2.1 Test Site				
KITA-KANSAI T	esting Center S	SAITO EMC Branch		

 $\Box$  - Anechoic chamber A1  $\boxtimes$  - Anechoic chamber A2



Page 34 of 44  $\,$ 

### 7.7.2.2 Test Instruments

Туре	Model	Manufacturer	ID No.	Last Cal.	Interval
Test Receiver	ESU 26	Rohde & Schwarz	A-6	2013/4	1 Year
Signal Generator	E8257D	Agilent	B-39	2013/8	1 Year
Power Meter	N1911A	Agilent	B-63	2013/7	1 Year
Power Sensor	N1921A	Agilent	B-64	2013/7	1 Year
Horn Antenna(TX)	91889-2	EATON	C-40-2	2013/7	1 Year
Horn Antenna	91888-2	EATON	C-41-1	2013/6	1 Year
Horn Antenna(RX)	91889-2	EATON	C-41-2	2013/6	1 Year
Horn Antenna	3160-04	EMCO	C-55	2013/7	1 Year
Horn Antenna	3160-05	EMCO	C-56	2013/7	1 Year
Horn Antenna	3160-06	EMCO	C-57	2013/7	1 Year
Horn Antenna	3160-07	EMCO	C-58	2013/7	1 Year
Horn Antenna	3160-08	EMCO	C-59	2013/7	1 Year
Horn Antenna)	3160-09	EMCO	C-48	2013/7	1 Year
RF Cable(TX)	SUCOFLEX102E	SUHNER	C-70	2013/11	1 Year
RF Cable(RX)	SUCOFLEX102E	SUHNER	C-75	2014/2	1 Year
RF Cable(RX)	SUCOFLEX104	SUHNER	C-66	2014/1	1 Year
RF Cable(RX)	SUCOFLEX104	SUHNER	C-67	2014/1	1 Year
RF Cable(RX)	SUCOFLEX102EA	SUHNER	C-69	2014/2	1 Year
Attenuator(TX)	2-10	Weinschel	D-40	2013/9	1 Year
Attenuator(RX)	2-10	Weinschel	D-79	2013/11	1 Year
Attenuator(RX)	54-10	Weinschel	D-29	2013/9	1 Year
Pre-Amplifier	WJ-6611-513	Watkins Johnson	A-23	2014/1	1 Year
Pre-Amplifier	WJ-6882-824	Watkins Johnson	A-21	2014/1	1 Year
Pre-Amplifier	DBL-0618N515	DBS Microwave	A-33	2014/1	1 Year
Pre-Amplifier	BZ1840LD1	B&Z	A-29	2014/1	1 Year
HPF	HPM13899	MICRO-TRONICS	D-96	2014/2	1 Year



Page 35 of 44

### 7.7.3 Test Method and Test Setup (Diagrammatic illustration)

Step 1) The spurious radiation for transmitter were measured at the distance 3 m away from the EUT which was placed on a non-conducted support 1.0 m in height and was varying at three orthogonal axes. The receiving antenna was oriented for vertical polarization and varied from 1 m to 4 m until the maximum emission level was detected on the measuring instrument. The EUT was rotated 360 degrees until the maximum emission was received. The measurement was also repeated with the receiving antenna in the horizontal polarization.

This test was carried out using the half-wave dipole antenna for up to 1GHz and using the horn antenna for above 1 GHz.

Step 2)

A) Up to 1 GHz

The ERP measurement was carried out with according to Step 2 in Clause 7.2.4. Then the RF power in the substitution antenna half-wave dipole antenna for up to 1 GHz and the substitution horn antenna for above 1 GHz.

The ERP is calculated in the following equation.

ERP(dBm) = P(dBm) - (Balun Loss of the half-wave dipole Ant. (dB)) + Cable Loss(dB)

B) Above 1 GHz

The ERP is calculated from the maximum emission level by the following formula.

$$\frac{e^2}{120\pi} = \frac{eirp}{4\pi d^2}$$
 ----(Eq.1)

 $erp = eirp - Gd \cdots (Eq.2)$ 

Where, e[V/m]: Field Strength at measuring distance(d=3m)

*eirp*[W]: Equivalent Isotropic Radiated Power

*erp*[W]: Effective Radiated Power

Gd(dBi): Gain of the substitution half-wave dipole antenna(2.15dBi)

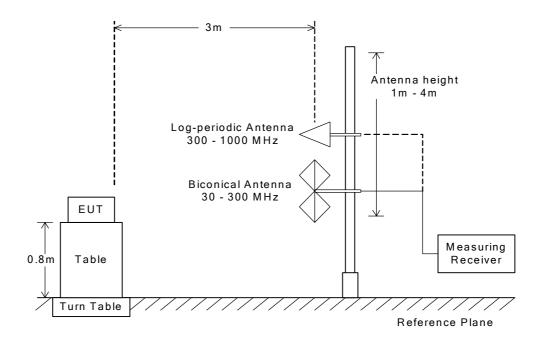
$$eirp = \frac{(de)^2}{30} = \frac{3}{10}e^2$$
  

$$\therefore 10 \log(eirp) = 20 \log(e) + 10 \log(3/10) = 20 \log(e) - 5.23$$
  

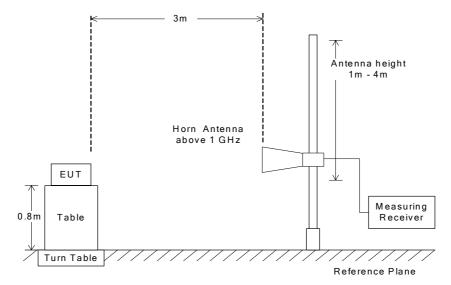
$$10 \log(eirp) = EIRP[dBm] - 30$$
  

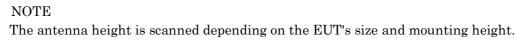
$$20 \log(e) = E[dB(\mu V / m)] - 120$$
  

$$\therefore EIRP = E - 120 + 30 - 5.23 = E - 95.23$$
  


$$\therefore ERP[dBm] = EIRP - 2.15 = E - 97.38$$

The respective calculated ERP of the spurious and harmonics were compared with the ERP of fundamental frequency by specified attenuation limits,  $43+10\log_{10}$  (TP in watt)[dB]. Where, TP = Transmitter power at the ANT OUT under test configuration as the hands free unit used.

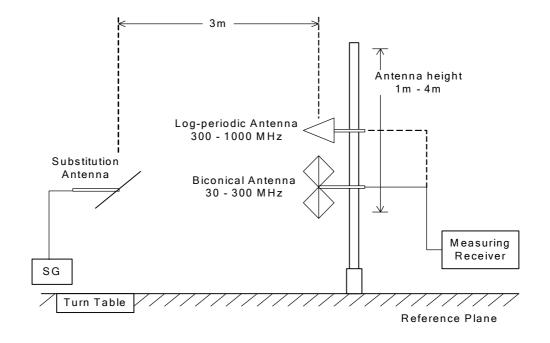




### Radiated Emission 30 MHz to 1000 MHz

Page 36 of 44



Radiated Emission above 1 GHz








### Radiated Emission 30 to 1000 MHz – Substitution Method

Page 37 of 44





#### Page 38 of 44

### 7.7.4 Test Data

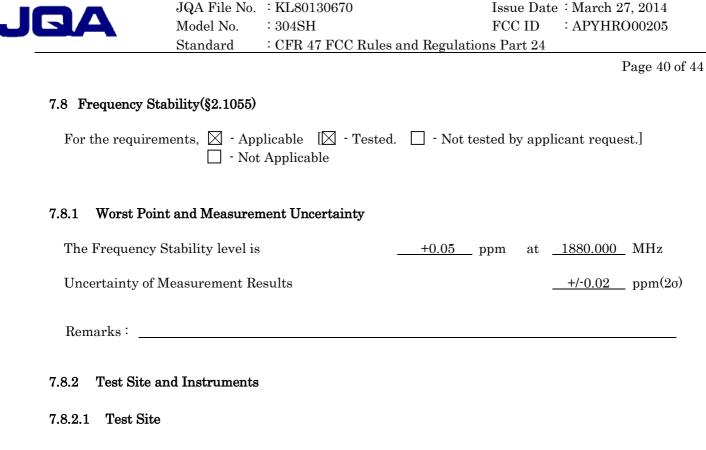
# (GSM-PCS1900)

Test Configuration : Single Unit

Test Date: March 10, 2014 Temp.: 21 °C, Humi: 32 %

	Frans mitting Frequency	Me as ured Frequency		ERP IBm]	Limits [dBm]	Margin [dB]	Remarks
СН	[MHz]	[MHz]	Hori.	Vert.			
512	1850.200	3700.400	-57.8	-58.9	-13.0	+44.8	С
		5550.600	-41.2	-41.1	-13.0	+28.1	С
		7400.800	< -46.4	< -46.4	-13.0	> +33.4	С
		9251.000	-40.4	-40.6	-13.0	+27.4	С
		11101.200	< -40.2	< -40.2	-13.0	> +27.2	С
		12951.400	< -36.1	< -36.1	-13.0	> +23.1	С
		14801.600	< -36.8	< -36.8	-13.0	> +23.8	С
		16651.800	< -47.9	< -47.9	-13.0	> +34.9	С
		18502.000	< -39.6	< -39.6	-13.0	> +26.6	С
661	1880.000	3760.000	-56.2	-57.5	-13.0	+43.2	С
		5640.000	-43.1	-41.2	-13.0	+28.2	С
		7520.000	< -46.3	< -46.3	-13.0	> +33.3	С
		9400.000	-39.1	-39.6	-13.0	+26.1	С
		11280.000	< -40.5	< -40.5	-13.0	> +27.5	С
		13160.000	< -36.0	< -36.0	-13.0	> +23.0	С
		15040.000	< -36.9	< -36.9	-13.0	> +23.9	С
		16920.000	< -48.0	< -48.0	-13.0	> +35.0	С
		18800.000	< -39.4	< -39.4	-13.0	> +26.4	С
810	1909.800	3819.600	-55.7	-55.9	-13.0	+42.7	С
		5729.400	-42.0	-40.5	-13.0	+27.5	С
		7639.200	< -44.3	-43.3	-13.0	+30.3	С
		9549.000	-38.5	-37.5	-13.0	+24.5	С
		11458.800	< -40.7	< -40.7	-13.0	> +27.7	С
		13368.600	< -35.9	< -35.9	-13.0	> +22.9	С
		15278.400	< -37.1	< -37.1	-13.0	> +24.1	С
		17188.200	< -48.3	< -48.3	-13.0	> +35.3	С
		19098.000	< -39.1	< -39.1	-13.0	> +26.1	С




Page 39 of 44

Calculated result at 13368.6 MHz, as the worst point shown on underline: Minimum Margin: -13.0 - (<-35.9) = >22.9 (dB)

#### NOTES

- 1. Test Distance : 3 m
- 2. The spectrum was checked from 30 MHz to 20 GHz.
- 3. All emissions not reported were more than 20 dB below the applied limits.
- 4. Applied limits : -13.0 [dBm] =  $10\log(TP[mW]) \cdot (43 + 10\log(tp[W])) = 10\log(TP[mW]) \cdot (43 + (10\log(TP[mW]) \cdot 30))$ where, tp[W] = TP[mW] / 1000: Transmitter power at anttena terminal
- 5. The symbol of "<" means "or less".
- 6. The symbol of ">" means "more than".
- 7. Setting of measuring instrument(s) :

	<b>Detector Function</b>	RES B.W.	V.B.W.	Sweep Time
А	Peak	$10\mathrm{kHz}$	30 kHz	20 msec.
В	Peak	$100 \mathrm{kHz}$	300 kHz	20 msec.
С	Peak	$1\mathrm{MHz}$	3 MHz	20 msec.



KITA-KANSAI Testing Center

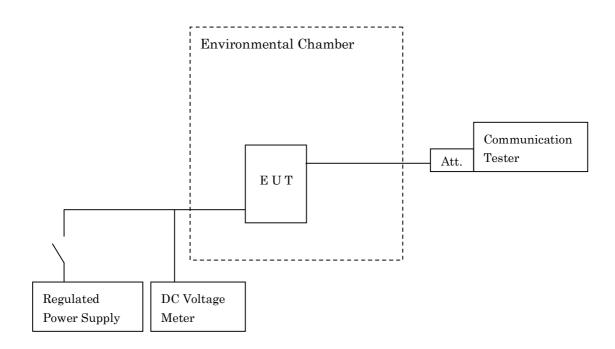
Test site :	SAITO	🛛 - Environment Testing Room
	MINOH	🗌 - Environment Testing Room

### 7.8.2.2 Test Instruments

Туре	Model	Manufacturer	ID No.	Last Cal.	Interval
Universal Radio Communication Tester	CMU200	Rohde & Schwarz	B-21	2013/4	1 Year
DC Voltage Meter	2011-39	YEW	B-33	2013/4	1 Year
Environmental		ESPEC		2013/7	1 Year
Chamber	51-041	LOFEC	г-97	2015/7	i iear
DC Power Supply	NL035-10	TAKASAGO	F-4	N/A	N/A



Page 41 of 44  $\,$ 


### 7.8.3 Test Method and Test Setup (Diagrammatic illustration)

### Frequency Stability versus Temperature

The EUT was placed in an environmental chamber and was tested in the range from -30 to +50 degrees Celsius. The EUT was stabilized at each temperature. The power (4.0VDC) supplied was applied to the transmitter and allowed to stabilize for 10 minutes. The transmitting frequency was measured at startup and 2 minutes, 5 minutes and 10 minutes after startup. This procedure was repeated from -30 to +50 degrees Celsius at the interval of 10 degrees.

#### Frequency Stability versus Power Supply Voltage

The EUT was placed in an environmental chamber and was tested at the temperature of +20 degrees Celsius. The EUT was stabilized at the temperature. The power (4.0VDC) and the power (3.7VDC, the ending voltage) was applied to the EUT allowed to stabilize for 10 minutes. The transmitting frequency was measured at startup and 2 minutes, 5 minutes and 10 minutes after startup.





Page 42 of 44

### 7.8.4 Test Data

### (GSM-PCS1900)

Test Date: March 18, 2014 - March 18, 2014

#### 1. Frequency Stability Measurement versus Temperature

Transmitting Frequency DC Supply Voltage		: 1880.000 MHz (( : 4.0 VDC	561 ch)			
Ambient Temperature	Startup	Deviat 2 minutes	ion [ppm] 5 minutes	10 minutes	Limits [ppm]	Margin [ppm]
[°C]	-					
-30	+ 0.05	+ 0.05	+ 0.04	+ 0.04	N/A	N/A
-20	+ 0.05	+ 0.04	+ 0.04	+ 0.04	N/A	N/A
-10	+ 0.04	+ 0.04	+ 0.04	+ 0.04	N/A	N/A
0	+ 0.04	+ 0.04	+ 0.04	+ 0.04	N/A	N/A
10	+ 0.04	+ 0.04	+ 0.04	+ 0.04	N/A	N/A
20	+ 0.04	+ 0.04	+ 0.04	+ 0.04	N/A	N/A
30	+ 0.04	+ 0.04	+ 0.04	+ 0.04	N/A	N/A
40	+ 0.04	+ 0.04	+ 0.04	+ 0.04	N/A	N/A
50	+ 0.04	+ 0.04	+ 0.04	+ 0.04	N/A	N/A

2. Frequency Stability Measurement versus Power Supply Voltage

Transmitting Frequency Ambient Temperature:		: 1880.000 MHz (6 : 20 °C	661 ch)			
DC Supply		Deviat	ion [ppm]		Limits	Margin
Voltage	Startup	2 minutes	5 minutes	10 minutes	[ppm]	[ppm]
[V]						
4.0	+ 0.04	+ 0.04	+ 0.04	+ 0.04	N/A	N/A
3.7(Ending)	+ 0.04	+ 0.04	+ 0.04	+ 0.04	N/A	N/A

Test condition example as the maximum deviation point shown on underline:Ambient Temperature: -30 °CDC Supply Voltage: 4 VDC

NOTE: The measurement were made after all of components of the oscillator sufficiently stabilized at each temperature.