

MRT Technology (Suzhou) Co., Ltd Phone: +86-512-66308358 Web: www.mrt-cert.com Report No.: 2412RSU001-U5 Report Version: V01 Issue Date: 2025-02-23

DFS MEASUREMENT REPORT

FCC ID: LNQ-WF189

Applicant: Actiontec Electronics Inc.

Product: High-Speed Tri-Band 2x2 Wi-Fi 7 Wireless AP

Model No.: WF-189

Brand Name: Actiontec

FCC Classification: Unlicensed National Information Infrastructure (NII)

FCC Rule Part(s): Part 15 Subpart E (Section 15.407)

Type of Device: Master

Result: Complies

Received Date: 2024-12-02

Test Date: 2024-12-27 ~ 2025-01-09

Reviewed By:

Kevin Guo

Approved By:

Robin Wu

The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in KDB 905462. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

Template Version:1.6 1 of 206

Revision History

Report No.	Version	Description	Issue Date	Note
2412RSU001-U5	V01	Initial Report	2025-02-23	Valid

CONTENTS

Des	cription		Page
1.	Gene	al Information	5
	1.1.	Applicant	5
	1.2.	Manufacturer	5
	1.3.	Testing Facility	5
	1.4.	Product Information	6
	1.5.	Radio Specification under Test	6
	1.6.	Working Frequencies	7
	1.7.	Antenna Details	8
2.	Test C	Configuration	9
	2.1.	Test Mode	9
	2.2.	Test Channel	9
	2.3.	Applied Standards	9
	2.4.	Test Environment Condition	9
3.	DFS [Detection Thresholds and Radar Test Waveforms	10
	3.1.	Applicability	10
	3.2.	DFS Devices Requirements	11
	3.3.	DFS Detection Threshold Values	13
	3.4.	Parameters of DFS Test Signals	14
	3.5.	Conducted Test Setup	17
4.	Meas	uring Instrument	18
5.	Test F	Pesult	19
	5.1.	Summary	19
	5.2.	Radar Waveform Calibration Measurement	20
	5.2.1.	Calibration Setup	20
	5.2.2.	Calibration Procedure	20
	5.2.3.	Calibration & Channel Loading Result	20
	5.3.	NII Detection Bandwidth Measurement	21
	5.3.1.	Test Limit	21
	5.3.2.	Test Procedure	21
	5.3.3.	Test Result	22
	5.4.	Initial Channel Availability Check Time Measurement	23
	5.4.1.	Test Limit	23
	5.4.2.	Test Procedure	23
	5.4.3.	Test Result	23
	5.5.	Radar Burst at the Beginning of the Channel Availability Check Time Measurement	24

5.5.1	. Test Limit	24
5.5.2	. Test Procedure	24
5.5.3	. Test Result	24
5.6.	Radar Burst at the End of the Channel Availability Check Time Measurement	25
5.6.1	. Test Limit	25
5.6.2	. Test Procedure	25
5.6.3	. Test Result	25
5.7.	In-Service Monitoring for Channel Move Time, Channel Closing Transmission Time and	
Non-O	ccupancy Period Measurement	26
5.7.1	. Test Limit	26
5.7.2	. Test Procedure	26
5.7.3	. Test Result	26
5.8.	Statistical Performance Check Measurement	27
5.8.1	. Test Limit	27
5.8.2	. Test Procedure	27
5.8.3	. Test Result	27
Appendix	A - Test Result	28
A.1	Calibration Test Result	28
A.2	Channel Loading Test Result	30
A.3	NII Detection Bandwidth Test Result	32
A.4	Initial Channel Availability Check Time Test Result	38
A.5	Radar Burst at the Beginning of the Channel Availability Check Time Test Result	39
A.6	Radar Burst at the End of the Channel Availability Check Time Test Result	40
A.7	In-Service Monitoring for Channel Move Time, Channel Closing Transmission Time and	
Non	Occupancy Period Test Result	41
A.8	Statistical Performance Check	43
Appendix	B - Test Setup Photograph	205
Appendix	C - EUT Photograph	206

1. General Information

1.1. Applicant

Actiontec Electronics Inc.

2445 Augustine Drive Suite 501, Santa Clara, California 95054, United States

1.2. Manufacturer

Actiontec Electronics Inc.

2445 Augustine Drive Suite 501, Santa Clara, California 95054, United States

1.3. Testing Facility

\boxtimes	Test Site - MRT S	Test Site – MRT Suzhou Laboratory							
	Laboratory Locat	tion (Suzhou - Wu	zhong)						
	D8 Building, No.2	Tian'edang Rd., W	uzhong Economic De	velopment Zone, Su	zhou, China				
	Laboratory Locat	tion (Suzhou - SIP)						
	4b Building, Liand	o U Valley, No.200	Xingpu Rd., Shengpu	ı Town, Suzhou Indu	strial Park, China				
	Laboratory Location (Suzhou - Wujiang)								
	Building 1, No.1 Xingdong Road, Wujiang, Suzhou, Jiangsu, People's Republic of China								
	Laboratory Accre	editations							
	A2LA: 3628.01 CNAS: L10551								
	FCC: CN1166 ISED: CN0001								
	VCCI:	□R-20025	□G-20034	□C-20020	□T-20020				
	VCCI:	□R-20141	□G-20134	□C-20103	□T-20104				
	Test Site - MRT S	Shenzhen Laborat	ory						
	Laboratory Locat	tion (Shenzhen)							
	1G, Building A, Ju	nxiangda Building,	Zhongshanyuan Roa	d West, Nanshan Dis	strict, Shenzhen, China				
	Laboratory Accreditations								
	A2LA: 3628.02		CNAS	: L10551					
	FCC: CN1284		ISED:	CN0105					
	Test Site - MRT 1	Taiwan Laboratory	1						
	Laboratory Location (Taiwan)								
	No. 38, Fuxing 2nd Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.)								
	Laboratory Accre	editations							
	TAF: 3261								
	FCC: 291082, TW	3261	ISED:	TW3261					

1.4. Product Information

Product Name	High-Speed Tri-Band 2x2 Wi-Fi 7 Wireless AP
Model No.	WF-189
Serial No.	1K9244300014
Wi-Fi Specification	802.11a/b/g/n/ac/ax/be
Bluetooth Specification	BLE Only
Antenna Information	Refer to section 1.7
Operating Temp.	-5 ~ 40°C
Power Type	DC: 12V, 2.5A; or PoE Inject (802.3at)

Note:

The information of EUT was provided by the manufacturer, and the accuracy of the information shall be the responsibility of the manufacturer.

1.5. Radio Specification under Test

Frequency Range	For 802.11a/n-HT20/ac-VHT20/ax-HE20/be-EHT20:				
	5260~5320MHz, 5500~5720MHz				
	For 802.11n-HT40/ac-VHT40/ax-HE40/be-EHT40:				
	5270~5310MHz, 5510~5710MHz				
	For 802.11ac-VHT80/ax-HE80/be-EHT80:				
	5290MHz, 5530MHz, 5610 MHz, 5690MHz				
	For 802.11ac-VHT160/ax-HE160/be-EHT160:				
	5250MHz, 5570MHz				
Type of Modulation	802.11a/n/ac: OFDM				
	802.11ax/be: OFDMA				
Data Rate	802.11a: 6/9/12/18/24/36/48/54Mbps				
	802.11n: up to 300Mbps				
	802.11ac: up to 1732Mbps				
	802.11ax: up to 2402Mbps				
	802.11be: up to 2882Mbps				
Power-on cycle	Requires 61.4 seconds to complete its power-on cycle				
Uniform Spreading (For	For the 5250-5350MHz, 5470-5725 MHz bands, the Master device provides,				
DFS Frequency Band)	on aggregate, uniform loading of the spectrum across all devices by selecting				
	an operating channel among the available channels using a random algorithm.				

1.6. Working Frequencies

802.11a/n-HT20/ac-VHT20/ax-HE20/be-EHT20

Channel	Frequency	Channel	Frequency	Channel	Frequency
52	5260 MHz	56	5280 MHz	60	5300 MHz
64	5320 MHz	100	5500 MHz	104	5520 MHz
108	5540 MHz	112	5560 MHz	116	5580 MHz
120	5600 MHz	124	5620 MHz	128	5640 MHz
132	5660 MHz	136	5680 MHz	140	5700 MHz
144	5720 MHz		-	-1	

802.11n-HT40/ac-VHT40/ax-HE40/be-EHT40

	Channel	Frequency	Channel	Frequency	Channel	Frequency
	54	5270 MHz	62	5310 MHz	102	5510 MHz
	110	5550 MHz	118	5590 MHz	126	5630 MHz
I	134	5670 MHz	142	5710 MHz		

802.11ac-VHT80/ax-HE80/be-EHT80

Channel	Frequency	Channel	Frequency	Channel	Frequency
58	5290 MHz	106	5530 MHz	122	5610 MHz
138	5690 MHz				

802.11ac-VHT160/ax-HE160/be-EHT160

Channel	Frequency	Channel	Frequency	Channel	Frequency
50	5250 MHz	114	5570 MHz		

1.7. Antenna Details

Antenna Type	Frequency (MHz)	T _X Paths	Antenna Gain (dBi)			nal Gain Bi)	
			Ant 0	Ant 1	Correlated	Uncorrelated	
Wi-Fi Antenna	Wi-Fi Antenna						
	5150 ~ 5250	2	6.7	5.6	8.4	5.4	
DIEA	5250 ~ 5350	2	6.5	5.7	8.5	5.5	
PIFA	5470 ~ 5725	2	6.8	6.9	8.9	5.9	
	5725 ~ 5850	2	6.9	6.4	8.4	5.4	

Remark:

- 1. The antenna gain and directional gain refer to manufacturer's antenna specification.
- 2. The device supports CDD Mode, STBC mode and SISO mode, details refer to the table as below.
- 3. CDD signals are correlated, the directional gain as follows,

For power measurements: Array Gain = 0 dB for $N_{ANT} \le 4$, the directional gain = max antenna gain + array gain

For power spectral density (PSD) measurements: the max directional gain (each angle) = $10 \log[(10^{G1/20} + 10^{G2/20} + ... + 10^{GN/20})^2/N_{ANT}]$

4. STBC signals are uncorrelated, the directional gain as follows,

the max directional gain (each angle) = $10 \log[(10^{G1/10} + 10^{G2/10} + ... + 10^{GN/10})/N_{ANT}]$

Test Mode	T _X Paths	SISO	CDD Mode	STBC Mode			
Wi-Fi 5G							
802.11a	2	Х	V	Х			
802.11n/ac/ax/be 2 X X √							
Remark: "√" means "Support", "X" means "Not support".							

2. Test Configuration

2.1. Test Mode

Mode 1: Operating under AP mode

2.2. Test Channel

Test Mode	Test Channel	Test Frequency
802.11be-EHT20	100	5500 MHz
802.11be-EHT40	102	5510 MHz
802.11be-EHT80	106	5530 MHz
802.11be-EHT160	50	5250 MHz
802.11be-EHT160	114	5570 MHz

2.3. Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15.407 Section (h)(2)
- KDB 905462 D02v02
- KDB 905462 D04v01

2.4. Test Environment Condition

Ambient Temperature	15 ~ 35°C
Relative Humidity	20 ~ 75%RH

3. DFS Detection Thresholds and Radar Test Waveforms

3.1. Applicability

The following table from FCC KDB 905462 D02 NII DFS Compliance Procedures New Rules v02 lists the applicable requirements for the DFS testing.

Requirement	Operational Mode				
	Master Client Without Client With Rada				
		Radar Detection	Detection		
Non-Occupancy Period	Yes	Not required	Yes		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Availability Check Time	Yes	Not required	Not required		
U-NII Detection Bandwidth	Yes	Not required	Yes		

Table 3-1: Applicability of DFS Requirements Prior to Use of a Channel

Requirement	Operational Mode				
	Master Device or Client With Client Without Radar				
	Radar Detection	Detection			
DFS Detection Threshold	Yes	Not required			
Channel Closing Transmission Time	Yes	Yes			
Channel Move Time	Yes	Yes			
U-NII Detection Bandwidth	Yes	Not required			

Additional requirements for devices with	Master Device or Client with	Client Without Radar	
multiple bandwidth modes	Radar Detection	Detection	
U-NII Detection Bandwidth and Statistical	All DW/ mandage mount has to stand	Not required	
Performance Check	All BW modes must be tested	Not required	
Channel Move Time and Channel Closing	Test using widest BW mode	Test using the widest BW	
Transmission Time	available	mode available for the link	
All other tests	Any single BW mode	Not required	

Note: Frequencies selected for statistical performance check should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

Table 3-2: Applicability of DFS Requirements during normal operation

3.2. DFS Devices Requirements

Per FCC KDB 905462 D02 NII DFS Compliance Procedures New Rules v02 the following are the requirements for Master Devices:

- (a) The Master Device will use DFS in order to detect Radar Waveforms with received signal strength above the DFS Detection Threshold in the 5250 ~ 5350 MHz and 5470 ~ 5725 MHz bands. DFS is not required in the 5150 ~ 5250 MHz or 5725 ~ 5825 MHz bands.
- (b) Before initiating a network on a Channel, the Master Device will perform a Channel Availability Check for a specified time duration (Channel Availability Check Time) to ensure that there is no radar system operating on the Channel, using DFS described under subsection a) above.
- (c) The Master Device initiates a U-NII network by transmitting control signals that will enable other U-NII devices to Associate with the Master Device.
- (d) During normal operation, the Master Device will monitor the Channel (In-Service Monitoring) to ensure that there is no radar system operating on the Channel, using DFS described under a).
- (e) If the Master Device has detected a Radar Waveform during In-Service Monitoring as described under d), the Operating Channel of the U-NII network is no longer an Available Channel. The Master Device will instruct all associated Client Device(s) to stop transmitting on this Channel within the Channel Move Time. The transmissions during the Channel Move Time will be limited to the Channel Closing Transmission Time.
- (f) Once the Master Device has detected a Radar Waveform it will not utilize the Channel for the duration of the Non-Occupancy Period.
- (g) If the Master Device delegates the In-Service Monitoring to a Client Device, then the combination will be tested to the requirements described under d) through f) above.

Channel Move Time and Channel Closing Transmission Time requirements are listed in the following table.

Parameter	Value		
Non-occupancy period	Minimum 30 minutes		
Channel Availability Check Time	60 seconds		
Channel Maye Time	10 seconds		
Channel Move Time	See Note 1.		
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds		
Charmer Closing Transmission Time	over remaining 10 second period. See Notes 1 and 2		
U-NII Detection Bandwidth	Minimum 100% of the U-NII 99% transmission power		
O-MI Detection Bandwidth	bandwidth. See Note 3.		

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Table 3-3: DFS Response Requirements

3.3. DFS Detection Threshold Values

The DFS detection thresholds are defined for Master devices and Client Devices with In-service monitoring.

These detection thresholds are listed in the following table.

Maximum Transmit Power	Value
	(See Notes 1, 2, and 3)
EIRP ≥ 200 milliwatt	-64 dBm
EIRP < 200 milliwatt and	-62 dBm
power spectral density < 10 dBm/MHz	
EIRP < 200 milliwatt that do not meet the power	-64 dBm
spectral density requirement	

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

Table 3-4: Detection Thresholds for Master Devices and Client Devices with Radar Detection

3.4. Parameters of DFS Test Signals

This section provides the parameters for required test waveforms, minimum percentage of successful detections, and the minimum number of trials that must be used for determining DFS conformance. Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials
0	1	1428	18	See Note 1	See Note 1
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 3-6 Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A		60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate	(Radar Type:	s 1-4)		80%	120

Note: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

Table 3-5: Parameters for Short Pulse Radar Waveforms

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms.

Pulse Repetition Frequency	Pulse Repetition Frequency	Pulse Repetition Interval	
Number	(Pulses Per Second)	(Microseconds)	
1	1930.5	518	
2	1858.7	538	
3	1792.1	558	
4	1730.1	578	
5	1672.2	598	
6	1618.1	618	
7	1567.4	638	
8	1519.8	658	
9	1474.9	678	
10	1432.7	698	
11	1392.8	718	
12	1355	738	
13	1319.3	758	
14	1285.3	778	
15	1253.1	798	
16	1222.5	818	
17	1193.3	838	
18	1165.6	858	
19	1139	878	
20	1113.6	898	
21	1089.3	918	
22	1066.1	938	
23	326.2	3066	

Table 3-6: Pulse Repetition Intervals Values for Test A

Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50 - 100	5 - 20	1000 - 2000	1 - 3	8 - 20	80%	30

Table 3-7: Parameters for Long Pulse Radar Waveforms

The parameters for this waveform are randomly chosen. Thirty unique waveforms are required for the Long Pulse Radar Type waveforms. If more than 30 waveforms are used for the Long Pulse Radar Type waveforms, then each additional waveform must also be unique and not repeated from the previous waveforms.

Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses Per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30

Table 3-8: Parameters for Frequency Hopping Radar Waveforms

For the Frequency Hopping Radar Type, the same Burst parameters are used for each waveform. The hopping sequence is different for each waveform and a 100-length segment is selected from the hopping sequence defined by the following algorithm:

The first frequency in a hopping sequence is selected randomly from the group of 475 integer frequencies from 5250 – 5724MHz. Next, the frequency that was just chosen is removed from the group and a frequency is randomly selected from the remaining 474 frequencies in the group. This process continues until all 475 frequencies are chosen for the set. For selection of a random frequency, the frequencies remaining within the group are always treated as equally likely.

3.5. Conducted Test Setup

The FCC KDB 905462 D02 NII DFS Compliance Procedures New Rules v02 describes a radiated test setup and a conducted test setup. The conducted test setup was used for this testing. Figure 3-1 shows the typical test setup.

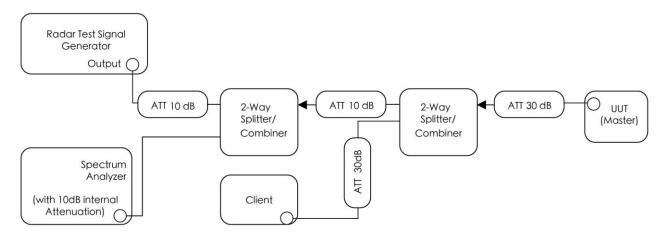


Figure 3-1: Conducted Test Setup where UUT is a Master and Radar Test Waveforms are injected into the Masters

4. Measuring Instrument

Instrument Name	Manufacturer	Model No.	Asset No.	Cali. Interval	Cal. Due Date	Test Site
Thermohygrometer	testo	608-H1	MRTSUE11256	1 year	2025-10-16	WZ-SR4
Shielding Room	HUAMING	WZ-SR4	MRTSUE06441	N/A	N/A	WZ-SR4
Signal Analyzer	Keysight	N9010B	MRTSUE06457	1 year	2025-05-08	WZ-SR4
Signal Analyzer	Keysight	N9010B	MRTSUE06558	1 year	2025-05-20	WZ-SR4
Signal Generator	Keysight	N5182B	MRTSUE06451	1 year	2025-06-03	WZ-SR4

Client Information

Instrument	Manufacturer	Type No.	Certification Number
Wi-Fi Module	Intel	Intel(R) Wi-Fi 7 BE200NGW	FCC ID: PD9BE200NG

Software	Version	Manufacturer	Function
DFS Tool	V 6.9.2	Agilent	DFS Test Software
Pulse Sequencer	V 2.8	R&S	DFS Test Software
Signal Studio	V2.2.0.0	Keysight	DFS Test Software

5. Test Result

5.1. Summary

Parameter	Verdict	Reference	
NII Detection Bandwidth Measurement	Pass	Section 5.3	
Initial Channel Availability Check Time	Pass	Section 5.4	
Radar Burst at the Beginning of the Channel	Pass	Section 5.5	
Availability Check Time	rass	Section 5.5	
Radar Burst at the End of the Channel Availability	Pass	Section 5.6	
Check Time	T 455	Section 5.6	
In-Service Monitoring for Channel Move Time, Channel	Pass	Coation F 7	
Closing Transmission Time	rass	Section 5.7	
Non-Occupancy Period	Pass	Section 5.7	
Statistical Performance Check	Pass	Section 5.8	

5.2. Radar Waveform Calibration Measurement

5.2.1. Calibration Setup

The conducted test setup was used for this calibration testing. Figure 3-2 shows the typical test setup.

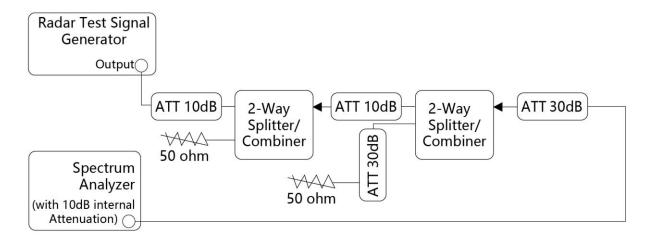


Figure 3-2: Conducted Test Setup

5.2.2. Calibration Procedure

The Interference Radar Detection Threshold Level is (-64dBm) + (0) [dBi] + 1 dB= -63 dBm that had been taken into account the output power range and antenna gain. The above equipment setup was used to calibrate the conducted Radar Waveform. A vector signal generator was utilized to establish the test signal level for each radar type. During this process there were replace 50ohm terminal form Master and Client device and no transmissions by either the Master or Client Device. The spectrum analyzer was switched to the zero span (Time Domain) at the frequency of the Radar Waveform generator. Peak detection was used. The spectrum analyzer resolution bandwidth (RBW) and video bandwidth (VBW) were set to at least 3MHz. The vector signal generator amplitude was set so that the power level measured at the spectrum analyzer was (-64dBm) + (0) [dBi] + 1 dB= -63dBm. Capture the spectrum analyzer plots on short pulse radar types, long pulse radar type and hopping radar waveform.

5.2.3. Calibration & Channel Loading Result

Refer to Appendix A.1&A.2.

5.3. NII Detection Bandwidth Measurement

5.3.1. Test Limit

Minimum 100% of the NII 99% transmission power bandwidth. During the U-NII Detection Bandwidth detection test, each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

5.3.2. Test Procedure

- Adjust the equipment to produce a single Burst of any one of the Short Pulse Radar Types 0-4 in Table
 3-5 at the center frequency of the EUT Operating Channel at the specified DFS Detection Threshold level.
- 2. The generating equipment is configured as shown in the Conducted Test Setup above section 3.5.
- 3. The EUT is set up as a stand-alone device (no associated Client or Master, as appropriate) and no traffic.
 Frame based systems will be set to a talk/listen ratio reflecting the worst case (maximum) that is user configurable during this test.
- 4. Generate a single radar Burst, and note the response of the EUT. Repeat for a minimum of 10 trials. The EUT must detect the Radar Waveform using the specified U-NII Detection Bandwidth criterion shown in Table 3-5. In cases where the channel bandwidth may exceed past the DFS band edge on specific channels (i.e., 802.11ac or wideband frame based systems) select a channel that has the entire emission bandwidth within the DFS band. If this is not possible, test the detection BW to the DFS band edge.
- 5. Starting at the center frequency of the UUT operating Channel, increase the radar frequency in 5 MHz steps, repeating the above test sequence, until the detection rate falls below the U-NII Detection Bandwidth criterion specified in Table 3-3. Repeat this measurement in 1MHz steps at frequencies 5 MHz below where the detection rate begins to fall. Record the highest frequency (denote as F_H) at which detection is greater than or equal to the U-NII Detection Bandwidth criterion. Recording the detection rate at frequencies above F_H is not required to demonstrate compliance.
- 6. Starting at the center frequency of the EUT operating Channel, decrease the radar frequency in 1 MHz steps, repeating the above item 4 test sequence, until the detection rate falls below the U-NII Detection Bandwidth criterion. Record the lowest frequency (denote as F_L) at which detection is greater than or equal to the U-NII Detection Bandwidth criterion. Recording the detection rate at frequencies below F_L is not required to demonstrate compliance.
- 7. The U-NII Detection Bandwidth is calculated as follows: U-NII Detection Bandwidth = F_H F_L
- 8. The U-NII Detection Bandwidth must be at least 100% of the EUT transmitter 99% power, otherwise, the

EUT does not comply with DFS requirements.

5.3.3. Test Result

Refer to Appendix A.3.

5.4. Initial Channel Availability Check Time Measurement

5.4.1. Test Limit

The EUT shall perform a Channel Availability Check to ensure that there is no radar operating on the channel.

After power-up sequence, receive at least 1 minute on the intended operating frequency.

5.4.2. Test Procedure

- 1. The U-NII devices will be powered on and be instructed to operate on the appropriate U-NII Channel that must incorporate DFS functions. At the same time the EUT is powered on, the spectrum analyzer will be set to zero span mode with a 3 MHz RBW and 3 MHz VBW on the Channel occupied by the radar (Chr) with a 2.5 minute sweep time. The spectrum analyzer's sweep will be started at the same time power is applied to the U-NII device.
- 2. The EUT should not transmit any beacon or data transmissions until at least 1 minute after the completion of the power-on cycle.
- 3. Confirm that the EUT initiates transmission on the channel. Measurement system showing its nominal noise floor is marker1.

5.4.3. Test Result

Refer to Appendix A.4.

5.5. Radar Burst at the Beginning of the Channel Availability Check Time Measurement

5.5.1. Test Limit

In beginning of the Channel Availability Check (CAC) Time, radar is detected on this channel, select another intended channel and perform a CAC on that channel.

5.5.2. Test Procedure

- The steps below define the procedure to verify successful radar detection on the selected Channel during
 a period equal to the Channel Availability Check Time and avoidance of operation on that Channel when
 a radar Burst with a level equal to the DFS Detection Threshold + 1 dB occurs at the beginning of the
 Channel Availability Check Time.
- 2. The EUT is in completion power-up cycle (from T0 to T1). T1 denotes the instant when the EUT has completed its power-up sequence. The Channel Availability Check Time commences at instant T1 and will end no sooner than T1 + 60 seconds. A single Burst of one of Short Pulse Radar Types 0-4 at DFS Detection Threshold + 1 dB will commence within a 6 second window starting at T1.
- Visual indication on the EUT of successful detection of the radar Burst will be recorded and reported.
 Observation of emissions will continue for 2.5 minutes after the radar Burst has been generated. Verify that during the 2.5 minutes measurement window no EUT transmissions occurred.

5.5.3. Test Result

Refer to Appendix A.5.

5.6. Radar Burst at the End of the Channel Availability Check Time Measurement

5.6.1. Test Limit

In the end of Channel Availability Check (CAC) Time, radar is detected on this channel, select another intended channel and perform a CAC on that channel.

5.6.2. Test Procedure

- The steps below define the procedure to verify successful radar detection on the selected Channel during
 a period equal to the Channel Availability Check Time and avoidance of operation on that Channel when
 a radar Burst with a level equal to the DFS Detection Threshold + 1 dB occurs at the beginning of the
 Channel Availability Check Time.
- 2. The EUT is powered on at T0. T1 denotes the instant when the EUT has completed its power-up sequence. The Channel Availability Check Time commences at instant T1 and will end no sooner thanT1 + 60 seconds. A single Burst of one of Short Pulse Radar Types 0-4 at DFS Detection Threshold + 1 dB will commence within a 6 second window starting at T1+ 54 seconds.
- Visual indication on the EUT of successful detection of the radar Burst will be recorded and reported.
 Observation of emissions will continue for 2.5 minutes after the radar Burst has been generated. Verify that during the 2.5 minutes measurement window no EUT transmissions occurred.

5.6.3. Test Result

Refer to Appendix A.6.

5.7. In-Service Monitoring for Channel Move Time, Channel Closing Transmission Time and Non-Occupancy Period Measurement

5.7.1. Test Limit

The EUT has In-Service Monitoring function to continuously monitor the radar signals. If the radar is detected, must leave the channel (Shutdown). The Channel Move Time to cease all transmissions on the current channel upon detection of a Radar Waveform above the DFS Detection Threshold within 10 sec. The total duration of Channel Closing Transmission Time is 260ms, consisting of data signals and the aggregate of control signals, by a U-NII device during the Channel Move Time. The Non-Occupancy Period time is 30 minute during which a Channel will not be utilized after a Radar Waveform is detected on that Channel.

5.7.2. Test Procedure

- The test should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0.
- 2. When the radar burst with a level equal to the DFS Detection Threshold + 1dB is generated on the Operating Channel of the U-NII device. A U-NII device operating as a Master Device will associate with the Client Device at Channel. Stream the MPEG test file from the Master Device to the Client Device on the selected Channel for the entire period of the test. At time T0 the Radar Waveform generator sends a Burst of pulses for each of the radar types at Detection Threshold + 1dB.
- 3. Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel. Measure and record the transmissions from the EUT during the observation time (Channel Move Time).
- 4. Measurement of the aggregate duration of the Channel Closing Transmission Time method. With the spectrum analyzer set to zero span tuned to the center frequency of the EUT operating channel at the radar simulated frequency, peak detection, and max hold, the dwell time per bin is given by: Dwell (1.5ms) = S (12 sec) / B (8000); where Dwell is the dwell time per spectrum analyzer sampling bin, S is the sweep time and B is the number of spectrum analyzer sampling bins. An upper bound of the aggregate duration of the intermittent control signals of Channel Closing Transmission Time is calculated by: C = N X Dwell; where C is the Closing Time, N is the number of spectrum analyzer sampling bins showing a U-NII transmission and Dwell is the dwell time per bin.
- Measure the EUT for more than 30 minutes following the channel close/move time to verify that the EUT does not resume any transmissions on this Channel.

5.7.3. Test Result

Refer to Appendix A.7.

5.8. Statistical Performance Check Measurement

5.8.1. Test Limit

The minimum percentage of successful detection requirements found in below table when a radar burst with a level equal to the DFS Detection Threshold + 1dB is generated on the Operating Channel of the U-NII device (In- Service Monitoring).

Radar Type	Minimum Number of Trails	Detection Probability
0	30	Pd ≥ 60%
1	30(15 of test A and 15 of test B)	Pd ≥ 60%
2	30	Pd ≥ 60%
3	30	Pd ≥ 60%
4	30	Pd ≥ 60%
Aggregate (Radar Types 1-4)	120	Pd ≥ 80%
5	30	Pd ≥ 80%
6	30	Pd ≥ 70%

Note: The percentage of successful detection is calculated by:

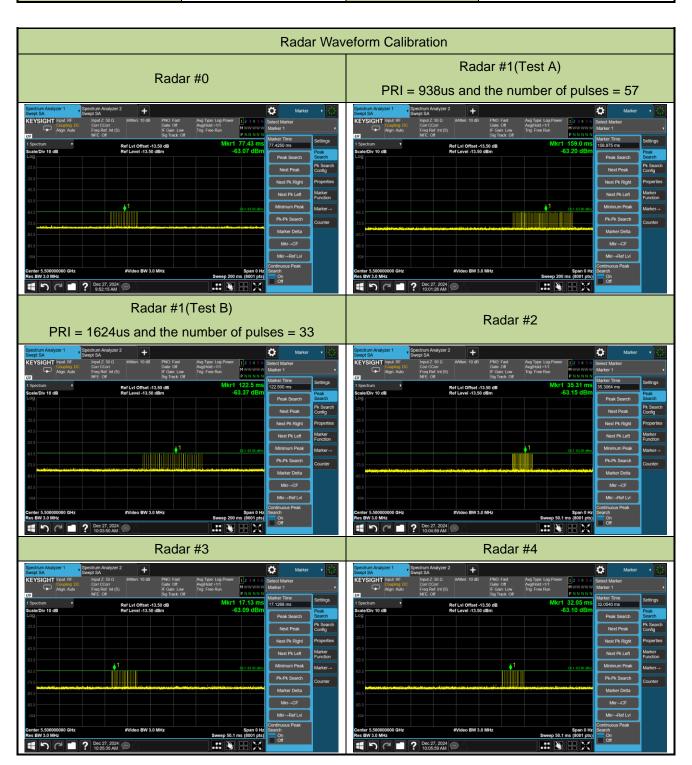
(Total Waveform Detections / Total Waveform Trails) * 100 = Probability of Detection Radar Waveform In addition an aggregate minimum percentage of successful detection across all Short Pulse Radar Types 1-4 is required and is calculated as follows: (Pd1 + Pd2 + Pd3 + Pd4) / 4.

5.8.2. Test Procedure

- Stream the MPEG test file from the Master Device to the Client Device on the test Channel for the entire period of the test.
- 2. At time T0 the Radar Waveform generator sends the individual waveform for each of the Radar Types

 1-6, at levels equal to the DFS Detection Threshold + 1dB, on the Operating Channel.
- 3. Observe the transmissions of the EUT at the end of the Burst on the Operating Channel for duration greater than 10 seconds for Short Pulse Radar Types 0 to ensure detection occurs.
- 4. Observe the transmissions of the EUT at the end of the Burst on the Operating Channel for duration greater than 22 seconds for Long Pulse Radar Type 5 to ensure detection occurs.
- The device can utilize a test mode to demonstrate when detection occurs to prevent the need to reset the device between trial runs.
- 6. The Minimum number of trails, minimum percentage of successful detection and the average minimum percentage of successful detection are found in below table

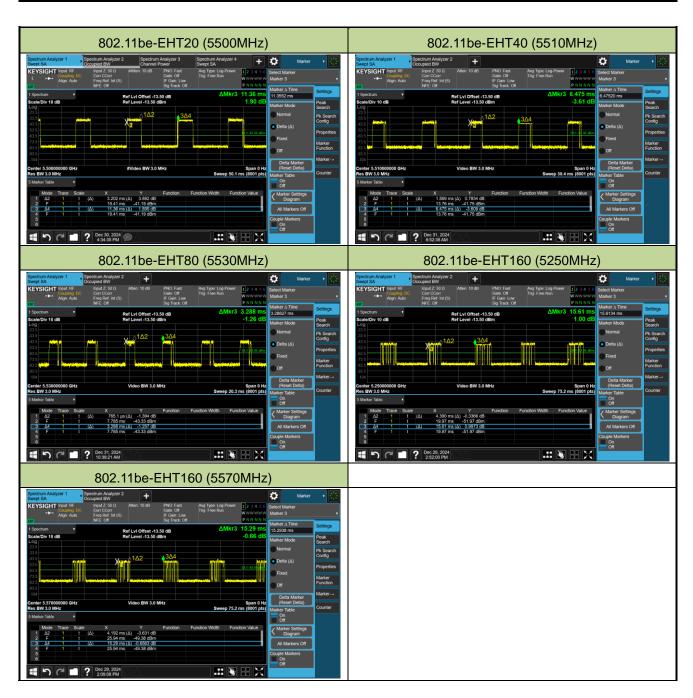
5.8.3. Test Result


Refer to Appendix A.8.

Appendix A - Test Result

A.1 Calibration Test Result

Test Site	WZ-SR4	Test Engineer	Lynn Yang
Test Date	2024-12-27	Test Item	Radar Waveform Calibration



A.2 Channel Loading Test Result

Test Site	WZ-SR4	Test Engineer	Lynn Yang
Test Date	2024-12-29 ~ 2024-12-31	Test Item	Channel Loading

Test Mode	Test Frequency	Packet ratio	Requirement ratio	Test Result
802.11be-EHT20	5500 MHz	28.19%	≥ 17%	Pass
802.11be-EHT40	5510 MHz	24.23%	≥ 17%	Pass
802.11be-EHT80	5530 MHz	23.27%	≥ 17%	Pass
802.11be-EHT160	5250 MHz	28.12%	≥ 17%	Pass
802.11be-EHT160	5570 MHz	27.42%	≥ 17%	Pass

Note: System testing was performed with the designated iperf test file. This file is used by IP and Frame based systems for loading the test channel during the In-service compliance testing of the U-NII device. Packet ratio = Time On / Time On + Off Time.

A.3 NII Detection Bandwidth Test Result

Test Site	WZ-SR4	Lynn Yang				
Test Date	2025-01-09					
Test Item	Detection Bandwidth (802.11be-EHT20 mode - 5500MHz)					

Radar Frequency		DFS Detection Trials (1=Detection, 0= No Detection)									
(MHz)	1	2	3	4	5	6	7	8	9	10	Detection Rate (%)
5489	0	0	0	0	0	0	0	0	0	0	0%
5490 F∟	1	1	1	1	1	1	1	1	1	1	100%
5495	1	1	1	1	1	1	1	1	1	1	100%
5500	1	1	1	1	1	1	1	1	1	1	100%
5505	1	1	1	1	1	1	1	1	1	1	100%
5510 Fн	1	1	1	1	1	1	1	1	1	1	100%
5511	0	0	0	0	0	0	0	0	0	0	0%

Note 1: All NII channels for this device have identical Channel bandwidths. Therefore, all DFS testing was done at 5500MHz. The 99% channel bandwidth is 19.103MHz. (See the 99% BW section of the RF report for further measurement details).

Note 2: Detection Bandwidth = F_H - F_L = 5510MHz - 5490MHz = 20MHz

Note 3: NII Detection Bandwidth Min. Limit (MHz): 19.103MHz x 100% = 19.103MHz.

Test Site	WZ-SR4	Test Engineer	Lynn Yang			
Test Date	2025-01-09					
Test Item	Detection Bandwidth (802.11be-EHT40 mode - 5510MHz)					

Radar Frequency		DFS Detection Trials (1=Detection, 0= No Detection)									
(MHz)	1	2	3	4	5	6	7	8	9	10	Detection Rate (%)
5489	0	0	0	0	0	0	0	0	0	0	0%
5490 F _L	1	1	1	1	1	1	1	1	1	1	100%
5495	1	1	1	1	1	1	1	1	1	1	100%
5500	1	1	1	1	1	1	1	1	1	1	100%
5505	1	1	1	1	1	1	1	1	1	1	100%
5510	1	1	1	1	1	1	1	1	1	1	100%
5515	1	1	1	1	1	1	1	1	1	1	100%
5520	1	1	1	1	1	1	1	1	1	1	100%
5525	1	1	1	1	1	1	1	1	1	1	100%
5530 Гн	1	1	1	1	1	1	1	1	1	1	100%
5531	0	0	0	0	0	0	0	0	0	0	0%

Note 1: All NII channels for this device have identical Channel bandwidths. Therefore, all DFS testing was done at 5510MHz. The 99% channel bandwidth is 38.010MHz. (See the 99% BW section of the RF report for further measurement details).

Note 2: Detection Bandwidth = F_H - F_L = 5530MHz - 5490MHz = 40MHz.

Note 3: NII Detection Bandwidth Min. Limit (MHz): 38.010MHz x 100% = 38.010MHz.

Test Site	WZ-SR4	Test Engineer	Lynn Yang			
Test Date	2025-01-09					
Test Item	Detection Bandwidth (802.11be-EHT80 mode - 5530MHz)					

Radar Frequency		DFS Detection Trials (1=Detection, 0= No Detection)									
(MHz)	1	2	3	4	5	6	7	8	9	10	Detection Rate (%)
5489	0	0	0	0	0	0	0	0	0	0	0%
5490 F∟	1	1	1	1	1	1	1	1	1	1	100%
5495	1	1	1	1	1	1	1	1	1	1	100%
5500	1	1	1	1	1	1	1	1	1	1	100%
5505	1	1	1	1	1	1	1	1	1	1	100%
5510	1	1	1	1	1	1	1	1	1	1	100%
5515	1	1	1	1	1	1	1	1	1	1	100%
5520	1	1	1	1	1	1	1	1	1	1	100%
5525	1	1	1	1	1	1	1	1	1	1	100%
5530	1	1	1	1	1	1	1	1	1	1	100%
5535	1	1	1	1	1	1	1	1	1	1	100%
5540	1	1	1	1	1	1	1	1	1	1	100%
5545	1	1	1	1	1	1	1	1	1	1	100%
5550	1	1	1	1	1	1	1	1	1	1	100%
5555	1	1	1	1	1	1	1	1	1	1	100%
5560	1	1	1	1	1	1	1	1	1	1	100%
5565	1	1	1	1	1	1	1	1	1	1	100%
5570 F _н	1	1	1	1	1	1	1	1	1	1	100%
5571	0	0	0	0	0	0	0	0	0	0	0%

Note 1: All NII channels for this device have identical Channel bandwidths. Therefore, all DFS testing was done at 5530MHz. The 99% channel bandwidth is 77.779MHz. (See the 99% BW section of the RF report for further measurement details).

Note 2: Detection Bandwidth = F_H - F_L = 5570MHz - 5490MHz = 80MHz.

Note 3: NII Detection Bandwidth Min. Limit (MHz): 77.779MHz x 100% = 77.779MHz.

Test Site	WZ-SR4	Lynn Yang							
Test Date	2025-01-09								
Test Item	Detection Bandwidth (802.11be-EHT160 mode - 5250MHz)								

Radar Frequency	DFS Detection Trials (1=Detection, 0= No Detection)										
(MHz)	1	2	3	4	5	6	7	8	9	10	Detection Rate (%)
5250 F∟	1	1	1	1	1	1	1	1	1	1	100%
5255	1	1	1	1	1	1	1	1	1	1	100%
5260	1	1	1	1	1	1	1	1	1	1	100%
5265	1	1	1	1	1	1	1	1	1	1	100%
5270	1	1	1	1	1	1	1	1	1	1	100%
5275	1	1	1	1	1	1	1	1	1	1	100%
5280	1	1	1	1	1	1	1	1	1	1	100%
5285	1	1	1	1	1	1	1	1	1	1	100%
5290	1	1	1	1	1	1	1	1	1	1	100%
5295	1	1	1	1	1	1	1	1	1	1	100%
5300	1	1	1	1	1	1	1	1	1	1	100%
5305	1	1	1	1	1	1	1	1	1	1	100%
5310	1	1	1	1	1	1	1	1	1	1	100%
5315	1	1	1	1	1	1	1	1	1	1	100%
5320	1	1	1	1	1	1	1	1	1	1	100%
5325	1	1	1	1	1	1	1	1	1	1	100%
5330 Гн	1	1	1	1	1	1	1	1	1	1	100%
5331	0	0	0	0	0	0	0	0	0	0	0%

Note 1: All NII channels for this device have identical Channel bandwidths. Therefore, all DFS testing was done at 5250MHz. The 99% channel bandwidth within U-NII Band-2A is 78.44MHz (99% BW / 2 = 156.880MHz / 2 = 78.44MHz). (See the 99% BW section of the RF report for further measurement details).

Note 2: Detection Bandwidth = F_H - F_L = 5330MHz - 5250MHz = 80MHz.

Note 3: NII Detection Bandwidth Min. Limit (MHz): 78.44MHz x 100% = 78.44MHz.

Test Site	WZ-SR4	Lynn Yang							
Test Date	2025-01-09								
Test Item	Detection Bandwidth (802.11be-EHT160 mode - 5570MHz)								

Radar Frequency	DFS Detection Trials (1=Detection, 0= No Detection)										
(MHz)	1	2	3	4	5	6	7	8	9	10	Detection Rate (%)
5489	0	0	0	0	0	0	0	0	0	0	0%
5490 F∟	1	1	1	1	1	1	1	1	1	1	100%
5495	1	1	1	1	1	1	1	1	1	1	100%
5505	1	1	1	1	1	1	1	1	1	1	100%
5510	1	1	1	1	1	1	1	1	1	1	100%
5515	1	1	1	1	1	1	1	1	1	1	100%
5520	1	1	1	1	1	1	1	1	1	1	100%
5525	1	1	1	1	1	1	1	1	1	1	100%
5530	1	1	1	1	1	1	1	1	1	1	100%
5535	1	1	1	1	1	1	1	1	1	1	100%
5540	1	1	1	1	1	1	1	1	1	1	100%
5545	1	1	1	1	1	1	1	1	1	1	100%
5550	1	1	1	1	1	1	1	1	1	1	100%
5555	1	1	1	1	1	1	1	1	1	1	100%
5560	1	1	1	1	1	1	1	1	1	1	100%
5565	1	1	1	1	1	1	1	1	1	1	100%
5570	1	1	1	1	1	1	1	1	1	1	100%
5575	1	1	1	1	1	1	1	1	1	1	100%
5580	1	1	1	1	1	1	1	1	1	1	100%
5585	1	1	1	1	1	1	1	1	1	1	100%
5590	1	1	1	1	1	1	1	1	1	1	100%
5595	1	1	1	1	1	1	1	1	1	1	100%
5600	1	1	1	1	1	1	1	1	1	1	100%
5605	1	1	1	1	1	1	1	1	1	1	100%
5610	1	1	1	1	1	1	1	1	1	1	100%
5615	1	1	1	1	1	1	1	1	1	1	100%
5620	1	1	1	1	1	1	1	1	1	1	100%
5625	1	1	1	1	1	1	1	1	1	1	100%
5630	1	1	1	1	1	1	1	1	1	1	100%
5635	1	1	1	1	1	1	1	1	1	1	100%
5640	1	1	1	1	1	1	1	1	1	1	100%
5645	1	1	1	1	1	1	1	1	1	1	100%

5650 Fн	1	1	1	1	1	1	1	1	1	1	100%
5651	0	0	0	0	0	0	0	0	0	0	0%

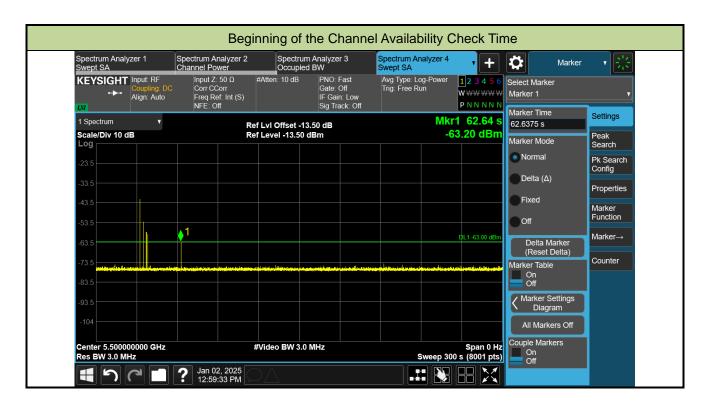
Note 1: All NII channels for this device have identical Channel bandwidths. Therefore, all DFS testing was done at 5570MHz. The 99% channel bandwidth is 156.640MHz. (See the 99% BW section of the RF report for further measurement details).

Note 2: Detection Bandwidth = F_H - F_L = 5650MHz - 5490MHz = 160MHz

Note 3: NII Detection Bandwidth Min. Limit (MHz): 156.640MHz x 100% = 156.640MHz.

A.4 Initial Channel Availability Check Time Test Result

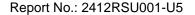
Test Site	WZ-SR4	Test Engineer	Lynn Yang				
Test Date	2025-01-02	2025-01-02					
Test Item	Initial Channel Availability	Check Time (802.11be-EHT2	20 mode - 5500MHz)				



Note: The EUT does not transmit any beacon or data transmissions until at least 1 minute after the completion of the power-on cycle (61.4 sec). Initial beacons/data transmissions are indicated by marker 1 (121.4 sec).

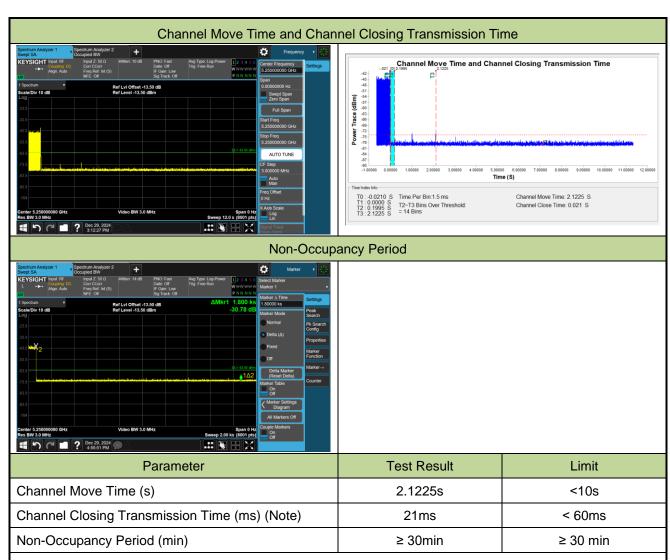
A.5 Radar Burst at the Beginning of the Channel Availability Check Time Test Result

Test Site	WZ-SR4 Test Engineer Lynn Yang							
Test Date	2025-01-02	2025-01-02						
Test Item	Beginning of the Channel Availability Check Time (802.11be-EHT20 mode -							
Test Item	5500MHz)							

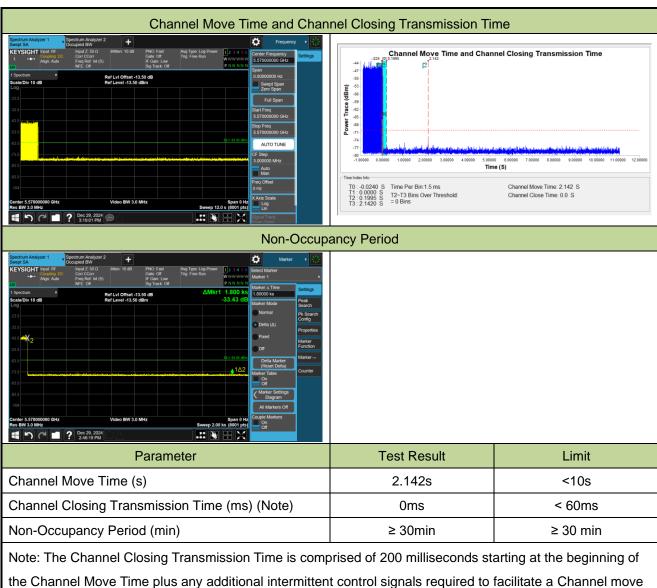


A.6 Radar Burst at the End of the Channel Availability Check Time Test Result

Test Site	WZ-SR4	Test Engineer	Lynn Yang
Test Date	2025-01-02		
Test Item	End of the Channel Availab	oility Check Time (802.11be-	EHT20 mode - 5500MHz)



A.7 In-Service Monitoring for Channel Move Time, Channel Closing Transmission Time and Non-Occupancy Period Test Result


Test Site	WZ-SR4	Test Engineer	Lynn Yang				
Test Date	2024-12-29						
Test Item	channel Closing Transmissio	n Time (802.11be-EHT160					
Test item	mode - 5250MHz)						

Note: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 seconds period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Test Site	WZ-SR4	Test Engineer	Lynn Yang				
Test Date	2024-12-29						
Test Item	Channel Move Time and Channel Closing Transmission Time (802.11be-EHT160						
163t Item	mode - 5570MHz)						

Note: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 seconds period. The aggregate duration of control signals will not count quiet periods in between transmissions.

A.8 Statistical Performance Check

Test Site	WZ-SR4	Test Engineer	Lynn Yang				
Test Date	2024-12-30	2024-12-30					
Test Item	Radar Statistical Performance Ch	Radar Statistical Performance Check (802.11be-EHT20 – 5500MHz)					

		í	Radar Type 1-4	- Radar Statisti	cal Performanc	e		
Trial	Radar	Type 1	Radar	Type 2	Radar	Type 3	Radar	Type 4
	Frequency	1=detect	Frequency	1=detect	Frequency	1=detect	Frequency	1=detect
	(MHz)	0=no detect	(MHz)	0=no detect	(MHz)	0=no detect	(MHz)	0=no detect
0	5494	0	5503	1	5507	1	5501	1
1	5500	1	5507	1	5504	1	5506	1
2	5507	1	5492	0	5493	1	5502	1
3	5506	1	5491	1	5500	1	5504	1
4	5495	1	5500	1	5495	0	5506	1
5	5504	1	5498	1	5493	1	5494	1
6	5499	1	5503	1	5504	1	5496	1
7	5502	1	5510	1	5502	0	5507	1
8	5495	1	5495	1	5496	1	5498	1
9	5507	1	5500	1	5497	1	5490	1
10	5510	1	5499	1	5510	1	5508	1
11	5505	1	5508	1	5508	0	5492	1
12	5504	1	5506	1	5490	1	5499	1
13	5500	1	5502	0	5509	0	5500	1
14	5505	1	5510	1	5510	1	5495	1
15	5490	1	5499	0	5509	1	5506	0
16	5500	1	5501	1	5499	1	5491	1
17	5501	1	5499	1	5491	1	5499	1
18	5499	1	5498	1	5508	1	5503	1
19	5507	1	5508	1	5493	1	5505	1
20	5497	1	5491	1	5498	1	5497	1
21	5498	1	5508	1	5490	0	5508	1
22	5509	1	5502	0	5498	1	5507	1
23	5503	1	5494	1	5500	1	5504	0
24	5500	1	5493	1	5494	0	5505	1
25	5509	1	5500	1	5502	1	5497	1
26	5494	1	5503	1	5510	1	5510	1
27	5491	1	5505	1	5498	1	5501	1

Trial	Radar Type 1		Radar Type 2		Radar Type 3		Radar Type 4	
	Frequency	1=detect	Frequency	1=detect	Frequency	1=detect	Frequency	1=detect
	(MHz)	0=no detect	(MHz)	0=no detect	(MHz)	0=no detect	(MHz)	0=no detect
28	5509	1	5497	1	5492	1	5502	0
29	5510	1	5500	1	5498	1	5503	1
Probability:	96.	67%	86.0	67%	80.00% 90.00%			00%
Aggregate:		88.33% (>80%)						

		adar Ty							, , , , , , , , , , , , , , , , , , ,	pe 2 - Ra			
Trial List							-Trial List						
	Trial Id	Radar Type	Pulse Tidth (us)	PRI (us)	Number of Pulses	Taveform Length (us)		Trial Id	Radar Type	Pulse Width (us)	PRI (us)	Number of Pulses	Tavefore Length (us)
Download	0	Type 1	1.0	658.0	81	53298.0	Download	0	Type 2	1.2	182.0	23	4186.0
Download	1	Type 1	1.0	738.0	72	53136.0	Download	1	Type 2	2. 7	201.0	25	5025.0
Download	2	Type 1	1.0	518.0	102	52836.0	Download	2	Type 2	2.5	173.0	25	4325.0
Download	3	Type 1	1.0	858.0	62	53196.0	Download	3	Type 2	4.8	215.0	29	6235.0
Download	4	Type 1	1.0	938.0	57	53466.0	Download	4	Type 2	2.9	202.0	26	5252.0
Download	5	Type 1	1.0	698.0	76	53048.0	Download	5	Type 2	4.8	161.0	29	4669.0
Download	6	Type 1	1.0	538.0	99	53262.0	Download	6	Type 2	4.9	157.0	29	4553.0
Download	7	Type 1	1.0	678.0	78	52884. 0	Download	7	Type 2	4.0	203.0	28	5684.0
Download	8	Type 1	1.0	578.0	92	53176.0	Download	8	Type 2	4.2	225.0	28	6300.0
Download	9	Type 1	1.0	798.0	67	53466.0	Download	9	Type 2	4. 1	191.0	28	5348.0
Download	10	Type 1	1.0	898.0	59	52982.0	Download	10	Type 2	3. 4	155.0	27	4185.0
Download	11	Type 1	1.0	598.0	89	53222.0	Download	11	Type 2	4. 1	168.0	28	4704.0
Download	12	Type 1	1.0	638.0	83	52954.0	Download	12	Type 2	1, 3	171.0	23	3933.0
Download	13	Type 1	1.0	778.0	68	52904.0	Download	13	Type 2	1.5	185.0	23	4255.0
Download	14	Type 1	1.0	838.0	63	52794.0	Download	14	Type 2	2.6	167.0	25	4175.0
Download	15	Type 1	1.0	2455.0	22	54010.0	Download	15	Type 2	2.5	163.0	25	4075.0
Download	16	Type 1	1.0	715.0	74	52910.0	Download	16	Type 2	2.9	184.0	26	4784.0
Download	17	Type 1	1.0	2035.0	26	52910.0	Download	17	Type 2	1.8	179.0	24	4296.0
Download	18	Type 1	1.0	1567.0	34	53278.0	Download	18	Type 2	4.5	223.0	29	6467.0
Download	19	Type 1	1.0	971.0	55	53405.0	Download	19	Type 2	1.0	170.0	23	3910.0
Download	20	Type 1	1.0	2354.0	23	54142.0	Download	20	Type 2	5.0	199.0	29	5771.0
Download	21	Type 1	1.0	522.0	102	53244.0	Download	21	Type 2	3.2	224.0	26	5824.0
Download	22	Type 1	1.0	623.0	85	52955.0	Download	22	Type 2	4.4	150.0	28	4200.0
Download	23	Type 1	1.0	1429.0	37	52873.0	Download	23	Type 2	4.5	190.0	28	5320.0
Download	24	Type 1	1.0	1862.0	29	53998.0	Download	24	Type 2	4.6	180.0	29	5220.0
Download	25	Type 1	1.0	1894.0	28	53032.0	Download	25	Type 2	1.5	187.0	23	4301.0
Download	26	Type 1	1.0	2756.0	20	55120.0	Download	26	Type 2	2.0	154.0	24	3696.0
Download	27	Type 1	1.0	2345.0	23	53935.0	Download	27	Type 2	5.0	193.0	29	5597.0
Download	28	Type 1	1.0	1569.0	34	53346.0	Download	28	Type 2	2. 7	188.0	26	4888.0
Download	29	Type 1	1.0	2592.0	21	54432.0	Download	29	Type 2	2.5	152.0	25	3800.0

Radar Type 3 - Radar Waveform

Trial List Number of Pulses Taveform Length (us) Pulse Tidth (us) Radar Type Trial Id PRI (us) Download 6.2 302.0 16 4832.0 Type 3 Download 7. 7 210.0 17 Type 3 Download 7.5 252.0 17 Type 3 Download Type 3 9.8 468.0 18 Download Type 3 7.9 214.0 17 3638.0 Download уре 3 9.8 422.0 18 7596.0 Download 9.9 18 Type 3 417.0 Download 9.0 280.0 18 5040.0 Туре З Download 9.2 4878.0 271.0 18 9.1 Download 8118.0 451.0 18 Туре З 8.4 Download 351.0 17 5967.0 Type 3 9.1 Download 429.0 18 Туре З Download 4320.0 Туре З 6.3 270.0 16 Download 6.5 5040.0 315.0 16 Type 3 Download 7.6 303.0 17 5151.0 Type 3 Download 7.5 471.0 17 8007.0 Type 3 Download 7.9 262.0 17 4454.0 Type 3 Download 6.8 305.0 16 4880.0 Туре З Download Type 3 9.5 336.0 18 6048.0 Download Type 3 6.0 401.0 16 6416.0 Download Type 3 10.0 457.0 18 8226.0 Download Type 3 8.2 475.0 17 8075.0 Download Type 3 9.4 290.0 18 5220.0 Download Type 3 9.5 215.0 18 3870.0 Download Type 3 9.6 207.0 18 3726.0 Download 8592.0 6.5 412.0 Туре З 16 Download 7.0 419.0 6704.0 16 Туре З Download 10.0 208.0 18 8744.0 Туре З Download 7. 7 354.0 17 6018.0 Type 3 Download 7.5 330.0 5610.0

Type 3

Radar Type 4 - Radar Waveform

	Trial Id	Radar Type	Pulse Tidth (us)	PRI (us)	Humber of Pulses	Tavefore Length (us)
Download	0	Type 4	11.4	302.0	12	3624.0
Download	1	Type 4	14.8	210.0	14	2940.0
Download	2	Type 4	14.3	252.0	13	3276.0
Download	3	Type 4	19.4	468.0	16	7488.0
Download	4	Type 4	15.4	214.0	14	2996.0
Download	5	Type 4	19.4	422.0	16	6752.0
Download	6	Type 4	19.7	417.0	16	6672.0
Download	7	Type 4	17.8	280.0	15	4200.0
Download	8	Type 4	18.2	271.0	15	4065.0
Download	9.	Type 4	18.0	451.0	15	6765.0
Download	10	Type 4	16.4	351.0	14	4914.0
Download	11	Type 4	18.0	429.0	15	6435.0
Download	12	Type 4	11.7	270.0	12	3240.0
Download	13	Type 4	12.2	315.0	12	3780.0
Download	14	Type 4	14.6	303.0	14	4242.0
Download	15	Type 4	14.3	471.0	13	6123.0
Download	16	Type 4	15. 2	262.0	14	3668.0
Download	17	Type 4	12.8	305.0	13	3965.0
Download	18	Type 4	18.8	336.0	16	5376.0
Download	19	Type 4	11.0	401.0	12	4812.0
Download	20	Type 4	20.0	457.0	16	7312.0
Download	21	Type 4	16.0	475.0	14	6650.0
Download	22	Type 4	18.5	290.0	16	4640.0
Download	23	Type 4	18. 7	215.0	16	3440.0
Download	24	Type 4	19.1	207.0	16	3312.0
Download	25	Type 4	12.2	412.0	12	4944.0
Download	26	Type 4	13. 2	419.0	13	5447.0
Download	27	Type 4	20.0	208.0	16	3328.0
Download	28	Type 4	14.9	354.0	14	4956.0
Download	29	Type 4	14.4	330.0	13	4290.0

		Radar Type 5 - Radar	Statistical Performance		
Trail #	Test Freq. (MHz)	1=Detection	Trail #	Test Freq. (MHz)	1=Detection
		0=No Detection			0=No Detection
0	5500	1	15	5494	1
1	5500	1	16	5495	1
2	5500	1	17	5494	1
3	5500	1	18	5498	1
4	5500	1	19	5492	1
5	5500	1	20	5502	1
6	5500	1	21	5504	1
7	5500	1	22	5502	1
8	5500	1	23	5502	1
9	5500	1	24	5502	1
10	5496	1	25	5507	1
11	5497	1	26	5506	1
12	5493	1	27	5502	1
13	5493	1	28	5505	1
14	5495	1	29	5505	1
D	etection Percentage (%)		100.0%	

Type 5	8	1.5000000	12.0000000	5.500000000		i e	
Burst ID	Burst Offset (us)	Pulse Vidth (us)	Chirp Vidth (MHz)	Number of	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	443341.0	52.6	5	1	1398.0	Tel	्या ।
1	805475.0	71.4	5	2	1882.0	1974.0	-
2	1169013.0	68.3	5	2	1926.0	1064.0	74
3	35054.0	96.6	5	3	1344.0	1115.0	1446.0
4	398161.0	74.3	5	2	1711.0	1227.0	70
5	760570.0	96. 7	5	3	1263.0	1039.0	1966.0
6	1123440.0	98.0	5	3	1479.0	1287.0	1357.0
7	1486449.0	87. 7	5	3	1112.0	1121.0	1678.0
Burst ID	Burst Offset (us)	Pulse Vidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0000					L.		
0	216878.0	89. 7	11	3	1209.0	1853.0	1383.0
0 1	216878.0 440111.0	89. 7 88. 9	Control Control	3	1209, 0 1178, 0	1853. 0 1017. 0	1383. 0 1339. 0
	100000000000000000000000000000000000000	A	11	3	COLUMN CO.		0.000000
1	440111.0	88.9	11 11	3	1178.0	1017.0	0.000000
1	440111.0 663347.0	88. 9 80. 0	11 11 11	3 3 2	1178.0 1337.0	1017. 0 1894. 0	1339.0
1 2 3	440111. 0 663347. 0 885410. 0	88. 9 80. 0 88. 9	11 11 11 11	3 3 2	1178. 0 1337. 0 1475. 0	1017. 0 1894. 0	1339.0
1 2 3 4	440111. 0 663347. 0 885410. 0 190033. 0	88. 9 80. 0 88. 9 54. 0	11 11 11 11 11	3 3 2	1178. 0 1337. 0 1475. 0 1542. 0	1017. 0 1894. 0	1339.0
1 2 3 4 5	440111.0 663347.0 885410.0 190033.0 413576.0	88. 9 80. 0 88. 9 54. 0 56. 8	11 11 11 11 11 11	3 3 2	1178.0 1337.0 1475.0 1542.0 1449.0	1017. 0 1894. 0 1778. 0	1339.0
1 2 3 4 5 6	440111. 0 663347. 0 885410. 0 190033. 0 413576. 0 636017. 0	88.9 80.0 88.9 54.0 56.8 70.1	11 11 11 11 11 11 11	3 2 3 1 1 2	1178.0 1337.0 1475.0 1542.0 1449.0 1443.0	1017.0 1894.0 1778.0 - - 1571.0	1339.0
1 2 3 4 5 6 7	440111. 0 663347. 0 885410. 0 190033. 0 413576. 0 636017. 0 859322. 0	88.9 80.0 88.9 54.0 56.8 70.1 68.7	11 11 11 11 11 11 11	3 2 3 1 1 2	1178.0 1337.0 1475.0 1542.0 1449.0 1443.0 1514.0	1017. 0 1894. 0 1778. 0 - - 1571. 0 1328. 0	1339.0
1 2 3 4 5 6 6 7	440111.0 663347.0 885410.0 190033.0 413576.0 636017.0 859322.0 162086.0	88.9 80.0 88.9 54.0 56.8 70.1 68.7 73.3	11 11 11 11 11 11 11 11 11	3 2 3 1 1 2	1178.0 1337.0 1475.0 1542.0 1449.0 1443.0 1514.0 1969.0	1017. 0 1894. 0 1778. 0 - - 1571. 0 1328. 0	1339.0
1 2 3 4 5 6 6 7 8	440111.0 663347.0 885410.0 190033.0 413576.0 636017.0 859322.0 162086.0 386140.0	88.9 80.0 88.9 54.0 56.8 70.1 68.7 73.3	11 11 11 11 11 11 11 11 11	3 2 3 1 1 2 2 2 2	1178.0 1337.0 1475.0 1542.0 1449.0 1443.0 1514.0 1969.0 1217.0	1017. 0 1894. 0 1778. 0 - - 1571. 0 1328. 0 1937. 0	1339.0 - 1046.0 - - -

Туре 5	12	1.0000000	12.0000000	5.500000000			
Burst ID	Burst Offset (us)	Pulse Vidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us
0	388070.0	77. 7	10	2	1220.0	1161.0	70
1	628497.0	91.6	10	3	1818.0	1609.0	1372.0
2	870705.0	92.7	10	3	1160.0	1102.0	1575.0
3	116073.0	94.8	10	3	1268.0	1957.0	1208.0
4	358552.0	56.8	10	1	1587.0	50	20
5	600613.0	62.4	10	1	1729.0	-	-
6	839949.0	99.8	10	3	1452.0	1895.0	1670.0
7	86403.0	71.4	10	2	1665.0	1940.0	-
8	328040.0	68. 7	10	2	1816.0	1851.0	20
9	569019.0	97.6	10	3	1648.0	1218.0	1961.0
10	812281.0	75.8	10	2	1347.0	1145.0	20
11	56600.0	94.9	10	3	1439.0	1461.0	1349.0

Type 5 Radar Waveform_3

Type 5	20	0.6000000	12.0000000	5.500000000			
Burst ID	Burst Offset (us)	Pulse Vidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	179076.0	60.9	19	1	1832.0	-	-
1	323028.0	89.8	19	3	1573.0	1019.0	1310.0
2	469159.0	66.0	19	1	1915.0	-	-
3	16054.0	89.3	19	3	1434.0	1927.0	1314.0
4	160715.0	71.0	19	2	1962.0	1692.0	-
5	305959.0	80.4	19	2	1170.0	1289.0	-
6	451725.0	60.0	19	1	1341.0	-	-
7	594147.0	94.0	19	3	1249.0	1246.0	1626.0
8	142947.0	83.8	19	3	1055.0	1382.0	1018.0
9	287256.0	85.8	19	3	1473.0	1353.0	1400.0
10	431324.0	88.2	19	3	1474.0	1830.0	1510.0
11	579362.0	62.4	19	1	1002.0		E0
12	125236.0	73. 1	19	2	1202.0	1724.0	=
13	270707.0	54.3	19	1	1464.0		E60
14	413487.0	91.0	19	3	1186.0	1954.0	1755.0
15	560771.0	61.4	19	1	1745.0	26	50
16	107226.0	70.2	19	2	1950.0	1938.0	-
17	251766.0	99.9	19	3	1151.0	1295.0	1527.0
18	397912.0	58.0	19	1	1581.0	-	-
19	541138.0	69.3	19	2	1710.0	1975.0	77.0

Туре 5	14	0.8571429	12.0000000	5.500000000			
Burst ID	Burst Offset (us)	Pulse Vidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	127830.0	94.4	12	3	1770.0	1780.0	1399.0
1	334927.0	84.4	12	3	1588.0	1292.0	1016.0
2	542842.0	75.0	12	2	1231.0	1129.0	-
3	749676.0	79.9	12	2	1732.0	1173.0	-
4	102580.0	75. 7	12	2	1800.0	1417.0	705
5	310365.0	51.8	12	1	1338.0	-	-
6	517310.0	67.4	12	2	1177.0	1176.0	7-1
7	722415.0	84.3	12	3	1491.0	1481.0	1986.0
8	76914.0	98.3	12	3	1590.0	1841.0	1506.0
9	284727.0	66.3	12	1	1551.0	-	-
10	491490.0	70.9	12	2	1690.0	1157.0	74
11	697492.0	91.4	12	3	1166.0	1493.0	1645.0
12	51667.0	54.1	12	1	1427.0	- piel	
13	258293.0	94.1	12	3	1706.0	1368.0	1364.0

Type 5	20	0.6000000	12.0000000	5.500000000			
Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	324903.0	93.2	19	3	1030.0	1869.0	1432.0
1	470452.0	67.1	19	2	1448.0	1511.0	-
2	18264.0	54.0	19	1	1266.0	<u></u>	
3	163026.0	79.4	19	2	1777.0	1138.0	-
4	308445.0	52.2	19	1	1736.0	-	_
5	452423.0	80.0	19	2	1842.0	1371.0	-
6	375.0	83.4	19	3	1604.0	1722.0	1219.0
7	145472.0	56.4	19	1	1747.0	-	-
8	290912.0	66.1	19	1	1037.0	<u>=</u>	
9	433631.0	92.0	19	3	1190.0	1671.0	1676.0
10	580609.0	53.3	19	1	1900.0	<u> </u>	2
11	127343.0	80.2	19	2	1388.0	1561.0	-
12	272342.0	71.6	19	2	1318.0	1203.0	_
13	417969.0	52.4	19	1	1490.0	-	-
14	561861.0	71.5	19	2	1087.0	1748.0	2
15	109336.0	88.4	19	3	1049.0	1767.0	1066.0
16	255078.0	51.2	19	1	1146.0	-	-
17	399207.0	68.9	19	2	1498.0	1312.0	-
18	543512.0	89.5	19	3	1033.0	1029.0	1332.0
19	91898.0	56.5	19	1	1468.0	-	-

Туре 5	20	0.6000000	12.0000000	5.500000000			
Burst ID	Burst Offset (us)	Pulse Vidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us
0	236939.0	50.5	20	1	1776.0	(F)	TO:
1	380814.0	76.6	20	2	1805.0	1870.0	-
2	527096.0	64. 7	20	1	1797.0	2 6	70
3	73705.0	86.1	20	3	1142.0	1172.0	1679.0
4	219009.0	63.6	20	1	1935.0	- E-C	276
5	363349.0	69.2	20	2	1669.0	1431.0	-
6	509134.0	62.9	20	1	1904.0	570	570
7	56009.0	75.8	20	2	1471.0	1356.0	-
8	200310.0	95. 7	20	3	1971.0	1297.0	1140.0
9	345559.0	67.5	20	2	1892.0	1136.0	-
10	491777.0	64.8	20	1	1282.0	570	T0
11	38058.0	96.8	20	3	1793.0	1687.0	1075.0
12	183391.0	58.3	20	1	1558.0	-	70
13	327635.0	79.0	20	2	1477.0	1714.0	-
14	474108.0	61.1	20	1	1008.0	- E-0	576
15	20337.0	73.8	20	2	1111.0	1456.0	-
16	165486.0	57.3	20	1	1655.0	570	\$61
17	309285.0	90.8	20	3	1153.0	1348.0	1693.0
18	453009.0	97.6	20	3	1663.0	1680.0	1873.0
19	2486.0	78.0	20	2	1865.0	1597.0	_

	Wavef	

Туре 5	17	0.7058824	12.0000000	5.500000000			į.
Burst ID	Burst Offset (us)	Pulse Vidth (us)	Chirp Vidth (MHz)	Humber of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	173070.0	86.0	17	3	1792.0	1529.0	1015.0
1	343271.0	87.9	17	3	1392.0	1773.0	1061.0
2	514340.0	68.2	17	2	1012.0	1991.0	50
3	684887.0	83.1	17	2	1492.0	1433.0	-
4	152458.0	76.5	17	2	1519.0	1221.0	50
5	321845.0	95.5	17	3	1914.0	1701.0	1623.0
6	493143.0	80.2	17	2	1585.0	1702.0	
7	665356.0	65.0	17	1	1369.0	=	-
8	131684.0	62. 7	17	1	1500.0	E-6	- F0
9	302703.0	59.9	17	1	1071.0	-	-
10	473675.0	65.0	17	1	1022.0	E40	- TO
11	644449.0	51.9	17	1	1216.0	-	-
12	110709.0	51.9	17	1	1067.0		
13	280039.0	97. 7	17	3	1212.0	1963.0	1921.0
14	450206.0	93.6	17	3	1821.0	1618.0	1340.0
15	623479.0	66.6	17	1	1124.0	-	-
16	89586.0	52.4	17	1	1594.0	576	275

Type 5	18	0.6666667	12.0000000	5.500000000			
Burst ID	Burst Offset (us)	Pulse Width (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	245380.0	68.0	17	2	1408.0	1589.0	-
1	406965.0	65.8	17	1	1978.0	-	-
2	567142.0	83.1	17	2	1647.0	1537.0	-
3	64590.0	67.0	17	2	1883.0	1144.0	7
4	225944.0	57.5	17	1	1847.0	-	-
5	387355.0	60. 7	17	1	1553.0	-	
6	546604.0	98.6	17	3	1032.0	1336.0	1685.0
7	44779.0	77. 1	17	2	1276.0	1526.0	
8	206181.0	56.6	17	1	1531.0	-	-
9	366644.0	71.9	17	2	1901.0	1175.0	75
10	526711.0	92.7	17	3	1253.0	1374.0	1549.0
11	24911.0	91.4	17	3	1233.0	1224.0	1301.0
12	185434.0	97. 7	17	3	1085.0	1872.0	1703.0
13	346596.0	81.1	17	2	1880.0	1624.0	
14	508955.0	60,5	17	1	1516.0	-	-
15	5119.0	71.4	17	2	1048.0	1182.0	
16	166363.0	61.5	17	1	1838.0	-	-
17	327153.0	70.5	17	2	1042.0	1715.0	100

Туре 5	18	0.6666667	12.0000000	5.500000000			
Burst ID	Burst Offset (us)	Pulse Width (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	489188.0	62.6	17	1	1375.0	2	2
1	650574.0	58.3	17	1	1342.0	-	- -
2	146316.0	81.7	17	2	1555.0	1130.0	2
3	308107.0	59.6	17	1	1054.0	75	-
4	468294.0	68.1	17	2	1813.0	1006.0	
5	627862.0	89.0	17	3	1370.0	1772.0	1192.0
6	126114.0	98.0	17	3	1472.0	1320.0	1810.0
7	288121.0	63.0	17	1	1288.0	75	-
8	447434.0	85.8	17	3	1874.0	1076.0	1391.0
9	610728.0	52.4	17	1	1444.0	75	ā
10	106768.0	62.8	17	1	1909.0	2	2
11	266896.0	94.9	17	3	1414.0	1554.0	1661.0
12	429203.0	60.7	17	1	1931.0	2	2
13	588629.0	85.5	17	3	1211.0	1533.0	1207.0
14	86464.0	94.6	17	3	1419.0	1967.0	1924.0
15	247812.0	71.4	17	2	1171.0	1599.0	-
16	407834.0	89.4	17	3	1808.0	1497.0	1079.0
17	569787.0	74.9	17	2	1503.0	1333.0	-

Туре 5	15	0.8000000	12.0000000	5. 496000000			
Burst ID	Burst Offset (us)	Pulse Vidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	80579.0	64.4	14	1	1108.0	-	-
1	274328.0	60.9	14	1	1128.0	570	50
2	466880.0	78. 4	14	2	1627.0	1550.0	-
3	660530.0	77.2	14	2	1305.0	1394.0	50
4	56606.0	69.7	14	2	1223.0	1389.0	-
5	250260.0	55.9	14	1	1774.0	50	1576
6	443119.0	69.9	14	2	1659.0	1440.0	-
7	636528.0	73.6	14	2	1412.0	1518.0	200
8	32720.0	87.6	14	3	1154.0	1877.0	1139.0
9	226239.0	73. 7	14	2	1117.0	1275.0	376
10	420274.0	65.0	14	1	1270.0	-	-
11	613005.0	78.9	14	2	1147.0	1406.0	1576
12	8973.0	54.5	14	1	1733.0	-	-
13	202247.0	80.6	14	2	1306.0	1730.0	36
14	394425.0	90.4	14	3	1465.0	1833.0	1977.0

		'	ype 5 Radar	_	•		
Туре 5	18	0.6666667	12.0000000	5.497000000			
Burst ID	Burst Offset (us)	Pulse Width (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	490580.0	77. 1	17	2	1634.0	1041.0	-
1	651476.0	81.0	17	2	1309.0	1512.0	Tel.
2	148923.0	58.3	17	1	1530.0	-	<u>-</u> 9
3	309710.0	70. 7	17	2	1201.0	1463.0	- VAI
4	471639.0	58.3	17	1	1413.0	-	-
5	630082.0	97.8	17	3	1725.0	1422.0	1316.0
6	128584.0	94.2	17	3	1174.0	1250.0	1520.0
7	289640.0	69.1	17	2	1612.0	1586.0	74
8	449324.0	94.6	17	3	1488.0	1897.0	1622.0
9	611993.0	75.0	17	2	1090.0	1535.0	piel .
10	108707.0	96.2	17	3	1756.0	1574.0	1088.0
11	270512.0	64.3	17	1	1495.0		7-17
12	431697.0	61.7	17	1	1712.0	-	
13	593215.0	61.1	17	1	1436.0		70.0
14	89356.0	57.2	17	1	1194.0		-
15	249716.0	96.8	17	3	1089.0	1644.0	1215.0
16	410706.0	76.3	17	2	1611.0	1918.0	-
17	571478.0	91.7	17	3	1065.0	1110.0	1424.0
Type 5	9	1. 3333333	12.0000000	5.493000000			
Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (u
0	138746.0	85.6	6	3	1196.0	1343.0	1812.0
1	462059.0	56.9	6	1	1489.0	-	-
2	785345.0	50.5	6	1	1027.0	_	_
3	1105205.0	92.1	6	3	1758.0	1442.0	1753.0
4	98957.0	85.5	6	3	1979.0	1784.0	1740.0
5	421247.0	88. 7	6	3	1155.0	1656.0	1906.0
6	744579.0	75. 7	6	2	1083.0	1668.0	21
	EMPLOYMENT CONTRACTOR	1 NO 12	9 (202)				1 0 10 10 10 10 10 10 10 10 10 10 10 10
7	1065071.0	89. 7	6	3	1666.0	1898.0	1949.0
8	1065071.0 59312.0	89. 7 94. 6	6	3	1666.0 1860.0	1898. 0 1225. 0	1949.0 1908.0
	A A CONTRACTOR OF THE CONTRACT	94.6	6	3 3 Waveform_1	1860.0		- Construction of the Cons
	59312.0	94.6	6 ype 5 Radar 12,0000000	3 · Waveform_1; 5, 493000000	1860.0		- Construction of the Cons
8	59312.0	94.6	6 ype 5 Radar	3 Waveform_1; 5:493000000 Humber of	1860.0	1225.0	1908.0
8 Type 5	59312.0 9 Burst Offset	94.6 T	ype 5 Radar 12.0000000 Chirp	Waveform_1: 5.493000000 Humber of Pulses per	1860.0	1225.0	1908.0
8 Type 5 Burst ID	59312.0 9 Burst Offset (us)	94.6 T 1.3333333 Pulse Width (us)	ype 5 Radar 12.0000000 Chirp Vidth (MHz)	Waveform_1: 5.493000000 Humber of Pulses per	1860.0 3 PRI-1 (us)	1225.0	1908.0
8 Type 5 Burst ID	59312.0 9 Burst Offset (us) 382368.0	94.6 T 1.3333333 Pulse Fidth (us) 51.4	6 ype 5 Radar 12.0000000 Chirp Width (IIII) 7	3 Waveform_1: 5.493000000 Wumber of Pulses per Burst	1860. 0 3 PRI-1 (us)	1225.0 PRI-2 (us)	1908.0
Type 5 Burst ID O	59312.0 9 Burst Offset (us) 382368.0 704673.0	94.6 T 1.3333333 Pulse Fidth (us) 51.4 74.3	6 ype 5 Radar 12.0000000 Chirp Tidth (MHz) 7	3 Waveform_13 5.493000000 Number of Pulses per Burst 1	1860. 0 3 PRI-1 (us) 1888. 0 1876. 0	1225.0 PRI-2 (us) - 1169.0	1908.0 PRI-3 (us
Type 5 Burst ID 0 1 2	9 Burst Offset (us) 382368.0 704673.0 1026446.0	94.6 T 1.3333333 Pulse Fidth (us) 51.4 74.3 98.0	ype 5 Radar 12.0000000 Chirp Width (MHz) 7 7	3 Waveform_1: 5.493000000 Wunber of Pulses per Burst 1 2	1860.0 3 PRI-1 (us) 1888.0 1876.0 1210.0	1225.0 PRI-2 (us) - 1169.0	1908.0 PRI-3 (us
Type 5 Burst ID 0 1 2 3	59312.0 Burst Offset (us) 382368.0 704673.0 1026446.0 19678.0	94.6 T 1.3333333 Pulse width (us) 51.4 74.3 98.0 56.8	6 ype 5 Radar 12.0000000 Chirp idth (IIII) 7 7 7	3 Waveform_13 5.493000000 Wunber of Pulses per Burst 1 2 3 1	1860. 0 3 PRI-1 (us) 1888. 0 1876. 0 1210. 0 1642. 0	1225.0 PRI-2 (us) - 1169.0 1567.0	PRI-3 (us - - 1386.0
Type 5 Burst ID 0 1 2 3 4	59312.0 Burst Offset (us) 382368.0 704673.0 1026446.0 19678.0 341986.0	94.6 T 1.3333333 Pulse Fidth (us) 51.4 74.3 98.0 56.8 98.0	6 ype 5 Radar 12.0000000 Chirp width (mHz) 7 7 7	3 Waveform_1: 5.493000000 Bunber of Pulses per Burst 1 2 3 1	1860.0 3 PRI-1 (us) 1888.0 1876.0 1210.0 1642.0 1835.0	PRI-2 (us) - 1169.0 1567.0 - 1007.0	PRI-3 (us - - 1386.0

1713.0

54.4

302856.0

Type 5	13	0.9230769	12.0000000	5. 495000000			
Burst ID	Burst Offset (us)	Pulse Vidth (us)	Chirp Vidth (MHz)	Humber of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	431447.0	86.3	11	3	1727.0	1750.0	1560.0
1	656428.0	50.6	11	1	1771.0	-	-
2	879268.0	81.0	11	2	1379.0	1026.0	<u>lu</u> g
3	181792.0	77.2	11	2	1630.0	1261.0	-
4	404648.0	70.3	11	2	1886.0	1726.0	dige.
5	627624.0	91.9	11	3	1485.0	1000.0	1162.0
6	849686.0	83.9	11	3	1293.0	1864.0	1494.0
7	154485.0	52.1	11	1	1796.0	-	-
8	377413.0	73.6	11	2	1761.0	1283.0	<u>la</u> s
9	599312.0	91.7	11	3	1459.0	1675.0	1807.0
10	825353.0	58. 1	11	1	1183.0	24	<u>lu</u> g
11	127013.0	62.4	11	1	1429.0	-	-
12	349893.0	80.4	11	2	1754.0	1381.0	<u>la</u> g

Type 5 Radar Waveform_15

Туре 5	12	1.0000000	12.0000000	5. 494000000			
Burst ID	Burst Offset (us)	et ruise	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (u
0	621381.0	76.9	10	2	1126.0	1271.0	24
1	861450.0	88.8	10	3	1313.0	1779.0	1478.0
2	107419.0	87.2	10	3	1640.0	1200.0	1959.0
3	349159.0	68.9	10	2	1903.0	1834.0	-
4	591193.0	73.6	10	2	1546.0	1501.0	124
5	832333.0	89.8	10	3	1187.0	1617.0	1023.0
6	77687.0	85. 1	10	3	1593.0	1232.0	1984.0
7	318789.0	95.6	10	3	1829.0	1836.0	1965.0
8	561173.0	69.6	10	2	1707.0	1760.0	<u> 19</u> 8
9	802107.0	95.0	10	3	1242.0	1598.0	1566.0
10	48060, 0	68.6	10	2	1050.0	1613.0	24
11	290288.0	53.1	10	1	1486.0	-	-

Туре 5	14	0.8571429	12.0000000	5.495000000			
Burst ID	Burst Offset (us)	Pulse Vidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	454727.0	92.7	12	3	1569.0	1522.0	1307.0
1	661456.0	94.8	12	3	1664.0	1047.0	1801.0
2	15590.0	96. 7	12	3	1944.0	1970.0	1956.0
3	222750.0	68.1	12	2	1248.0	1939.0	
4	428928.0	98.2	12	3	1327.0	1742.0	1973.0
5	636739.0	82.1	12	2	1958.0	1543.0	-
6	845835.0	57.3	12	1	1415.0	-	-
7	197388.0	77.5	12	2	1038.0	1504.0	-
8	405056.0	52. 7	12	1	1696.0	-	<u>-</u>
9	612467.0	60.5	12	1	1783.0	7 3	-
10	818720.0	75.6	12	2	1453.0	1580.0	-
11	172074.0	60. 7	12	1	1466.0	7	
12	379595.0	58.4	12	1	1482.0	-	-
13	584827.0	86. 7	12	3	1366.0	1856.0	1601.0

Туре 5	10	1.2000000	12.0000000	5.494000000			
Burst ID	Burst Offset (us)	Pulse Fidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	1113221.0	58. 7	8	1	1302.0	Tel	T-1
1	205124.0	58.2	8	1	2000.0	<u> </u>	-
2	495459.0	83.3	8	2	1322.0	1205.0	
3	786388.0	65.1	8	1	1759.0	<u>-</u>	-
4	1075244.0	84. 1	8	3	1469.0	1020.0	1222.0
5	169058.0	81.6	8	2	1976.0	1982.0	-
6	459592.0	82.2	8	2	1127.0	1643.0	-1
7	750012.0	71.0	8	2	1385.0	1298.0	-
8	1039423.0	97.5	8	3	1258.0	1119.0	1430.0
9	133600.0	59.2	8	1	1507.0	+	-

Туре 5	19	0.6315789	12.0000000	5.498000000			
Burst ID	Burst Offset (us)	Pulse Vidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	222298.0	69.7	18	2	1738.0	1890.0	-
1	375133.0	79.0	18	2	1165.0	1562.0	-
2	528572.0	58.6	18	1	1628.0	=	-
3	51439.0	64. 7	18	1	1197.0	E.	75
4	203125.0	98.6	18	3	1244.0	1677.0	1981.0
5	357021.0	58.9	18	1	1538.0		-
6	509592.0	66.6	18	1	1826.0	=	-
7	32598, 0	55.6	18	1	1362.0	E55	
8	185471.0	62.3	18	1	1277.0	-	-
9	337471.0	74. 0	18	2	1565.0	1329.0	-
10	489271.0	77.6	18	2	1768.0	1993.0	-
11	13720.0	97.1	18	3	1470.0	1106.0	1105.0
12	165707.0	87.2	18	3	1996.0	1230.0	1583.0
13	317848.0	84.0	18	3	1827.0	1044.0	1682.0
14	471229.0	75. 4	18	2	1505.0	1304.0	-
15	625411.0	59.6	18	1	1109.0	=	-
16	147726.0	50.8	18	1	1641.0	-	-
17	299778.0	84.9	18	3	1068.0	1045.0	1053.0
18	452221.0	77.6	18	2	1548.0	1572.0	_

Туре 5	8	1.5000000	12.0000000	5. 492000000			
Burst ID Off	Burst Offset (us)	Pulse Fidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	1441554.0	66.4	5	1	1662.0	<u>-</u>	
1	306572.0	63.1	5	1	1849.0	-	-
2	669102.0	76.4	5	2	1945.0	1735.0	24
3	1033690.0	60.5	5	1	1239.0	-	-
4	1394681.0	87.0	5	3	1285.0	1058.0	1584.0
5	261627.0	81.1	5	2	1135.0	1790.0	-
6	624583.0	76.8	5	2	1987.0	1254.0	2-1
7	988734.0	62.2	5	1	1513.0	-	-

Туре 5	20	0.6000000	12.0000000	5.502000000			
Burst ID	Burst Offset (us)	Pulse Vidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	539880.0	54.5	20	1	1698.0	-	-
1	86656, 0	60.9	20	1	1899.0	<u>10</u> 8	<u>1</u> 28
2	230987.0	87.1	20	3	1264.0	1508.0	1003.0
3	376161.0	71.0	20	2	1273.0	1596.0	<u></u>
4	521332.0	71.7	20	2	1390.0	1081.0	-
5	68403, 0	97.4	20	3	1831.0	1762.0	1654.0
6	213053.0	87.5	20	3	1284.0	1299.0	1534.0
7	357444.0	98.5	20	3	1787.0	1451.0	1095.0
8	503075.0	69.2	20	2	1867.0	1086.0	-
9	50812.0	73.4	20	2	1863.0	1311.0	<u></u>
10	195215.0	92.7	20	3	1652.0	1098.0	1480.0
11	340391.0	79.0	20	2	1582.0	1450.0	128
12	484346.0	93.8	20	3	1103.0	1131.0	1817.0
13	32889.0	93.9	20	3	1204.0	1907.0	1744.0
14	177783.0	69.9	20	2	1811.0	1188.0	-
15	322238.0	98.5	20	3	1206.0	1163.0	1252.0

1091.0

1499.0

1346.0

1764.0

1861.0

1101.0

1515.0

Type 5 Radar Waveform_20

Type 5 Radar Waveform_21

466217.0

15195, 0

160391.0

304808.0

16

17

18

19

84.4

59.0

61.6

71.0

20

20

20

20

Туре 5	15	0.8000000	12.0000000	5.504000000			
Burst ID 0	Burst Offset (us)	ffset ruise	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	598757.0	99.4	13	3	1972.0	1788.0	1059.0
1	791479.0	89. 7	13	3	1559.0	1749.0	1646.0
2	189789.0	74. 4	13	2	1691.0	1024.0	75
3	383351.0	80.8	13	2	1214.0	1097.0	<u>=</u>
4	574593.0	97.3	13	3	1859.0	1910.0	1616.0
5	767853.0	93.4	13	3	1884.0	1365.0	1576.0
6	165939.0	81.1	13	2	1447.0	1423.0	-
7	358449.0	96.1	13	3	1502.0	1255.0	1930.0
8	550938.0	93.3	13	3	1854.0	1600.0	1809.0
9	745867.0	68.4	13	2	1402.0	1532.0	=
10	142088.0	71.6	13	2	1080.0	1997.0	75
11	334437.0	83.6	13	3	1397.0	1942.0	1947.0
12	528378.0	71.8	13	2	1541.0	1941.0	-
13	721140.0	96.8	13	3	1191.0	1317.0	1435.0
14	118447 0	62.0	13	1	1955 0	_	_

Туре 5	18	0.6666667	12.0000000	5.502000000			
Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us
0	258753.0	94.8	18	3	1705.0	1123.0	1988.0
1	420553.0	75. 2	18	2	1114.0	1681.0	_
2	582899.0	53.0	18	1	1269.0	-	-
3	78802.0	55.9	18	1	1936.0	20	<u>-</u>
4	238840.0	99.8	18	3	1697.0	1650.0	1857.0
5	399263.0	99.8	18	3	1467.0	1752.0	1990.0
6	560233.0	85.6	18	3	1943.0	1380.0	1241.0
7	58947.0	56.2	18	1	1902.0	<u>-</u> -	20
8	219152.0	86.2	18	3	1335.0	2000.0	1651.0
9	381701.0	58.2	18	1	1376.0	120	20
10	542922.0	55.9	18	1	1540.0	-	les .
11	38889.0	83.9	18	3	1614.0	1946.0	1720.0
12	200080.0	72.5	18	2	1674.0	1004.0	He
13	360029.0	93.2	18	3	1062.0	1843.0	1775.0
14	521475.0	77.9	18	2	1721.0	1823.0	-
15	19203.0	76.2	18	2	1496.0	1279.0	2
16	180131.0	78.0	18	2	1741.0	1354.0	-
17	341077.0	69.4	18	2	1404.0	1673.0	20

Туре 5	19	0.6315789	12.0000000	5.502000000	1	1	
Burst ID	Burst Offset (us)	Pulse Vidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	476409.0	55.8	18	1	1840.0	-	-
1	629378.0	62.9	18	1	1603.0	T-1	701
2	152116.0	64.9	18	1	1913.0	-	-
3	303561.0	86.5	18	3	1051.0	1717.0	1766.0
4	457727.0	56.2	18	1	1660.0	-	-
5	609064.0	73. 7	18	2	1319.0	1825.0	7.0
6	133216.0	78.3	18	2	1082.0	1251.0	-
7	286357.0	66.2	18	1	1168.0	7.1	7.1
8	437113.0	91.4	18	3	1116.0	1798.0	1324.0
9	591677, 0	55.1	18	1	1667.0	-	70
10	114535.0	50. 7	18	1	1689.0	-	-
11	267424.0	51.8	18	1	1403.0	7.4	7.1
12	420186.0	59.0	18	1	1517.0	-	-
13	573165.0	57.2	18	1	1331.0	T-1	-
14	95190.0	97.1	18	3	1743.0	1802.0	1615.0
15	247979.0	81.9	18	2	1257.0	1716.0	7.5
16	400171.0	75.2	18	2	1509.0	1879.0	-
17	552671.0	73. 2	18	2	1934.0	1291.0	70
18	76751.0	81.4	18	2	1547.0	1361.0	_

Type	5 R	adar	Wave	form	24
IVDE					

Type 5	19	0.6315789	12.0000000	5.502000000	1		
Burst ID	Burst Offset (us)	Pulse Vidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	229833.0	53.0	19	1	1235.0	-	-
1	382658.0	61.8	19	1	1323.0	-	- -1
2	534461.0	71.2	19	2	1325.0	1238.0	-
3	58111.0	63.8	19	1	1373.0	=	
4	209845.0	83.5	19	3	1620.0	1226.0	1846.0
5	362190.0	88. 2	19	3	1164.0	1998.0	1001.0
6	515723.0	72.6	19	2	1148.0	1350.0	-
7	39053.0	91.4	19	3	1631.0	1595.0	1855.0
8	192095.0	59.5	19	1	1484.0	-	-
9	345012.0	58.6	19	1	1303.0		T-1
10	497657.0	52.9	19	1	1578.0	-	-
11	20457.0	65.4	19	1	1378.0	74	7.1
12	172285.0	92.3	19	3	1719.0	1896.0	1457.0
13	324865.0	93. 7	19	3	1073.0	1141.0	1636.0
14	479256.0	64.1	19	1	1025.0	<u> Fa</u>	<u>-</u>
15	1631.0	66.0	19	1	1260.0	-	
16	153780.0	83. 9	19	3	1118.0	1789.0	1300.0
17	305818.0	97.2	19	3	1096.0	1728.0	1629.0
18	460387.0	58.2	19	1	1069.0	<u> -</u> a	

Туре 5	9	1.3333333	12.0000000	5,507000000			
Burst ID Offset	Offset	Pulse Vidth (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	1294598.0	69.0	7	2	1122.0	1296.0	_
1	286364.0	79.3	7	2	1234.0	1684.0	-
2	608921.0	77. 7	7	2	1920.0	1240.0	<u></u> 0
3	930649.0	83.5	7	3	1099.0	1992.0	1326.0
4	1255942.0	58.4	7	1	1247.0	20	<u></u> -
5	246475.0	80.4	7	2	1694.0	1999.0	-
6	569767.0	55.4	7	1	1795.0	20	<u></u> 0
7	890292.0	84.4	7	3	1989.0	1428.0	1980.0
8	1212587.0	99.2	7	3	1952.0	1355.0	1839.0

Туре 5	11	1.0909091	12.0000000	5.506000000			
Burst ID	Burst Offset (us)	Pulse Vidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	168981,0	98.8	8	3	1699.0	1334.0	1150.0
1	432692.0	86.8	8	3	1625.0	1011.0	1181.0
2	695333.0	90.6	8	3	1951.0	1923.0	1524.0
3	960855.0	67.9	8	2	1462.0	1387.0	-
4	136836.0	54.6	8	1	1633.0	24	20
5	400226.0	94.9	8	3	1639.0	1077.0	1074.0
6	664308.0	74.9	8	2	1564.0	1536.0	_
7	929540.0	57.6	8	1	1454.0	-	-
8	103956.0	84.6	8	3	1919.0	1700.0	1545.0
9	367467.0	99.1	8	3	1718.0	1198.0	1708.0
10	631797 N	81.4	8	2	1359 0	1763 0	_

Type 5	Radar	Wavef	form_27
--------	-------	-------	---------

Type 5	20	0.6000000	12.0000000	5.502000000			
Burst ID	Burst Offset (us)	Pulse Vidth (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (
0	491171.0	98.3	20	3	1143.0	1256.0	1043.0
1	39204.0	83. 7	20	3	1893.0	1828.0	1132.0
2	184003.0	82.4	20	2	1437.0	1933.0	-
3	328922.0	68. 7	20	2	1281.0	1695.0	236
4	474765.0	57.6	20	1	1658.0	-	-
5	21435.0	88.5	20	3	1421.0	1278.0	1845.0
6	165755.0	89.8	20	3	1544.0	1932.0	1418.0
7	312097.0	58. 5	20	1	1035.0		200
8	456967.0	58.2	20	1	1557.0	-	-
9	3649.0	94.9	20	3	1539.0	1455.0	1158.0
10	148040.0	91.2	20	3	1034.0	1637.0	1968.0
11	293875.0	63. 2	20	1	1704.0		500
12	437295.0	84. 7	20	3	1060.0	1521.0	1420.0
13	583061.0	67.0	20	2	1525.0	1229.0	E-0
14	131017.0	54.2	20	1	1149.0	-	-
15	276228.0	52.0	20	1	1213.0	20	500
16	420375.0	75. 4	20	2	1592.0	1152.0	-
17	564887.0	78.3	20	2	1862.0	1243.0	200
18	113071.0	62.8	20	1	1445.0	-	-
19	256895.0	83.4	20	3	1476.0	1195.0	1891.0

Туре 5	13	0.9230769	12.0000000	5.505000000			
Burst ID	Burst Offset (us)	Pulse Vidth (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	620146.0	78.0	11	2	1657.0	1280.0	-
1	844638.0	53.8	11	1	1487.0	-	-
2	146299.0	73. 4	11	2	1734.0	1409.0	550
3	368917.0	92. 7	11	3	1100.0	1358.0	1917.0
4	592501.0	72. 7	11	2	1610.0	1570.0	550
5	816046.0	68.0	11	2	1605.0	1078.0	=
6	118746.0	85.0	11	3	1014.0	1084.0	1591.0
7	342627.0	60. 7	11	1	1267.0	-	=
8	564586.0	97.4	11	3	1367.0	1352.0	1167.0
9	788704.0	68. 7	11	2	1125.0	1377.0	=
10	91451.0	56.5	11	1	1964.0		. E36
11	314335.0	81.4	11	2	1837.0	1635.0	-
12	537145.0	84.8	11	3	1259.0	1563.0	1031.0

Туре 5	12	1.0000000	12.0000000	5.505000000			
Burst ID	Burst Offset (us)	Pulse Vidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
0	825707.0	65.8	11	1	1416.0	-	E
1	69281.0	59.9	11	1	1852.0	- TO	
2	310454.0	85.4	11	3	1274.0	1688.0	1804.0
3	551862.0	97.0	11	3	1803.0	1272.0	1632.0
4	795509.0	59.0	11	1	1875.0	-	+
5	39421.0	75. 9	11	2	1822.0	1057.0	
6	281380.0	69.9	11	2	1294.0	1137.0	÷
7	522565.0	90. 7	11	3	1411.0	1156.0	1308.0
8	763870.0	97.0	11	3	1052.0	1286.0	1911.0
9	9627.0	76. 1	11	2	1985.0	1523.0	
10	251937.0	54.3	11	1	1009.0	-	-
11	493823.0	57.5	11	1	1820.0	745	555

	Radar Type 6 - Radar	Statistical Performance	
Trail #	1=Detection	Trail #	1=Detection
	0=No Detection		0=No Detection
0	1	15	1
1	1	16	1
2	0	17	1
3	1	18	1
4	1	19	1
5	0	20	1
6	1	21	1
7	1	22	1
8	1	23	1
9	1	24	1
10	1	25	1
11	1	26	1
12	1	27	1
13	1	28	1
14	1	29	1
Detection Pe	rcentage (%)	93.3	33%

			Radar Waveform		
Туре б	1.0	333.3	9	0.3333	300,0000000
Frequency List (MHz)	0	1	2	3	4
0	5355	5329	5421	5339	5705
5	5517	5510	5554	5610	5674
10	5648	5427	5441	5508	5326
15	5687	5415	5668	5451	5669
20	5476	5484	5563	5591	5450
25	5607	5317	5330	5411	5268
30	5637	5513	5552	5622	5545
35	5582	5556	5496	5296	5619
40	5369	5657	5547	5393	5633
45	5540	5331	5631	5444	5379
50	5297	5608	5609	5693	5588
55	5652	5614	5348	5527	5353
60	5449	5278	5261	5711	5708
65	5506	5452	5584	5519	5405
70	5397	5357	5649	5266	5448
75	5542	5333	5424	5257	5696
80	5279	5629	5700	5654	5304
85	5655	5667	5398	5439	5458
90	5616	5382	5719	5651	5375
95	5520	5600	5550	5462	5567

Ty	oe 6	Rada	r Wav	reform_1
----	------	------	-------	----------

Туре 6	1.0	333. 3	9	0.3333	300.0000000
Frequency List (MHz)	0	1	2	3	4
0	5610	5568	5357	5403	5450
5	5559	5435	5629	5676	5406
10	5579	5691	5703	5347	5300
15	5542	5296	5399	5483	5387
20	5553	5504	5583	5423	5495
25	5266	5436	5555	5445	5310
30	5526	5470	5292	5299	5365
35	5624	5647	5546	5533	5683
40	5265	5485	5633	5630	5469
45	5311	5714	5502	5335	5659
50	5484	5250	5307	5411	5499
55	5327	5302	5640	5724	5324
60	5578	5443	5303	5537	5654
65	5329	5401	5620	5254	5675
70	5635	5366	5297	5518	5276
75	5544	5400	5360	5473	5389
80	5507	5717	5301	5375	5570
85	5337	5631	5534	5706	5509
90	5677	5409	5657	5382	5257
95	5351	5655	5494	5295	5549

Type 6	Radar	Wave	form_2
--------	-------	------	--------

~ .	10	120	75	72	
Туре 6	1.0	333.3	9	0.3333	300,0000000
Frequency List (MHz)	0	1	2	3	4
0	5390	5332	5293	5564	5292
5	5601	5457	5704	5364	5613
10	5413	5480	5620	5423	5368
15	5388	5669	5399	5444	5675
20	5395	5719	5445	5672	5396
25	5383	5593	5639	5281	5479
30	5352	5512	5427	5507	5548
35	5563	5288	5263	5699	5447
40	5522	5348	5326	5398	5627
45	5322	5463	5449	5360	5486
50	5301	5612	5443	5515	5256
55	5355	5543	5295	5707	5608
60	5723	5400	5363	5697	5530
65	5350	5656	5561	5567	5478
70	5598	5621	5369	5524	5494
75	5710	5649	5341	5628	5499
80	5456	5402	5676	5667	5570
85	5654	5691	5251	5574	5540
90	5285	5319	5614	5460	5554
95	5518	5258	5428	5597	5590

Type 6	1.0	333.3	9	0.3333	300,0000000
Frequency List (MHz)	0	1	2	3	4
0	5645	5571	5704	5250	5512
5	5643	5382	5304	5527	5442
10	5344	5269	5661	5618	5389
15	5379	5699	5502	5489	5392
20	5403	5410	5483	5664	5369
25	5649	5445	5367	5385	5513
30	5394	5401	5384	5722	5700
35	5383	5427	5451	5456	5377
40	5458	5361	5528	5264	5541
45	5721	5705	5405	5521	5441
50	5336	5614	5662	5352	5582
55	5435	5290	5703	5685	5448
60	5362	5644	5298	5668	5707
65	5286	5353	5299	5595	5296
70	5281	5292	5607	5469	5373
75	5470	5669	5687	5589	5322
80	5544	5620	5465	5673	5387
85	5473	5496	5654	5346	5539
90	5514	5313	5695	5291	5399
95	5569	5599	5631	5407	5580

Type	6 F	adar	May	eform	4
Type	υг	lauai	vvav	eioiiii	4

Туре 6	1.0	333.3	9	0.3333	300.0000000
Frequency List (MHz)	o	1	2	3	4
0	5425	5335	5640	5411	5354
5	5307	5404	5379	5690	5649
10	5653	5533	5702	5338	5410
15	5467	5351	5508	5534	5584
20	5314	5479	5424	5278	5342
25	5537	5394	5570	5489	5547
30	5290	5341	5365	5474	5581
35	5566	5542	5252	5627	5372
40	5297	5611	5677	5306	5718
45	5634	5629	5488	5579	5494
50	5601	5490	5266	5403	5671
55	5258	5709	5416	5639	5638
60	5559	5615	5393	5463	5613
65	5539	5587	5589	5554	5723
70	5631	5603	5632	5364	5472
75	5697	5349	5628	5332	5257
80	5400	5657	5622	5325	5309
85	5528	5670	5582	5376	5435
90	5714	5538	5407	5468	5561
95	5418	5429	5281	5588	5345

Туре 6	1.0	333.3	9	0.3333	300,0000000
Frequency List (MHz)	0	1	2	3	4
0	5583	5574	5576	5572	5349
5	5329	5454	5378	5381	5584
10	5419	5268	5436	5431	5555
15	5478	5611	5482	5301	5322
20	5645	5365	5270	5315	5328
25	5721	5298	5593	5581	5575
30	5276	5676	5580	5626	5401
35	5608	5633	5523	5305	5286
40	5694	5615	5546	5715	5466
45	5609	5571	5540	5547	5488
50	5366	5442	5285	5556	5653
55	5604	5353	5586	5522	5628
60	5655	5468	5510	5632	5377
65	5672	5667	5338	5524	5265
70	5325	5587	5459	5452	5303
75	5434	5257	5473	5688	5302
80	5376	5277	5677	5255	5372
85	5519	5334	5713	5594	5324
90	5541	5690	5702	5400	5567
95	5331	5357	5529	5256	5716

T	^ F		10/		^
Type	ОΓ	lauai	vvave	eform	O

Туре 6	1.0	333. 3	9	0.3333	300.0000000
Frequency List (MHz)	0	1	2	3	4
0	5363	5338	5512	5258	5416
5	5391	5351	5529	5444	5685
10	5515	5683	5309	5631	5452
15	5643	5605	5714	5527	5493
20	5330	5403	5359	5288	5691
25	5670	5404	5697	5615	5617
30	5640	5633	5320	5400	5696
35	5272	5724	5458	5297	5450
40	5302	5553	5311	5712	5395
45	5589	5654	5598	5600	5278
50	5717	5618	5505	5374	5282
55	5500	5317	5547	5543	5672
60	5557	5651	5318	5300	5336
65	5578	5621	5606	5645	5319
70	5662	5575	5301	5546	5331
75	5475	5446	5362	5686	5270
80	5540	5276	5664	5594	5279
85	5262	5350	5715	5473	5582
90	5436	5284	5406	5261	5423
95	5324	5719	5455	5648	5422

Type 6 Radar Waveform_7

Туре 6	1.0	333.3	9	0.3333	300,0000000
Frequency List (MHz)	0	1	2	3	4
0	5618	5674	5448	5419	5636
5	5433	5276	5604	5607	5417
10	5349	5472	5350	5351	5473
15	5634	5257	5342	5572	5685
20	5716	5405	5344	5261	5482
25	5522	5423	5649	5281	5626
30	5590	5535	5552	5411	5340
35	5687	5708	5686	5289	5491
40	5454	5709	5324	5569	5262
45	5656	5556	5640	5496	5319
50	5560	5580	5444	5408	5501
55	5258	5431	5305	5483	5545
60	5637	5524	5304	5570	5642
65	5380	5346	5677	5270	5675
70	5622	5277	5505	5300	5595
75	5492	5343	5366	5704	5339
80	5564	5314	5657	5533	5700
85	5542	5583	5427	5355	5256
90	5449	5412	5295	5683	5336
95	5510	5632	5320	5252	5547

Typ	e 6	Rada	r Wav	eform/	8
1 9 12	-	Naua	ıvvav	/CIUIIII	O

Туре 6	1.0	333.3	9	0.3333	300.0000000
Frequency List (MHz)	0	1	2	3	4
0	5398	5438	5384	5483	5478
5	5572	5298	5679	5295	5624
10	5280	5261	5391	5546	5494
15	5722	5287	5445	5520	5499
20	5724	5474	5285	5440	5709
25	5370	5374	5335	5527	5683
30	5323	5515	5547	5653	5326
35	5714	5453	5528	5386	5600
40	5700	5565	5429	5694	5328
45	5631	5452	5345	5609	5430
50	5372	5495	5607	5649	5403
55	5291	5596	5358	5448	5688
60	5402	5434	5648	5587	5439
65	5560	5470	5602	5519	5581
70	5687	5481	5371	5256	5678
75	5471	5253	5464	5269	5715
80	5635	5324	5618	5393	5399
85	5561	5509	5657	5375	5637
90	5548	5506	5454	5614	5418
95	5707	5278	5616	5693	5583

Туре б	1.0	333.3	9	0.3333	300.0000000
Frequency List (MHz)	0	1	2	3	4
0	5556	5677	5320	5644	5698
5	5614	5279	5458	5453	5686
10	5525	5529	5266	5515	5335
15	5414	5451	5565	5691	5257
20	5640	5701	5432	5682	5636
25	5323	5538	5631	5717	5365
30	5404	5504	5393	5478	5437
35	5592	5619	5539	5611	5648
40	5367	5459	5325	5560	5428
45	5675	5662	5317	5723	5671
50	5658	5263	5710	5309	5312
55	5638	5507	5373	5466	5338
60	5532	5368	5386	5513	5328
65	5468	5617	5519	5276	5427
70	5443	5681	5704	5423	5616
75	5360	5303	5305	5395	5503
80	5655	5557	5562	5558	5314
85	5354	5416	5652	5304	5424
90	5447	5457	5392	5620	5697
95	5591	5465	5271	5270	5711

Type	6	Radar	Waveform	10
1 9 0 0	v	Nauai	VVAVCIOIIII	10

Type 6	1.0	333.3	9	0.3333	300.0000000
Frequency List (MHz)	0	1	2	3	4
0	5336	5441	5256	5330	5540
5	5656	5720	5354	5524	5660
10	5520	5411	5570	5364	5536
15	5423	5541	5554	5610	5408
20	5643	5709	5264	5521	5655
25	5650	5266	5260	5276	5504
30	5390	5461	5608	5252	5257
35	5710	5647	5314	5525	5378
40	5353	5683	5699	5322	5392
45	5412	5258	5715	5582	5502
50	5372	5352	5427	5557	5497
55	5326	5344	5595	5503	5477
60	5675	5687	5459	5626	5417
65	5653	5254	5612	5703	5306
70	5644	5583	5382	5585	5480
75	5349	5286	5613	5436	5624
80	5625	5555	5424	5560	5631
85	5308	5546	5381	5483	5527
90	5472	5469	5430	5300	5707
95	5566	5409	5681	5489	5444

Туре 6	1.0	333.3	9	0.3333	300.0000000
Frequency List (MHz)	0	1	2	3	4
0	5591	5680	5667	5491	5285
5	5698	5645	5429	5687	5392
10	5451	5675	5611	5559	5557
15	5414	5668	5657	5655	5600
20	5651	5400	5513	5628	5412
25	5599	5372	5461	5310	5546
30	5279	5418	5348	5404	5455
35	5395	5326	5443	5467	5439
40	5692	5436	5621	5367	5319
45	5321	5691	5316	5293	5469
50	5378	5548	5538	5250	5501
55	5685	5695	5446	5523	5693
60	5724	5422	5507	5610	5405
65	5352	5366	5592	5561	5438
70	5411	5684	5311	5309	5396
75	5341	5457	5503	5492	5267
80	5424	5626	5313	5688	5552
85	5716	5463	5473	5271	5641
90	5437	5300	5670	5634	5533
95	5712	5589	5426	5255	5665

Type	6 Rad	dar W	/avef	orm	12

Туре 6	1.0	333.3	9	0.3333	300,0000000
Frequency List (MHz)	0	1	2	3	4
0	5371	5444	5603	5652	5602
5	5362	5667	5504	5375	5599
10	5285	5464	5279	5578	5502
15	5320	5317	5659	5566	5621
20	5601	5678	5451	5575	5565
25	5722	5588	5643	5466	5653
30	5275	5437	5417	5714	5620
35	5353	5531	5519	5559	5607
40	5316	5250	5372	5299	5277
45	5346	5259	5254	5724	5336
50	5627	5548	5348	5398	5649
55	5636	5342	5664	5378	5358
60	5339	5436	5448	5650	5315
65	5628	5296	5330	5689	5297
70	5409	5720	5535	5300	5426
75	5623	5538	5723	5579	5261
80	5473	5477	5373	5549	5366
85	5412	5331	5488	5490	5324
90	5539	5271	5374	5687	5443
95	5310	5382	5305	5580	5486

Type 6 Radar Waveform_13

Туре 6	1.0	333.3	9	0.3333	300.0000000
Frequency List (MHz)	0	1	2	3	4
0	5626	5683	5539	5338	5347
5	5404	5592	5579	5538	5428
10	5691	5253	5693	5474	5599
15	5590	5350	5388	5648	5509
20	5570	5635	5659	5594	5574
25	5566	5303	5669	5281	5252
30	5629	5332	5681	5330	5576
35	5508	5607	5298	5364	5467
40	5602	5497	5372	5410	5557
45	5352	5382	5335	5302	5621
50	5605	5425	5387	5716	5371
55	5292	5489	5603	5351	5636
60	5507	5523	5409	5646	5359
65	5394	5376	5264	5567	5600
70	5492	5450	5283	5412	5569
75	5511	5259	5268	5326	5356
80	5254	5641	5436	5449	5631
85	5366	5294	5453	5442	5321
90	5688	5545	5256	5460	5365
95	5255	5280	5662	5684	5448

Tν	ne	6	Ra	dar	Wave	form	14

Туре 6	1.0	333.3	9	0.3333	300,0000000
Frequency List (MHz)	0	1	2	3	4
0	5309	5447	5475	5499	5664
5	5446	5614	5654	5604	5635
10	5622	5517	5259	5669	5620
15	5678	5477	5394	5693	5701
20	5578	5326	5600	5683	5547
25	5357	5252	5506	5298	5315
30	5294	5518	5289	5421	5579
35	5293	5715	5696	5403	5548
40	5278	5306	5307	5435	5515
45	5407	5486	5710	5465	5393
50	5355	5411	5384	5601	5438
55	5330	5572	5677	5557	5541
60	5455	5606	5636	5688	5354
65	5575	5660	5340	5577	5603
70	5338	5492	5295	5522	5269
75	5512	5418	5487	5267	5388
80	5608	5510	5708	5351	5571
85	5257	5645	5493	5569	5508
90	5551	5717	5613	5430	5574
95	5420	5714	5653	5641	5311

Type 6 Radar Waveform_15

Туре 6	1.0	333. 3	9	0.3333	300,0000000
Frequency List (MHz)	0	1	2	3	4
0	5564	5686	5411	5660	5409
5	5488	5539	5632	5292	5367
10	5456	5403	5300	5641	5669
15	5604	5497	5263	5418	5586
20	5395	5541	5675	5520	5720
25	5579	5709	5499	5349	5336
30	5407	5721	5636	5256	5588
35	5282	5312	5674	5701	5667
40	5620	5390	5373	5280	5404
45	5318	5690	5548	5354	5408
50	5298	5260	5302	5489	5419
55	5558	5511	5652	5480	5668
60	5378	5299	5486	5286	5400
65	5637	5639	5645	5287	5476
70	5691	5352	5515	5267	5366
75	5614	5288	5385	5494	5291
80	5397	5562	5443	5546	5647
85	5510	5317	5362	5447	5342
90	5706	5344	5654	5398	5442
95	5591	5475	5320	5551	5523

Type	6	Radar	Waveform	16
1 9 0 0	v	Nauai	VVAVCIOIIII	

Туре 6	1.0	333.3	9	0.3333	300.0000000
Frequency List (MHz)	0	1	2	3	4
0	5344	5450	5347	5724	5251
5	5627	5561	5707	5455	5671
10	5387	5667	5341	5487	5662
15	5282	5256	5600	5686	5497
20	5579	5289	5493	5511	5528
25	5340	5603	5383	5378	5393
30	5678	5279	5505	5311	5421
35	5403	5470	5379	5459	5473
40	5520	5401	5722	5670	5631
45	5412	5461	5563	5611	5478
50	5540	5605	5693	5405	5578
55	5465	5446	5471	5451	5322
60	5543	5714	5409	5329	5601
65	5683	5380	5557	5288	5338
70	5518	5494	5342	5583	5531
75	5441	5269	5637	5604	5547
80	5440	5363	5647	5352	5280
85	5457	5355	5498	5526	5509
90	5660	5688	5551	5608	5530
95	5304	5449	5502	5517	5425

Type 6 Radar Waveform_17

Type 6	1.0	333.3	9	0.3333	300,0000000
Frequency List (MHz)	0	1	2	3	4
0	5599	5689	5283	5410	5471
5	5669	5486	5307	5618	5403
10	5318	5456	5479	5682	5683
15	5370	5383	5703	5256	5424
20	5505	5630	5520	5281	5466
25	5399	5380	5543	5707	5417
30	5517	5282	5635	5494	5657
35	5606	5560	5363	5629	5592
40	5395	5653	5627	5285	5398
45	5651	5650	5714	5470	5514
50	5450	5487	5654	5591	5694
55	5516	5349	5291	5419	5539
60	5290	5422	5451	5708	5286
65	5546	5710	5275	5632	5614
70	5687	5449	5557	5457	5324
75	5343	5570	5552	5584	5250
80	5414	5617	5328	5310	5437
85	5558	5550	5340	5649	5698
90	5452	5266	5724	5674	5666
95	5625	5540	5660	5585	5288

T	/ne	6	Radar	Waveform	18
	y DE	U	Nauai	vvavelollli	10

Туре 6	1.0	333.3	9	0.3333	300.0000000
Frequency List (MHz)	0	1	2	3	4
0	5282	5453	5694	5571	5313
5	5711	5508	5382	5684	5610
10	5627	5720	5520	5402	5704
15	5458	5413	5331	5301	5616
20	5513	5321	5461	5370	5439
25	5287	5707	5271	5336	5451
30	5559	5268	5592	5709	5431
35	5329	5699	5585	5634	5307
40	5506	5261	5565	5428	5492
45	5483	5630	5322	5567	5715
50	5266	5355	5642	5308	5339
55	5671	5479	5373	5254	5487
60	5393	5580	5398	5706	5378
65	5536	5696	5625	5581	5553
70	5422	5719	5360	5529	5310
75	5621	5667	5294	5424	5296
80	5252	5569	5584	5317	5337
85	5278	5608	5303	5366	5663
90	5503	5514	5544	5364	5672
95	5659	5264	5640	5369	5342

Type 6 Radar Waveform_19

Type 6 Frequency List (MHz)	1 0 0	333.3	9 2	0, 3333 3	300,0000000
5	5375	5433	5457	5372	5439
10	5558	5509	5561	5597	5250
15	5449	5540	5337	5724	5333
20	5424	5390	5499	5362	5412
25	5553	5656	5474	5485	5601
30	5632	5549	5583	5624	5266
35	5298	5430	5460	5517	5548
40	5344	5503	5668	5489	5610
45	5405	5523	5602	5617	5531
50	5693	5397	5615	5667	5327
55	5444	5306	5267	5709	5563
60	5651	5307	5459	5264	5448
65	5530	5589	5254	5611	5638
70	5698	5393	5721	5516	5270
75	5488	5416	5687	5346	5265
80	5365	5481	5334	5473	5453
85	5450	5363	5461	5287	5529
90	5678	5304	5281	5695	5353
95	5715	5342	5351	5641	5349