

FCC RF Test Report

APPLICANT	:	ZTE CORPORATION
EQUIPMENT	:	LTE/WCDMA/GSM(GPRS) Multi-Mode
		Digital Mobile Phone
BRAND NAME	:	ZTE
MODEL NAME	:	Z3352CA
FCC ID	:	SRQ-Z3352CA
STANDARD	:	FCC Part 15 Subpart C §15.247
CLASSIFICATION	:	(DSS) Spread Spectrum Transmitter

The product was received on Jan. 06, 2020 and testing was completed on Mar. 04, 2020. We, Sporton International (Kunshan) Inc., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (Kunshan) Inc., the test report shall not be reproduced except in full.

JasonJia

Reviewed by: Jason Jia / Supervisor

Journes Muang

Approved by: James Huang / Manager

Sporton International (Kunshan) Inc. No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

TABLE OF CONTENTS

		N HISTORY	
SU	MMAR	Y OF TEST RESULT	.4
1	GENE	ERAL DESCRIPTION	.5
	1.1	Applicant	.5
	1.2	Manufacturer	.5
	1.3	Product Feature of Equipment Under Test	.5
	1.4	Product Specification of Equipment Under Test	.6
	1.5	Modification of EUT	.6
	1.6	Testing Location	.7
	1.7	Test Software	.7
	1.8	Applicable Standards	.7
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	.8
	2.1	Carrier Frequency Channel	.8
	2.2	Test Mode	.9
	2.3	Connection Diagram of Test System	10
	2.4	Support Unit used in test configuration and system	10
	2.5	EUT Operation Test Setup	11
	2.6	Measurement Results Explanation Example	11
3	TEST	RESULT	12
	3.1	Number of Channel Measurement	12
	3.2	Hopping Channel Separation Measurement	14
	3.3	Dwell Time Measurement	20
	3.4	20dB and 99% Bandwidth Measurement	22
	3.5	Output Power Measurement	33
	3.6	Conducted Band Edges Measurement	34
	3.7	Conducted Spurious Emission Measurement	41
	3.8	Radiated Band Edges and Spurious Emission Measurement	51
	3.9	AC Conducted Emission Measurement	55
	3.10	Antenna Requirements	57
4	LIST	OF MEASURING EQUIPMENT	58
5	UNCE	ERTAINTY OF EVALUATION	59
AP	PEND	X A. CONDUCTED TEST RESULTS	
AP	PENDI	X B. AC CONDUCTED EMISSION TEST RESULT	
AP	PENDI	X C. RADIATED SPURIOUS EMISSION	
AP	PENDI	X D. DUTY CYCLE PLOTS	
AP	PENDI	X E. SETUP PHOTOGRAPHS	

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR010610A	Rev. 01	Initial issue of report	Mar. 12, 2020

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(1)	Number of Channels	≥ 15Chs	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	≥ 2/3 of 20dB BW	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	≤ 0.4sec in 31.6sec period	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	NA	Pass	-
3.4	-	99% Bandwidth	-	Pass	-
3.5	15.247(b)(1)	Peak Output Power	≤ 125 mW	Pass	-
3.6	15.247(d)	Conducted Band Edges	≤ 20dBc	Pass	-
3.7	15.247(d)	Conducted Spurious Emission	≤ 20dBc	Pass	-
3.8	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 19.73 dB at 2484.460 MHz
3.9	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 9.86 dB at 0.527 MHz
3.10	15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Sporton International (Kunshan) Inc. TEL : +86-512-57900158 FAX : +86-512-57900958 FCC ID: SRQ-Z3352CA

1 General Description

1.1 Applicant

ZTE CORPORATION

ZTE Plaza, Keji Road South, Hi-Tech, Industrial Park, Nanshan District, Shenzhen, Guangdong, 518057, P.R.China

1.2 Manufacturer

ZTE CORPORATION

ZTE Plaza, Keji Road South, Hi-Tech, Industrial Park, Nanshan District, Shenzhen, Guangdong, 518057, P.R.China

1.3 Product Feature of Equipment Under Test

Product Feature					
Equipment LTE/WCDMA/GSM(GPRS) Multi-Mode Digital Mobile Phone					
Brand Name ZTE					
Model Name	Z3352CA				
FCC ID	SRQ-Z3352CA				
	GSM/WCDMA/LTE				
EUT supports Radios application	WLAN 2.4GHz 802.11b/g/n HT20				
	Bluetooth BR/EDR/LE				
	GNSS				
	Conduction: 868815040004253				
IMEI Code	Radiation: 868815040004238				
	Conducted: N/A				
HW Version	Z3352CAHW1.0				
SW Version	Z3352CAV1.0.1B02				
EUT Stage	Identical Prototype				

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification				
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz			
Number of Channels	79			
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78			
Maximum Output Power to Antenna	Bluetooth BR(1Mbps) : 7.37 dBm (0.0055 W) Bluetooth EDR (2Mbps) : 6.83 dBm (0.0048 W) Bluetooth EDR (3Mbps) : 7.01 dBm (0.0050 W)			
99% Occupied Bandwidth	Bluetooth BR(1Mbps) : 0.9059MHz Bluetooth EDR (2Mbps) : 1.1664MHz Bluetooth EDR (3Mbps) : 1.1548MHz			
Antenna Type / Gain	PIFA Antenna type with gain 0.04 dBi			
Type of Modulation	Bluetooth BR (1Mbps) : GFSK Bluetooth EDR (2Mbps) : π /4-DQPSK Bluetooth EDR (3Mbps) : 8-DPSK			

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

<FCC>-KS

Sporton International (Kunshan) Inc. is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Test Firm	Sporton International (Kunshan) Inc.			
	No. 1098, Pengxi North Road, Kunshan Economic Development Zone			
Test Site Location	Jiangsu Province 215300 People's Republic of China			
	TEL : +86-512-57900158			
	FAX : +86-512-57900958			
	Sporton Site No.	FCC Designation No.	FCC Test Firm Registration No.	
Test Site No.	CO01-KS 03CH06-KS TH01-KS	CN1257	314309	

1.7 Test Software

ltem	Site	Manufacture	Name	Version
1.	03CH06-KS	AUDIX	E3	6.2009-8-24al
2.	CO01-KS	AUDIX	E3	6.2009-8-24

1.8 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.247
- FCC KDB 558074 D01 15.247 Meas Guidance v05r02
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

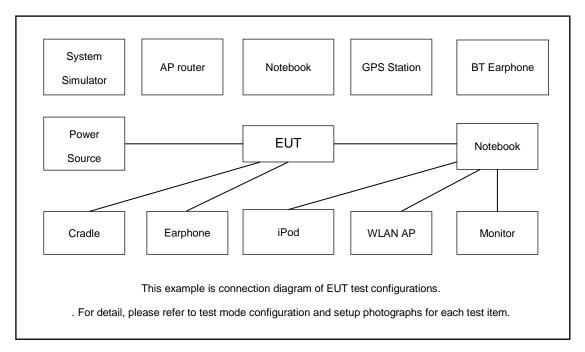
2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (X plane) were recorded in this report, and the worst mode of radiated spurious emissions is Bluetooth 1Mbps mode, and recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.


Summary table of Test Cases						
		Data Rate / Modulation				
Test Item	Bluetooth BR 1Mbps	Bluetooth EDR 2Mbps	Bluetooth EDR 3Mbps			
	GFSK	π /4-DQPSK	8-DPSK			
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz			
	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz			
Test Cases	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz			
		Bluetooth BR 1Mbps GFSK				
Radiated		Mode 1: CH00_2402 MHz				
Test Cases		Mode 2: CH39_2441 MHz				
		Mode 3: CH78_2480 MHz				
AC						
Conducted	Mode 1 : GSM 850 Idle + BI	uetooth Link + WLAN Link (2.4	4G) + Adapter + Earphone			
Emission						
Remark:						
1. For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate						
has the hig	has the highest RF output power at preliminary tests, and no other significantly frequencies found in					
conducted spurious emission.						

The following summary table is showing all test modes to demonstrate in compliance with the standard.

2. For Radiated Test Cases, The tests were performed with Adapter , Earphone and USB Cable .

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	LTE Base Station	Anritus	MT8820C	N/A	N/A	Unshielded,1.8m
2.	Bluetooth Earphone	Lenovo	LBH308	N/A	N/A	N/A
3.	Notebook	Lenovo	QDS-BRCM1050I	PRC4	N/A	shielded cable DC O/P 1.8m , Unshielded AC I/P cable 1.8m
4.	WLAN AP	D-link	DIR-655	KA21R655B1	N/A	Unshielded,1.8m
5.	SD Card	Kingston	SDC4/4GB	N/A	N/A	N/A
6.	Earphone	Lenovo	P121	N/A	N/A	Unshielded,1.2m

2.5 EUT Operation Test Setup

For Bluetooth function, the engineering test program was provided and enabled to make EUT connect with Bluetooth base station to continuous transmit/receive.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss. $Offset = RF \ cable \ loss.$ Following shows an offset computation example with cable loss 5.40 dB.

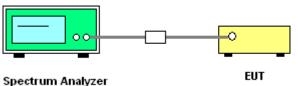
Offset(dB) = RF cable loss(dB). = 5.40 (dB)

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

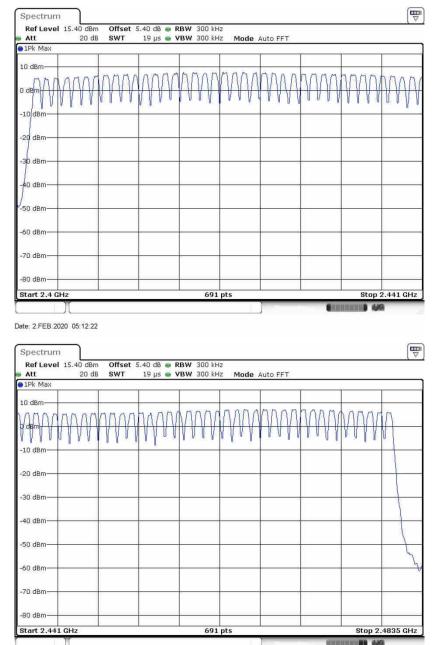

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup



opooranii, inalyzoi

3.1.5 Test Result of Number of Hopping Frequency

Please refer to Appendix A.

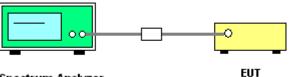
Number of Hopping Channel Plot on Channel 00 - 78

Date: 2.FEB.2020 05:12:30

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.


3.2.2 Measuring Instruments

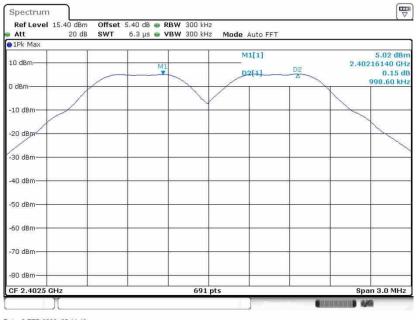
The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

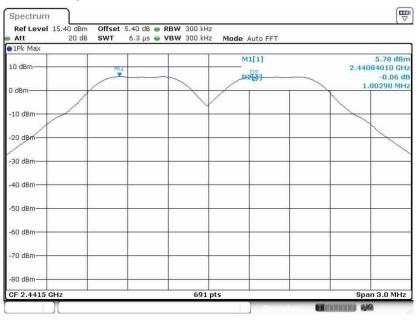
- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.2.4 Test Setup

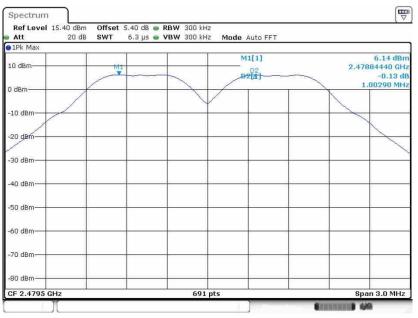
Spectrum Analyzer


3.2.5 Test Result of Hopping Channel Separation

Please refer to Appendix A.

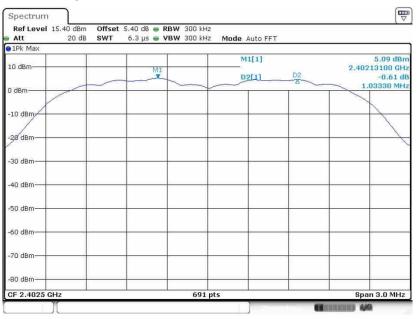

<1Mbps>

Channel Separation Plot on Channel 00 - 01


Date: 2.FEB.2020 05:14:43

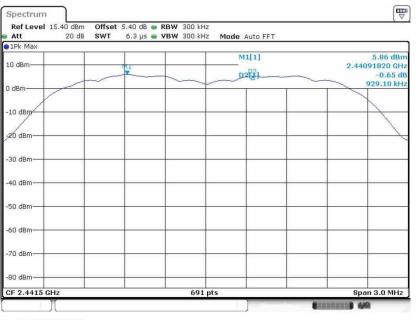
Channel Separation Plot on Channel 39 - 40

Date: 2.FEB.2020 05:18:15



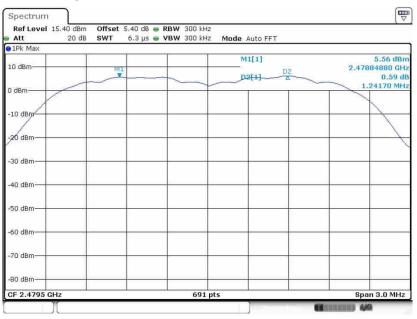
Channel Separation Plot on Channel 77 - 78

Date: 2.FEB.2020 05:25:16


<2Mbps>

Channel Separation Plot on Channel 00 - 01

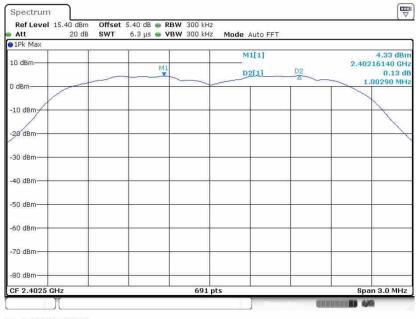
Date: 2 FEB.2020 06:14:54



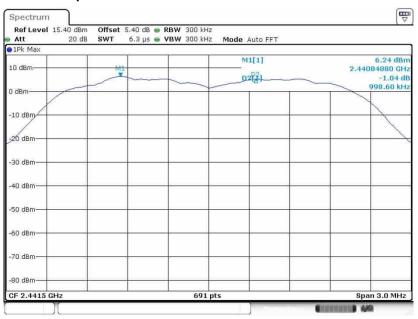
Channel Separation Plot on Channel 39 - 40

Date: 2.FEB.2020 06:18:07

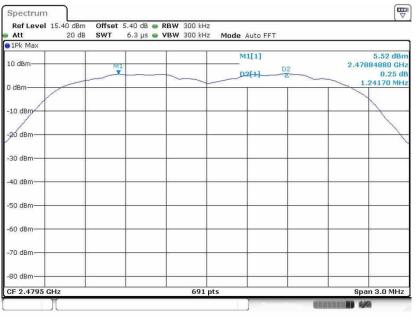
Channel Separation Plot on Channel 77 - 78



Date: 2.FEB.2020 06:55:01


<3Mbps>

Channel Separation Plot on Channel 00 - 01


Date: 2.FEB.2020 06:30:35

Channel Separation Plot on Channel 39 - 40

Date: 2.FEB.2020 06:33:51

Channel Separation Plot on Channel 77 - 78

Date: 2.FEB.2020 06:41:05

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup



Spectrum Analyzer

3.3.5 Test Result of Dwell Time

Please refer to Appendix A.

Package Transfer Time Plot

Remark:

 In normal mode, hopping rate is 1600 hops/s with 6 slots (5 Transmit and 1 Receive slot) in 79 hopping channels.

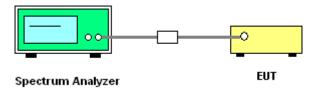
With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.

- In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels.
 With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s),
 Hops Over Occupancy Time comes to (800 / 6 / 20) x (0.4 x 20) = 53.33 hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only

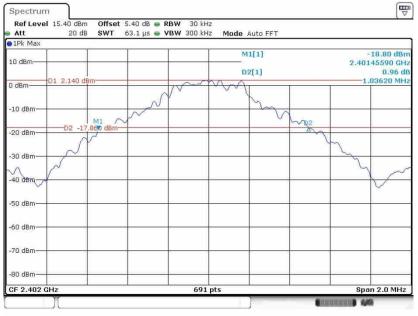

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Use the following spectrum analyzer settings for 20dB Bandwidth measurement.
 Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
 RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel;
 RBW ≥ 1% of the 99% bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- 6. Measure and record the results in the test report.

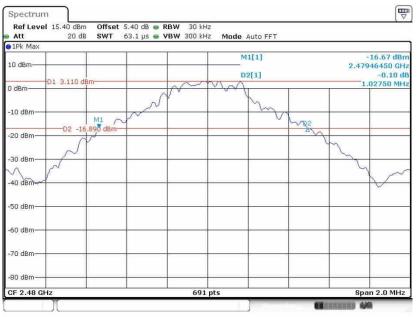
3.4.4 Test Setup


3.4.5 Test Result of 20dB Bandwidth

Please refer to Appendix A.

<1Mbps>

20 dB Bandwidth Plot on Channel 00


Date: 2.FEB.2020 05:09:27

20 dB Bandwidth Plot on Channel 39

Date: 2.FEB.2020 05:15:38



20 dB Bandwidth Plot on Channel 78

Date: 2 FEB 2020 05:20:23

<2Mbps>

20 dB Bandwidth Plot on Channel 00

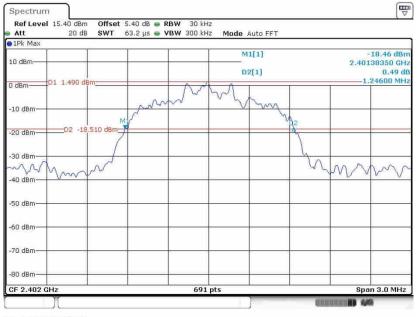
Date: 2.FEB.2020 06:06:16



20 dB Bandwidth Plot on Channel 39

Date: 2.FEB.2020 06:15:44

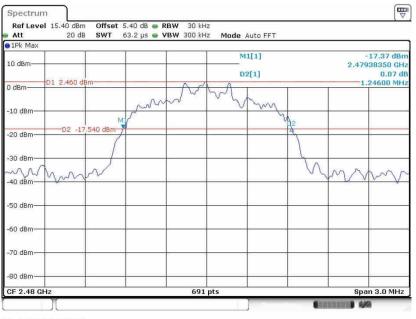
20 dB Bandwidth Plot on Channel 78



Date: 2.FEB.2020 06:19:07

<3Mbps>

20 dB Bandwidth Plot on Channel 00

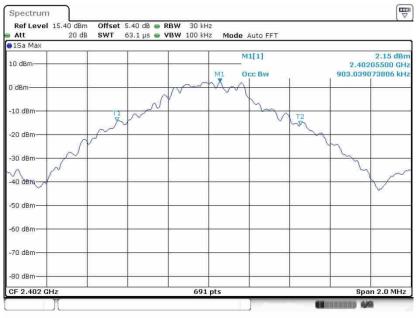

Date: 2.FEB.2020 06:26:13

20 dB Bandwidth Plot on Channel 39

Date: 2.FEB.2020 06:31:32

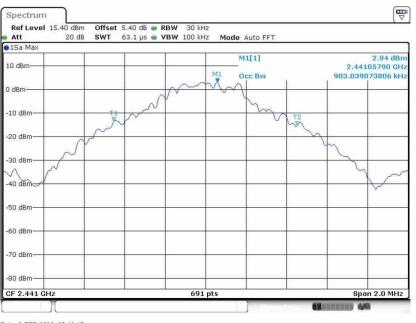
20 dB Bandwidth Plot on Channel 78

Date: 2.FEB.2020 06:34:36



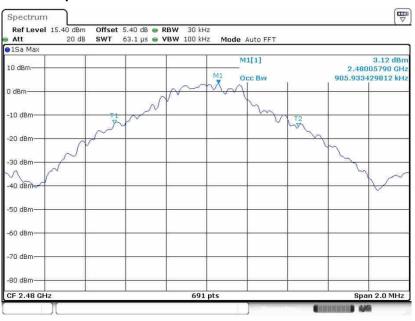
3.4.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.


<1Mbps>

99% Occupied Bandwidth Plot on Channel 00

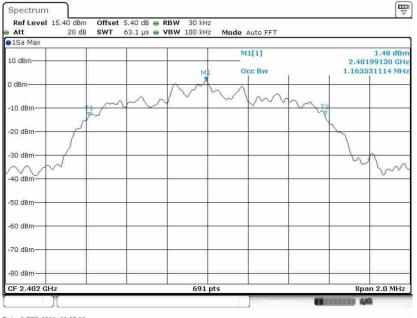
Date: 2.FEB.2020 05:11:06



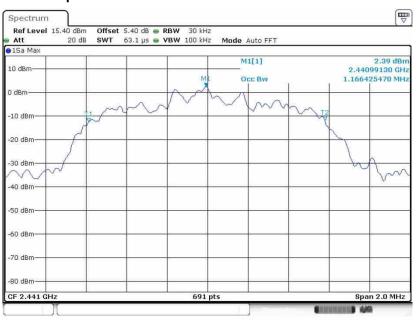
99% Occupied Bandwidth Plot on Channel 39

Date: 2.FEB.2020 05:16:15

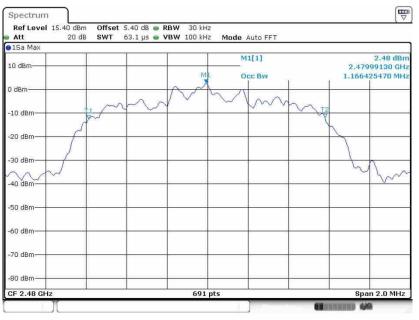
99% Occupied Bandwidth Plot on Channel 78



Date: 2.FEB.2020 05:21:31

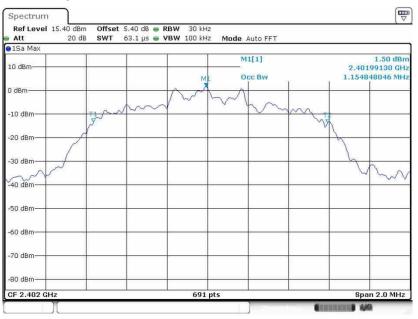

<2Mbps>

99% Occupied Bandwidth Plot on Channel 00


Date: 2.FEB.2020 06:07:22

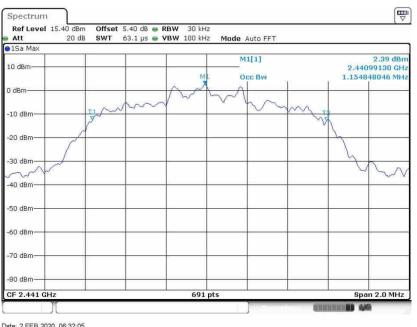
99% Occupied Bandwidth Plot on Channel 39

Date: 2.FEB.2020 06:16:17



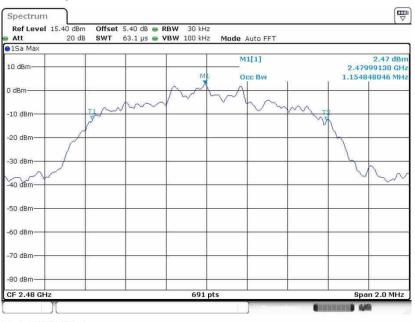
99% Occupied Bandwidth Plot on Channel 78

Date: 2 FEB 2020 06:20:52


<3Mbps>

99% Occupied Bandwidth Plot on Channel 00

Date: 2 FEB 2020 06:28:30



99% Occupied Bandwidth Plot on Channel 39

Date: 2.FEB.2020 06:32:05

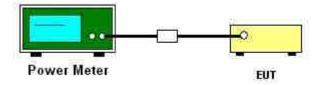
Date: 2.FEB.2020 06:39:05

Note : The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts. The power limit for 1Mbps, 2Mbps, 3Mbps and AFH modes are 0.125 watts.


3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

Please refer to Appendix A.

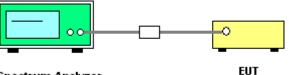
3.5.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

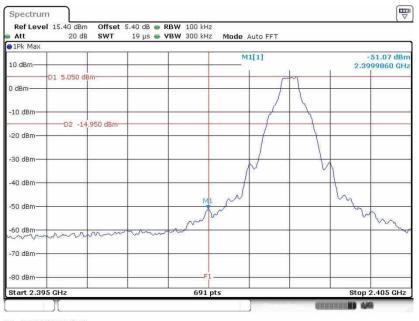

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

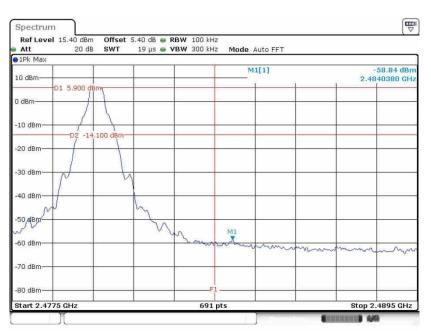
3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW = 100kHz, VBW = 300kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2. and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup


Spectrum Analyzer

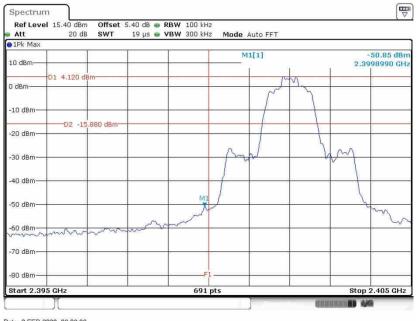
3.6.5 Test Result of Conducted Band Edges


<1Mbps>

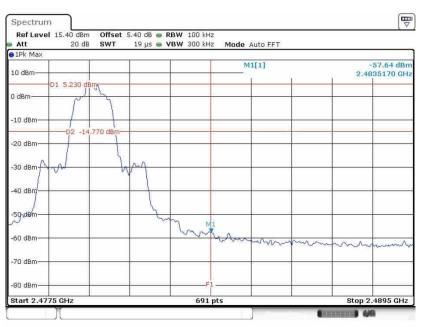
Low Band Edge Plot on Channel 00

Date: 2.FEB.2020 05:10:03

High Band Edge Plot on Channel 78



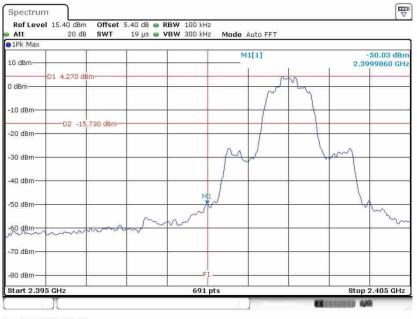
Date: 2 FEB 2020 05:20:39


<2Mbps>

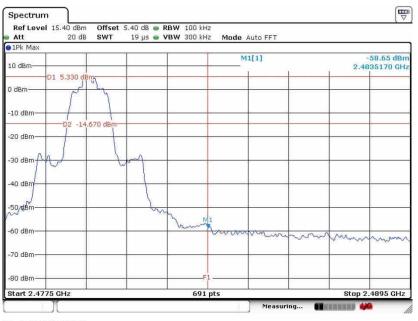
Low Band Edge Plot on Channel 00

Date: 2.FEB.2020 06:06:36

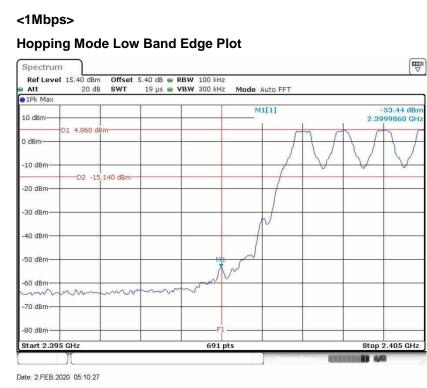
High Band Edge Plot on Channel 78



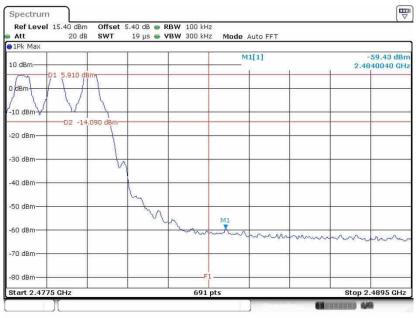
Date: 2 FEB 2020 06:20:03


<3Mbps>

Low Band Edge Plot on Channel 00


Date: 2.FEB.2020 06:27:25

High Band Edge Plot on Channel 78

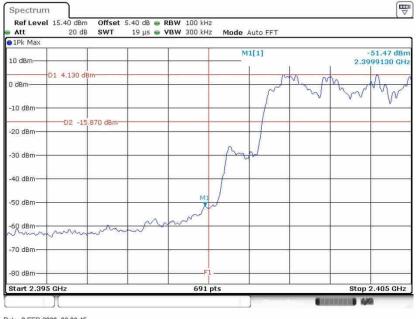


Date: 2.FEB.2020 06:38:06

3.6.6 Test Result of Conducted Hopping Mode Band Edges

Hopping Mode High Band Edge Plot

Date: 2 FEB 2020 05:20:54


720510

720510

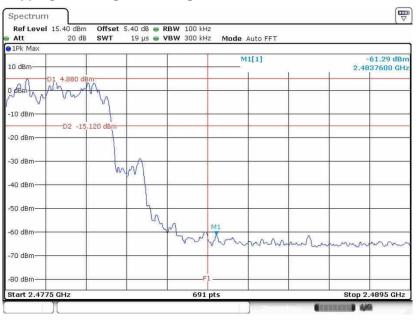

<2Mbps>

Hopping Mode Low Band Edge Plot

Date: 2.FEB.2020 06:06:45

Hopping Mode High Band Edge Plot

Date: 2.FEB.2020 06:20:16


<3Mbps>

Hopping Mode Low Band Edge Plot

Date: 2.FEB.2020 06:27:51

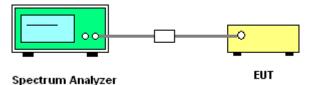
Hopping Mode High Band Edge Plot

Date: 2.FEB.2020 06:36:38

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

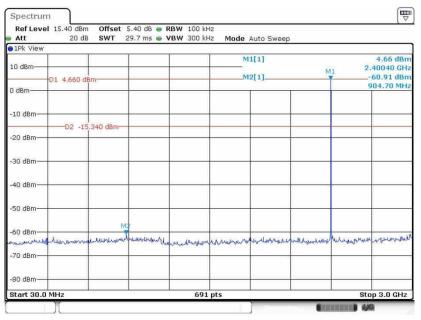

3.7.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

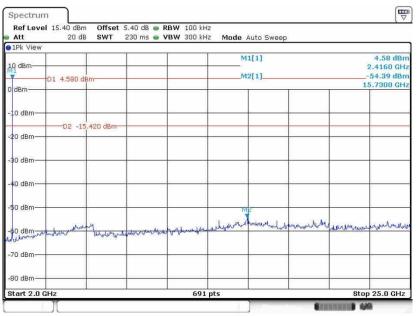
3.7.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.7.4 Test Setup


Sporton International (Kunshan) Inc. TEL : +86-512-57900158 FAX : +86-512-57900958 FCC ID: SRQ-Z3352CA

3.7.5 Test Result of Conducted Spurious Emission


<1Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 2.FEB.2020 05:11:36

1Mbps CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 2.FEB.2020 05:12:05

Att	el 15.40 dBm 20 dB		29.7 ms	RBW 100 kł VBW 300 kł		Auto Sweep			
1Pk View	S				2.	id.			
10 dBm	D1 5.520 df					1[1] 2[1]		MI	5.52 dBn 2.43910 GH: 61.07 dBn
0 dBm	TU1 5.520 di	am		-	191.	2[1]		Т	2.78720 GH
-10 dBm—									
-20 dBm—		.480 dBm-					-		_
30 dBm—				-		P	-		
-40 dBm									
-50 dBm	-								
-60 dBm	II. B. et B. w		upper when when			dan waa Oo l		a Consultant	M2
70 dBm-	altra qu Ulfirtha a (1946)		1	NUMABILITY	Caller of the Caller	Contraction Security Mar	and the second sec		three not to
80 dBm			_		-			-	

CSE Plot on Ch 39 between $30MHz \sim 3 GHz$

Date: 2.FEB.2020 05:16:46

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Att	20 dB	SWT	230 ms 🥌 🛚	/BW 300 kH	z Mode	Auto Sweep			
1Pk View			-						
ιΩ dBm					M	1[1]			5.25 dBr 2.4490 GH
	01 5.250 dB	m			M	2[1]			-54.93 dBi
d8m-				-		14.65		1	6.5290 GH
10 dBm			-	-		-			
-	-D2 -14	750 dBm-	-						
20 dBm								-	
30 dBm	-								
40 dBm									
o ubin									
50 dBm						M2			
							1.0		
60 dBm	a oto to phone the	1 A-TPHALINA	when the state of	hall marcharder	malphinen	M VOW-LUNA	whereare	wanthous	walnewall
-balanters +		2.2.200							
70 dBm	-		-	-					
80 dBm	1								
Start 2.0 G	Hz			691	pts			Stop	25.0 GHz

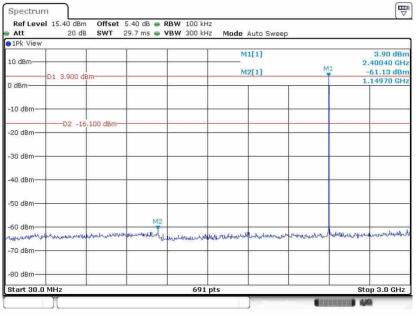
Date: 2.FEB.2020 05:17:17

🛛 Att	20 dE	SWT	29.7 ms 🖷	VBW 300 kH	iz Mode	Auto Sweep	í		
1Pk View	· · · · · ·	r		r		(alter climet)			
10 dBm				-	M	1[1]		M1	5.59 dBr 2.48210 GH
	D1 5.590 d	Bm-	-	-	M	2[1]		T	-61.71 dBr
0 dBm			-						1.05940 GH
-10 dBm			_						
	D2 -14	.410 dBm-							
-20 dBm									
-30 dBm									
-40 dBm			_	-					
-50 dBm									
			M2						
-60 dBm	AN LOUIS IN	camp note		21	di nana ma	all days	MALLIN, MA	in Asr	malipmentitional
	of a burney	and the second the	, in the second	plalan search and a search	PUR Manual Contraction	Collision in a	- only and		to serve a server
-70 dBm									
-80 dBm			_					-	
Start 30.0	MHz			691	nts			1	Stop 3.0 GHz

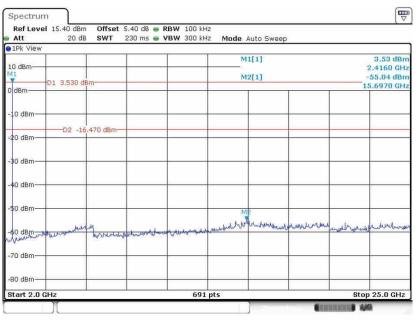
CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 2.FEB.2020 05:22:38

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz


Att	20 dB	SWT	230 ms 🥌 🛚	/BW 300 kH	z Mode	Auto Sweep			
1Pk View		ŵ							
LD dBm					M	1[1]		3	5.34 dB 2.4830 GF
	D1 5.340 d	Bm			M	2[1]			-54.78 dB
dBm			-	-		A 145		1	5.1310 GH
- 1									
10 dBm			_	-		-			-
15.25	D2 -14	.660 dBm-							
0 dBm									
0 dBm						-			
0 dBm				-					
0 dBm					M2				
	1997	anna.			J.	UKIG IT T			
0 dBm	Autow / Un	harman	where where the former	- when the stands	Amperian an	a anti-ph	provence of the	and a carrier	Montheast
		~							
70 dBm				10 H					
30 dBm									-
tart 2.0 C	Hz			691	nts			Stor	25.0 GH

Date: 2.FEB.2020 05:23:15


<2Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 2.FEB.2020 06:13:46

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 2.FEB.2020 06:14:13

Att	20 dB	SWT	29.7 ms 🖷 🕯	VBW 300 kH	iz Mode	Auto Sweep	í		
1Pk View	1 1	·	1	1					10 10 10 10 10 10 10 10 10 10 10 10 10 1
10 dBm					M	1[1]		MI	5.17 dBn 2.47780 GH
	D1 5.170 di	3m			M	2[1]		T	60.99 dBn
0 dBm	-			-		1	Ι		2.95060 GH
10 - 10									
-10 dBm—		.830 dBm-							
-20 dBm—	02 -14	1000 00111							
-30 dBm									
-40 dBm		-		-					
-50 dBm	-								
									Ma
-60 dBm-	and the second	enverses Ma	Magnenward.	7	er av advarde Librar	notestinated	with we all and	her have	www.www.
-70 dBm—			M	a factor and the second	off-Box, and other			CALCULATION CONT	
-70 ubiii									
-80 dBm	-								
Start 30.0	2 8411-			691	nte				Stop 3.0 GHz

CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 2.FEB.2020 06:24:31

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Att	20 dB	SWT	230 ms 👄 ¥	BW 300 kH	z Mode /	uto Sweep			
1Pk View									
0 d8m					M	1[1]			4.60 dBr 2.4830 GH
0 dBm	D1 4.600 di				M	2[1]			55.50 dBi
) dBm	UI 4.000 0	SITT						13	5.6970 GH
10 dBm									
	D2 -15	.400 dBm-							
20 dBm-									
30 dBm									
40 dBm				-					
~									
50 dBm					M	2			
- 100 200	Auch	nda .	and the second states a		and maker with	Munuhunde	nehrmynahu	h a shart a than	underway
EO dBm	w	brokenet	and the first of the state of the	a subservery and					
70 40 -									
70 dBm				Anno anno anno anno anno anno anno anno					
80 dBm									
oo abm									

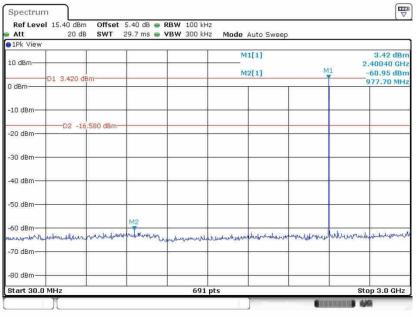
Date: 2.FEB.2020 06:24:58

Att	el 15.40 dBm 20 dB		29.7 ms 🖷	RBW 100 kH VBW 300 kH		Auto Swee	эр		
1Pk View			-	1					
10 dBm			-		5	1[1]		MI	5.22 dBn 2.47780 GH
0 dBm	D1 5.220 de	3m			M	2[1]			-61.94 dBn 2.18120 GH
o aom									
-10 dBm—		e.							
-20 dBm—	D2 -14	.780 dBm-							
-30 dBm	-			-					
-40 dBm		ř.		-			-		
-50 dBm									
-60 dBm		aten La cash	CARLE BAR STRATE	15 703	14 14/15 174 1 0	the states	M2	and	h-dehig-gane and a hard a h
-70 dBm—	-anguranan	-minerthe Pare -		had al war	ell years and and	modi keun naku	no manuar (no		
-80 dBm								_	

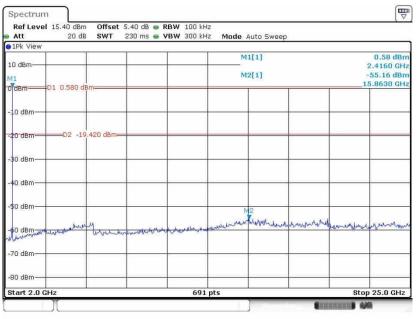
CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 2.FEB.2020 06:23:30

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz


Att	20 dB	SWT	230 ms 👄	VBW 300 kH	z Mode	Auto Sweep			
1Pk View	·	r		T	1				
LO dBm					M	1[1]			4.39 dB 2.4830 GF
1	D1 4,390 d	Bm			M	2[1]			-54.74 dB
) dBm				-				1	5.6300 GH
10 dBm									
20 dBm	D2 -15	.610 dBm—							
30 dBm	-		-	-					
40 dBm									
50 dBm					M				
EO dBmar	etwalking ment	hyrable	Manuar	Jan Martin Martin	mound	Mutather	abornerally	how our	Aurthorn
70 dBm				-					
30 dBm									
start 2.0 (GHz			691	pts			Stor	25.0 GHz

Date: 2.FEB.2020 06:23:56


<3Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 2.FEB.2020 06:29:16

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 2.FEB.2020 06:29:47

Att 🛛	20 dB	SWT	29.7 ms 🥌	VBW 300 kH	iz Mode	Auto Sweep	5		
1Pk View						And and solve the			
10 dBm					M	1[1]			5.02 dBn 2.43910 GH
	01 5.020 di	Bm			M	2[1]		MI	61.49 dBn
0 dBm			-	-		1.25		-	2.97640 GH
-10 dBm-			-	-			-		
	D2 -14	.980 dBm-	_					+	
-20 dBm									
-30 dBm—	-			-		-	-		
-40 dBm	-		-	-			-	-	
-50 dBm—	-		-				-		_
-60 dBm	and the second	and the first state	·		THE ARE DRAFT	a na succión ca	Charles Constant	1	
	e-on-managene	uppen quantura	chall multime f	n manuscher	and the market	water and the service of the service	have an and the	Her and which	non-method
-70 dBm—	1	-	-				-	+	
-80 dBm	-	-				-	-	-	

CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 2.FEB.2020 06:32:37

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Att	20 dE	SWT	230 ms 👄 🛚	/BW 300 kH	z Mode	Auto Sweep			
1Pk View	î î	r.	1						1.5.1.40
ւը dBm—			-		M	1[1]			4.64 dBi 2.4490 GH
Y	D1 4.640 d	Bm			M	2[1]			54.70 dB
d8m	-			-				1	5.6970 GH
10 dBm—				-					1
	D2 -15	5.360 dBm-	_						
20 dBm—									
30 dBm—	-		-	-					1
40 dBm									
50 dBm—			_		M	2			
60 dBm	and a state of the	ny	Ale de la contraction	المربعة	www.www	Whitehough	whenter	aborn Allene as	monution
deproved		10 Junior	AND AND A CONTRACT	SCA 11 1 84					
70 dBm—	-		-	1 Miles 1					- 1
80 dBm—			-						
Start 2.0	GHz			691	nts			Stor	25.0 GHz

Date: 2.FEB.2020 06:33:05

Att 1Pk View	20 dB	SWT	29.7 ms 🖷	VBM 300 KH	12 Mode	Auto Swee	p		
10 dBm-					M	1[1]			4.78 dBm 2.48210 GHz
10 00111	D1 4.780 dl	Bm			M	2[1]		MI	61.35 dBn
0 dBm	01 1000					14.245			2.93770 GH
-10 dBm—	-					-		_	1
-20 dBm—	D2 -15	5.220 dBm-	_			1 		_	
-30 dBm				-			- 24 I.		
-40 dBm				è.			-		
-50 dBm	-								
-60 dBm—									M2
muluchath	here had had the	persistences	ofmenormali	aunormound	mallullaneer	munturknowner	aloutuno	aller have	Lordagenhaminedo
-70 dBm				1- 1-		-		-	11

CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 2.FEB.2020 06:39:49

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Att	20 dB	SWT	230 ms 🝙 '	VBW 300 kH	z Mode /	Auto Sweep			
1Pk View									
LD dBm					M	1[1]			4.69 dBr 2.4830 GH
T CLEM	D1 4.690 d	Brou			M	2[1]			55.32 dBi
) dBm	UT 4,690 0	Bitti;							5.7630 GH
dom									
10 dBm									
	02 15	5.310 dBm-							
20 dBm-	02 -15	1.310 GBII							
30 dBm									
40 dBm	-			-		-			
50 dBm	-			-		0			
					M		00 6 5		
EO dBm	marchen	1 and diated	-		human	a number of the off	wenterenteren	manulyan	adjuter the start
dependenter .		Colored and							
70 dBm				-					
80 dBm		-		-					
start 2.0	GH7			691	nts			Stor	25.0 GHz

Date: 2.FEB.2020 06:40:19

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

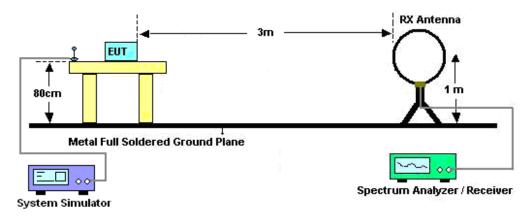
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

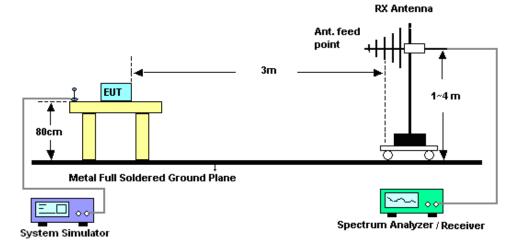
3.8.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

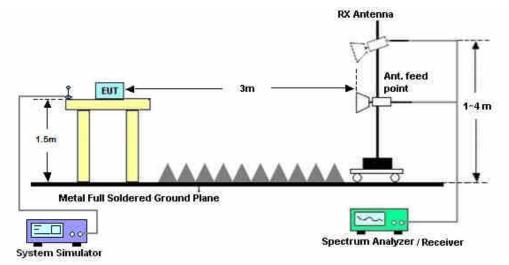
3.8.3 Test Procedures


- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz ; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time = N₁*L₁+N₂*L₂+...+N_{n-1}*LN_{n-1}+N_n*L_n Where N₁ is number of type 1 pulses, L₁ is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log(Duty cycle)
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 8. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.79 dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.



3.8.4 Test Setup


For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz

Sporton International (Kunshan) Inc. TEL : +86-512-57900158 FAX : +86-512-57900958 FCC ID: SRQ-Z3352CA

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C.

3.8.7 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix C.

3.8.8 Duty cycle correction factor for average measurement

Please refer to Appendix D.

3.9 AC Conducted Emission Measurement

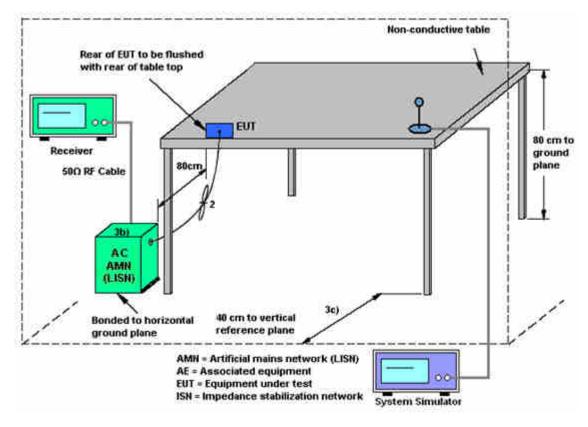
3.9.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted	limit (dBµV)
Frequency of emission (MHZ)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments


The measuring equipment is listed in the section 4 of this test report.

3.9.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.9.4 Test Setup

3.9.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.10 Antenna Requirements

3.10.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.10.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.10.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101040	10Hz~40GHz	Nov. 02, 2019	Feb. 02, 2020	Nov. 01, 2020	Conducted (TH01-KS)
Pulse Power Senor	Anritsu	MA2411B	0917070	300MHz~40GH z	Jan. 13, 2020	Feb. 02, 2020	Jan. 12, 2021	Conducted (TH01-KS)
Power Meter	Anritsu	ML2495A	1005002	50MHz Bandwidth	Jan. 13, 2020	Feb. 02, 2020	Jan. 12, 2021	Conducted (TH01-KS)
EMI Test Receiver	Keysight	N9038A	MY572901 57	3Hz~8.5GHz;M ax 30dBm	Jul. 18, 2019	Mar. 04, 2020	Jul. 17, 2020	Radiation (03CH06-KS)
EXA Spectrum Analyzer	Keysight	N9010A	MY551502 08	10Hz-44GHz	Apr. 16, 2019	Mar. 04, 2020	Apr. 18, 2020	Radiation (03CH06-KS)
Loop Antenna	R&S	HFH2-Z2	100321	9kHz~30MHz	Nov. 10, 2019	Mar. 04, 2020	Nov. 09, 2020	Radiation (03CH06-KS)
Bilog Antenna	TeseQ	CBL6111D	49921	30MHz-1GHz	May 30, 2019	Mar. 04, 2020	May 29, 2020	Radiation (03CH06-KS)
Double Ridge Horn Antenna	ETS-Lindgren	3117	00218652	1GHz~18GHz	Apr. 27, 2019	Mar. 04, 2020	Apr. 26, 2020	Radiation (03CH06-KS)
SHF-EHF Horn	Com-power	AH-840	101115	18GHz~40GHz	Nov. 10, 2019	Mar. 04, 2020	Nov. 09, 2020	Radiation (03CH06-KS)
Amplifier	SONOMA	310N	187289	9KHz ~1GHZ	Aug. 06, 2019	Mar. 04, 2020	Aug. 05, 2020	Radiation (03CH06-KS)
Amplifier	MITEQ	EM18G40GG A	060728	18~40GHz	Jan. 08, 2020	Mar. 04, 2020	Jan. 07, 2021	Radiation (03CH06-KS)
high gain Amplifier	MITEQ	AMF-7D-0010 1800-30-10P	2025788	1Ghz-18Ghz	Aug. 16, 2019	Mar. 04, 2020	Aug. 15, 2020	Radiation (03CH06-KS)
Amplifier	Keysight	83017A	MY532702 03	500MHz~26.5G Hz	Apr. 15, 2019	Mar. 04, 2020	Apr. 14, 2020	Radiation (03CH06-KS)
AC Power Source	Chroma	61601	F1040900 04	N/A	NCR	Mar. 04, 2020	NCR	Radiation (03CH06-KS)
Turn Table	ChamPro	EM 1000-T	060762-T	0~360 degree	NCR	Mar. 04, 2020	NCR	Radiation (03CH06-KS)
Antenna Mast	ChamPro	EM 1000-A	060762-A	1 m~4 m	NCR	Mar. 04, 2020	NCR	Radiation (03CH06-KS)
EMI Receiver	R&S	ESCI7	100768	9kHz~7GHz;	Apr. 16, 2019	Jan. 19, 2020	Apr. 15, 2020	Conduction (CO01-KS)
AC LISN (for auxiliary equipment)	MessTec	AN3016	060103	9kHz~30MHz	Oct. 18, 2019	Jan. 19, 2020	Oct. 17, 2020	Conduction (CO01-KS)
AC LISN	MessTec	AN3016	060105	9kHz~30MHz	Oct. 28, 2019	Jan. 19, 2020	Oct. 27, 2020	Conduction (CO01-KS)
AC Power Source	Chroma	61602	ABP00000 0811	AC 0V~300V, 45Hz~1000Hz	Oct. 18, 2019	Jan. 19, 2020	Oct. 17, 2020	Conduction (CO01-KS)

NCR: No Calibration Required

5 Uncertainty of Evaluation

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.9 dB
of 95% (U = 2Uc(y))	2.9 dB

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0 dB
of 95% (U = 2Uc(y))	5.0 dB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0 dB
of 95% (U = 2Uc(y))	5.0 dB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0 dB
of 95% (U = 2Uc(y))	5.0 dB

Appendix A. Conducted Test Results

Report Number : FR010610A

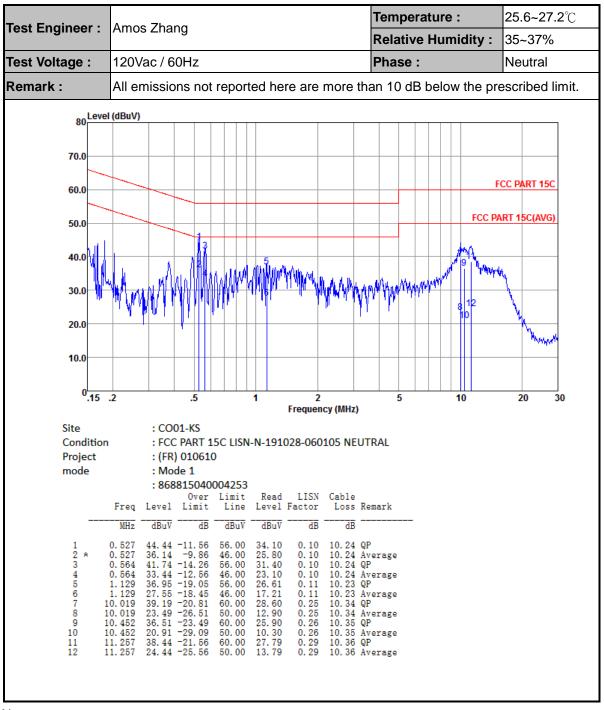
Bluetooth

Test Engineer:	weller liu	Temperature:	20~26	°C
Test Date:	2020/2/2	Relative Humidity:	40~51	%

			<u>20a</u>	B and S	99% Occu		ULTS DATA th and Hopping (Channel Separati	ion_
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	20db BW (MHz)	99% Bandwidth (MHz)	Hopping Channel Separation Measurement (MHz)	Hopping Channel Separation Measurement Limit (MHz)	Pass/Fail
DH	1Mbps	1	0	2402	1.036	0.903	998.600	0.6908	Pass
DH	1Mbps	1	39	2441	1.028	0.903	1002.900	0.6850	Pass
DH	1Mbps	1	78	2480	1.028	0.906	1002.900	0.6850	Pass
2DH	2Mbps	1	0	2402	1.250	1.164	1033.300	0.8336	Pass
2DH	2Mbps	1	39	2441	1.268	1.166	929.100	0.8451	Pass
2DH	2Mbps	1	78	2480	1.268	1.166	1241.700	0.8451	Pass
3DH	3Mbps	1	0	2402	1.246	1.155	1002.900	0.8307	Pass
3DH	3Mbps	1	39	2441	1.246	1.155	998.600	0.8307	Pass
3DH	3Mbps	1	78	2480	1.246	1.155	1241.700	0.8307	Pass

			<u>TE:</u>	ST RESULTS Dwell Time		
Mod.	Hopping Channel Number Rate	Hops Over Occupancy Time(hops)	Package Transfer Time (msec) (MHz)	Dwell Time (sec)	Limits (sec)	Pass/Fail
Nomal	79	106.67	2.90	0.31	0.4	Pass
AFH	20	53.33	2.90	0.15	0.4	Pass

					S <u>T RESUL</u> Peak Powe
			Peak Power	Power Limit	Test
DH	CH.	NTX	(dBm)	(dBm)	Result
	0	1	6.39	20.97	Pass
DH1	39	1	7.37	20.97	Pass
	78	1	7.34	20.97	Pass
2DH	CH.	NTX	Peak Power	Power Limit	Test
2011		MIX	(dBm)	(dBm)	Result
	0	1	5.82	20.97	Pass
2DH1	39	1	6.83	20.97	Pass
	78	1	6.67	20.97	Pass
3DH	CH.	NTX	Peak Power	Power Limit	Test
5011	-		(dBm)	(dBm)	Result
	0	1	6.01	20.97	Pass
3DH1	39	1	7.01	20.97	Pass
	78	1	6.85	20.97	Pass


		<u>TEST RES</u> Number of Ho	SULTS DA pping Free
Number of Hopping (Channel)	Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail
79	79	> 15	Pass

Appendix B. AC Conducted Emission Test Results

oot Engineer .	Amoo Zhong		Temperature :	25.6~27.2 ℃		
est Engineer :	Amos Zhang		Relative Humidity :	35~37%		
est Voltage :	120Vac / 60Hz		Phase :	Line		
emark :	All emissions not r	eported here are more t	han 10 dB below the pr	escribed limit.		
80	(dBuV)					
70.0						
60.0			F	CC PART 15C		
50.0			FCC P/	ART 15C(AVG)		
40.0		2.5.107.				
	Ann was the	hilli Alek	MARKA AND AND AND AND AND AND AND AND AND AN	۹		
30.0		I CONTRACTOR AND A DESCRIPTION OF A	WATTER A MANAGE			
20.0				NI NUMBER OF		
10.0						
0						
0.15	2.5	1 2 Frequency (MHz)	5 10	20 30		
Site	: CO01-KS		_			
Condition Project	: FCC PART 15 : (FR) 010610	C LISN-L-191028-060105 LINI				
mode	: Mode 1					
	:8688150400 Over					
	Freq Level Limit		Remark			
	MHz dBuV dB	dBuV dBuV dB dB				
2 * (3 (4 (0.839 37.21 -18.79 0.839 20.91 -25.09	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Average QP Average			
6 (7 1 8 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Average QP Average			
10 10	0.072 19.18 -30.82 0.564 34.51 -25.49	50.00 8.60 0.24 10.34	Áverage QP			

Note:

- 1. Level(dBµV) = Read Level(dBµV) + LISN Factor(dB) + Cable Loss(dB)
- 2. Over Limit(dB) = Level(dB μ V) Limit Line(dB μ V)

Appendix C. Radiated Spurious Emission

2.4GHz 2400~2483.5MHz

BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2310.52	53.54	-20.46	74	48.21	31.15	6.89	32.71	272	133	Ρ	Н
		2310.52	28.75	-25.25	54	-	-	-	-	-	-	А	Н
DT	*	2402	100.44	-	-	94.82	31.2	7.04	32.62	272	133	Ρ	Н
BT CH00		2402	75.65	-	-	-	-	-	-	-	-	А	Н
2402MHz		2376.04	52.86	-21.14	74	47.31	31.19	7.01	32.65	335	223	Ρ	V
240210112		2376.04	28.07	-25.93	54	-	-	-	-	-	-	А	V
	*	2402	96.15	-	-	90.53	31.2	7.04	32.62	335	223	Ρ	V
		2402	71.36	-	-	-	-	-	-	-	-	А	V
		2484.46	54.27	-19.73	74	47.94	31.77	7.16	32.6	123	117	Ρ	Н
		2484.46	29.48	-24.52	54	-	-	-	-	-	-	А	Н
57	*	2480	100.71	-	-	94.38	31.77	7.16	32.6	123	117	Ρ	Н
BT CH 78		2480	75.92	-	-	-	-	-	-	-	-	А	Н
СП 78 2480MHz		2491.3	53.79	-20.21	74	47.32	31.89	7.18	32.6	328	77	Ρ	V
240010112		2491.3	29	-25	54	-	-	-	-	-	-	А	V
	*	2480	98.23	-	-	91.9	31.77	7.16	32.6	328	77	Ρ	V
		2480	73.44	-	-	-	-	-	-	-	-	А	V
Remark		o other spurio I results are F		st Peak	and Averag	ge limit lin	е.						

BT (Band Edge @ 3m)

2.4GHz 2400~2483.5MHz

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)		Avg. (P/A)	(H/V)
ВТ СН 00		4806	38.49	-35.51	74	57.54	33.7	9.81	62.56	150	360	Ρ	Н
2402MHz		4806	38.13	-35.87	74	57.18	33.7	9.81	62.56	150	360	Р	V
		4884	38.65	-35.35	74	57.47	33.77	9.95	62.54	100	360	Р	Н
BT		7320	41.56	-32.44	74	56.68	35.89	12.64	63.65	100	360	Ρ	Н
CH 39 2441MHz		4884	39.04	-34.96	74	57.86	33.77	9.95	62.54	100	360	Ρ	V
2441101112		7320	40.98	-33.02	74	56.1	35.89	12.64	63.65	100	360	Ρ	V
DT		4962	39.16	-34.84	74	57.69	33.85	10.13	62.51	150	360	Ρ	Н
ВТ СН 78		7440	39.85	-34.15	74	55.67	36.11	12.84	64.77	150	360	Ρ	Н
СП 78 2480MHz		4962	37.83	-36.17	74	56.36	33.85	10.13	62.51	150	360	Ρ	V
24000012		7440	38.65	-35.35	74	54.47	36.11	12.84	64.77	150	360	Р	V
Remark		o other spurio I results are F		st Peak	and Averag	e limit lin	e.						

BT (Harmonic @ 3m)

Emission below 1GHz

2.4GHz BT (LF)

вт	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		98.87	18.37	-25.13	43.5	33.59	16.69	1.01	32.92	-	-	Ρ	Н
		219.15	24.39	-21.61	46	40.41	15.31	1.61	32.94	-	-	Ρ	Н
		257.95	19.76	-26.24	46	31.43	19.57	1.75	32.99	-	-	Ρ	Н
		447.1	21.66	-24.34	46	30.1	22.55	2.23	33.22	-	-	Ρ	Н
		545.07	23.89	-22.11	46	30.7	23.99	2.5	33.3	-	-	Ρ	Н
2.4GHz BT		775.93	24.62	-21.38	46	27.58	25.81	4.28	33.05	100	0	Ρ	Н
LF		98.87	20.8	-22.7	43.5	36.02	16.69	1.01	32.92	-	-	Ρ	V
		155.13	17.91	-25.59	43.5	33.4	16.16	1.31	32.96	-	-	Ρ	V
		218.18	21.33	-24.67	46	37.33	15.33	1.61	32.94	-	-	Ρ	V
		367.56	19.1	-26.9	46	29.28	20.9	2.02	33.1	-	-	Ρ	V
		518.88	22.33	-23.67	46	29.47	23.7	2.43	33.27	-	-	Ρ	V
		782.72	24.92	-21.08	46	27.77	25.89	4.3	33.04	100	360	Ρ	V
	1. No	o other spurio	us found.										
Remark		l results are P		st limit li	ne.								

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

1. Level(dBµV/m) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dBµV/m) – Limit Line(dBµV/m)

For Peak Limit @ 2390MHz:

1. Level(dBµV/m)

= Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

- = 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) 35.86 (dB)
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 42.6(dBµV) 35.86 (dB)
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".



Appendix D. Duty Cycle Plots

KEYSIGHT ∟ →→ ™	Input RF Coupling DC Align Off	Input Z 50 D Corrections: Off Freq Ref. Int (S)	#Atten: 10 dB	PNO Fast Gate Off IF Gain, Low Sig Track, Off	#Avg Type Pov Trig: Free Run	w	23456 WWWWW PPPPP	Select Marker Marker 3		
1 Spectrum					۵	Vikr3 3.	750 ms	Marker ∆ Tim 3.75000 ms	1è	Settings
cale/Div 10	IB	R	ef Level 106.99	STALE AND			0.07 dB	Marker Mode		Peak Search
17.0 17.0	-		∂2∆1	3∆1				Normai		Pk Search Config
57.0								 Deita (Δ) 		Properties
17.0 17.0	W. wash		4.N.	**		, T.,	**	Fixed Off		Marker Function
17.0								Deita M		Marker→
Center 2.4020 Res BW 1.0 M			#Video BW 1.0 /	WHz	Swee		Span 0 Hz (1001 pts)	(Reset E Marker Table	Partia II IIII	Counter
5 Marker Table	i T							On		
Mode 1 Ν 2 Δ1 3 Δ1	Trace Scale 1 t 1 t	X 1.900 ms (Δ) 2.880 ms (Δ) 3.750 ms	Υ 90.77 dBµV Δ) 0.8187 dB Δ) 0.06761 dB	Function	Function Width	Function	n Value	Marker Si Diagra	am	
4 5 6								Couple Mark On Off	ers	
15	27	Peb 22, 2020))				55			

DH5 on time (One Pulse) Plot on Channel 39

DH5 on time (Count Pulses) Plot on Channel 39

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = 2 * 2.88 / 100 = 5.76 %
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.79 dB
- 3. DH5 has the highest duty cycle worst case and is reported.