Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Element Yongin, Republic of Korea Certificate No. D2450V2-882_Feb24 # CALIBRATION CERTIFICATE Object D2450V2 - SN:882 Calibration procedure(s) QA CAL-05.v12 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: February 08, 2024 실무자 기술책임자 2-26-2024 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP2 | SN: 104778 | 30-Mar-23 (No. 217-03804/03805) | Mar-24 | | Power sensor NRP-Z91 | SN: 103244 | 30-Mar-23 (No. 217-03804) | Mar-24 | | Power sensor NRP-Z91 | SN: 103245 | 30-Mar-23 (No. 217-03805) | Mar-24 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 30-Mar-23 (No. 217-03809) | Mar-24 | | Type-N mismatch combination | SN: 310982 / 06327 | 30-Mar-23 (No. 217-03810) | Mar-24 | | Reference Probe EX3DV4 | SN: 7349 | 03-Nov-23 (No. EX3-7349_Nov23) | Nov-24 | | DAE4 | SN: 601 | 30-Jan-24 (No. DAE4-601_Jan24) | Jan-25 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-22) | In house check; Oct-24 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-22) | In house check: Oct-24 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 | | | Name | Function | Signature | | Calibrated by: | Paulo Pina | Laboratory Technician | Fant /e | | Approved by: | Sven Kühn | Technical Manager | | Issued: February 9, 2024 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D2450V2-882_Feb24 Page 1 of 6 Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.2 ± 6 % | 1.88 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | See . | # SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.6 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 53.0 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.32 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.9 W/kg ± 16.5 % (k=2) | Certificate No: D2450V2-882_Feb24 # Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | $53.0 \Omega + 2.0 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 29.1 dB | | # General Antenna Parameters and Design | Electrical Delay (one direction) | 1.156 ns | | |----------------------------------|----------|--| |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. # **Additional EUT Data** | Winter C. Const. US: | IV. | |---|--| | Manufactured by | SPEAG | | 13 - 15 C C C C C C C C C C C C C C C C C C | 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4 | Page 4 of 6 Certificate No: D2450V2-882_Feb24 #### **DASY5 Validation Report for Head TSL** Date: 08.02.2024 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:882 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.88 \text{ S/m}$; $\varepsilon_r = 38.2$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(7.96, 7.96, 7.96) @ 2450 MHz; Calibrated: 03.11.2023 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 30.01.2024 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 117.2 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 27.1 W/kg SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.32 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 50.7% Maximum value of SAR (measured) = 22.1 W/kg 0 dB = 22.1 W/kg = 13.44 dBW/kg # Impedance Measurement Plot for Head TSL Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Element Yongin, Republic of Korea Certificate No. D2600V2-1126 Aug24 2014/09/10 #### **CALIBRATION CERTIFICATE** Object D2600V2 - SN: 1126 Calibration procedure(s) QA CAL-05.v12 Calibration Procedure for SAR Validation Sources between 0.7 - 3 GHz Calibration date August 7, 2024 This calibration certificate documents the traceability
to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature $(22\pm3)^{\circ}$ C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Cal | |--|------------|---------------------------------------|---------------| | Power Sensor R&S NRP-33T | SN: 100967 | 28-Mar-24 (No. 217-04038) | Mar-25 | | Power Sensor R&S NRP18A | SN: 101859 | 21-Mar-24 (No. 4030A315007801) | Mar-25 | | Spectrum Analyzer R&S FSV40 | SN: 101832 | 25-Jan-24 (No. 4030-315007551) | Jan-25 | | Mismatch; Short [S4188] Attenuator [S4423] | SN: 1152 | 28-Mar-24 (No. 217-04050) | Mar-25 | | OCP DAK-12 | SN: 1016 | 05-Oct-23 (No. OCP-DAK12-1016_Oct23) | Oct-24 | | OCP DAK-3.5 | SN: 1249 | 05-Oct-23 (No. OCP-DAK3.5-1249 Oct23) | Oct-24 | | Reference Probe EX3DV4 | SN: 7349 | 03-Jun-24 (No. EX3-7349_Jun24) | Jun-25 | | DAE4ip | SN: 1836 | 10-Jan-24 (No. DAE4ip-1836_Jan24) | Jan-25 | | | | | 1 | |------------------------------|----------|--|-----------------| | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | ACAD Source Box | SN: 1000 | 28-May-24 (No. 675-ACAD_Source_Box-240528) | | | Signal Generator R&S SMB100A | | 28-May-24 (No. 0001-300719404) | May-25 | | Mismatch; SMA | SN: 1102 | 22-May-24 (No. 675-Mismatch SMA-240522) | May-25 | Name Function Signature Calibrated by Paulo Pina Laboratory Technician Approved by Sven Kühn Technical Manager Issued: August 8, 2024 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary **TSL** tissue simulating liquid sensitivity in TSL / NORM x,y,z ConvF N/A not applicable or not measured # Calibration is Performed According to the Following Standards - IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation · DASY System Handbook # Methods Applied and Interpretation of Parameters - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - · Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - · Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - · SAR measured: SAR measured at the stated antenna input power. - · SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. D2600V2 - SN: 1126 August 7, 2024 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY8 Module SAR | 16.4.0 | |------------------------------|--------------------------|-------------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with spacer | | Zoom Scan Resolution | dx, dy = 5mm, dz = 1.5mm | Graded Ratio = 1.5 mm (Z direction) | | Frequency | 2600MHz ±1MHz | | # Head TSL parameters at 2600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|---------------|--------------|----------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ±0.2)°C | 37.4 ±6% | 2.03 mho/m ±6% | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 2600 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | | |---|--------------------|--------------------------|--| | SAR for nominal Head TSL parameters | 24 dBm input power | 13.9 W/kg | | | SAR for nominal Head TSL parameters | normalized to 1W | 55.3 W/kg ±17.0% (k = 2) | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR for nominal Head TSL parameters | 24 dBm input power | 6.23 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.8 W/kg ±16.5% (k = 2) | D2600V2 - SN: 1126 August 7, 2024 # Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL at 2600 MHz | Impedance | 48.9 Ω – 7.0 jΩ | |-------------|-------------------| | Return Loss | -22 <u>.</u> 9 dB | #### General Antenna Parameters and Design | Floatrical Doloy (one dispetion) | | |----------------------------------|----------| | Electrical Delay (one direction) | 1.154 ns | | | 1.10,110 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | | | 1 | |-----------------|-------|---| | Manufactured by | SPEAG | | | C | | | Certificate No: D2600V2-1126_Aug24 D2600V2 - SN: 1126 August 7, 2024 #### System Performance Check Report #### Summary | Dipole | Frequency [MHz] | TSL | Power {dBm} | |------------------|-----------------|-----|-------------| | D2600V2 - SN1126 | 2600 | HSL | 24 | #### Exposure Conditions | Phantom Section, TSL | Test Distance (mm) | Band | Group, UID | Frequency (MHz), Channel Number | Conversion Factor | TSL Conductivity [S/m] | TSL Permittivity | |----------------------|--------------------|------|------------|---------------------------------|-------------------|------------------------|------------------| | Flat | 10 | | CW, 0 | 2600, 0 | 7.29 | (2.03) | 37.4 | #### Hardware Setup | Phantom | TSL, Measured Date | Probe, Calibration Date | DAE, Calibration Date | |-----------------|--------------------|-----------------------------|---------------------------| | MFP V8.0 Center | HSL, 2024-08-07 | EX3DV4 - SN7349, 2024-06-03 | DAE4ip Sn1836, 2024-01-10 | #### Scans Setup | | Zoom Scan | |---------------------|-----------------| | Grid Extents [mm] | 30 x 30 x 30 | | Grid Steps [mm] | 5.0 x 5.0 x 1.5 | | Sensor Surface [mm] | 1.4 | | Graded Grid | Yes | | Grading Ratio | 1.5 | | MAIA | N/A | | Surface Detection | All points | | Scan Method | Measured | #### Measurement Results | | Zoom Scan | |---------------------|---------------------| | Date | 2024-08-07 | | psSAR1g [W/Kg] | 13.9 | | psSAR10g [W/Kg] | 6.23 | | Power Drift [dB] | 0.00 | | Power Scaling | Disabled | | Scaling Factor [dB] | | | TSL Correction | Positive / Negative | | | | 0 dB = 29.9 W/Kg D2600V2 - SN: 1126 August 7, 2024 # Impedance Measurement Plot for Head TSL Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Element Yongin, Republic of Korea Certificate No. D2600V2-1009_Jun24 # CALIBRATION CERTIFICATE Object D2600V2 - SN:1009 Calibration procedure(s) QA CAL-05.v12 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: June 14, 2024 Mr Tre 6/27/2 029 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment
temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP2 | SN: 104778 | 26-Mar-24 (No. 217-04036/04037) | Mar-25 | | Power sensor NRP-Z91 | SN: 103244 | 26-Mar-24 (No. 217-04036) | Mar-25 | | Power sensor NRP-Z91 | SN: 103245 | 26-Mar-24 (No. 217-04037) | Mar-25 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 26-Mar-24 (No. 217-04046) | Mar-25 | | Type-N mismatch combination | SN: 310982 / 06327 | 26-Mar-24 (No. 217-04047) | Mar-25 | | Reference Probe EX3DV4 | SN: 7349 | 03-Nov-23 (No. EX3-7349_Nov23) | Nov-24 | | DAE4 | SN: 601 | 22-May-24 (No. DAE4-601_May24) | May-25 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-22) | In house check: Oct-24 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 | | | Name | Function | Signature | | Calibrated by: | Claudio Leubler | Laboratory Technician | e10 | | Approved by: | Sven Kühn | Technical Manager | 11/11/11 | Issued: June 17, 2024 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** Certificate No: D2600V2-1009_Jun24 c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2600 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.3 ± 6 % | 2.02 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | **** | 1000 | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 14.5 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 56.6 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.47 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 25.5 W/kg ± 16.5 % (k=2) | ## Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 48.5 Ω - 5.2 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 25.3 dB | | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.154 ns | |----------------------------------|----------| | Electrical Delay (one direction) | 1.154 Ha | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | ODEAO | |-------| | SPEAG | | | Certificate No: D2600V2-1009_Jun24 Page 4 of 6 ## **DASY5 Validation Report for Head TSL** Date: 14.06.2024 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1009 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.02 \text{ S/m}$; $\varepsilon_r = 37.3$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(7.84, 7.84, 7.84) @ 2600 MHz; Calibrated: 03.11.2023 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 22.05.2024 • Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 115.9 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 29.0 W/kg SAR(1 g) = 14.5 W/kg; SAR(10 g) = 6.47 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 50.5% Maximum value of SAR (measured) = 23.1 W/kg 0 dB = 23.1 W/kg = 13.64 dBW/kg # Impedance Measurement Plot for Head TSL Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Element Yongin, Republic of Korea Certificate No. D5GHzV2-1237_Apr24 # **CALIBRATION CERTIFICATE** Object D5GHzV2 - SN:1237 5/2/24 Calibration procedure(s) QA CAL-22.v7 Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: April 09, 2024 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |--------------------|---|------------------------| | SN: 104778 | 26-Mar-24 (No. 217-04036/04037) | Mar-25 | | SN: 103244 | 26-Mar-24 (No. 217-04036) | Mar-25 | | SN: 103245 | 26-Mar-24 (No. 217-04037) | Mar-25 | | SN: BH9394 (20k) | 26-Mar-24 (No. 217-04046) | Mar-25 | | SN: 310982 / 06327 | 26-Mar-24 (No. 217-04047) | Mar-25 | | SN: 3503 | 07-Mar-24 (No. EX3-3503_Mar24) | Mar-25 | | SN: 601
 30-Jan-24 (No. DAE4-601_Jan24) | Jan-25 | | ID# | Check Date (in house) | Scheduled Check | | SN: GB39512475 | 30-Oct-14 (in house check Oct-22) | In house check: Oct-24 | | SN: US37292783 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | SN: MY41093315 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | SN: 100972 | 15-Jun-15 (in house check Oct-22) | In house check: Oct-24 | | SN: US41080477 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 | | Name | Function | Signature | | Aidonia Georgiadou | Laboratory Technician | the | | Sven Kühn | Technical Manager | C C- | | | SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477 Name Aidonia Georgiadou | SN: 104778 | Issued: April 9, 2024 Certificate No: D5GHzV2-1237_Apr24 Page 1 of 8 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5250 MHz ± 1 MHz
5600 MHz ± 1 MHz
5750 MHz ± 1 MHz
5850 MHz ± 1 MHz | | #### Head TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 36.4 ± 6 % | 4.60 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | - | #### SAR result with Head TSL at 5250 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.00 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.1 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.28 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.9 W/kg ± 19.5 % (k=2) | #### Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|---------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.8 ± 6 % | 4.99 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | (| | #### SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.19 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 82.0 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.33 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.3 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1237_Apr24 Page 3 of 8 # Head TSL parameters at 5750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.4 | 5.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.6 ± 6 % | 5.16 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | 2,72 | 1 | # SAR result with Head TSL at 5750 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.92 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 79.2 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.25 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.5 W/kg ± 19.5 % (k=2) | # Head TSL parameters at 5850 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.2 | 5.32 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.5 ± 6 % | 5,25 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | **** | # SAR result with Head TSL at 5850 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.03 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.4 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.28 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.8 W/kg ± 19.5 % (k=2) | ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point | 48.4 Ω - 3.5 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 28.2 dB | | #### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | $52.8 \Omega + 1.6 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 30.0 dB | | #### Antenna Parameters with Head TSL at 5750 MHz | Impedance, transformed to feed point | $53.8 \Omega + 3.9 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 25.5 dB | | #### Antenna Parameters with Head TSL at 5850 MHz | Impedance, transformed to feed point | $53.9 \Omega + 1.4 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 28.1 dB | | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.191 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or
the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D5GHzV2-1237_Apr24 Page 5 of 8 # **DASY5 Validation Report for Head TSL** Date: 09.04.2024 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1237 Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5850 MHz Medium parameters used: f = 5250 MHz; $\sigma = 4.6$ S/m; $\varepsilon_r = 36.4$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5600 MHz; $\sigma = 4.99$ S/m; $\varepsilon_r = 35.8$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5750 MHz; $\sigma = 5.16$ S/m; $\varepsilon_r = 35.6$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5850 MHz; $\sigma = 5.25$ S/m; $\varepsilon_r = 35.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.39, 5.39, 5.39) @ 5250 MHz, ConvF(5, 5, 5) @ 5600 MHz, ConvF(4.98, 4.98, 4.98) @ 5750 MHz, ConvF(4.89, 4.89, 4.89) @ 5850 MHz; Calibrated: 07.03.2024 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 30.01.2024 - Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.98 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 27.4 W/kg SAR(1 g) = 8.0 W/kg; SAR(10 g) = 2.28 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 70.4% Maximum value of SAR (measured) = 18.8 W/kg #### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 73.06 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 30.3 W/kg SAR(1 g) = 8.19 W/kg; SAR(10 g) = 2.33 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 67.9% Maximum value of SAR (measured) = 19.6 W/kg # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.78 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 31.0 W/kg SAR(1 g) = 7.92 W/kg; SAR(10 g) = 2.25 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 65.9% Maximum value of SAR (measured) = 19.5 W/kg # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5850 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.72 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 32.3 W/kg SAR(1 g) = 8.03 W/kg; SAR(10 g) = 2.28 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 64.8% Maximum value of SAR (measured) = 19.9 W/kg 0 dB = 19.9 W/kg = 12.99 dBW/kg # Impedance Measurement Plot for Head TSL # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Element Columbia, USA Certificate No. D6.5GHzV2-1111_Feb24 S C S # **CALIBRATION CERTIFICATE** Object D6.5GHzV2 - SN:1111 03104124 Calibration procedure(s) QA CAL-22.v7 Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: February 22, 2024 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------------|---------------------|-----------------------------------|------------------------| | Power sensor R&S NRP33T | SN: 100967 | 03-Apr-23 (No. 217-03806) | Apr-24 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 30-Mar-23 (No. 217-03809) | Mar-24 | | Mismatch combination | SN: 84224 / 360D | 03-Apr-23 (No. 217-03812) | Apr-24 | | Reference Probe EX3DV4 | SN: 7405 | 12-Jun-23 (No. EX3-7405_Jun23) | Jun-24 | | DAE4 | SN: 908 | 03-Jul-23 (No. DAE4-908_Jul23) | Jul-24 | | Secondary Standards | ID # | Check Date (in house) | Scheduled Check | | RF generator Anapico APSIN20G | SN: 827 | 18-Dec-18 (in house check Jan-24) | In house check: Jan-25 | | Power sensor NRP-Z23 | SN: 100169 | 10-Jan-19 (in house check Jan-24) | In house check: Jan-25 | | Power sensor NRP-18T | SN: 100950 | 28-Sep-22 (in house check Jan-24) | In house check: Jan-25 | | Network Analyzer Keysight E5063A | SN:MY54504221 | 31-Oct-19 (in house check Oct-22) | In house check: Oct-25 | | | Name | Function | Signature | | Calibrated by: | Aldonia Georgiadou | Laboratory Technician | Oignature | | | , idoina doorgiadou | Laboratory recimician | Ates | | Approved by: | Sven Kühn | Technical Manager | Ω_ | Issued: February 23, 2024 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S C S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Glossary: TSL N/A tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z not applicable or not measured Calibration is Performed According to the Following Standards: a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range Of 4 MHz To 10 GHz)", October 2020. #### **Additional Documentation:** b) DASY System Handbook #### **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. - The absorbed power density (APD): The absorbed power density is evaluated according to Samaras T, Christ A, Kuster N, "Compliance assessment of the epithelial or absorbed power density above 6 GHz using SAR measurement systems", Bioelectromagnetics, 2021 (submitted). The additional evaluation uncertainty of 0.55 dB (rectangular distribution) is considered. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY6 | V16.2 | |------------------------------|----------------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 5 mm | with Spacer | | Zoom Scan Resolution | dx, $dy = 3.4$ mm, $dz = 1.4$ mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 6500 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|----------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 34.5 | 6.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.3 ± 6 % | 6.32 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | ab All and All | | # SAR result with Head TSL | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|-------------------------| | SAR measured | 100 mW input power | 29.0 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 291 W/kg ± 24.7 % (k=2) | | SAR averaged over 8 cm³ (8 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.50 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 65.3 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 5.32 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 53.5 W/kg ± 24.4 % (k=2) | # Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna
Parameters with Head TSL | Impedance, transformed to feed point | 51.8 Ω + 3.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 29.1 dB | #### **APD (Absorbed Power Density)** | APD averaged over 1 cm ² | Condition | | |-------------------------------------|--------------------|--------------------------| | APD measured | 100 mW input power | 290 W/m² | | APD measured | normalized to 1W | 2900 W/m² ± 29.2 % (k=2) | | APD averaged over 4 cm ² | condition | | |-------------------------------------|--------------------|--------------------------| | APD measured | 100 mW input power | 130 W/m² | | APD measured | normalized to 1W | 1300 W/m² ± 28.9 % (k=2) | ^{*}The reported APD values have been derived using the psSAR1g and psSAR8g. #### **General Antenna Parameters and Design** After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | , | | |-----------------|-------| | Manufactured by | SPEAG | Certificate No: D6.5GHzV2-1111_Feb24 # **DASY6 Validation Report for Head TSL** Measurement Report for D6.5GHz-1111, UID 0 -, Channel 6500 (6500.0MHz) | Device | under | Test I | Pro | perties | |--------|-------|--------|-----|---------| |--------|-------|--------|-----|---------| | Name, Manufacturer | Dimensions [mm] | IMEI | DUT Type | |--------------------|--------------------|----------|----------| | D6.5GHz | 16.0 x 6.0 x 300.0 | SN: 1111 | | **Exposure Conditions** | Phantom
Section, TSL | Position, Test Distance [mm] | Band | Group,
UID | Frequency
[MHz] | Conversion
Factor | TSL Cond.
[5/m] | TSL
Permittivity | |-------------------------|------------------------------|------|---------------|--------------------|----------------------|--------------------|---------------------| | Flat, HSL | 5.00 | Band | CW, | 6500 | 5.50 | 6.32 | 35.3 | **Hardware Setup** | Phantom | TSL | Probe, Calibration Date | DAE, Calibration Date | |------------------------|-----------------|-----------------------------|------------------------| | MFP V8.0 Center - 1182 | HBBL600-10000V6 | EX3DV4 - 5N7405, 2023-06-12 | DAE4 Sn908, 2023-07-03 | Scan Setup | | Zoom Scan | | Zoom Scan | |---------------------|--------------------|---------------------|-------------------| | Grid Extents [mm] | 22.0 x 22.0 x 22.0 | Date | 2024-02-22, 16:52 | | Grid Steps [mm] | 3.4 x 3.4 x 1.4 | psSAR1g [W/Kg] | 29.0 | | Sensor Surface [mm] | 1.4 | psSAR8g [W/Kg] | 6.50 | | Graded Grid | Yes | psSAR10g [W/Kg] | 5.32 | | Grading Ratio | 1.4 | Power Drift [dB] | 0.01 | | MAIA | N/A | Power Scaling | Disabled | | Surface Detection | VMS + 6p | Scaling Factor [dB] | | | Scan Method | Measured | TSL Correction | No correction | | | | M2 / M1 [%] | SS.4 | | | | Dist 3dB Peak [mm] | 4.6 | **Measurement Results** # Impedance Measurement Plot for Head TSL #### **Calibration Laboratory of** Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Element Columbia, USA Certificate No. D8GHzV2-1007_Mar24 # CALIBRATION CERTIFICATE Object D8GHzV2 - SN:1007 SPS 03/26/24 Calibration procedure(s) **QA CAL-22.v7** Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: March 04, 2024 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------------|------------------|-----------------------------------|------------------------| | Power sensor R&S NRP33T | SN: 100967 | 03-Apr-23 (No. 217-03806) | Apr-24 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 30-Mar-23 (No. 217-03809) | Mar-24 | | Mismatch combination | SN: 84224 / 360D | 03-Apr-23 (No. 217-03812) | Apr-24 | | Reference Probe EX3DV4 | SN: 7405 | 12-Jun-23 (No. EX3-7405_Jun23) | Jun-24 | | DAE4 | SN: 908 | 23-Feb-24 (No. DAE4-908_Feb24) | Feb-25 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | RF generator Anapico APSIN20G | SN: 827 | 18-Dec-18 (in house check Jan-24) | In house check: Jan-25 | | Power sensor NRP-Z23 | SN: 100169 | 10-Jan-19 (in house check Jan-24) | In house check: Jan-25 | | Power sensor NRP-18T | SN: 100950 | 28-Sep-22 (in house check Jan-24) | In house check: Jan-25 | | Network Analyzer Keysight E5063A | SN:MY54504221 | 31-Oct-19 (in house check Oct-22) | In house check: Oct-25 | | | Name | Function | Signature | | Calibrated by: | Jeton Kastrati | Laboratory Technician | 1-10c | Issued: March 06, 2024 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Sven Kühn Certificate No: D8GHzV2-1007_Mar24 Approved by: Technical Manager Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range Of 4 MHz To 10 GHz)", October 2020. #### **Additional Documentation:** b) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. - The absorbed power density (APD): The absorbed power density is evaluated according to Samaras T, Christ A, Kuster N, "Compliance assessment of the epithelial or absorbed power density above 6 GHz using SAR measurement systems", Bioelectromagnetics, 2021 (submitted). The additional evaluation uncertainty of 0.55 dB (rectangular distribution) is considered. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY6 | V16.2 | |------------------------------|------------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 5 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 2.7 mm, dz = 1.2 mm | Graded Ratio = 1.2 (Z direction) | | Frequency | 8000 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 32.7 | 7.84 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 32.7 ± 6 % | 8.11 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|-------------------------| | SAR measured | 100 mW input power | 26.9 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 269 W/kg ± 24.7 % (k=2) | | SAR averaged over 8 cm³ (8 g) of Head TSL | Condition | |
---|--------------------|--------------------------| | SAR measured | 100 mW input power | 5.54 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 55.4 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 4.53 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 45.3 W/kg ± 24.4 % (k=2) | Certificate No: D8GHzV2-1007_Mar24 #### **Appendix** #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 54.0 Ω - 3.4 jΩ | |--------------------------------------|-----------------| | Return Loss | - 26.0 dB | # **APD (Absorbed Power Density)** | APD averaged over 1 cm ² | Condition | | | |-------------------------------------|--------------------|--------------------------|--| | APD measured | 100 mW input power | 269 W/m² | | | APD measured | normalized to 1W | 2690 W/m² ± 29.2 % (k=2) | | | APD averaged over 4 cm² | condition | | |-------------------------|--------------------|--------------------------| | APD measured | 100 mW input power | 111 W/m² | | APD measured | normalized to 1W | 1110 W/m² ± 28.9 % (k=2) | ^{*} The reported APD values have been derived using the psSAR1g and psSAR8g. # **General Antenna Parameters and Design** After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| # DASY6 Validation Report for Head TSL Measurement Report for D8GHz-1007, UID 0 -, Channel 8000 (8000.0MHz) | besite and reservoperites | | | | | |---------------------------|--------------------|----------|----------|--| | Name, Manufacturer | Dimensions [mm] | IMEI | DUT Type | | | D8GHz | 16.0 x 6.0 x 300.0 | SN: 1007 | - | | #### **Exposure Conditions** | Phantom
Section, TSL | Position, Test Distance [mm] | Band | Group,
UID | Frequency
[MHz] | Conversion
Factor | TSL Cond.
[S/m] | TSL
Permittivity | |-------------------------|------------------------------|------|---------------|--------------------|----------------------|--------------------|---------------------| | Flat, HSL | 5.00 | Band | cw, | 8000 | 5.65 | 8.11 | 32.7 | #### **Hardware Setup** | Phantom | TSL | Probe, Calibration Date | DAE, Calibration Date | |------------------------|-----------------|-----------------------------|------------------------| | MFP V8.0 Center - 1182 | HBBL600-10000V6 | EX3DV4 - SN7405, 2023-06-12 | DAE4 Sn908, 2024-02-23 | #### S | Scan Setup | | Measurement Results | | |---------------------|--------------------|---------------------|-------------------| | · | Zoom Scan | | Zoom Scan | | Grid Extents [mm] | 22.0 x 22.0 x 22.0 | Date | 2024-03-04, 15:17 | | Grid Steps [mm] | 2.6 x 2.6 x 1.2 | psSAR1g [W/Kg] | 26,9 | | Sensor Surface [mm] | 1.4 | psSAR8g [W/Kg] | 5.54 | | Graded Grid | Yes | psSAR10g [W/Kg] | 4.53 | | Grading Ratio | 1.2 | Power Drift [dB] | 0.01 | | MAIA | N/A | Power Scaling | Disabled | | Surface Detection | V M S + 6p | Scaling Factor [dB] | | | Scan Method | Measured | TSL Correction | Enabled | | | | M2/M1 [%] | 44.8 | | | | Dist 3dB Peak [mm] | 4.3 | # Impedance Measurement Plot for Head TSL