

Shenzhen HTT Technology Co., Ltd.

Report No.: HTT202503557F01

TEST Report

Applicant: Shenzhen shuirudaotian Field Electronics Co., Ltd.

Address of Applicant: 206, 2nd Floor, Building 2, Yanhe Road, Xiangjiaotang Third

Industrial Zone, Bantian Street, Longgang District, Shenzhen

Manufacturer: Shenzhen shuirudaotian Field Electronics Co., Ltd.

Address of 206, 2nd Floor, Building 2, Yanhe Road, Xiangjiaotang Third Manufacturer: Industrial Zone, Bantian Street, Longgang District, Shenzhen

Equipment Under Test (EUT)

Product Name: Bluetooth Speaker

Model No.: M9

Series model: N/A

Trade Mark: N/A

FCC ID: 2BGRS-M9

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: Mar. 13, 2025

Date of Test: Mar. 13, 2025 ~ Mar. 19, 2025

Date of report issued: Mar. 19, 2025

Test Result: PASS *

^{*} In the configuration tested, the EUT complied with the standards specified above.

1. Version

Version No.	Date	Description
00	Mar. 19, 2025	Original

Tested/ Prepared By	Heber He	Date:	Mar. 19, 2025
	Project Engineer		
Check By:	Bruce Zhu	Date:	Mar. 19, 2025
	Reviewer	_	
Approved By :	Kevin Young HT	Date:	Mar. 19, 2025
	Authorized Signature		

2. Contents

	Page
1. VERSION	2
2. CONTENTS	3
3. TEST SUMMARY	
4. GENERAL INFORMATION	
4.1. GENERAL DESCRIPTION OF EUT 4.2. TEST MODE 4.3. DESCRIPTION OF SUPPORT UNITS 4.4. DEVIATION FROM STANDARDS 4.5. ABNORMALITIES FROM STANDARD CONDITIONS 4.6. TEST FACILITY 4.7. TEST LOCATION 4.8. ADDITIONAL INSTRUCTIONS	
5. TEST INSTRUMENTS LIST6. TEST RESULTS AND MEASUREMENT DATA	8
6.1. CONDUCTED EMISSIONS 6.2. CONDUCTED PEAK OUTPUT POWER 6.3. 20DB EMISSION BANDWIDTH 6.4. FREQUENCIES SEPARATION 6.5. HOPPING CHANNEL NUMBER 6.6. DWELL TIME 6.7. BAND EDGE 6.7.1. Conducted Emission Method 6.7.2. Radiated Emission Method 6.8. SPURIOUS EMISSION 6.8.1. Conducted Emission Method 6.8.2. Radiated Emission Method 6.9. ANTENNA REQUIREMENT	9 12 13 13 17 19 21 26 26 30 32 32 32 37
7. TEST SETUP PHOTO	45
8 FUT CONSTRUCTIONAL DETAILS	45

3. Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)(iii)	Pass
Dwell Time	15.247 (a)(1)(iii)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range Measurement Uncertainty		Notes
Radiated Emission	9KHz~30MHz	3.12 dB	(1)
Radiated Emission	30~1000MHz	4.37 dB	(1)
Radiated Emission	1~18GHz	5.40 dB	(1)
Radiated Emission	18-40GHz	5.45 dB	(1)
Conducted Disturbance	0.15~30MHz	2.68 dB	(1)
Note (1): The measurement unce	ertainty is for coverage factor of ka	=2 and a level of confidence of 9	95%.

4. General Information

4.1. General Description of EUT

Product Name:	Bluetooth Speaker
Model No.:	M9
Series model:	N/A
Test sample(s) ID:	HTT202503557-1(Engineer sample)
	HTT202503557-2(Normal sample)
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, π/4-DQPSK, 8-DPSK
Antenna Type:	PCB Antenna
Antenna gain:	1.90dBi
Power Supply:	DC 3.7V From Battery and DC 5V From External Circuit
Adapter Information	Mode: GS-0500200
(Auxiliary test provided by the lab):	Input: AC100-240V, 50/60Hz, 0.3A max
	Output: DC 5V, 2A

Operation	Frequency eacl	of channel					
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

4.3. Description of Support Units

None.

4.4. Deviation from Standards

None.

4.5. Abnormalities from Standard Conditions

None.

4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been accredited on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

4.7. Test Location

All tests were performed at:

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Tel: 0755-23595200 Fax: 0755-23595201

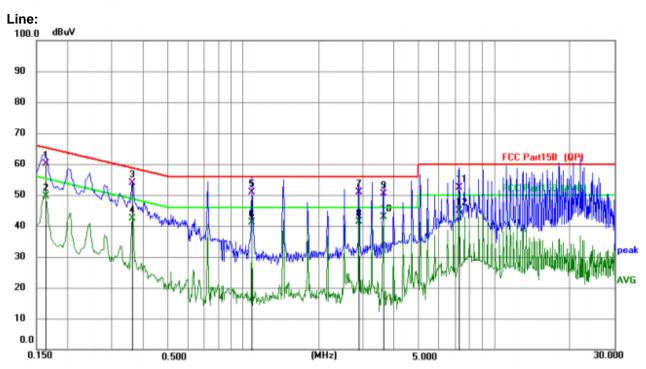
4.8. Additional Instructions

Test Software	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

5. Test Instruments list

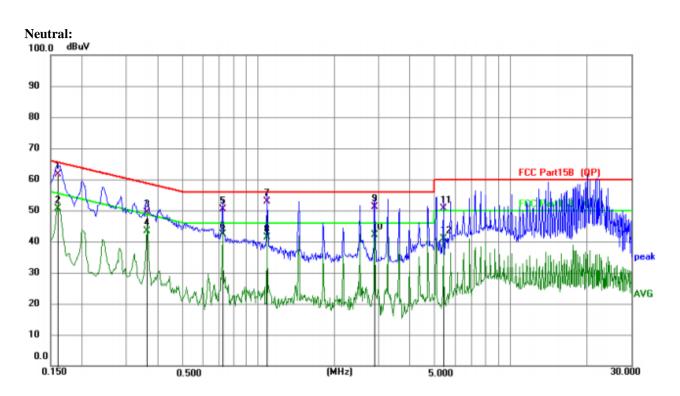
Item	Test Equipment	Manufacturer	Model No.	Inventory	Cal.Date	Cal.Due date
	3m Semi- Anechoic	Shenzhen C.R.T		No.	(mm-dd-yy)	(mm-dd-yy)
1	Chamber	technology co., LTD	9*6*6	HTT-E028	Aug. 10 2024	Aug. 09 2027
2	Control Room	Shenzhen C.R.T technology co., LTD	4.8*3.5*3.0	HTT-E030	Aug. 10 2024	Aug. 09 2027
3	EMI Test Receiver	Rohde&Schwar	ESCI7	HTT-E022	Apr. 26 2024	Apr. 25 2025
4	Spectrum Analyzer	Rohde&Schwar	FSP	HTT-E037	Apr. 26 2024	Apr. 25 2025
5	Coaxial Cable	ZDecl	ZT26-NJ-NJ-0.6M	HTT-E018	Apr. 26 2024	Apr. 25 2025
6	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-2M	HTT-E019	Apr. 26 2024	Apr. 25 2025
7	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-0.6M	HTT-E020	Apr. 26 2024	Apr. 25 2025
8	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-8.5M	HTT-E021	Apr. 26 2024	Apr. 25 2025
9	Composite logarithmic antenna	Schwarzbeck	VULB 9168	HTT-E017	May. 21 2024	May. 20 2025
10	Horn Antenna	Schwarzbeck	BBHA9120D	HTT-E016	May. 20 2024	May. 19 2025
11	Loop Antenna	Zhinan	ZN30900C	HTT-E039	Apr. 26 2024	Apr. 25 2025
12	Horn Antenna	Beijing Hangwei Dayang	OBH100400	HTT-E040	Apr. 26 2024	Apr. 25 2025
13	low frequency Amplifier	Sonoma Instrument	310	HTT-E015	Apr. 26 2024	Apr. 25 2025
14	high-frequency Amplifier	HP	8449B	HTT-E014	Apr. 26 2024	Apr. 25 2025
15	Variable frequency power supply	Shenzhen Anbiao Instrument Co., Ltd	ANB-10VA	HTT-082	Apr. 26 2024	Apr. 25 2025
16	EMI Test Receiver	Rohde & Schwarz	ESCS30	HTT-E004	Apr. 26 2024	Apr. 25 2025
17	Artificial Mains	Rohde & Schwarz	ESH3-Z5	HTT-E006	May. 23 2024	May. 22 2025
18	Artificial Mains	Rohde & Schwarz	ENV-216	HTT-E038	May. 23 2024	May. 22 2025
19	Cable Line	Robinson	Z302S-NJ-BNCJ-1.5M	HTT-E001	Apr. 26 2024	Apr. 25 2025
20	Attenuator	Robinson	6810.17A	HTT-E007	Apr. 26 2024	Apr. 25 2025
21	Variable frequency power supply	Shenzhen Yanghong Electric Co., Ltd	YF-650 (5KVA)	HTT-E032	Apr. 26 2024	Apr. 25 2025
22	Control Room	Shenzhen C.R.T technology co., LTD	8*4*3.5	HTT-E029	Aug. 10 2024	Aug. 09 2027
23	DC power supply	Agilent	E3632A	HTT-E023	Apr. 26 2024	Apr. 25 2025
24	EMI Test Receiver	Agilent	N9020A	HTT-E024	Apr. 26 2024	Apr. 25 2025
25	Analog signal generator	Agilent	N5181A	HTT-E025	Apr. 26 2024	Apr. 25 2025
26	Vector signal generator	Agilent	N5182A	HTT-E026	Apr. 26 2024	Apr. 25 2025
27	Power sensor	Keysight	U2021XA	HTT-E027	Apr. 26 2024	Apr. 25 2025
28	Temperature and humidity meter	Shenzhen Anbiao Instrument Co., Ltd	TH10R	HTT-074	Apr. 28 2024	Apr. 27 2025
29	Radiated Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
30	Conducted Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
31	RF Test Software	panshanrf	TST	N/A	N/A	N/A

6. Test results and Measurement Data


6.1. Conducted Emissions

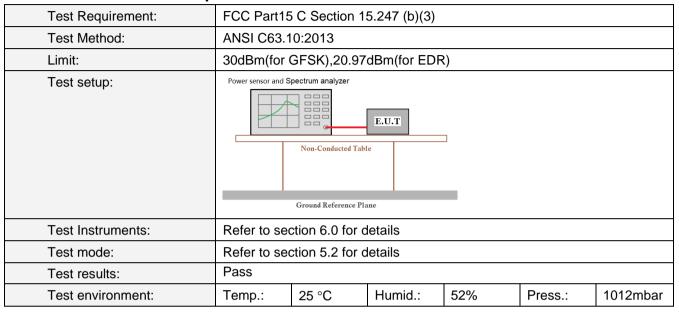
••••	Odnadeted Emissions							
	Test Requirement:	FCC Part15 C Se	ction 15.207	,				
	Test Method:	ANSI C63.10:2013						
	Test Frequency Range:	150KHz to 30MHz						
	Class / Severity:	Class B						
	Receiver setup:	RBW=9KHz, VBV	V=30KHz, Sv	weep time=auto				
	Limit:	Frequency range (MHz) Limit (dBuV)						
			Quasi-peak Average					
		0.15-0		66 to 56*	5	6 to 46*		
		0.5-5 5-30		56 60		46		
		* Decreases with	the logarithn			50		
	Test setup:		eference Plane	•	<i>y</i> .			
	Test procedure:	Reference Plane LISN AUX Equipment Test table/Insulation plane Remark E.U.T Equipment Under Test LISN Line impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs).						
		3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.						
	Test Instruments:	Refer to section 6	.0 for details	3				
	Test mode:	Refer to section 5	.2 for details	.	<u>, </u>	1		
	Test environment:	Temp.: 25 °0	C Hun	nid.: 52%	Press.:	1012mbar		
	Test voltage:	AC 120V, 60Hz						
	Test results:	Pass						
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·			

Remark: Based on all tested data, the EUT complied with the FCC Part 15.207 standard limit for a wireless device, and with the worst case as below:



Measurement data:

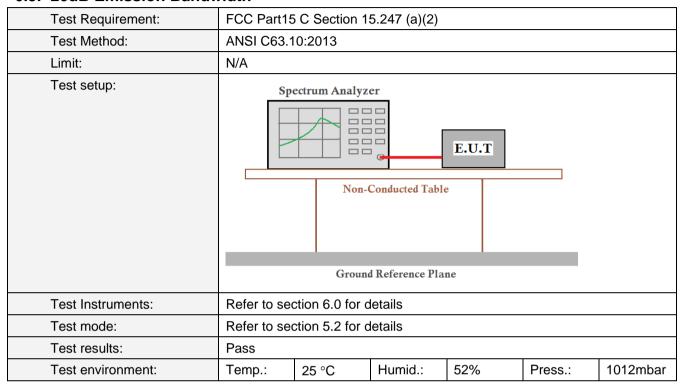
MHz 0.1635		dB				
0.1635			dBuV	dBuV	dB	Detector
	50.02	10.07	60.09	65.28	-5.19	QP
0.1635	39.44	10.07	49.51	55.28	-5.77	AVG
0.3613	43.86	10.11	53.97	58.70	-4.73	QP
0.3613	32.26	10.11	42.37	48.70	-6.33	AVG
1.0813	40.74	10.17	50.91	56.00	-5.09	QP
1.0813	30.91	10.17	41.08	46.00	-4.92	AVG
2.8860	40.75	10.23	50.98	56.00	-5.02	QP
2.8860	31.24	10.23	41.47	46.00	-4.53	AVG
3.6105	40.21	10.20	50.41	56.00	-5.59	QP
3.6105	32.75	10.20	42.95	46.00	-3.05	AVG
7.2195	42.35	10.12	52.47	60.00	-7.53	QP
7.2195	34.77	10.12	44.89	50.00	-5.11	AVG
	0.3613 0.3613 1.0813 1.0813 2.8860 2.8860 3.6105 3.6105 7.2195	0.3613 43.86 0.3613 32.26 1.0813 40.74 1.0813 30.91 2.8860 40.75 2.8860 31.24 3.6105 40.21 3.6105 32.75 7.2195 42.35	0.3613 43.86 10.11 0.3613 32.26 10.11 1.0813 40.74 10.17 1.0813 30.91 10.17 2.8860 40.75 10.23 2.8860 31.24 10.23 3.6105 40.21 10.20 3.6105 32.75 10.20 7.2195 42.35 10.12	0.3613 43.86 10.11 53.97 0.3613 32.26 10.11 42.37 1.0813 40.74 10.17 50.91 1.0813 30.91 10.17 41.08 2.8860 40.75 10.23 50.98 2.8860 31.24 10.23 41.47 3.6105 40.21 10.20 50.41 3.6105 32.75 10.20 42.95 7.2195 42.35 10.12 52.47	0.3613 43.86 10.11 53.97 58.70 0.3613 32.26 10.11 42.37 48.70 1.0813 40.74 10.17 50.91 56.00 1.0813 30.91 10.17 41.08 46.00 2.8860 40.75 10.23 50.98 56.00 2.8860 31.24 10.23 41.47 46.00 3.6105 40.21 10.20 50.41 56.00 3.6105 32.75 10.20 42.95 46.00 7.2195 42.35 10.12 52.47 60.00	0.3613 43.86 10.11 53.97 58.70 -4.73 0.3613 32.26 10.11 42.37 48.70 -6.33 1.0813 40.74 10.17 50.91 56.00 -5.09 1.0813 30.91 10.17 41.08 46.00 -4.92 2.8860 40.75 10.23 50.98 56.00 -5.02 2.8860 31.24 10.23 41.47 46.00 -4.53 3.6105 40.21 10.20 50.41 56.00 -5.59 3.6105 32.75 10.20 42.95 46.00 -3.05 7.2195 42.35 10.12 52.47 60.00 -7.53


Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
MHz		dB	dBuV	dBuV	dB	Detector
0.1597	51.47	10.18	61.65	65.48	-3.83	QP
0.1597	40.50	10.18	50.68	55.48	-4.80	AVG
0.3613	39.33	10.14	49.47	58.70	-9.23	QP
0.3613	33.24	10.14	43.38	48.70	-5.32	AVG
0.7215	40.31	10.17	50.48	56.00	-5.52	QP
0.7215	32.10	10.17	42.27	46.00	-3.73	AVG
1.0813	42.56	10.20	52.76	56.00	-3.24	QP
1.0813	31.20	10.20	41.40	46.00	-4.60	AVG
2.8860	40.93	10.24	51.17	56.00	-4.83	QP
2.8860	31.94	10.24	42.18	46.00	-3.82	AVG
5.4104	40.53	10.12	50.65	60.00	-9.35	QP
5.4104	30.71	10.12	40.83	50.00	-9.17	AVG
	MHz 0.1597 0.1597 0.3613 0.3613 0.7215 0.7215 1.0813 1.0813 2.8860 2.8860 5.4104	Freq. Level MHz 0.1597 51.47 0.1597 40.50 0.3613 39.33 0.3613 33.24 0.7215 40.31 0.7215 32.10 1.0813 42.56 1.0813 31.20 2.8860 40.93 2.8860 31.94 5.4104 40.53	Freq. Level Factor MHz dB 0.1597 51.47 10.18 0.1597 40.50 10.18 0.3613 39.33 10.14 0.3613 33.24 10.14 0.7215 40.31 10.17 0.7215 32.10 10.17 1.0813 42.56 10.20 1.0813 31.20 10.20 2.8860 40.93 10.24 2.8860 31.94 10.24 5.4104 40.53 10.12	Freq. Level Factor ment MHz dB dBuV 0.1597 51.47 10.18 61.65 0.1597 40.50 10.18 50.68 0.3613 39.33 10.14 49.47 0.3613 33.24 10.14 43.38 0.7215 40.31 10.17 50.48 0.7215 32.10 10.17 42.27 1.0813 42.56 10.20 52.76 1.0813 31.20 10.20 41.40 2.8860 40.93 10.24 51.17 2.8860 31.94 10.24 42.18 5.4104 40.53 10.12 50.65	Freq. Level Factor ment Limit MHz dB dBuV dBuV dBuV 0.1597 51.47 10.18 61.65 65.48 0.1597 40.50 10.18 50.68 55.48 0.3613 39.33 10.14 49.47 58.70 0.3613 33.24 10.14 43.38 48.70 0.7215 40.31 10.17 50.48 56.00 0.7215 32.10 10.17 42.27 46.00 1.0813 42.56 10.20 52.76 56.00 1.0813 31.20 10.20 41.40 46.00 2.8860 40.93 10.24 51.17 56.00 2.8860 31.94 10.24 42.18 46.00 5.4104 40.53 10.12 50.65 60.00	Freq. Level Factor ment Limit Over MHz dB dBuV dBuV dB 0.1597 51.47 10.18 61.65 65.48 -3.83 0.1597 40.50 10.18 50.68 55.48 -4.80 0.3613 39.33 10.14 49.47 58.70 -9.23 0.3613 33.24 10.14 43.38 48.70 -5.32 0.7215 40.31 10.17 50.48 56.00 -5.52 0.7215 32.10 10.17 42.27 46.00 -3.73 1.0813 42.56 10.20 52.76 56.00 -3.24 1.0813 31.20 10.20 41.40 46.00 -4.60 2.8860 40.93 10.24 51.17 56.00 -3.82 5.4104 40.53 10.12 50.65 60.00 -9.35

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Los

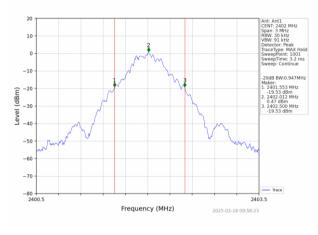
6.2. Conducted Peak Output Power



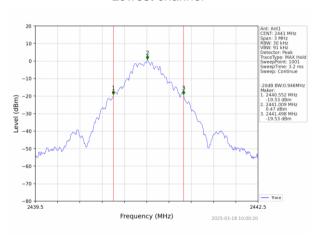
Measurement Data

Mode	TX	Frequency (MHz)	Packet Type	Maximum Peak Con (dE	Verdict	
	Туре			ANT1	Limit]
		2402	DH5	2.18	<=30	Pass
GFSK	SISO	2441	DH5	2.21	<=30	Pass
		2480	DH5	1.84	<=30	Pass
		2402	2DH5	2.92	<=20.97	Pass
Pi/4DQPSK	SISO	2441	2DH5	2.91	<=20.97	Pass
		2480	2DH5	2.61	<=20.97	Pass
		2402	3DH5	3.21	<=20.97	Pass
8DPSK	SISO	2441	3DH5	3.25	<=20.97	Pass
		2480	3DH5	2.98	<=20.97	Pass

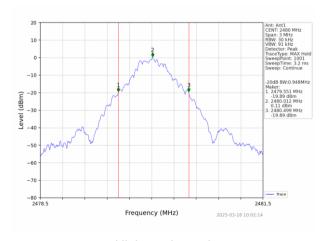
6.3. 20dB Emission Bandwidth


Measurement Data

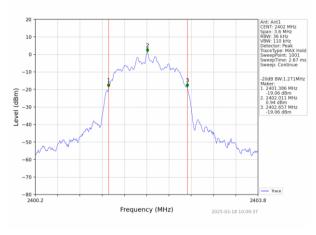
Mode	TX	Frequency	Packet	ANT	20dB Band		Verdict
Mode	Type	(MHz)	Type	7 (1 4 1	Result	Limit	Voraiot
GFSK SISO		2402	DH5	1	0.947	/	Pass
	SISO	2441	DH5	1	0.946	/	Pass
		2480	DH5	1	0.948	/	Pass
		2402	2DH5	1	1.271	/	Pass
Pi/4DQPSK	SISO	2441	2DH5	1	1.271	/	Pass
		2480	2DH5	1	1.272	/	Pass
		2402	3DH5	1	1.289	/	Pass
8DPSK	SISO	2441	3DH5	1	1.290	/	Pass
		2480	3DH5	1	1.291	/	Pass

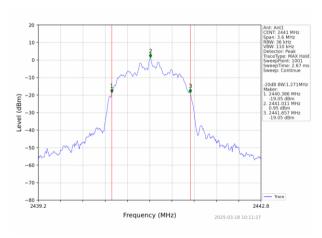


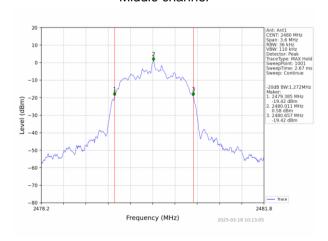
Test plot as follows:


Test mode: GFSK mode

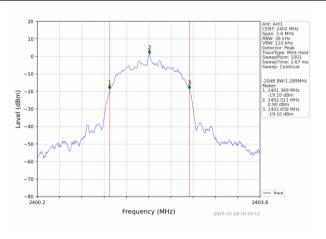
Lowest channel

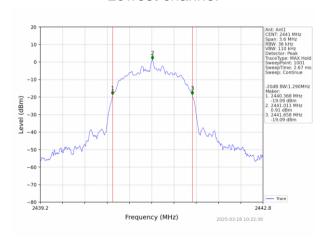

Middle channel

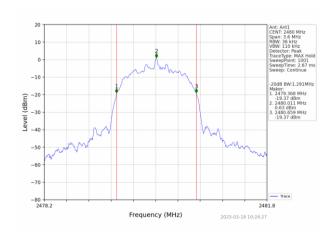

Highest channel


Test mode: $\pi/4$ -DQPSK mode

Lowest channel


Middle channel


Highest channel


Test mode: 8-DPSK mode

Lowest channel

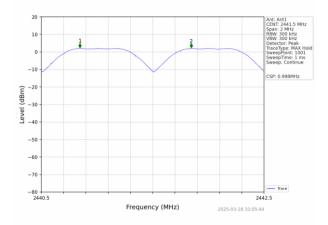
Middle channel

Highest channel

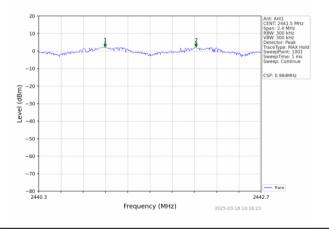
6.4. Frequencies Separation

Test Requirement:	FCC Part1	5 C Section	15.247 (a)(1)						
Test Method:	ANSI C63.	10:2013							
Receiver setup:	RBW=100	KHz, VBW=3	300KHz, dete	ctor=Peak					
Limit:	π/4-DQPS	GFSK: 20dB bandwidth π /4-DQPSK /8-DPSK: 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)							
Test setup:	Sı	Non							
Test Instruments:	Refer to se	ection 6.0 for	details						
Test mode:	Refer to se	ection 5.2 for	details						
Test results:	Pass	Pass							
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar			

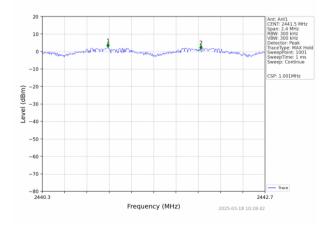
Measurement Data


				Ant1		•				
Mode	TX	Frequency	Packet	Channel Separation	20dB Bandwidth	Limit	Verdict			
Mode	Type	(MHz)	Type	(MHz)	(MHz)	(MHz)	verdict			
GFSK	SISO	HOPP	DH5	0.998	0.948	>=0.948	Pass			
Pi/4DQPSK	SISO	HOPP	2DH5	0.984	1.272	>=0.848	Pass			
8DPSK	SISO	HOPP	3DH5	1.001	1.291	>=0.861	Pass			

Remark: We have tested all mode at high, middle and low channel, and recorded worst case at middle



Test plot as follows:

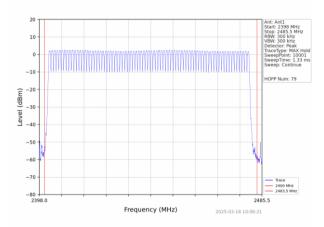

Modulation mode: GFSK

Test mode: $\pi/4$ -DQPSK

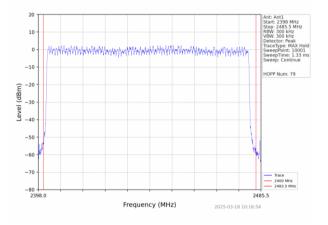
Modulation mode: 8-DPSK

6.5. Hopping Channel Number

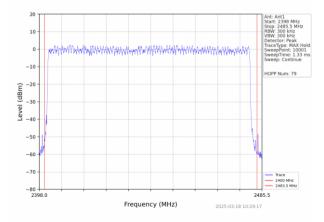
Test Requirement: Test Method: Receiver setup:	ANSI C63.1 RBW=100k	0:2013	5.247 (a)(1)(i	ii)						
	RBW=100k									
Receiver setup:			ANSI C63.10:2013							
	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak									
Limit:	15 channels	15 channels								
Test setup:	Spe			.U.T						
Test Instruments:	Refer to sec	ction 6.0 for o	letails							
Test mode:	Refer to sec	ction 5.2 for o	letails							
Test results:	Pass									
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar				


Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK	79		Pass
π/4-DQPSK	79	≥15	Pass
8-DPSK	79		Pass



Test plot as follows:


Test mode: GFSK

Test mode: $\pi/4$ -DQPSK

Test mode: 8-DPSK

6.6. Dwell Time

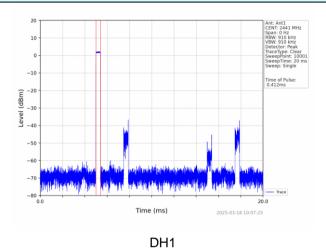
Test Requirement:	FCC Part15 C	Section 1	5.247 (a)(1)(iii)					
Test Method:	ANSI C63.10:2	2013							
Receiver setup:	RBW=1MHz, \	/BW=1MH	lz, Span=0H	z, Detector=F	Peak				
Limit:	0.4 Second								
Test setup:	Spectr								
Test Instruments:	Refer to sectio	n 6.0 for d	letails						
Test mode:	Refer to sectio	n 5.2 for d	letails						
Test results:	Pass	Pass							
Test environment:	Temp.: 25	5 °C	Humid.:	52%	Press.:	1012mbar			

Measurement Data

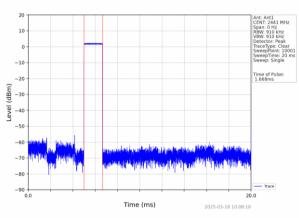
Modulation	Packet	Burst time (ms)	Dwell time (ms)	Limit (ms)	Result	
	DH1	0.412	131.840		Pass	
GFSK	DH3	1.668	263.544	400		
	DH5	2.916	2.916 326.592			
	2-DH1	0.424	135.680			
π/4DQPSK	2-DH3	1.670	270.540	400	Pass	
	2-DH5	2.924	295.324			
	3-DH1	0.422	135.462			
8DPSK	3-DH3	1.674	289.602	400	Pass	
	3-DH5	2.926	310.156			

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

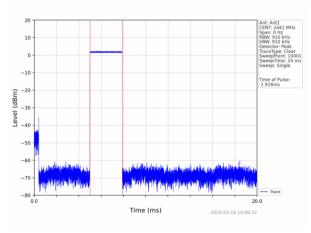
Dwell time=Pulse time (ms) \times (1600 \div 2 \div 79) \times 31.6 Second for DH1, 2-DH1, 3-DH1

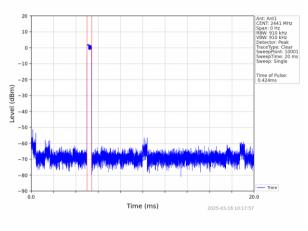

Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3, 3-DH3

Dwell time=Pulse time (ms) \times (1600 \div 6 \div 79) \times 31.6 Second for DH5, 2-DH5, 3-DH5

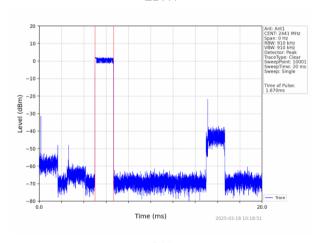


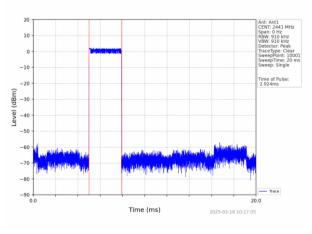
Test plot as follows:


GFSK mode



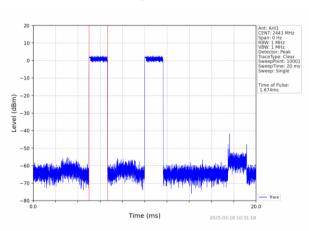
DH3

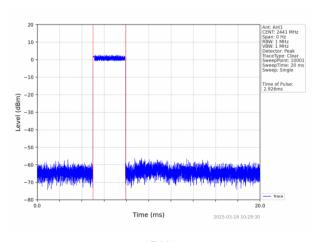



π/4-DQPSK mode

2DH1

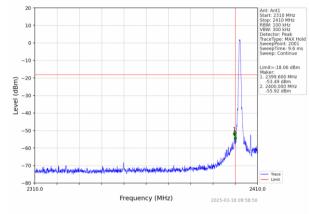
2DH3

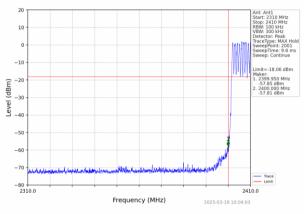



8-DPSK mode

3DH3

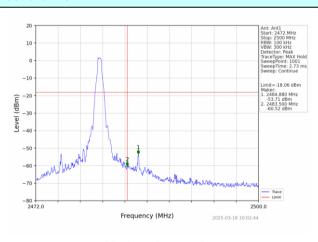
6.7. Band Edge

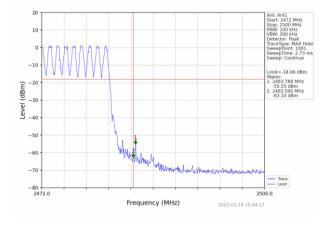

6.7.1. Conducted Emission Method


Test Requirement:	FCC Part15	C Section 1	5.247 (d)						
Test Method:	ANSI C63.	10:2013							
Receiver setup:	RBW=100k	Hz, VBW=30	0kHz, Detec	tor=Peak					
Limit:	spectrum in is produced the 100 kH: the desired	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:	Spectrum Analyzer F.U.T Non-Conducted Table Ground Reference Plane								
Test Instruments:	Refer to se	ction 6.0 for c	letails						
Test mode:	Refer to se	ction 5.2 for c	letails						
Test results:	Pass								
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar			

Test plot as follows: GFSK Mode:

Test channel Lowest channel




No-hopping mode

Hopping mode

Test channel:

Highest channel

No-hopping mode

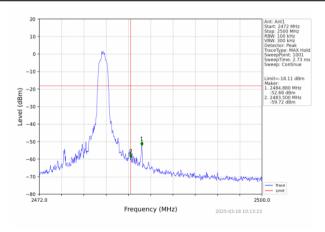
Hopping mode

π/4-DQPSK Mode:

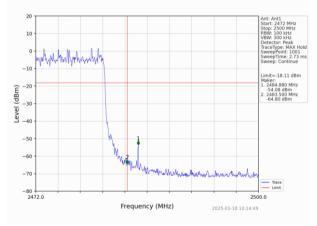
| Ant. Ant. | Start 2310 MHz | Start 231

No-hopping mode

Frequency (MHz)

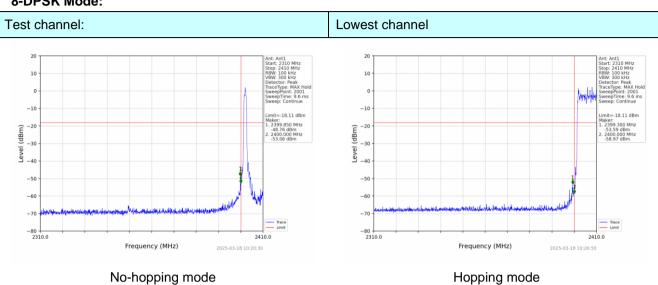

Hopping mode

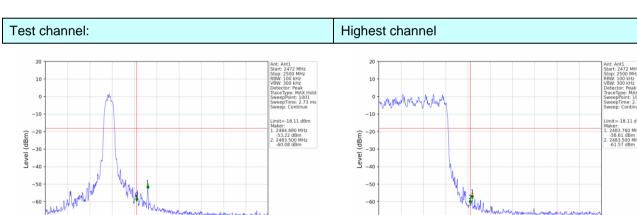
2025-03-18 10:14:36


Frequency (MHz)

Test channel:

Highest channel


No-hopping mode


Hopping mode

8-DPSK Mode:

Hopping mode

No-hopping mode

Frequency (MHz)

Hopping mode

2025-03-18 10:27:24

Frequency (MHz)

6.7.2. Radiated Emission Method

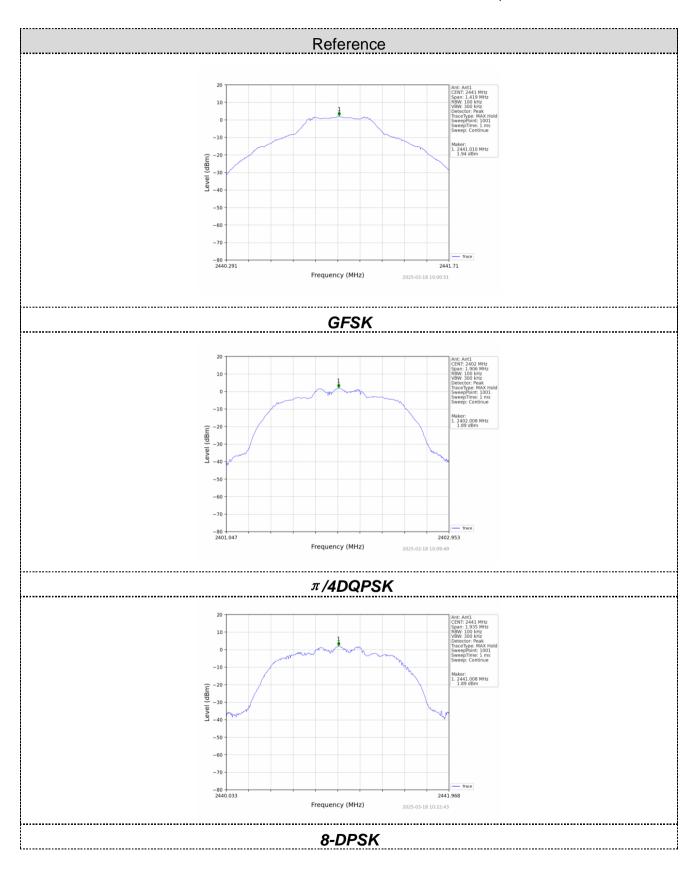
0.7.2. Radialed	Ellission Me	uiou						
Test Requirement:	FCC Part15	C Section 1	5.209 a	and 15.205	5			
Test Method:	ANSI C63.1	0:2013						
Test Frequency Range:	All of the re 2500MHz) d			tested, on	ly the wo	orst band's (2	2310MHz to	
Test site:	Measureme	nt Distance:	3m					
Receiver setup:	Frequenc			RBW	VBW	/ Re	mark	
,	Above 1GH	Hz Pea		1MHz 1MHz	3MH: 10Hz		k Value ge Value	
Limit:	Fre	quency	L	imit (dBu)	V/m @3m	n) Re	mark	
	Abov	ve 1GHz		54. 74.			ge Value k Value	
Test setup:	Tum Table- <150cm>	Test Antenna- Tum Table-						
Test Procedure:	1. The EUT	was placed				ole 1.5 meters	s above the	
	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or 							
Test Instruments:	Refer to sec	tion 6.0 for c	letails					
Test mode:	Refer to sec	tion 5.2 for c	letails					
Test results:	Pass		_					
Test environment:	Temp.:	25 °C	Humi	d.: 52	%	Press.:	1012mbar	

Measurement Data

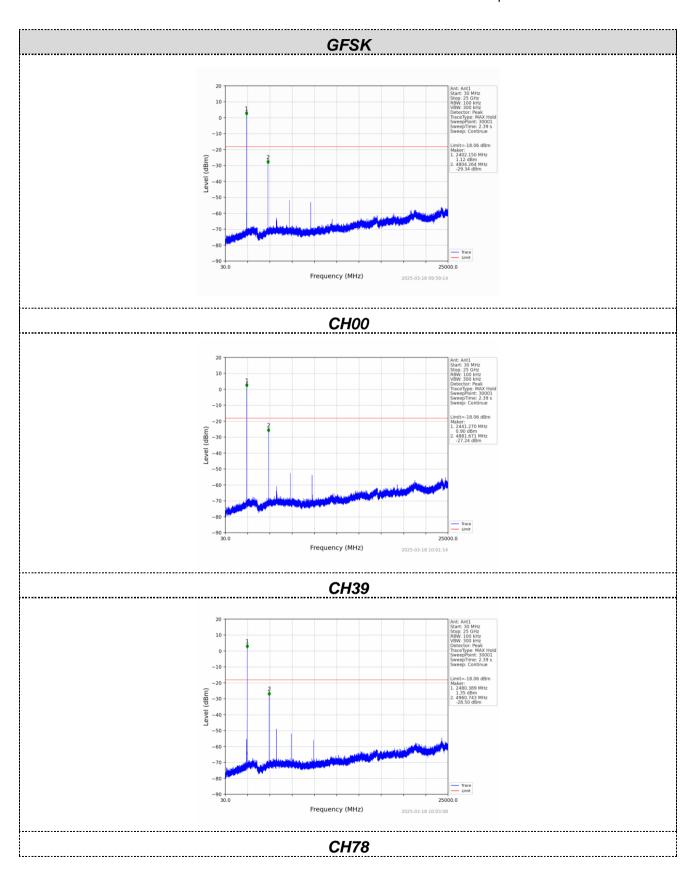
Remark: GFSK, Pi/4 DQPSK,8-DPSK all have been tested, only worse case GFSK is reported.

Operation Mode: GFSK

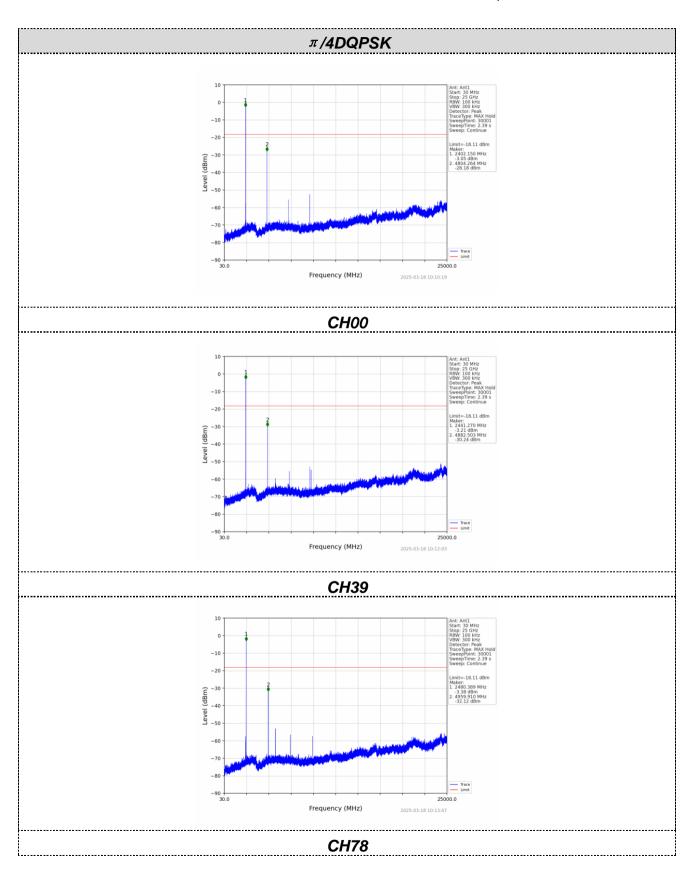
Freque	ncy(MHz)	:	24	02	Pola	arity:	Н	IORIZONTA	L
Frequency (MHz)	Emis Le [,] (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	61.09	PK	74	12.91	62.48	27.2	4.31	32.9	-1.39
2390.00	45.40	AV	54	8.60	46.79	27.2	4.31	32.9	-1.39
Freque	ncy(MHz)	:	24	02	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Le [,] (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	59.46	PK	74	14.54	60.85	27.2	4.31	32.9	-1.39
2390.00	46.32	AV	54	7.68	47.71	27.2	4.31	32.9	-1.39
Freque	ncy(MHz)	:	2480		P olarity:		HORIZONTAL		
Frequency (MHz)	Emis Le [,] (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	56.85	PK	74	17.15	57.78	27.4	4.47	32.8	-0.93
2483.50	44.82	AV	54	9.18	45.75	27.4	4.47	32.8	-0.93
Freque	ncy(MHz)	:	24	80	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Le	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	55.70	PK	74	18.30	56.63	27.4	4.47	32.8	-0.93
2483.50	44.77	AV	54	9.23	45.70	27.4	4.47	32.8	-0.93

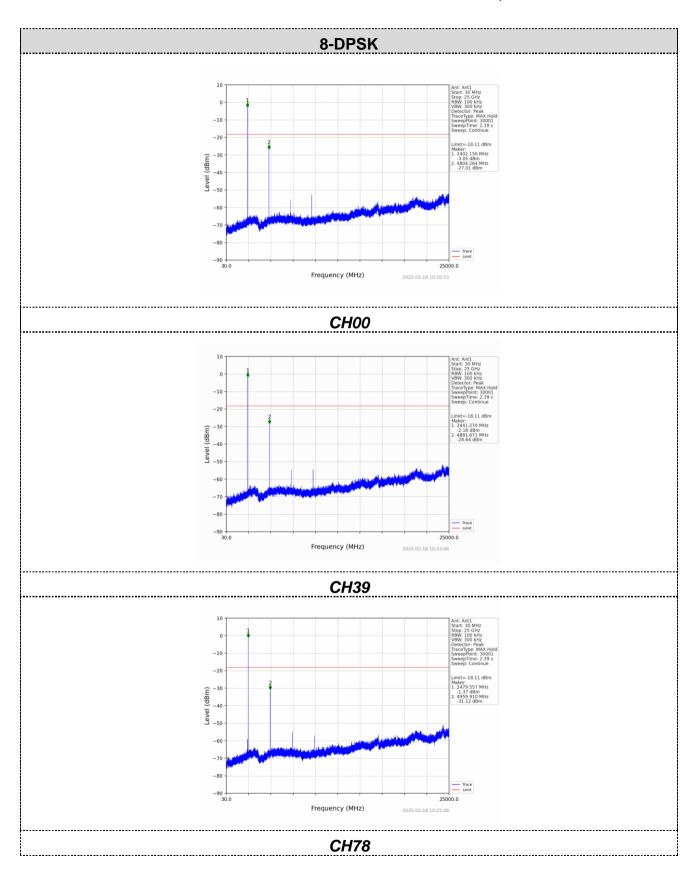


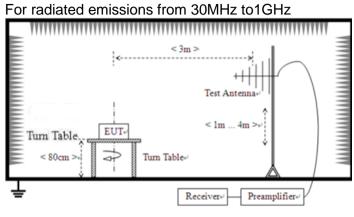
6.8. Spurious Emission

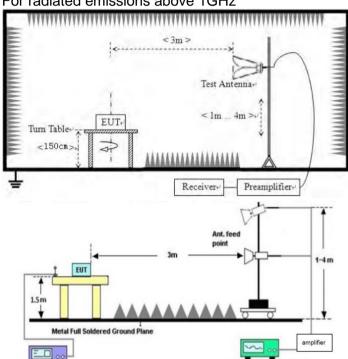

6.8.1. Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)								
Test Method:	ANSI C63.10:2013								
Limit:	spectrum int is produced the 100 kHz	tentional radi by the intent bandwidth v power, based	ator is opera ional radiator vithin the ban	e frequency be ting, the radio shall be at lead that contain RF conduct	o frequency peast 20 dB be ns the highes	ower that elow that in t level of			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane								
Test Instruments:	Refer to section 6.0 for details								
Test mode:	Refer to sec	tion 5.2 for d	letails						
Test results:	Pass								
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar			








6.8.2. Radiated Emission Method

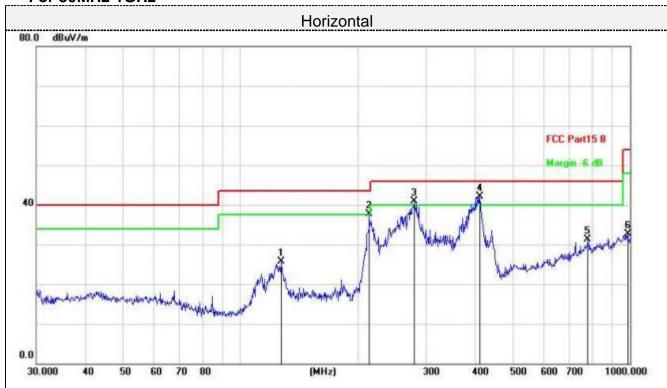
0.0.2. Nadiated Li	ilission wethou									
Test Requirement:	FCC Part15 C Section	on 15	5.209							
Test Method:	ANSI C63.10:2013									
Test Frequency Range:	9kHz to 25GHz									
Test site:	Measurement Distance: 3m									
Receiver setup:	Frequency Detector RBW VBW Value									
	9KHz-150KHz Quasi-peak 200Hz 600Hz Quas									
	150KHz-30MHz	Quasi-peak								
	30MHz-1GHz	Qι	ıasi-peak	120K	Hz	300KH	lz	Quasi-peak		
	Above 1GHz		Peak	1MF	łz	3MHz	<u>-</u>	Peak		
	Above 10112		Peak	1MF	łz	10Hz		Average		
Limit:	Frequency		Limit (u\	//m)	V	alue	N	Measurement Distance		
	0.009MHz-0.490M	lHz	2400/F(k	(Hz)	(QΡ		300m		
	0.490MHz-1.705M	lHz	24000/F(KHz)	(QΡ		30m		
	1.705MHz-30MH	lz	30		(QP		30m		
	30MHz-88MHz		100		(QΡ				
	88MHz-216MHz	<u> </u>	150		(QP				
	216MHz-960MH	Z	200		(QΡ		3m		
	960MHz-1GHz		500		(QΡ		Sili		
	Above 1GHz		500		Ave	erage				
	7.5576 15112		5000		Р	eak				
Test setup:	For radiated emiss	sions	from 9kH	z to 30	MHz	<u>z</u>				
	***********	11111	(1111111111111111	******	11111	********				
	Tum Table EUT		< 3m > Test A um Table»	ntenna lm						

For radiated emissions above 1GHz

Test Procedure:

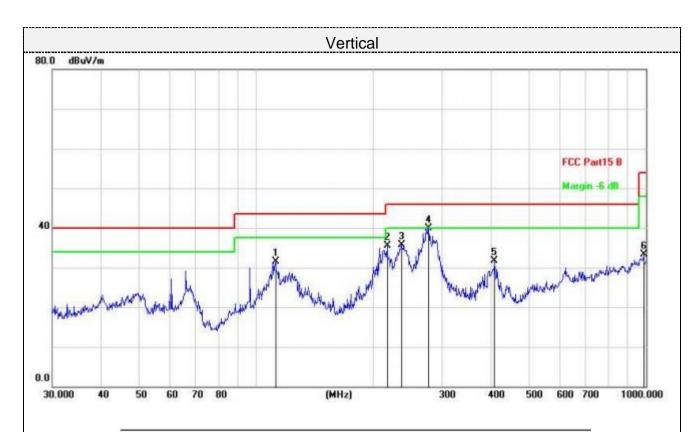
- 1. The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest
- 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

				- 1					
		receiver sys th with Maxir			tect Function	and Specified			
	limit spe EUT wo 10dB ma	cified, then to uld be reporto argin would b	esting could ed. Otherwis e re-tested o	be stopped e the emiss one by one	e was 10dB lo and the peak sions that did r using peak, qued in a data s	values of the not have uasi-peak or			
Test Instruments:	Refer to se	ction 6.0 for	details						
Test mode:	Refer to se	ction 5.2 for o	details						
Test environment:	Temp.:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar							
Test voltage:	AC 120V, 60Hz								
Test results:	Pass								


Measurement data:

Remarks:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.
- 3. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.
- 4. Based on all tested data, the EUT complied with the FCC Part 15.207 standard limit for a wireless device, and with the worst case as DH5 2402MHz as below:


For 30MHz-1GHz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dB/m	dB	Detector
1		127.6645	38.38	-12.64	25.74	43.50	-17.76	peak
2	!	214.5143	51.07	-13.27	37.80	43.50	-5.70	peak
3	!	280.0237	52.27	-11.36	40.91	46.00	-5.09	peak
4	*	411.8240	49.66	-7.59	42.07	46.00	-3.93	peak
5		779.6068	31.47	-0.13	31.34	46.00	-14.66	peak
6		986.0717	29.12	3.49	32.61	54.00	-21.39	peak

Final Level =Receiver Read level + Correct Factor

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dB/m	dB	Detector
1		112.1304	45.44	-13.87	31.57	43.50	-11.93	peak
2		216.7828	48.71	-13.25	35.46	46.00	-10.54	peak
3		235.8163	47.84	-12.11	35.73	46.00	-10.27	peak
4	*	277.0935	51.36	-11.37	39.99	46.00	-6.01	peak
5		408.9460	39.50	-7.71	31.79	46.00	-14.21	peak
6		986.0716	29.73	3.49	33.22	54.00	-20.78	peak

Final Level =Receiver Read level + Correct Factor

For 1GHz to 25GHz

Remark: For test above 1GHz GFSK,Pi/4 DQPSK and 8-DPSK were test at Low, Middle, and High channel; only the worst result of GFSK was reported as below:

Freque	Frequency(MHz):			2402		Polarity:		HORIZONTAL			
Frequency (MHz)		ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)		
4804.00	59.71	PK	74	14.29	54.01	31	6.5	31.8	5.7		
4804.00	41.93	AV	54	12.07	36.23	31	6.5	31.8	5.7		
7206.00	54.24	PK	74	19.76	41.59	36	8.15	31.5	12.65		
7206.00	43.93	AV	54	10.07	31.28	36	8.15	31.5	12.65		

Freque	Frequency(MHz):			2402		Polarity:		VERTICAL			
Frequency (MHz)	Emis Le		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)		
4804.00	59.96	PK	74	14.04	54.26	31	6.5	31.8	5.7		
4804.00	43.90	AV	54	10.10	38.20	31	6.5	31.8	5.7		
7206.00	53.13	PK	74	20.87	40.48	36	8.15	31.5	12.65		
7206.00	44.16	AV	54	9.84	31.51	36	8.15	31.5	12.65		

Freque	Frequency(MHz):			2441		Polarity:		HORIZONTAL		
Frequency (MHz)		ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4882.00	60.91	PK	74	13.09	54.75	31.2	6.61	31.65	6.16	
4882.00	43.63	AV	54	10.37	37.47	31.2	6.61	31.65	6.16	
7323.00	52.70	PK	74	21.30	39.75	36.2	8.23	31.48	12.95	
7323.00	43.03	AV	54	10.97	30.08	36.2	8.23	31.48	12.95	

Freque	ncy(MHz)	:	2441		Polarity:		VERTICAL			
Frequency Emission Level		Limit	Margin	Raw Value	Antenna Factor	Cable Factor	Pre- amplifier	Correction Factor		
(MHz)	lHz) (dBuV/m)		(dBuV/m) (dB)		(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)	
4882.00	60.47	PK	74	13.53	54.31	31.2	6.61	31.65	6.16	
4882.00	42.72	AV	54	11.28	36.56	31.2	6.61	31.65	6.16	
7323.00	53.81	PK	74	20.19	40.86	36.2	8.23	31.48	12.95	
7323.00	44.70	AV	54	9.30	31.75	36.2	8.23	31.48	12.95	

Freque	Frequency(MHz):			2480		Polarity:		HORIZONTAL			
Frequency (MHz)	Emis Le		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)		
4960.00	62.78	PK	74	11.22	56.12	31.4	6.76	31.5	6.66		
4960.00	41.35	AV	54	12.65	34.69	31.4	6.76	31.5	6.66		
7440.00	53.66	PK	74	20.34	40.36	36.4	8.35	31.45	13.3		
7440.00	44.74	AV	54	9.26	31.44	36.4	8.35	31.45	13.3		

Freque	ncy(MHz)	:	2480		Polarity:		VERTICAL			
Frequency	Emission		Limit	Margin	Raw	Antenna	Cable	Pre-	Correction	
Frequency	Le	vel		Ū	Value	Factor	Factor	amplifier	Factor	
(MHz) (dBuV/m)		V/m)	(dBuV/m)	(dB)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)	
4960.00	62.55	PK	74	11.45	55.89	31.4	6.76	31.5	6.66	
4960.00	44.12	AV	54	9.88	37.46	31.4	6.76	31.5	6.66	
7440.00	54.28	PK	74	19.72	40.98	36.4	8.35	31.45	13.3	
7440.00	45.49	AV	54	8.51	32.19	36.4	8.35	31.45	13.3	

Remark:

⁽¹⁾ Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

⁽²⁾ When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

6.9. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Antenna Connected Construction

The maximum gain of antenna was 1.90 dBi.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen HTT Technology Co., Ltd. does not assume any responsibility.

7. Test Setup Photo

Reference to the appendix I for details.

8. EUT Constructional Details

Reference to the appendix II for details.

-----End-----