FCC TEST REPORT Test report On Behalf of Shenzhen Zidoo Technology Co.,Ltd For SMART TV BOX Model No.: X1 II FCC ID: 2AGN7-X1 Prepared for: Shenzhen Zidoo Technology Co.,Ltd Central Avenue building A m, Unit 12D Xixiang Ave, BaoAn District, Shenzhen. Prepared By: WST Certification & Testing (HK) Limited 12/F., San Toi Building,137-139 Connaught Road Central,Hong Kong Date of Test: Mar. 28, 2016 ~ April. 06, 2016 Date of Report: April. 06, 2016 Report Number: WST160303156-E # **TEST RESULT CERTIFICATION** | Applicant's name | Shenzhen Zidoo | Technology Co.,Ltd | | |---|---|--|-------------------------------------| | Address | Central Avenue b | ouilding A m, Unit 12D Xixiang Ave,BaoAn | District,Shenzhen. | | Manufacture's Name | Shenzhen Zidoo | Technology Co.,Ltd | | | Address | Central Avenue b | ouilding A m, Unit 12D Xixiang Ave,BaoAn | District,Shenzhen. | | Product description | | | | | Trade Mark: | ZIDOO | | | | Product name | SMART TV BOX | | | | Model and/or type reference | X1 II | | | | Standards | FCC Rules and R
ANSI C63.10: 201 | egulations Part 15 Subpart C Section 15.24 | 19 | | WST Certification & Tematerial. WST Certification | esting (HK) Limite
ation & Testing (Hesulting from the r | whole or in part for non-commercial purposed is acknowledged as copyright owner and the second that the second is acknowledged as copyright owner and the second in the second control of c | and source of the d will not assume | | Date (s) of performance | of tests Mar. 2 | 8, 2016 ~ April. 06, 2016 | | | Date of Issue | April. | 06, 2016 | | | Test Result | Pass | | | | Test | ting Engineer | : Zin Xie (Eric Xie) | | | Tecl | hnical Manager | : Dora Qin (Dora Qin) | | | Auth | norized Signatory | : | | | | | (Kait Chen) | | 23 8.1 Radiated Emission **Table of Contents Page** 1. TEST SUMMARY 4 2. GENERAL INFORMATION 5 2.1 GENERAL DESCRIPTION OF EUT 5 2.2 DESCRIPTION OF TEST SETUP 6 2.3 MEASUREMENT INSTRUMENTS LIST 7 3. CONDUCTED EMISSIONS TEST 9 3.1 Conducted Power Line Emission Limit 9 3.2 Test Setup 9 3.3 Test Procedure 9 3.4 Test Result 9 **4 RADIATED EMISSION TEST** 12 4.1 Radiation Limit 12 4.2 Test Setup 12 4.3 Test Procedure 13 4.4 Test Result 13 **5 BAND EDGE** 18 5.1 Limits 18 5.2 Test Procedure 18 5.3 Test Result 18 6 OCCUPIED BANDWIDTH MEASUREMENT 19 20 6.1 Test Setup 6.2 Test Procedure 20 20 6.3 Measurement Equipment Used 6.4 Test Result 20 7 ANTENNA REQUIREMENT 22 **8 PHOTOGRAPH OF TEST** 23 ## 1. TEST SUMMARY ## 1.1 TEST PROCEDURES AND RESULTS | DESCRIPTION OF TEST | RESULT | |--------------------------------|-----------| | CONDUCTED EMISSIONS TEST | COMPLIANT | | RADIATED EMISSION TEST | COMPLIANT | | BAND EDGE | COMPLIANT | | OCCUPIED BANDWIDTH MEASUREMENT | COMPLIANT | | ANTENNA REQUIREMENT | COMPLIANT | ## 1.2 TEST FACILITY Test Firm : Shenzhen WST Testing Technology Co., Ltd. Certificated by FCC, Registration No.: 939433 Address : 1F,No.9 Building,TGK Science & Technology Park,Yangtian Rd., NO.72 Bao'an Dist., Shenzhen, Guangdong, China. 518101 Tel : (86)755-33916437 Fax : (86)755-27822175 ## 1.3 MEASUREMENT UNCERTAINTY Measurement Uncertainty Conducted Emission Expanded Uncertainty = 2.23dB, k=2 Radiated emission expanded uncertainty(9kHz-30MHz) = 3.08dB, k=2 Radiated emission expanded uncertainty(30MHz-1000MHz) = 4.42dB, k=2 Radiated emission expanded uncertainty(Above 1GHz) = 4.06dB, k=2 # 2. GENERAL INFORMATION # 2.1 GENERAL DESCRIPTION OF EUT | Equipment | SMART TV BOX | |------------------------|---| | Model Name | X1 II | | Serial No | N/A | | Model Difference | N/A | | FCC ID | 2AGN7-X1 | | Antenna Type | Internal Antenna | | BT Operation frequency | 2402-2480MHz | | Number of Channels | 40CH | | Modulation Type | GFSK | | Power Source | DC 5V from adapter | | Power Rating | / | | Adaptor Model | KA23-0502000DES | | Adapter Model | Input: AC 100-240V, 0.35A, Output: DC5V, 2A | # 2.1.1 Carrier Frequency of Channels | Channel | Frequeeny
(MHz) | Channel | Frequeeny
(MHz) | Channel | Frequeeny
(MHz) | Channe
1 | Frequeeny
(MHz) | |---------|--------------------|---------|--------------------|---------|--------------------|-------------|--------------------| | 0 | 2402 | 10 | 2422 | 20 | 2442 | 30 | 2462 | | 1 | 2404 | 11 | 2424 | 21 | 2444 | 31 | 2464 | | 2 | 2406 | 12 | 2426 | 22 | 2446 | 32 | 2466 | | 3 | 2408 | 13 | 2428 | 23 | 2448 | 33 | 2468 | | 4 | 2410 | 14 | 2430 | 24 | 2450 | 34 | 2470 | | 5 | 2412 | 15 | 2432 | 25 | 2452 | 35 | 2472 | | 6 | 2414 | 16 | 2434 | 26 | 2454 | 36 | 2474 | | 7 | 2416 | 17 | 2436 | 27 | 2456 | 37 | 2476 | | 8 | 2418 | 18 | 2438 | 28 | 2458 | 38 | 2478 | | 9 | 2420 | 19 | 2440 | 29 | 2460 | 39 | 2480 | # Operation of EUT during testing **Operating Mode** The mode is used: Transmitting mode Low Channel: 2402MHz Middle Channel: 2440MHz High Channel: 2480MHz # 2.2 DESCRIPTION OF TEST SETUP Operation of EUT during testing # 2.3 MEASUREMENT INSTRUMENTS LIST | Item | Equipment | Manufacturer | Model No. | Serial No. | Last Cal. | Cal. Interval | |------|--|-------------------------|------------|------------------|--------------|---------------| | 1. | EMI Receiver | Rohde & Schwarz | ESCI | 100627 | May 19, 2015 | 1 Year | | 2. | LISN | SchwarzBeck | NSLK 8126 | 8126377 | May 19, 2015 | 1 Year | | 3. | RF Switching Unit | Compliance
Direction | RSU-M2 | 38303 | May 19, 2015 | 1 Year | | 4. | EMI Test Software
ES-K1 | Rohde & Schwarz | N/A | N/A | N/A | N/A | | 5. | EMI Test Receiver | Rohde & Schwarz | ESCI | 100627 | May 19, 2015 | 1 Year | | 6. | Trilog Broadband
Antenna | Schwarzbeck | VULB9163 | VULB
9163-289 | May 17, 2015 | 1 Year | | 7. | Pre-amplifier | Compliance
Direction | PAP-0203 | 22008 | May 19, 2015 | 1 Year | | 8. | EMI Test Software
EZ-EMC | SHURPLE | N/A | N/A | N/A | N/A | | 9. | EMI Receiver | Rohde & Schwarz | ESCI | 100627 | May 19, 2015 | 1 Year | | 10. | LISN | SchwarzBeck | NSLK 8126 | 8126377 | May 19, 2015 | 1 Year | | 11. | RF Switching Unit | Compliance
Direction | RSU-M2 | 38303 | May 19, 2015 | 1 Year | | 12. | EMI Test Software
ES-K1 | Rohde & Schwarz | N/A | N/A | N/A | N/A | | 13. | EMI Receiver | Rohde & Schwarz | ESCI | 100627 | May 19, 2015 | 1 Year | | 14. | EMI Receiver | Rohde & Schwarz | ESCI | 100627 | May 19, 2015 | 1 Year | | 15. | LISN | SchwarzBeck | NSLK 8126 | 8126377 | May 19, 2015 | 1 Year | | 16. | RF Switching Unit | Compliance
Direction | RSU-M2 | 38303 | May 19, 2015 | 1 Year | | 17. | EMI Test Software
ES-K1 | Rohde & Schwarz | N/A | N/A | N/A | N/A | | 18. | Programmable AC Power source | SOPH POWER | PAG-1050 | 630250 | May 26, 2015 | 1 Year | | 19. | Harmonic and
Flicker Analyzer | LAPLACE | AC2000A | 272629 | May 26, 2015 | 1 Year | | 20. | Harmonic and
Flicker Test
Software
AC 2000A | LAPLACE | N/A | N/A | N/A | N/A | | 21. | ESD Simulators | KIKUSUI | KES4021 | LJ003477 | May 25, 2015 | 1 Year | | 22. | EFT Generator | EMPEK | EFT-4040B | 0430928N | May 19, 2015 | 1 Year | | 23. | Shielding Room | ChangZhou
ZhongYu | JB88 | SEL0166 | May 19, 2015 | 1 Year | | 24. | Signal Generator
9KHz~2.2GHz | R&S | SML02 | SEL0143 | May 19, 2015 | 1 Year | | 25. | Signal Generator
9KHz~1.1GHz | R&S | SML01 | SEL0135 | May 19, 2015 | 1 Year | | 26. | Power Meter | R&S | NRVS | SEL0144 | May 19, 2015 | 1 Year | | 27. | RF Level Meter | | URV35 | SEL0137 | May 19, 2015 | 1 Year | | 28. | Audio Analyzer | R&S | UPL | SEL0136 | May 19, 2015 | 1 Year | | 29. | RF-Amplifier
150KHz~150MH
z | BONN Elektronik | BSA1515-25 | SEL0157 | May 19, 2015 | 1 Year | Stripline Test Cell Erika Fiedler VDE0872 SEL0167 N/A 30. N/A TV Test Transmitter R&S SFM SEL0159 May 17, 2015 1 Year 31. TV Generator PAL R&S SGPF SEL0138 32. May 19, 2015 1 Year TV Generator Ntsc R&S SGMF SEL0140 33. May 19, 2015 1 Year TV Generator R&S **SGSF** SEL0139 34. May 19, 2015 1 Year Secam TV Test Transmitter R&S **SFQ** SEL0142 35. May 19, 2015 1 Year 0.3MHz~3300MHz MPEG2 R&S DVG SEL0141 36. Measurement May 19, 2015 1 Year Generator Spectrum Analyzer R&S **FSP** SEL0177 37. May 19, 2015 1 Year SEL0146 N/A Matching R&S RAM 38. N/A RAM SEL0148 N/A Matching R&S N/A 39. Absorbing Clamp R&S MDS21 SEL0158 May 17, 2015 40. 1 Year N/A Coupling Set Erika Fiedler Rco, Rci, SEL0149 N/A 41. MC, AC, LC Filters N/A SEL0150 42. Erika Fiedler Sr. LBS N/A N/A Matching Network SEL0151 N/A Erika Fiedler MN, T1 43. Fully Anechoic ChangZhou SEL0169 Jun. 10, 2015 44. 854 1 Year Room ZhongYu SEL0068 Signal Generator May 17, 2015 1 Year 45. R&S SML03 RF-Amplifier Amplifier SEL0066 Oct. 24, 2015 46. 250W1000A 1 Year 30M~1GHz Reasearch RF-Amplifier **Amplifier** SEL0065 Oct. 24, 2015 1 Year 47. 60S1G3 0.8~3.0GHz Reasearch Power Meter NRVD SEL0069 May 17, 2015 R&S 1 Year 48. Power Sensor R&S SEL0071 May 17, 2015 1 Year URV5-Z2 49. Power Sensor R&S SEL0072 May 17, 2015 50. URV5-Z2 1 Year Software R&S SEL0082 N/A N/A 51. EMC32-S EMC32 Amplifier SEL0073 N/A Log-periodic 52. AT1080 N/A Antenna Reasearch Amplifier SEL0074 N/A N/A Antenna Tripod 53. TP1000A Reasearch High Gain Horn SEL0075 N/A 54. Amplifier Antenna(0.8-5G AT4002A N/A Reasearch Hz) ## CONDUCTED EMISSIONS TEST ## 3.1 Conducted Power Line Emission Limit For unintentional device, according to § 15.107(a) Line Conducted Emission Limits is as following | Eraguanav | Maximum RF Line Voltage (dBμV) | | | | | | | | |--------------------|--------------------------------|------|--------|---------|--|--|--|--| | Frequency
(MHz) | CLAS | SS A | C | CLASS B | | | | | | (11112) | Q.P. | Ave. | Q.P. | Ave. | | | | | | 0.15 - 0.50 | 79 | 66 | 66-56* | 56-46* | | | | | | 0.50 - 5.00 | 73 | 60 | 56 | 46 | | | | | | 5.00 - 30.0 | 73 | 60 | 60 | 50 | | | | | * Decreasing linearly with the logarithm of the frequency For intentional device, according to §15.207(a) Line Conducted Emission Limit is same as above table. # 3.2 Test Setup ## 3.3 Test Procedure - 1, The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10. - 2, Support equipment, if needed, was placed as per ANSI ANSI C63.10. - 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10. - 4, If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane. - 5, All support equipments received AC power from a second LISN, if any. - 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver. - 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes. # 3.4 Test Result **PASS** | No. | Frequency | Reading | Correct | Result | Limit | Margin | Detector | |-----|-----------|---------|---------|--------|--------|--------|----------| | | (MHz) | (dBuV) | (dB/m) | (dBuV) | (dBuV) | (dB) | | | 1 | 0.5020 | 40.00 | 12.50 | 52.50 | 56.00 | -3.50 | QP | | 2* | 0.5020 | 31.66 | 12.50 | 44.16 | 46.00 | -1.84 | AVG | | 3 | 0.6100 | 22.45 | 12.61 | 35.06 | 46.00 | -10.94 | AVG | | 4 | 0.6260 | 33.90 | 12.63 | 46.53 | 56.00 | -9.47 | peak | | 5 | 1.4060 | 18.67 | 13.00 | 31.67 | 46.00 | -14.33 | AVG | | 6 | 1.4500 | 32.64 | 13.00 | 45.64 | 56.00 | -10.36 | peak | | No. | Frequency | Reading | Correct | Result | Limit | Margin | Detector | |-----|-----------|---------|---------|--------|--------|--------|----------| | | (MHz) | (dBuV) | (dB/m) | (dBuV) | (dBuV) | (dB) | | | 1 | 0.4940 | 29.63 | 12.50 | 42.13 | 46.10 | -3.97 | AVG | | 2* | 0.5020 | 40.07 | 12.50 | 52.57 | 56.00 | -3.43 | peak | | 3 | 0.6180 | 35.63 | 12.62 | 48.25 | 56.00 | -7.75 | peak | | 4 | 0.6340 | 25.04 | 12.63 | 37.67 | 46.00 | -8.33 | AVG | | 5 | 1.5740 | 23.92 | 13.00 | 36.92 | 46.00 | -9.08 | AVG | | 6 | 1.5820 | 33.84 | 13.00 | 46.84 | 56.00 | -9.16 | peak | **4 RADIATED EMISSION TEST** ## 4.1 Radiation Limit For unintentional device, according to § 15.109(a), except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values: | Frequency
(MHz) | Distance
(Meters) | Radiated
(dBµV/m) | Radiated (µV/m) | |--------------------|----------------------|----------------------|-----------------| | 30-88 | 3 | 40 | 100 | | 88-216 | 3 | 43.5 | 150 | | 216-960 | 3 | 46 | 200 | | Above 960 | 3 | 54 | 500 | For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the above table. # 4.2 Test Setup # (1) Radiated Emission Test-Up Frequency Below 30MHz # (2) Radiated Emission Test-Up Frequency 30MHz~1GHz (3) Radiated Emission Test-Up Frequency Above 1GHz #### 4.3 Test Procedure - 1, The EUT is placed on a turntable, which is 0.8m above ground plane below 1GHz and 1.5m above ground plane above 1GHz.. - 2, The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. - 3, EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions - 4, For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. - 5, Maximum procedure was performed on the six highest emissions to ensure EUT compliance - 6, And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical - 7, Repeat above procedures until the measurements for all frequencies are complete. - 8, Based on the Frequency Generator in the device include 16MHz. The test frequency range from 9KHz to 25GHz per FCC PART 15.33(a) #### Note: For battery operated equipment, the equipment tests shall be performed using a new battery. ## 4.4 Test Result ### **PASS** All the test modes completed for test. The worst case of Radiated Emission is CH 2480; the test data of this mode was reported. Below 1GHz Test Results: Antenna polarity: H | No. | Frequency | Reading | Correct | Result | Limit | Margin | Degree | Height | Remark | |-----|-----------|----------|---------|----------|----------|--------|--------|--------|--------| | | (MHz) | (dBuV/m) | dB/m | (dBuV/m) | (dBuV/m) | (dB) | (•) | (cm) | | | 1 | 42.3022 | 22.64 | -8.00 | 14.64 | 40.00 | -25.36 | 162 | 100 | QP | | 2 | 110.9571 | 23.39 | -9.76 | 13.63 | 43.50 | -29.87 | 187 | 100 | QP | | 3 | 912.8620 | 22.16 | 5.53 | 27.69 | 46.00 | -18.31 | 203 | 100 | QP | Antenna polarity: V | No. | Frequency | Reading | Correct | Result | Limit | Margin | Degree | Height | Remark | |-----|-----------|----------|---------|----------|----------|--------|--------|--------|--------| | | (MHz) | (dBuV/m) | dB/m | (dBuV/m) | (dBuV/m) | (dB) | (•) | (cm) | | | 1 | 40.8446 | 25.79 | -8.27 | 17.52 | 40.00 | -22.48 | 240 | 100 | QP | | 2 | 501.1790 | 25.44 | -1.10 | 24.34 | 46.00 | -21.66 | 187 | 100 | QP | | 3 | 881.4067 | 25.48 | 5.01 | 30.49 | 46.00 | -15.51 | 220 | 100 | QP | # Remark: - (1) Measuring frequencies from 9 KHz to the 1 GHz, Radiated emission test from 9KHz to 30MHz was verified, and no any emission was found except system noise floor. - (2) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply. - (3) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz. # Above 1 GHz Test Results: | Frequency | Reading | Correct | Result | Limit | Margin | Polar | Detector | |-----------|----------|---------|------------|------------|--------|-------|----------| | (MHz) | (dBuV/m) | dB/m | (dBuV/m) | (dBuV/m) | (dB) | H/V | | | | | | Low Channe | el-2402MHz | | | | | 2402 | 84.08 | -3.49 | 80.59 | 114 | -33.47 | Н | PK | | 2402 | 75.05 | -3.49 | 71.56 | 94 | -22.42 | Н | AV | | 4804 | 60.81 | 0.57 | 61.38 | 74 | -12.59 | Н | PK | | 4804 | 46.75 | 0.57 | 47.32 | 54 | -6.66 | Н | AV | | 7206 | 40.82 | 7.18 | 48.02 | 74 | -25.98 | Н | PK | | 7206 | 28.80 | 7.18 | 35.98 | 54 | -18.02 | Н | AV | | 2402 | 83.22 | -3.49 | 79.73 | 114 | -34.27 | V | PK | | 2402 | 78.24 | -3.49 | 74.75 | 94 | -19.25 | V | AV | | 4804 | 48.39 | 0.57 | 48.96 | 74 | -25.04 | V | PK | | 4804 | 35.12 | 0.57 | 35.69 | 54 | -18.31 | V | AV | | 7206 | 40.12 | 5.89 | 46.01 | 74 | -27.99 | V | PK | | 7206 | 28.10 | 6.15 | 34.25 | 54 | -19.75 | V | AV | | | 1 | | Middle Chan | nel-2440MHz | 1 | | | |------|-------|-------|-------------|-------------|--------|---|----| | 2440 | 81.03 | -3.43 | 77.60 | 114 | -33.40 | Н | PK | | 2440 | 73.23 | -3.43 | 69.80 | 94 | -24.21 | Н | AV | | 4880 | 57.47 | 0.66 | 58.13 | 74 | -15.87 | Н | PK | | 4880 | 42.89 | 0.66 | 43.55 | 54 | -10.45 | Н | AV | | 7320 | 41.08 | 3.11 | 44.19 | 74 | -29.81 | Н | PK | | 7320 | 28.93 | 3.33 | 32.26 | 54 | -21.74 | Н | AV | | 2440 | 82.48 | -3.43 | 79.05 | 114 | -34.95 | V | PK | | 2440 | 75.13 | -3.43 | 71.70 | 94 | -22.30 | V | AV | | 4880 | 49.01 | 0.66 | 49.67 | 74 | -24.33 | V | PK | | 4880 | 36.08 | 0.66 | 36.74 | 54 | -17.26 | V | AV | | 7320 | 41.03 | 7.18 | 48.21 | 74 | -25.79 | V | PK | | 7320 | 28.83 | 7.18 | 36.01 | 54 | -17.99 | V | AV | | Frequency | Reading | Correct | Result | Limit | Margin | Polar | Detector | | | | | |-----------|----------------------|---------|----------|----------|--------|-------|----------|--|--|--|--| | (MHz) | (dBuV/m) | dB/m | (dBuV/m) | (dBuV/m) | (dB) | H/V | | | | | | | | High Channel-2480MHz | | | | | | | | | | | | 2480 | 84.03 | -3.33 | 80.70 | 114 | -33.33 | Н | PK | | | | | | 2480 | 75.13 | -3.33 | 71.80 | 94 | -22.23 | Н | AV | | | | | | 4960 | 53.18 | 0.75 | 53.93 | 74 | -20.07 | Н | PK | | | | | | 4960 | 39.56 | 0.75 | 40.31 | 54 | -13.69 | Н | AV | | | | | | 7440 | 40.49 | 7.11 | 47.60 | 74 | -26.40 | Н | PK | | | | | | 7440 | 28.70 | 7.18 | 35.88 | 54 | -18.12 | Н | AV | | | | | | 2480 | 82.30 | -3.33 | 78.97 | 114 | -35.03 | V | PK | | | | | | 2480 | 76.15 | -3.33 | 72.82 | 94 | -21.18 | V | AV | | | | | | 4960 | 46.52 | 0.75 | 47.27 | 74 | -26.73 | V | PK | | | | | | 4960 | 33.70 | 0.75 | 34.45 | 54 | -19.55 | V | AV | | | | | | 7440 | 41.30 | 7.23 | 48.53 | 74 | -25.47 | V | PK | | | | | | 7440 | 28.76 | 7.18 | 35.94 | 54 | -18.06 | V | AV | | | | | #### Remark: - (1) Measuring frequencies from 1 GHz to the 25 GHz. - (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. - (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply. - (4) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured. - (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz. - (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed. ## **5 BAND EDGE** #### 5.1 Limits FCC PART 15.249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation. # 5.2 Test Procedure The band edge compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW to 100KHz and VBM to 300KHz to measure the peak field strength and set RBW to 1MHz and VBW to 10Hz to measure the average radiated field strength. The conducted RF band edge was measured by using a spectrum analyzer. Set span wide enough to capture the highest in-band emission and the emission at the band edge. Set RBW to 100 KHz and VBM to 300 KHz, to measure the conducted peak band edge. ### 5.3 Test Result ### **PASS** ## Hor. (Worst case) | No. | Frequency | Reading | Correct | Result | Limit | Margin Remark | | |-----|-----------|----------|---------|----------|----------|---------------|------------------| | | (MHz) | (dBuV/m) | dB/m | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 2310.000 | 34.33 | -4.42 | 29.91 | 54.00 | -24.09 | Average Detector | | | 2310.000 | 45.19 | -4.42 | 40.77 | 74.00 | -33.23 | Peak Detector | | 2 | 2390.000 | 34.20 | -3.72 | 30.48 | 54.00 | -23.52 | Average Detector | | | 2390.000 | 46.84 | -3.72 | 43.12 | 74.00 | -30.88 | Peak Detector | Hor. (Worst case) Page 19 of 24 | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|----------|---------|----------|----------|--------|------------------| | | (MHz) | (dBuV/m) | dB/m | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 2479.950 | 78.47 | -3.04 | 75.43 | 1 | 1 | Average Detector | | | 2480.125 | 82.82 | -3.04 | 79.78 | 1 | 1 | Peak Detector | | 2 | 2483.500 | 40.01 | -3.01 | 37.00 | 54.00 | -17.00 | Average Detector | | | 2483.500 | 48.67 | -3.01 | 45.66 | 74.00 | -28.34 | Peak Detector | | 3 | 2500.000 | 34.23 | -2.88 | 31.35 | 54.00 | -22.65 | Average Detector | | | 2500.000 | 46.50 | -2.88 | 43.62 | 74.00 | -30.38 | Peak Detector | 6.1 Test Setup Same as Radiated Emission Measurement ### 6.2 Test Procedure - 1. The EUT was placed on a turn table which is 1.5m above ground plane. - 2. Set EUT as normal operation. - 3. Based on FCC Part15 C Section 15.249(a): RBW= 10KHz. VBW= 30 KHz, Span=1MHz. - 4. The useful radiated emission from the EUT was detected by the spectrum analyser with peak detector. # 6.3 Measurement Equipment Used Same as Radiated Emission Measurement ### 6.4 Test Result ### **PASS** CH: 2402MHz ### CH: 2480MHz # 7 ANTENNA REQUIREMENT ### Standard Applicable For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.249, if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi. ## Refer to statement below for compliance. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed. ### **Antenna Connected Construction** The antenna used in this product is a Internal Antenna, The directional gains of antenna used for transmitting is 0dBi. ## **ANTENNA** # **8 PHOTOGRAPH OF TEST** # 8.1 Radiated Emission # 8.2 Conducted Emission