802 N. Twin Oaks Valley Road, Suite 105 • San Marcos, CA 92069 • U.S.A. TEL (760) 471-2100 • FAX (760) 471-2121 http://www.rfexposurelab.com ## CERTIFICATE OF R&D SAR EVALUATION Plexus Engineering Services 55 Jewelers Park Drive Neenah, WI 54957 Dates of Test: March 27, 2014 Test Report Number: SAR.20140314 Revision B Medtronic CRDM 8200 Coral Sea Street NE Mounds View, MN 55112 FCC ID: LF525000 IC Certificate: 3408D-25000 Model(s): Patient Reader 25000 Contains BT Module: Panasonic Model: PAN1326B; FCC ID: T7V1316; IC: 216Q-1316 Test Sample: **Engineering Unit** Serial Number: LJB000332A; BT Module: 0FC9 Equipment Type: Wireless Medical Device Portable Transmitter Next to Body Classification: TX Frequency Range: 2402 – 2480 MHz Frequency Tolerance: ± 2.5 ppm Maximum RF Output: 2450 MHz - 10 dBm Conducted Signal Modulation: **GFSK** Antenna Type: Chip Antenna Application Type: Certification FCC Rule Parts: Part 2, 15C KDB Test Methodology: KDB 447498 D01 v04 Industry Canada: RSS-102, Safety Code 6 Max. Body SAR Value: 0.01 W/kg (Reported) Separation Distance: 0 mm > This wireless mobile and/or portable device has been shown to be compliant for localized specific absorption rate (SAR) for uncontrolled environment/general exposure limits specified in ANSI/IEEE Std. C95.1-1992 and had been tested in accordance with the measurement procedures specified in IEEE 1528-2003, and OET Bulletin 65 Supp. C (See test report). > I attest to the accuracy of the data. All measurements were performed by myself or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. > RF Exposure Lab, LLC certifies that no party to this application is subject to a denial of Federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 853(a). Jay M. Moulton Vice President **Testing Cert. # 2387.01** # **Table of Contents** | 1. Introduction | 3 | |--|----| | SAR Definition [5] | 4 | | 2. SAR Measurement Setup | 5 | | Robotic System | 5 | | System Hardware | | | System Electronics | | | Probe Measurement System | 6 | | 3. Probe and Dipole Calibration | | | 4. Simulating Tissue Specifications | 12 | | Head & Body Simulating Mixture Characterization | | | 5. ANSI/IEEE C95.1 – 1992 RF Exposure Limits [2] | 13 | | Uncontrolled Environment | | | Controlled Environment | 13 | | 6. Measurement Uncertainty | 14 | | 7. System Validation | 15 | | Tissue Verification | 15 | | Test System Verification | 15 | | 8. SAR Test Data Summary | 16 | | Procedures Used To Establish Test Signal | 16 | | Device Test Condition | | | SAR Data Summary – 2450 MHz Body – BT | 19 | | 9. Test Equipment List | 20 | | 10. Conclusion | 21 | | 11. References | 22 | | Appendix A – System Validation Plots and Data | 23 | | Appendix B – SAR Test Data Plots | 26 | | Appendix C – SAR Test Setup Photos | | | Appendix D – Probe Calibration Data Sheets | 36 | | Appendix E – Dipole Calibration Data Sheets | 48 | | Appendix F – Phantom Calibration Data Sheets | 57 | ### 1. Introduction This measurement report shows testing of the Plexus Engineering Services and Medtronic CRDM Model Patient Reader 25000 FCC ID: LF525000 with FCC Part 2, 1093, ET Docket 93-62 Rules and IC Certificate: 3408D-25000 with RSS102 & Safety Code 6 for mobile and portable devices. The FCC have adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on August 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC regulated portable devices. [1], [6] The test results recorded herein are based on a single type test of Plexus Engineering Services and Medtronic CRDM Model Patient Reader 25000 and therefore apply only to the tested sample. The test procedures, as described in ANSI C95.1 – 1999 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [2], ANSI C95.3 – 2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields [3], FCC OET Bulletin 65 Supp. C – 2001 [4], IEEE Std.1528 – 2003 Recommended Practice [5], and Industry Canada Safety Code 6 Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3kHz to 300 GHz were employed. The following table indicates all the wireless technologies operating in the Patient Reader 25000 wireless Medical Device. The table also shows the tolerance for the power level for each mode. | Band | Technology | Setpoint
Nominal
Power
dBm | Tolerance
dBm | Lower
Tolerance
dBm | Upper
Tolerance
dBm | |--------------|------------|-------------------------------------|------------------|---------------------------|---------------------------| | BT – 2.4 GHz | Bluetooth | 9 | ±1.0 | 8 | 10 | ### **SAR Definition [5]** Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). $$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$ SAR is expressed in units of watts per kilogram (W/kg). SAR can be related to the electric field at a point by $$SAR = \frac{\sigma \mid E \mid^2}{\rho}$$ where: σ = conductivity of the tissue (S/m) ρ = mass density of the tissue (kg/m³) E = rms electric field strength (V/m) ## 2. SAR Measurement Setup ### **Robotic System** These measurements are performed using the DASY52 automated dosimetric assessment system. The DASY52 is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of high precision robotics system (Staubli), robot controller, Intel Core2 computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Fig. 2.1). ### **System Hardware** A cell controller system contains the power supply, robot controller teach pendant (Joystick), and a remote control used to drive the robot motors. The PC consists of the HP Intel Core2 computer with Windows XP system and SAR Measurement Software DASY52, A/D interface card, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit that performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card. Figure 2.1 SAR Measurement System Setup ### **System Electronics** The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail in. ### **Probe Measurement System** The SAR measurements were conducted with the dosimetric probe EX3DV4, designed in the classical triangular configuration (see Fig. 2.2) and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multi fiber line ending at the front of the probe tip. (see Fig. 2.3) It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY52 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped at reaching the maximum. **DAE System** ### **Probe Specifications** **Calibration:** In air from 10 MHz to 6.0 GHz In brain and muscle simulating tissue at Frequencies of 450 MHz, 835 MHz, 1750 MHz, 1900 MHz, 2450 MHz, 2600 MHz, 3500 MHz, 5200 MHz, 5300 MHz, 5600 MHz, 5800 MHz Frequency: 10 MHz to 6 GHz **Linearity:** ±0.2dB (30 MHz to 6 GHz) **Dynamic:** 10 mW/kg to 100 W/kg Range: Linearity: ±0.2dB **Dimensions:** Overall length: 330 mm **Tip length:** 20 mm Body diameter: 12 mm Tip diameter: 2.5 mm Distance from probe tip to sensor center: 1 mm **Application:** SAR Dosimetry Testing Compliance tests of wireless device Figure 2.2 Triangular Probe Configurations Figure 2.3 Probe Thick-Film Technique #### **Probe Calibration Process** #### **Dosimetric Assessment Procedure** Each probe is calibrated according to a dosimetric assessment procedure described in with accuracy better than +/- 10%. The spherical isotropy was evaluated with the procedure
described in and found to be better than +/-0.25dB. The sensitivity parameters (Norm X, Norm Y, Norm Z), the diode compression parameter (DCP) and the conversion factor (Conv F) of the probe is tested. #### **Free Space Assessment** The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies below 1 GHz, and in a waveguide above 1GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm². #### **Temperature Assessment *** E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium, correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor based temperature probe is used in conjunction with the E-field probe $$SAR = C \frac{\Delta T}{\Delta t}$$ $$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$ where: where: Δt = exposure time (30 seconds), σ = simulated tissue conductivity, C = heat capacity of tissue (brain or muscle), ρ = Tissue density (1.25 g/cm³ for brain tissue) ΔT = temperature increase due to RF exposure. SAR is proportional to $\Delta T \, / \, \Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. Now it's possible to quantify the electric field in the simulated tissue by equating the thermally derived SAR to the E- field; Figure 2.4 E-Field and Temperature Measurements at 900MHz Figure 2.5 E-Field and Temperature Measurements at 1800MHz ### **Data Extrapolation** The DASY52 software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given like below: with $$V_i = \text{compensated signal of channel i}$$ $(i=x,y,z)$ $$U_i = \text{input signal of channel i}$$ $(i=x,y,z)$ $$U_i = \text{input signal of channel i}$$ $(i=x,y,z)$ $$Cf = \text{crest factor of exciting field}$$ $(DASY parameter)$ $$dcp_i = \text{diode compression point}$$ $(DASY parameter)$ From the compensated input signals the primary field data for each channel can be evaluated: E-field probes: with $$V_i$$ = compensated signal of channel i (i = x,y,z) Norm_i = sensor sensitivity of channel i (i = x,y,z) $\mu V/(V/m)^2$ for E-field probes ConvF = sensitivity of enhancement in solution E_i = electric field strength of channel i in V/m The RSS value of the field components gives the total field strength (Hermetian magnitude): $$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$ The primary field data are used to calculate the derived field units. $$SAR = E_{tot}^{\,2} \cdot \frac{\sigma}{\rho \cdot 1000} \hspace{1cm} \text{with} \hspace{1cm} \begin{array}{ll} \text{SAR} & = \text{local specific absorption rate in W/g} \\ E_{tot} & = \text{total field strength in V/m} \\ \sigma & = \text{conductivity in [mho/m] or [Siemens/m]} \\ \rho & = \text{equivalent tissue density in g/cm}^3 \end{array}$$ The power flow density is calculated assuming the excitation field to be a free space field. $$P_{pwe} = \frac{E_{tot}^2}{3770}$$ with $P_{pwe} = \text{equivalent power density of a plane wave in W/cm}^2$ = total electric field strength in V/m #### **SAM PHANTOM** The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. (see Fig. 2.6) ### **Phantom Specification** **Phantom:** SAM Twin Phantom (V4.0) **Shell Material:** Vivac Composite Thickness: $2.0 \pm 0.2 \text{ mm}$ Figure 2.6 SAM Twin Phantom #### **Device Holder for Transmitters** In combination with the SAM Twin Phantom V4.0 the Mounting Device (see Fig. 2.7), enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation point is the ear opening. The devices can be easily, accurately, and repeat ably be positioned according to the FCC, CENELEC, IEC and IEEE specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom). **Figure 2.7 Mounting Device** Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produce infinite number of configurations. To produce the worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests. # 3. Probe and Dipole Calibration See Appendix D and E. # 4. Simulating Tissue Specifications ### **Head & Body Simulating Mixture Characterization** The head and body mixtures consist of the material based on the table listed below. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. Body tissue parameters that have not been specified in P1528 are derived from the issue dielectric parameters computed from the 4-Cole-Cole equations. **Table 4.1 Typical Composition of Ingredients for Tissue** | la sus diserts | Simulating Tissue | | | | |---------------------|-------------------|-------|--|--| | Ingredients | 2450 MHz Body | | | | | Mixing Percentage | | | | | | Water | 73.20 | | | | | Sugar | 0.00 | | | | | Salt | 0.10 | | | | | HEC | 0.00 | | | | | Bactericide | | 0.00 | | | | DGBE | 26.70 | | | | | Triton X-100 | 0.00 | | | | | Dielectric Constant | Target | 52.70 | | | | Conductivity (S/m) | Target | 1.95 | | | ## 5. ANSI/IEEE C95.1 – 1992 RF Exposure Limits [2] #### **Uncontrolled Environment** Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity. #### **Controlled Environment** Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. **Table 5.1 Human Exposure Limits** | | UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g) | CONTROLLED ENVIROMENT Professional Population (W/kg) or (mW/g) | |---|--|--| | SPATIAL PEAK SAR ¹
Head | 1.60 | 8.00 | | SPATIAL AVERAGE SAR ²
Whole Body | 0.08 | 0.40 | | SPATIAL PEAK SAR ³ Hands, Feet, Ankles, Wrists | 4.00 | 20.00 | ¹ The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time. ² The Spatial Average value of the SAR averaged over the whole body. ³ The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time. # 6. Measurement Uncertainty Measurement uncertainty table is not required per KDB 865664 D01 v01 section 2.8.2 page 12. SAR measurement uncertainty analysis is required in the SAR report only when the highest measured SAR in a frequency band is \geq 1.5 W/kg for 1-g SAR. The equivalent ratio (1.5/1.6) should be applied to extremity and occupational exposure conditions. The highest reported value is less than 1.5 W/kg. Therefore, the measurement uncertainty table is not required. ## 7. System Validation ### **Tissue Verification** **Table 7.1 Measured Tissue Parameters** | 2450 MHz Bo | | | /IHz Body | | |-------------------------|-------|---------------|-----------|--| | Date(s) | | Mar. 27, 2014 | | | | Liquid Temperature (°C) | 20.0 | Target | Measured | | | Dielectric Constant: ε | 52.70 | 52.37 | | | | Conductivity: σ | 1.95 | 1.96 | | | See Appendix A for data printout. ### **Test System Verification** Prior to assessment, the system is verified to the $\pm 10\%$ of the specifications at
the test frequency by using the system kit. Power is normalized to 1 watt. (Graphic Plots Attached) **Table 7.2 System Dipole Validation Target & Measured** | | Test
Frequency | Targeted
SAR _{1g}
(W/kg) | Measure
SAR _{1g}
(W/kg) | Tissue Used
for
Verification | Deviation (%) | Plot Number | |-------------|-------------------|---|--|------------------------------------|---------------|-------------| | 27-Mar-2014 | 2450 MHz | 51.50 | 52.20 | Body | + 1.36 | 1 | See Appendix A for data plots. Figure 7.1 Dipole Validation Test Setup # 8. SAR Test Data Summary See Measurement Result Data Pages See Appendix B for SAR Test Data Plots. See Appendix C for SAR Test Setup Photos. ### **Procedures Used To Establish Test Signal** The device was either placed into simulated transmit mode using the manufacturer's test codes or the actual transmission is activated through a base station simulator or similar equipment. See data pages for actual procedure used in measurement. #### **Device Test Condition** In order to verify that the device was tested at full power, conducted output power measurements were performed before and after each SAR measurement to confirm the output power unless otherwise noted. If a conducted power deviation of more than 5% occurred, the test was repeated. The power drift of each test is measured at the start of the test and again at the end of the test. The drift percentage is calculated by the formula ((end/start)-1)*100 and rounded to three decimal places. The drift percentage is calculated into the resultant SAR value on the data sheet for each test. For body measurements, the testing was conducted on all edges closest to the antenna. Front, back, left side, right side and bottom end testing was conducted for the BT antenna. The top end was not tested as the BT antenna was more than 2.5 cm from this side. All further test reductions are shown on page 18 for BT. All testing was conducted per KDB 447498. See the photo in Appendix C for a pictorial of the setups, labeling of the sides tested and antenna locations. | Band | Mode | Channel | Data | Frequency (MHz) | Conducted Avg.
Power (dBm) | |----------|------|---------|------|------------------|-------------------------------| | Ballu | mode | Chamer | Rate | Trequency (mriz) | Main | | | | 1 | N/A | 2402 | 9 | | 2450 MHz | BT | 39 | N/A | 2440 | 9 | | | | 79 | N/A | 2480 | 9 | **Conducted Average Power Measurements** Figure 8.2 Test Reduction Table - BT | Mode | Side | Required
Channel | Tested/Reduced | |---------|------------|---------------------|----------------------| | | | 1 – 2402 MHz | Reduced ¹ | | | Front | 39 – 2440 MHz | Tested | | | | 79 – 2480 MHz | Reduced ¹ | | | | 1 – 2402 MHz | Reduced ¹ | | | Back | 39 – 2440 MHz | Tested | | | | 79 – 2480 MHz | Reduced ¹ | | | Left Side | 1 – 2402 MHz | Reduced ¹ | | | | 39 – 2440 MHz | Tested | | 802.11b | | 79 – 2480 MHz | Reduced ¹ | | 002.110 | | 1 – 2402 MHz | Reduced ¹ | | | | 39 – 2440 MHz | Tested | | | | 79 – 2480 MHz | Reduced ¹ | | | | 1 – 2402 MHz | Reduced ² | | | Top End | 39 – 2440 MHz | Reduced ² | | | · | 79 – 2480 MHz | Reduced ² | | | | 1 – 2402 MHz | Reduced ¹ | | | Bottom End | 39 – 2440 MHz | Tested | | | | 79 – 2480 MHz | Reduced ¹ | Reduced¹ – When the mid channel is 3 dB below the limit, the remaining channels are not required per KDB 447498 section 1) e) i) page 2. Reduced² – When the calculated value from a side is less than or equal to 3.0, the test can be reduced per KDB447498 D01 v05 section 4.3.1 1) page 11. See below for calculations. Maximum power: 26 mW Top End Distance from Antenna: 140 mm [(10 mW)/(140 mm)]* $\sqrt{2.48}$ =0.11 which is equal to or less than 3.0. ## SAR Data Summary – 2450 MHz Body – BT | ME | MEASUREMENT RESULTS | | | | | | | | | | |-----|---------------------|------------|-------|------|--------------------|------------|----------|------------|------------|--| | Gap | Plot | Position | Frequ | ency | Modulation Antenna | End Power | Measured | Reported | | | | Cup | , 1 100 | i osition | MHz | Ch. | | , unconniu | (dBm) | SAR (W/kg) | SAR (W/kg) | | | | 1 | Front | 2440 | 39 | GFSK | Main | 9 | 0.00321 | 0.01 | | | 0 | | Back | 2440 | 39 | GFSK | Main | 9 | 0.000241 | <<0.01 | | | _ | | Left Side | 2440 | 39 | GFSK | Main | 9 | 0.00306 | <0.01 | | | mm | | Right Side | 2440 | 39 | GFSK | Main | 9 | 0.00152 | <0.01 | | | | | Bottom End | 2440 | 39 | GESK | Main | 9 | 0.00297 | <0.01 | | Body 1.6 W/kg (mW/g) averaged over 1 gram | 1. | SAR Measurement | | | | |----|-------------------------------|------------|--------------------|------------| | | Phantom Configuration | Left Head | ⊠Eli4 | Right Head | | | SAR Configuration | Head | \boxtimes Body | | | 2. | Test Signal Call Mode | ⊠Test Code | ☐Base Station Simu | ılator | | 3. | Test Configuration | | ☐Without Belt Clip | ⊠N/A | | 4. | Tissue Depth is at least 15.0 | cm | | | Jay M. Moulton Vice President # 9. Test Equipment List **Table 9.1 Equipment Specifications** | Type | Calibration Due Date | Calibration Done Date | Serial Number | |--|----------------------|-----------------------|-----------------| | Staubli Robot TX60L | N/A | N/A | F07/55M6A1/A/01 | | Measurement Controller CS8c | N/A | N/A | 1012 | | ELI4 Flat Phantom | N/A | N/A | 1065 | | Device Holder | N/A | N/A | N/A | | Data Acquisition Electronics 4 | 01/13/2015 | 01/13/2014 | 1416 | | SAR Software V52.8.2.969 | N/A | N/A | N/A | | SPEAG E-Field Probe EX3DV4 | 01/28/2015 | 01/28/2014 | 3311 | | Speag Validation Dipole D2450V2 | 12/04/2014 | 12/04/2012 | 829 | | Agilent N1911A Power Meter | 03/25/2014 | 03/25/2013 | GB45100254 | | Agilent N1922A Power Sensor | 03/27/2014 | 03/27/2013 | MY45240464 | | Advantest R3261A Spectrum Analyzer | 03/25/2014 | 03/25/2013 | 31720068 | | Agilent (HP) 8350B Signal Generator | 03/25/2014 | 03/25/2013 | 2749A10226 | | Agilent (HP) 83525A RF Plug-In | 03/25/2014 | 03/25/2013 | 2647A01172 | | Agilent (HP) 8753C Vector Network Analyzer | 03/25/2014 | 03/25/2013 | 3135A01724 | | Agilent (HP) 85047A S-Parameter Test Set | 03/25/2014 | 03/25/2013 | 2904A00595 | | Agilent (HP) 8960 Base Station Sim. | 04/05/2014 | 04/05/2012 | MY48360364 | | Anritsu MT8820C | 08/03/2014 | 08/03/2012 | 6201176199 | | Aprel Dielectric Probe Assembly | N/A | N/A | 0011 | | Body Equivalent Matter (2450 MHz) | N/A | N/A | N/A | ### 10. Conclusion The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC/IC. These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s) tested. Please note that the absorption and distribution of electromagnetic energy in the body is a very complex phenomena that depends on the mass, shape, and size of the body; the orientation of the body with respect to the field vectors; and, the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. ### 11. References - [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radio Frequency Radiation, August 1996 - [2] ANSI/IEEE C95.1 1992, American National Standard Safety Levels with respect to Human Exposure to Radio Frequency Electromagnetic Fields, 300kHz to 100GHz, New York: IEEE, 1992. - [3] ANSI/IEEE C95.3 1992, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, 1992. - [4] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields, June 2001. - [5] IEEE Standard 1528 2003, IEEE Recommended Practice for Determining the Peak-Spatial Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques, October 2003. - [6] Industry Canada, RSS 102e, Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands), March 2010. - [7] Health Canada, Safety Code 6, Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3kHz to 300 GHz, 2009. # Appendix A – System Validation Plots and Data ^{*} value interpolated # RF Exposure Lab ### Plot 1 DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN: 829 Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: MSL2450; Medium parameters used: f = 2450 MHz; $\sigma = 1.96 \text{ S/m}$; $\epsilon_r = 52.37$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Test Date: Date: 3/27/2013; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: ES3DV3 – SN3311; ConvF(4.29, 4.29, 4.29); Calibrated: 1/28/2014; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 1/13/2014 Phantom: SAM 1; Type: SAM Twin Phantom; Serial: TP-1554 Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) #### **Procedure Notes:** **Body Verification/2450 MHz/Area Scan (61x101x1):** Interpolated grid: dx=1.200 mm,
dy=1.200 mm Maximum value of SAR (interpolated) = 8.95 W/kg Body Verification/2450 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 53.598 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 11.1 W/kg **SAR(1 g) = 5.22 W/kg; SAR(10 g) = 2.41 W/kg** Maximum value of SAR (measured) = 8.71 W/kg # **Appendix B – SAR Test Data Plots** # RF Exposure Lab ### Plot 1 DUT: LJB000332A; Type: Medical Device; Serial: 0FC9 Communication System: Bluetooth; Frequency: 2441 MHz; Duty Cycle: 1:3.38844 Medium: MSL2450; Medium parameters used (interpolated): f = 2441 MHz; $\sigma = 1.951$ S/m; $\epsilon_r = 52.388$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Test Date: Date: 3/27/2014; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: ES3DV3 - SN3311; ConvF(4.29, 4.29, 4.29); Calibrated: 1/28/2014; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 1/13/2014 Phantom: SAM 1; Type: SAM Twin Phantom; Serial: TP-1554 Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) #### **Procedure Notes:** **2450 MHz Body/Front Mid/Area Scan (11x19x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.00408 W/kg 2450 MHz Body/Front Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.612 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 0.0140 W/kg SAR(1 g) = 0.00321 W/kg; SAR(10 g) = 0.000613 W/kg Maximum value of SAR (measured) = 0.00428 W/kg # **Appendix C – SAR Test Setup Photos** **Test Position Front 0 mm Gap** **Test Position Back Face 10 mm Gap** Test Position Left Side Body 0 mm Gap **Test Position Right Side 0 mm Gap** **Test Position Bottom End 0 mm Gap** **Testing Locations** **Front of Device** **Back of Device** # **Appendix D – Probe Calibration Data Sheets** #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland C S Accreditation No.: SCS 108 Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client RF Exposure Lab Certificate No: ES3-3311_Jan14 ## **CALIBRATION CERTIFICATE** Object ES3DV3 - SN:3311 Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: January 28, 2014 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Certificate No: ES3-3311_Jan14 | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 04-Apr-13 (No. 217-01733) | Apr-14 | | Power sensor E4412A | MY41498087 | 04-Apr-13 (No. 217-01733) | Apr-14 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 04-Apr-13 (No. 217-01737) | Apr-14 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 04-Apr-13 (No. 217-01735) | Apr-14 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 04-Apr-13 (No. 217-01738) | Apr-14 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-13 (No. ES3-3013_Dec13) | Dec-14 | | DAE4 | SN: 660 | 13-Dec-13 (No. DAE4-660_Dec13) | Dec-14 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-13) | In house check: Apr-16 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-13) | In house check: Oct-14 | Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: January 28, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### **Calibration Laboratory of** Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service** Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL NORMx,y,z tissue simulating liquid sensitivity in free space ConvF **DCP** sensitivity in TSL / NORMx,y,z diode compression point CF A, B, C, D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close - proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 #### Methods Applied and Interpretation of Parameters: - *NORMx.v.z*: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). January 28, 2014 ES3DV3 - SN:3311 # Probe ES3DV3 SN:3311 Manufactured: July 5, 2011 Calibrated: January 28, 2014 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) January 28, 2014 # DASY/EASY - Parameters of Probe: ES3DV3 - SN:3311 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 1.27 | 1.07 | 0.47 | ± 10.1 % | | DCP (mV) ^B | 103.4 | 100.7 | 96.8 | | #### **Modulation Calibration Parameters** | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc [⊢]
(k=2) | |---|---------------------------|---|---------|------------|-----|---------|----------|---------------------------| | 0 | CW | Х | 0.0 | 0.0 | 1.0 | 0.00 | 161.7 | ±3.3 % | | | | Υ | 0.0 | 0.0 | 1.0 | | 190.3 | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | Z | 0.0 | 0.0 | 1.0 | | 160.4 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ^B Numerical linearization parameter: uncertainty not required. ^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ES3DV3- SN:3311 January 28, 2014 # DASY/EASY - Parameters of Probe: ES3DV3 - SN:3311 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------
------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 150 | 52.3 | 0.76 | 7.46 | 7.46 | 7.46 | 0.07 | 1.30 | ± 13.3 % | | 220 | 49.0 | 0.81 | 7.35 | 7.35 | 7.35 | 0.06 | 1.30 | ± 13.3 % | | 300 | 45.3 | 0.87 | 7.36 | 7.36 | 7.36 | 0.14 | 1.70 | ± 13.3 % | | 450 | 43.5 | 0.87 | 7.05 | 7.05 | 7.05 | 0.24 | 2.90 | ± 13.3 % | | 600 | 42.7 | 0.88 | 6.88 | 6.88 | 6.88 | 0.15 | 1.74 | ± 13.3 % | | 750 | 41.9 | 0.89 | 6.46 | 6.46 | 6.46 | 0.80 | 1.16 | ± 12.0 % | | 900 | 41.5 | 0.97 | 6.17 | 6.17 | 6.17 | 0.80 | 1.15 | ± 12.0 % | | 1640 | 40.3 | 1.29 | 5.36 | 5.36 | 5.36 | 0.80 | 1.14 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 5.25 | 5.25 | 5.25 | 0.80 | 1.17 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 5.15 | 5.15 | 5.15 | 0.80 | 1.20 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 4.61 | 4.61 | 4.61 | 0.68 | 1.42 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 4.41 | 4.41 | 4.41 | 0.80 | 1.27 | ± 12.0 % | ^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. the ConvF uncertainty for indicated target tissue parameters. Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. ES3DV3- SN:3311 January 28, 2014 # DASY/EASY - Parameters of Probe: ES3DV3 - SN:3311 ## Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 150 | 61.9 | 0.80 | 9.59 | 9.59 | 9.59 | 0.08 | 1.30 | ± 13.3 % | | 220 | 59.4 | 0.88 | 8.49 | 8.49 | 8.49 | 0.05 | 1.30 | ± 13.3 % | | 300 | 58.2 | 0.92 | 7.42 | 7.42 | 7.42 | 0.13 | 1.30 | ± 13.3 % | | 450 | 56.7 | 0.94 | 7.23 | 7.23 | 7.23 | 0.14 | 2.21 | ± 13.3 % | | 600 | 56.1 | 0.95 | 6.60 | 6.60 | 6.60 | 0.05 | 1.30 | ± 13.3 % | | 750 | 55.5 | 0.96 | 6.16 | 6.16 | 6.16 | 0.50 | 1.45 | ± 12.0 % | | 900 | 55.0 | 1.05 | 6.04 | 6.04 | 6.04 | 0.80 | 1.13 | ± 12.0 % | | 1640 | 53.8 | 1.40 | 5.21 | 5.21 | 5.21 | 0.50 | 1.53 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 4.88 | 4.88 | 4.88 | 0.74 | 1.29 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 4.68 | 4.68 | 4.68 | 0.72 | 1.34 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 4.29 | 4.29 | 4.29 | 0.80 | 1.19 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 4.08 | 4.08 | 4.08 | 0.80 | 1.04 | ± 12.0 % | ^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. [At frequencies below 2 CHz the unlitting frequency and the uncertainty for the indicated frequency band.] F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConyF uncertainty for indicated target tissue parameters. the ConvF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) January 28, 2014 # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) January 28, 2014 # Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) ES3DV3- SN:3311 January 28, 2014 # **Conversion Factor Assessment** # **Deviation from Isotropy in Liquid** Error (φ, θ), f = 900 MHz ES3DV3-SN:3311 # DASY/EASY - Parameters of Probe: ES3DV3 - SN:3311 #### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | -119.6 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 10 mm | | Tip Diameter | 4 mm | | Probe Tip to Sensor X Calibration Point | 2 mm | | Probe Tip to Sensor Y Calibration Point | 2 mm | | Probe Tip to Sensor Z Calibration Point | 2 mm | | Recommended Measurement Distance from Surface | 3 mm | Report Number: R&D.20140314 # **Appendix E – Dipole Calibration Data Sheets** ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **RF Exposure Lab** Certificate No: D2450V2-829_Dec12 Accreditation No.: SCS 108 ## **CALIBRATION CERTIFICATE** Object D2450V2 - SN: 829 Calibration procedure(s) QA CAL-05.v8 Calibration procedure for dipole validation kits above 700 MHz Calibration date: December 04, 2012 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 01-Nov-12 (No. 217-01640) | Oct-13 | | Power sensor HP 8481A | US37292783 | 01-Nov-12 (No. 217-01640) | Oct-13 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 27-Mar-12 (No. 217-01530) | Apr-13 | | Type-N mismatch combination | SN: 5047.3 / 06327 | 27-Mar-12 (No. 217-01533) | Apr-13 | | Reference Probe ES3DV3 | SN: 3205 | 30-Dec-11 (No. ES3-3205_Dec11) | Dec-12 | | DAE4 | SN: 601 | 27-Jun-12 (No. DAE4-601_Jun12) | Jun-13 | | | | | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A | MY41092317 | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13 | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-11) | In house check: Oct-13 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-12) | In house check: Oct-13 | | | | | | | | Name | Function | Signature | | Calibrated by: | Leif Klysner | Laboratory Technician | e:0 411. | | | | | out major | | Approved by: | Katja Pokovic | Technical Manager | 77 111 | | , ,pp. 2222.23. | | | Jok Ry | Issued: December 4, 2012 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D2450V2-829_Dec12 Page 1 of 8 ## **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### **Additional Documentation:** d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with
the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2450V2-829_Dec12 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.3 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 2450 MHz ± 1 MHz | <u> </u> | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.2 ± 6 % | 1.84 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### **SAR** result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.7 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 53.9 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.33 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 25.1 W/kg ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 50.7 ± 6 % | 2.02 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## **SAR** result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--|-----------| | SAR measured | 250 mW input power | 13.2 W/kg | | SAR for nominal Body TSL parameters | meters normalized to 1W 51.5 W/kg ± 17.0 % (k=2) | | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.08 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 24.0 W/kg ± 16.5 % (k=2) | Certificate No: D2450V2-829_Dec12 #### **Appendix** #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 53.1 Ω + 4.2 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 25.9 dB | | ## **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 49.7 Ω + 5.1 jΩ | | | |--------------------------------------|-----------------|--|--| | Return Loss | - 25.9 dB | | | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.158 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------------------| | Manufactured on | December 11, 2008 | | D2450V2 SN: 829 - Body | | | | | |------------------------|---------------------|-----|---------------|------| | Date of
Measurement | Return Loss
(dB) | Δ% | Impedance (Ω) | ΔΩ | | 12/4/2012 | -25.9 | | 49.7 | | | 12/5/2013 | -26.2 | 1.2 | 48.5 | -1.2 | | D2450V2 SN: 829 - Head | | | | | |------------------------|---------------------|-----|------------------|------| | Date of
Measurement | Return Loss
(dB) | Δ% | Impedance
(Ω) | ΔΩ | | 12/4/2012 | -25.9 | | 53.1 | | | 12/5/2013 | -26.5 | 2.3 | 52.6 | -0.5 | Page 4 of 8 Certificate No: D2450V2-829_Dec12 Date: 04.12.2012 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 829 Communication System: CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.84 \text{ mho/m}$; $\varepsilon_r = 38.2$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 30.12.2011; • Sensor-Surface: 3mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 27.06.2012 • Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 • DASY52 52.8.3(988); SEMCAD X 14.6.7(6848) #### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.1 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 28.3 W/kg SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.33 W/kg Maximum value of SAR (measured) = 17.8 W/kg 0 dB = 17.8 W/kg = 12.50 dBW/kg # Impedance Measurement Plot for Head TSL Date: 04.12.2012 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 829 Communication System: CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.02 \text{ mho/m}$; $\varepsilon_r = 50.7$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(4.26, 4.26, 4.26); Calibrated: 30.12.2011; • Sensor-Surface: 3mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 27.06.2012 • Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 • DASY52 52.8.3(988); SEMCAD X 14.6.7(6848) ### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.1 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 27.4 W/kg SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.08 W/kg Maximum value of SAR (measured) = 17.5 W/kg 0 dB = 17.5 W/kg = 12.43 dBW/kg # Impedance Measurement Plot for Body TSL Report Number: R&D.20140314 # **Appendix F – Phantom Calibration Data Sheets** Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com #### **Certificate of Conformity / First Article Inspection** | Item | SAM Twin Phantom V4.0 | |--------------|-----------------------| | Type No | QD 000 P40 C | | Series No | TP-1150 and higher | | Manufacturer | SPEAG | | | Zeughausstrasse 43 | | | CH-8004 Zürich | | | Switzerland | #### **Tests** The series production process used allows the limitation to test of first articles. Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been retested using further series items (called samples) or are tested at each item. | Test | Requirement | Details | Units tested | |----------------------|---|----------------------------|----------------| | Dimensions | Compliant with the geometry | IT'IS CAD File (*) | First article, | | | according to the CAD model. | | Samples | | Material thickness | Compliant with the requirements | 2mm +/- 0.2mm in flat | First article, | | of shell | according to the standards | and specific areas of | Samples, | | | | head section | TP-1314 ff. | | Material thickness | Compliant with the requirements | 6mm +/- 0.2mm at ERP | First article, | | at ERP | according to the standards | | All items | | Material | Dielectric parameters for required | 300 MHz – 6 GHz: | Material | | parameters | frequencies | Relative permittivity < 5, | samples | | | | Loss tangent < 0.05 | | | Material resistivity | The material has been tested to be | DEGMBE based | Pre-series, | | | compatible with the liquids defined in | simulating liquids | First article, | | | the standards if handled and cleaned | | Material | | | according to the instructions. | | samples | | | Observe technical Note for material | | | | | compatibility. | | | | Sagging | Compliant with the
requirements | < 1% typical < 0.8% if | Prototypes, | | | according to the standards. | filled with 155mm of | Sample | | | Sagging of the flat section when filled | HSL900 and without | testing | | | with tissue simulating liquid. | DUT below | | #### Standards - [1] CENELEC EN 50361 - [2] IEEE Std 1528-2003 - [3] IEC 62209 Part I - [4] FCC OET Bulletin 65, Supplement C, Edition 01-01 - (*) The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of the other documents. #### Conformity Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standards [1] to [4]. Date 07.07.2005 Schmid & Partner Engineering AG -Zeughausstrasse 43, 8004 Zurich Switzerland Phone +41 1245 9700 Fax 441 7245 9779 Info@speag.com, http://www.speag.com e Signature / Stamp