Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247&RSS-247

Report Reference No...... CTA22032100701 FCC ID.....:: 2AUZX-WWDULU IC: **26714-WWDULU**

Compiled by

(position+printed name+signature)..: File administrators Kevin Liu

Supervised by

(position+printed name+signature)..: Project Engineer Kevin Liu

(position+printed name+signature)..: RF Manager Eric Wang

Mar. 22, 2022 Date of issue....:

Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name..... **Ubitech Limited**

Unit 12, 7/F Block A, Hi-Tech Industrial Centre, 5-21 Pak Tin Par Address:

Street, Tsuen Wan, NT, Hong Kong

Test specification:

FCC Part 15.247 Standard

RSS-247 Issue 2

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description: Wireless Water Detector

Trade Mark: N/A

CTATESTIN Manufacturer: ZHUHAI SHINTECH TECHNOLOGY CO.,LTD

Model/Type reference...... WWDULŪ

List Model: WWDLWU

Ratings DC 3.6V From Battery

Result....: CTATESTING

Page 2 of 37 Report No.: CTA22032100701

TEST REPORT

Wireless Water Detector **Equipment under Test**

WWDULU Model /Type

Listed Models **WWDLWU**

Ubitech Limited Applicant

Unit 12, 7/F Block A, Hi-Tech Industrial Centre, 5-21 Pak Tin Par Address

Street, Tsuen Wan, NT, Hong Kong

ZHUHAI SHINTECH TECHNOLOGY CO.,LTD Manufacturer

2th Floor, Building A NO. 7 Pingxi 3 Road, Nanping Technology Address

Industrial Park, Zhuhai, China

Test Result: **PASS**

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Page 3 of 37 Report No.: CTA22032100701

Contents

		Contents	
		TAING	
	11	TEST STANDARDS	<u>4</u>
	<u>2</u>	SUMMARY	<u> 5</u>
			CTA.
	2.1	General Remarks	5
	2.2	Product Description	
	2.3	Equipment Under Test	5
	2.4	Short description of the Equipment under Test (E	UT) 5 5 5 5
	2.5	EUT operation mode	5
TATE	2.6	Block Diagram of Test Setup	6
CIL	2.7	Special Accessories	6
1	2.8	Related Submittal(s) / Grant (s)	6
	2.9	Modifications	6
	2	TEST ENVIRONMENT	A
	<u>3</u>	TEST ENVIRONMENT	~~~
			CTATES 7
	3.1	Address of the test laboratory	7
	3.2	Test Facility	7
	3.3	Environmental conditions	7
	3.4	Summary of measurement results	8
	3.5	Statement of the measurement uncertainty	9
	3.6	Equipments Used during the Test	9
		TAIL	
	4	TEST CONDITIONS AND RESULTS	
		TATE	
	4.4	Conducted Emissions Test	11 12 19 20
	4.1 4.2	Conducted Emissions Test	11 11
	4.2 4.3	Radiated Emissions and Band Edge	12
	4.3 4.4	Maximum Peak Conducted Output Power Power Spectral Density	19 20
	4.4 4.5	20dB and 99% Bandwidth	20
	4.6	Frequency Separation	22
	4.7	Number of hopping frequency	25
	4.8	Time of Occupancy (Dwell Time)	26
TATE	4.9	Out-of-band Emissions	27
	4.10	Pseudorandom Frequency Hopping Sequence	30
	4.11	Antenna Requirement	31
		C	TING
	_	THE PROPERTY OF THE PARTY OF TH	TED"
	<u>5</u>	TEST SETUP PHOTOS OF THE EUT	
			ESTIT
	6	PHOTOS OF THE EUT	33

Page 4 of 37 Report No.: CTA22032100701

1 TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices

KDB558074 D01 v05r02: Guidance for Compliance Measurements on Digital Transmission Systems (DTS), Frequency Hopping Spread Spectrum System(HFSS), and Hybrid System Devices Operating Under §15.247 of The FCC rules.

RSS-247-Issue 2: Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices.

RSS-Gen Issue 5: General Requirements for Compliance of Radio Apparatus CTATESTIN

Page 5 of 37 Report No.: CTA22032100701

SUMMARY

2.1 General Remarks

2.1 General Remarks		
Date of receipt of test sample	:	Feb. 17, 2022
	110	CAL
Testing commenced on		Feb. 18, 2022
W	Consultant of	
Testing concluded on	:	Mar. 07, 2022

2.2 Product Description

Product Name:	Wireless Water Detector	
HVIN	WWDULU, WWDLWU	
Power supply:	ER14250- Battery 3.6V 1200mAh	
Hardwrae Version:	Rev0.1	
Software Version:	V1.0	
Test samples ID:	CTA220321007-1# (Engineer sample) CTA220321007-2# (Normal sample)	
Lora 125KHz:		
Operation frequency:	902.3MHz~914.9MHz	
Modulation:	LoRa	
Channel number:	64 STING	
Channel separation:	200KHz	
Antenna type:	Monopole antenna	
Antenna gain:	1.0 dBi	

2.3 Equipment Under Test

Power supply system utilised

Power supply voltage	1	0	230V / 50 Hz	0	120V / 60Hz
TES		0	12 V DC	0	24 V DC
CTA		•	Other (specified in blank bel	ow))

DC 3.6V From Battery

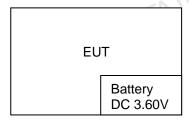
CTATESTING

2.4 Short description of the Equipment under Test (EUT)

This is a Wireless Water Detector.

For more details, refer to the user's manual of the EUT.

2.5 **EUT operation mode**


The Applicant provides communication tools software (CustosGeneralTool.UI) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 64 channels provided to the EUT operation on 125kHz and 8 channels operation on 500kHz.

Page 6 of 37 Report No.: CTA22032100701

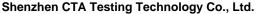
Operation Frequency Lora 125KHz:

Channel		Frequency (MHz)
	00	902.3
	01	902.5
(7) man	CA	GTING
	31	908.5
	32	908.7
	30	908.9
. Ca	i	(EP)
STING	62	914.7
	63	914.9

Block Diagram of Test Setup

Special Accessories

Follow auxiliary equipment(s) test with EUT that provided by the manufacturer or laboratory is listed as follow:


Description	Manufacturer	Model	Technical Parameters	Certificate	Provided by
/	/	(4)	1	TE3/	/
/	/	1	1 GA	/	/
/	/	/	1	/	0.111
<i>L</i> .	/	/	/	/	1

2.8 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules and RSS-247.

2.9 **Modifications**

No modifications were implemented to meet testing criteria.

Page 7 of 37 Report No.: CTA22032100701

TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao 'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement

IC-Registration No.: 27890 CAB identifier: CN0127

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 **Environmental conditions**

CTA TESTING During the measurement the environmental conditions were within the listed ranges: Radiated Emission:

Temperature:		24 ° C
	The Manual White	
Humidity:		46 %
Atmospheric pressure:		950-1050mbar

Temperature:	25 ° C	
-71	No	
Humidity:	47 %	
CTA		
Atmospheric pressure:	950-1050mbar	

Conducted testing:	
Temperature:	24 ° C
Humidity:	46 %
Atmospheric pressure:	950-1050mbar
CTA TESTING	CTATESTING

Page 8 of 37 Report No.: CTA22032100701

3.4 Summary of measurement results

Test Specification clause	Test case	Test Mode	Test Channel		orded eport	Test result
§15.247(a)(1) RSS-247 5.1(b)	Carrier Frequency separation	Lora DR0 Lora DR1 Lora DR2 Lora DR3	∠ Lowest∠ Middle∠ Highest	Lora DR2		Pass
§15.247(a)(1) RSS-247 5.1(c)	Number of Hopping channels	Lora DR0 Lora DR1 Lora DR2 Lora DR3	⊠ Full	Lora DR2	⊠ Full	Pass
§15.247(a)(1) RSS-247 5.1(c)	Time of Occupancy (dwell time)	Lora DR0 Lora DR1 Lora DR2 Lora DR3	☑ Lowest☑ Middle☑ Highest	Lora DR2	⊠ Middle	Pass
§15.247(a)(1) RSS-247 5.1(c)	Spectrum bandwidth of a FHSS system 20dB bandwidth	Lora DR0 Lora DR1 Lora DR2 Lora DR3	□ Lowest □ Middle □ Highest	Lora DR2	∠ Lowest∠ Middle∠ Highest	Pass
§15.247(b)(2) RSS-247 5.4(a)	Maximum output power	Lora DR0 Lora DR1 Lora DR2 Lora DR3	∠ Lowest∠ Middle∠ Highest	Lora DR2	✓ Lowest✓ Middle✓ Highest	Pass
§15.247(e) RSS-247 5.2(b)	Power spectral density	Lora DR0 Lora DR1 Lora DR2 Lora DR3		Lora DR2	∠ Lowest∠ Middle∠ Highest	Pass
§15.247(d) RSS-247 5.5	Band edge compliance conducted	Lora DR0 Lora DR1 Lora DR2 Lora DR3		Lora DR2	☑ Lowest☑ Highest	Pass
§15.205 RSS-Gen 8.10	Band edge compliance radiated	Lora DR0 Lora DR1 Lora DR2 Lora DR3		Lora DR2		Pass
§15.247(d) RSS-247 5.2	TX spurious emissions conducted	Lora DR0 Lora DR1 Lora DR2 Lora DR3	☑ Lowest☑ Middle☑ Highest	Lora DR2	✓ Lowest✓ Middle✓ Highest	Pass
§15.209(a) RSS-Gen 8.9	TX spurious emissions Radiated Above 1GHz	Lora DR0 Lora DR1 Lora DR2 Lora DR3		Lora DR2		Pass
§15.209(a) RSS-Gen 8.9	TX spurious Emissions radiated Below 1GHz	Lora DR0 Lora DR1 Lora DR2 Lora DR3		Lora DR2	⊠ Middle	Pass
§15.207 RSS-Gen 8.8	Conducted Emissions 9KHz-30 MHz	N/A	N/A	N/A	N/A	N/A

Note:1. N/A mean Not Applicable.

2. DR means DateRate refer to LoRaWAN Specification as below:

DataRate	Configuration	Indicative physical bit rate [bit/sec]
0	LoRa: SF10 / 125 kHz	980
1	LoRa: SF9 / 125 kHz	1760
2	LoRa: SF8 / 125 kHz	3125
3	LoRa: SF7 / 125 kHz	5470
4	LoRa: SF8 / 500 kHz	12500

Report No.: CTA22032100701 Page 9 of 37

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission		4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)

CTA TESTING (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
LISN	LISN R&S		CTA-308	2021/08/06	2022/08/05
LISN	R&S	ENV216	CTA-314	2021/08/06	2022/08/05
EMI Test Receiver	R&S	ESPI	CTA-307	2021/08/06	2022/08/05
EMI Test Receiver	R&S	ESCI	CTA-306	2021/08/06	2022/08/05
Spectrum Analyzer	Agilent	N9020A	CTA-301	2021/08/06	2022/08/05
Spectrum Analyzer	R&S	FSP	CTA-337	2021/08/06	2022/08/05
Vector Signal generator	Agilent	N5182A	CTA-305	2021/08/06	2022/08/05
Analog Signal Generator	R&S	SML03	CTA-304	2021/08/06	2022/08/05
Universal Radio Communication	CMW500	R&S	CTA-302	2021/08/06	2022/08/05
Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2021/08/06	2022/08/05
Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2021/08/07	2022/08/06
Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2021/08/07	2022/08/06
Loop Antenna	Zhinan	ZN30900C	CTA-311	2021/08/07	2022/08/06
Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/06	2022/08/05
Amplifier	Schwarzbeck	BBV 9745	CTA-312	2021/08/06	2022/08/05
Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2021/08/06	2022/08/05
Directional coupler	NARDA	4226-10	CTA-303	2021/08/06	2022/08/05
High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2021/08/06	2022/08/05
High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2021/08/06	2022/08/05

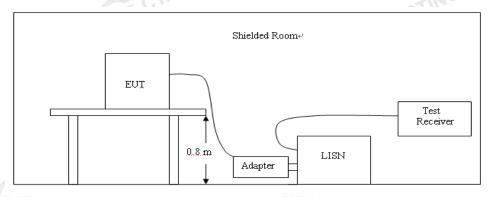
Page 10 of 37 Report No.: CTA22032100701

Automated filter bank	G Tonscend	JS0806-F	CTA-404	2021/08/06	2022/08/05
Power Sensor	Agilent	U2021XA	CTA-405	2021/08/06	2022/08/05
Amplifier	Schwarzbeck	BBV9719	CTA-406	2021/08/06	2022/08/05
		TA	CIM CT	ATESTING	

Report No.: CTA22032100701 Page 11 of 37

TEST CONDITIONS AND RESULTS

Conducted Emissions Test


LIMIT

According to FCC CFR Title 47 Part 15 Subpart C Section 15.207, AC Power Line Conducted Emissions Limits for Licence-Exempt Radio Apparatus as below:

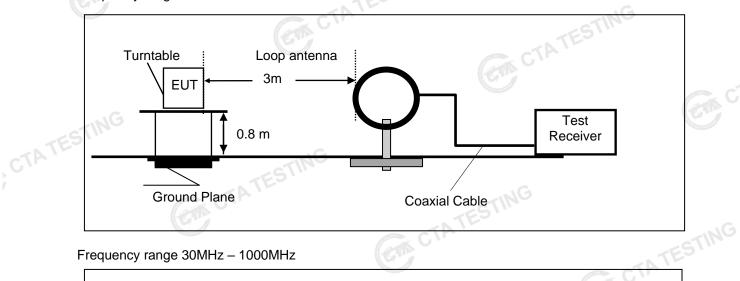
Fraguency range (MHz)	Limit (dBuV)						
Frequency range (MHz)	Quasi-peak	Average					
0.15-0.5	66 to 56*	56 to 46*					
0.5-5	56	46					
5-30	60	50					

^{*} Decreases with the logarithm of the frequency.

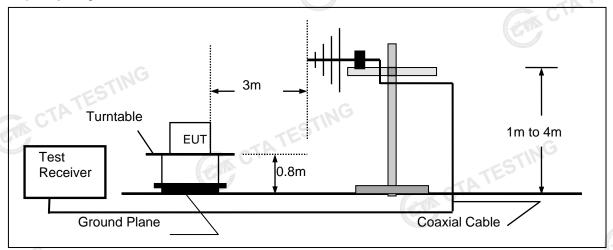
TEST CONFIGURATION

TEST PROCEDURE

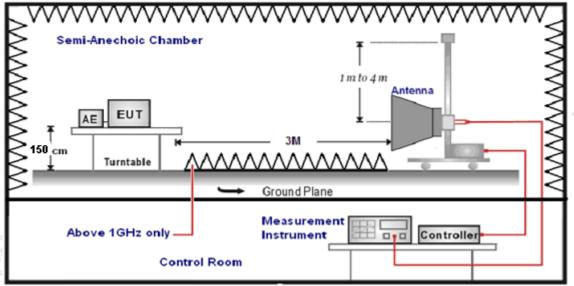
- The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10:2013.
- 2. Support equipment, if needed, was placed as per ANSI C63.10:2013.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10:2013.
- If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- All support equipments received AC power from a second LISN, if any.
- The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- During the above scans, the emissions were maximized by cable manipulation.


TEST RESULTS

Not applicable to this device, which is powered by battery.


Report No.: CTA22032100701 Page 12 of 37

Radiated Emissions and Band Edge TEST CONFIGURATION


Frequency range 9 KHz - 30MHz

Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

Report No.: CTA22032100701 Page 13 of 37

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 10GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 9KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a CIATESTIN sample calculation is as follows:

FS = RA + AF + CL - AG

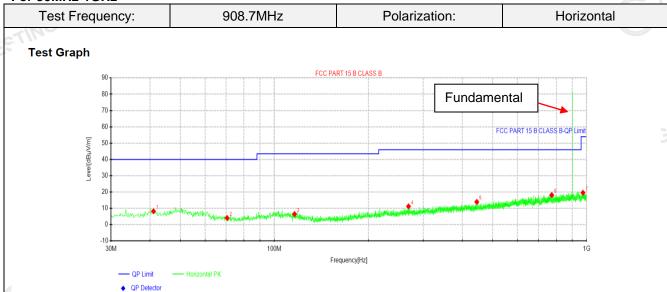
Where FS = Field Strength	CL = Cable Attenuation Factor	(Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain	STO. VIA
AF = Antenna Factor		(CAL)

Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

Frequency (MHz)	Distance (Meters)	Radiated (dBμV/m)	Radiated (µV/m)		
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)		
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)		
1.705-30	3	20log(30)+ 40log(30/3)	30		
30-88	3	40.0	100		
88-216	3	43.5	150		
216-960	3	46.0	200		
Above 960	3	54.0	500		
		CTATE.			


Page 14 of 37 Report No.: CTA22032100701

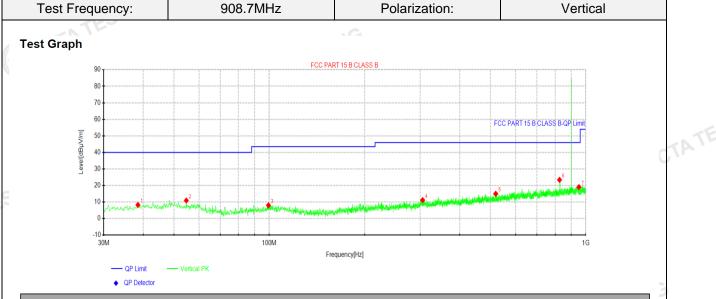
TEST RESULTS

Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X
- We measured Radiated Emission at all data rate of Lora from 9 KHz to 10GHz and recorded worst case at Lora DR2.
- For below 1GHz testing recorded worst at Lora DR2 middle channel. 3.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz

Suspe	Suspected Data List											
NO	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Delevity			
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity			
1	41.0338	25.27	8.26	-17.01	40.00	31.74	100	190	Horizontal			
2	70.6188	25.01	4.10	-20.91	40.00	35.90	100	250	Horizontal			
3	116.087	26.26	6.53	-19.73	43.50	36.97	100	160	Horizontal			
4	268.983	28.95	11.25	-17.70	46.00	34.75	100	350	Horizontal			
5	444.917	29.10	13.99	-15.11	46.00	32.01	100	100	Horizontal			
6	773.141	28.76	18.17	-10.59	46.00	27.83	100	160	Horizontal			
7	973.446	28.31	19.60	-8.71	54.00	34.40	100	360	Horizontal			


CTA TESTING

Note:

CTATE

- 2.Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB).
 3.Margin=Limit(dBμV/m)- Result (dBμV/m)

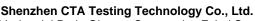
Page 15 of 37 Report No.: CTA22032100701

Suspected Data List											
NO	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolority		
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity		
1	38.4875	25.64	8.28	-17.36	40.00	31.72	100	290	Vertical		
2	54.735	28.03	10.95	-17.08	40.00	29.05	100	30	Vertical		
3	99.4762	26.48	8.04	-18.44	43.50	35.46	100	270	Vertical		
4	305.237	28.48	11.21	-17.27	46.00	34.79	100	210	Vertical		
5	519.365	29.03	15.04	-13.99	46.00	30.96	100	40	Vertical		
6	826.127	33.76	23.44	-10.32	46.00	22.56	100	250	Vertical		
7	951.5	28.13	19.05	-9.08	46.00	26.95	100	180	Vertical		
Note: 1.Result ($dB\mu V/m$) = Reading($dB\mu V/m$) + Factor (dB) . 2.Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB). 3.Margin=Limit($dB\mu V/m$)- Result ($dB\mu V/m$)											

CTATE

Page 16 of 37 Report No.: CTA22032100701

For 1GHz to 10GHz


Lora 125KHz

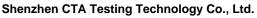
		Frequency		902.30		Polarity:			HORIZONTAL		
	No. Frequency (MHz) Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)		
	1	1804.6	60.88	PK	74	13.12	71.13	27.17	4.01	41.43	-10.25
	1	1804.6	50.27	AV	54	3.73	60.52	27.17	4.01	41.43	-10.25
	2	2706.9	45.47	PK	74	28.53	52.80	29.33	4.94	41.60	-7.33
	2	2706.9		AV	54						To a second
TES	3	3609.2	46.05	PK	74	27.95	50.03	32.08	5.86	41.92	-3.98
CTATE	3	3609.2		AV	54						
ĵ				17					. C.		

	Frequency		902	.30	Polarity:			VERTICAL		
No.	Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
1	1804.6	61.48	PK	74	12.52	71.73	27.17	4.01	41.43	-10.25
1	1804.6	50.65	AV	54	3.35	60.90	27.17	4.01	41.43	-10.25
2	2706.9	46.14	PK	74	27.86	53.47	29.33	4.94	41.60	-7.33
2	2706.9		AV	54						
3	3609.2	46.46	PK	74	27.54	50.44	32.08	5.86	41.92	-3.98
3	3609.2		AV	54	ATE	-			 G	

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- Margin value = Limit value- Emission level.
- -- Mean the PK detector measured value is below average limit.
- The other emission levels were very low against the limit.
- RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.
- 7. For fundamental frequency, RBW 3MHz VBW 3MHz Peak detector is for PK Value; RMS CTA TESTING detector is for AV value.

Page 17 of 37 Report No.: CTA22032100701


Lora 125KHz

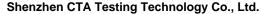
	Frequency	(MHz):		908	.70	Polarity:			HORIZONTAL	
No.	Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
1	1817.4	61.16	PK	74	12.84	71.32	27.24	4.03	41.42	-10.16
1	1817.4	50.18	AV	54	3.82	60.34	27.24	4.03	41.42	-10.16
2	2726.1	45.44	PK	74	28.56	52.68	29.40	4.96	41.60	-7.24
2	2726.1	-	AV	54	-					THE WAY
3	3634.8	45.78	PK	74	28.22	49.84	32.24	5.63	41.93	-4.06
3	3634.8	-	AV	54						

	Frequency(MHz):			908.70		Polarity:			VERTICAL	
No.	Frequency (MHz)	Emissi Leve (dBuV/	el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
1	1817.4	61.70	PK	74	12.30	71.86	27.24	4.03	41.42	-10.16
1	1817.4	51.00	AV	54	3.00	61.16	27.24	4.03	41.42	-10.16
2	2726.1	45.93	PK	74	28.07	53.17	29.40	4.96	41.60	-7.24
2	2726.1	TING	AV	54						
3	3634.8	46.14	PK	74	27.86	50.20	32.24	5.63	41.93	-4.06
3	3634.8		AV	54	-ES					

REMARKS:

- Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Limit value- Emission level.
- -- Mean the PK detector measured value is below average limit.
- The other emission levels were very low against the limit.
- RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.
- 7. For fundamental frequency, RBW 3MHz VBW 3MHz Peak detector is for PK Value; RMS detector is for AV value.

Page 18 of 37 Report No.: CTA22032100701


Lora 125KHz

	Frequency(MHz):				.90	Polarity:			HORIZONTAL	
No.	Frequency (MHz)	Emissio Level (dBuV/i		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
1	1829.8	60.94	PK	74	13.06	71.02	27.30	4.04	41.42	-10.08
1	1829.8	50.53	AV	54	3.47	60.61	27.30	4.04	41.42	-10.08
2	2744.7	45.58	PK	74	28.42	52.74	29.47	4.98	41.61	-7.16
2	2744.7		AV	54						THE STATE OF THE S
3	3659.6	46.16	PK	74	27.84	50.29	32.39	5.42	41.94	-4.13
3	3659.6	-	AV	54	1			-		

Frequency(MHz):			914.90		Polarity:			VERTICAL		
No.	Frequency (MHz)	Emiss Leve (dBuV	el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
1	1829.8	61.30	PK	74	12.70	71.38	27.30	4.04	41.42	-10.08
1	1829.8	51.17	AV	54	2.83	61.25	27.30	4.04	41.42	-10.08
2	2744.7	46.16	PK	74	27.84	53.32	29.47	4.98	41.61	-7.16
2	2744.7	TINIG	AV	54						
3	3659.6	46.72	PK	74	27.28	50.85	32.39	5.42	41.94	-4.13
3	3659.6		AV	54	755					

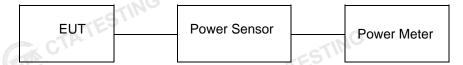
REMARKS:

- Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Limit value- Emission level.
- -- Mean the PK detector measured value is below average limit.
- The other emission levels were very low against the limit.
- RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.
- For fundamental frequency, RBW 3MHz VBW 3MHz Peak detector is for PK Value; RMS detector is for AV value.

Page 19 of 37 Report No.: CTA22032100701

4.3 **Maximum Peak Conducted Output Power**

Limit


FCC: The Maximum Peak Output Power Measurement is 30dBm.

IC: For FHSs operating in the band 902-928 MHz, the maximum peak conducted output power shall not exceed 1.0 W, and the e.i.r.p. shall not exceed 4 W

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

Test Configuration

Test Results

Test Results	CTATES		TESTING
Channel	Output power (dBm)	Limit (dBm)	Result
00	7.986		
32	8.213	30.00	Pass
63	8.465		

Note: 1.The test results including the cable loss. CTATES

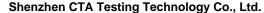
Report No.: CTA22032100701 Page 20 of 37

Power Spectral Density

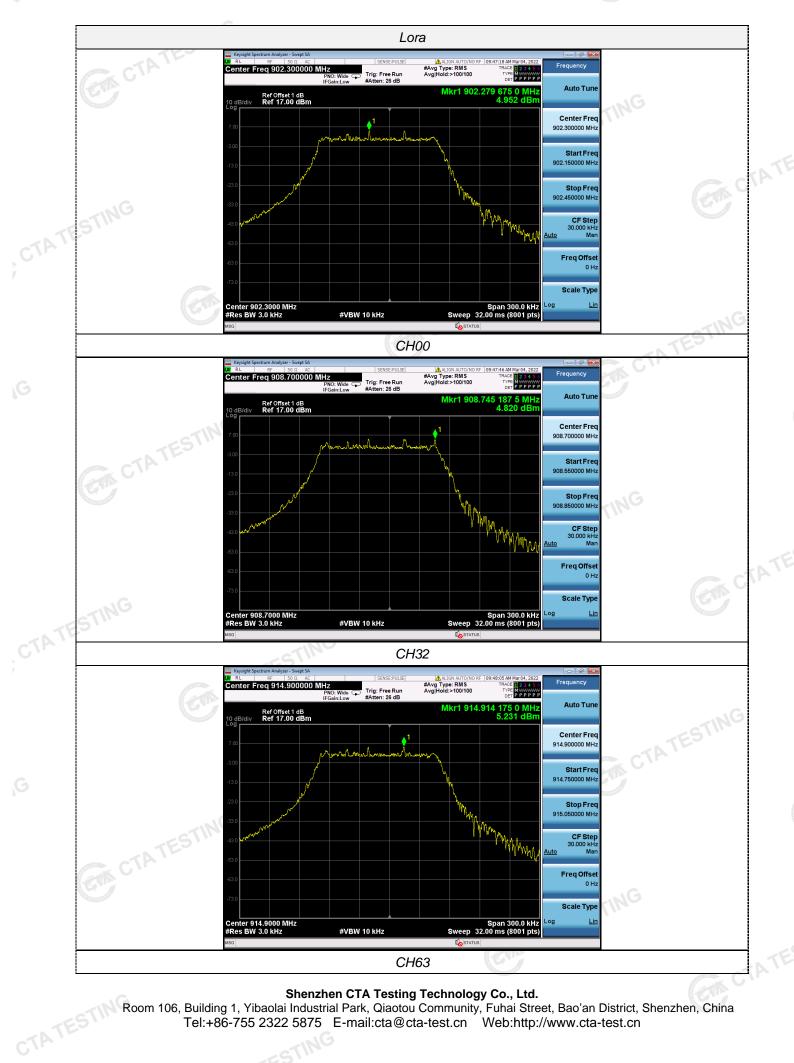
Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure


- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW ≥ 3 kHz.
- 3. Set the VBW ≥ 3× RBW.
- Set the span to 1.5 times the DTS channel bandwidth. 4. CTATESTING
- Detector = peak.
- Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level should not be more than 8dBm/3KHz.

Test Configuration



Test Results

	EUI	CTP	TES	ANALYZ			
Test Results					CT	ATESTI	
Туре	Chann	el Po	wer Spectra (dBm/3Kl		Limit (dl	Bm/3KHz)	Result
NG	00		4.952				CALL
Lora	32		4.820		8	3.00	Pass
,	63		5.231				
Test plot as follo	ows:				TING		

Report No.: CTA22032100701

Report No.: CTA22032100701 Page 22 of 37

20dB and 99% Bandwidth

Limit

For frequency hopping systems operating in the 902-928 MHz band. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 3 KHz RBW and 10 KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following CTATESTING procedure shall be used for measuring 99% power bandwidth:

RBW=1% to 5% of the OBW VBW=approximately 3 X RBW

Detector=Peak

Trace Mode: Max Hold

Use the 99% power bandwidth function of the instrument to measure the Occupied Bandwidth and recoded.

Test Configuration

Test Results

	TA	
20dB bandwidth (KHz)	99% OBW(KHz)	Result
145.0	127.94	
144.3	127.62	Pass
147.1	128.75	
	144.3	145.0 127.94 144.3 127.62

Page 24 of 37 Report No.: CTA22032100701

4.6 Frequency Separation

LIMIT

FHSs shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the CTATE fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW.

TEST CONFIGURATION

TEST RESULTS

Channel	Channel Separation (KHz)	Limit	Result
CH00	300	25KHz or 20dP bandwidth	CTA
CH01	200	25KHz or 20dB bandwidth	Pass

Note: We have tested all mode at high, middle and low channel, and recorded worst case at low channel

Page 25 of 37 Report No.: CTA22032100701

Number of hopping frequency

Limit

For FHSs in the band 902-928 MHz: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping channels and the average time of occupancy on any channel shall not be greater than 0.4 seconds within a 20-second period. If the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping channels and the average time of occupancy on any CTATE channel shall not be greater than 0.4 seconds within a 10-second period.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 902MHz to 928MHz.

Test Configuration

Test Results

Modulation	Number of Hopping Channel	Limit	Result
Lora FHSS	64	≥50	Pass

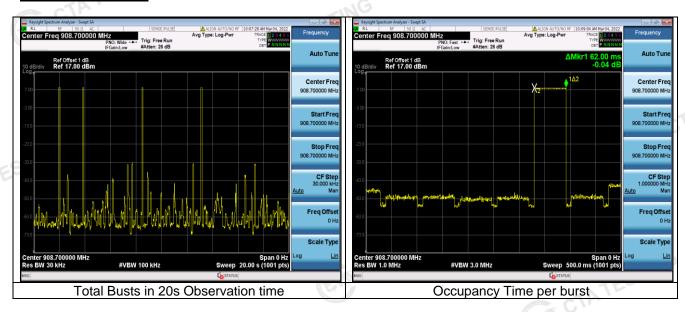
Page 26 of 37 Report No.: CTA22032100701

Time of Occupancy (Dwell Time)

Limit

For FHSs in the band 902-928 MHz: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping channels and the average time of occupancy on any channel shall not be greater than 0.4 seconds within a 20-second period. If the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping channels and the average time of occupancy on any CTATE channel shall not be greater than 0.4 seconds within a 10-second period.

Test Procedure


The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with 1MHz RBW and 1MHz VBW, Span 0Hz.

Test Configuration

Test Results

In measurement time of 20s, total of 4 transmissions occurred. The duration of one transmission was 62ms.Based on these measurements the transmitter operated 4*62ms=0.248s during the 20s period. The measurement result 0.248s<0.4s, The test result is pass.

Report No.: CTA22032100701 Page 27 of 37

Out-of-band Emissions

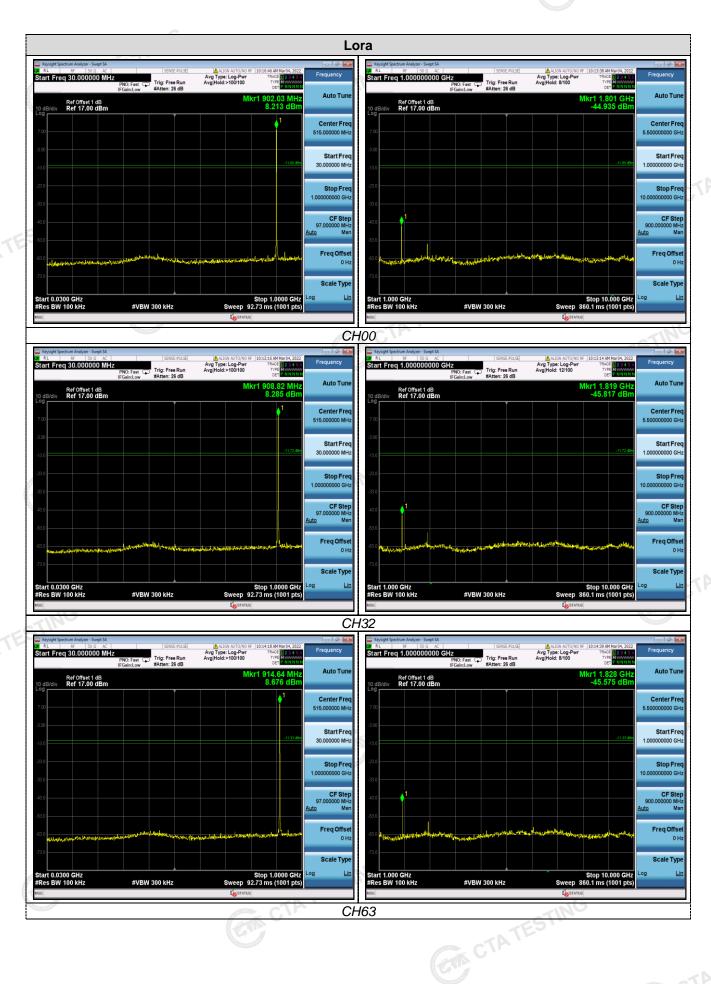
Limit

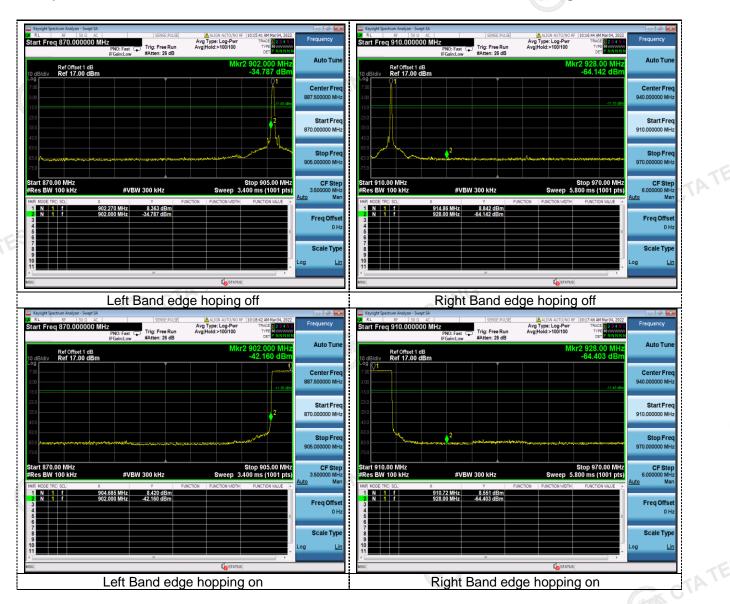

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are made of the in-band reference level, bandedge and out-of-band emissions.


Test Configuration


Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.

Report No.: CTA22032100701 Page 28 of 37

Report No.: CTA22032100701

Page 30 of 37 Report No.: CTA22032100701

4.10 Pseudorandom Frequency Hopping Sequence **TEST APPLICABLE**

For 47 CFR Part 15C section 15.247 (a) (1) & RSS 247 requirement:

The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of CTATE their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Test result

The device hops on 64 channel frequencies that are selected in a pseudo random order.

An example of the order is:

*{*48, 25,53,17, 20, 41, 37, 36, 10, 52,15, 44, 30, 6, 54, 42, 33, 5,55, 8, 28, 56, 1,58, 57, 23, 49, 16, 3, 19, 29, 21,59, 43, 31, 9,60, 18, 27, 22, 45, 61, 13, 0, 2, 32, 11, 14, 62, 46, 12, 24, 4, 7, 38, 47, 35, 40, 50, 34, 39, 26, CTATESTIN 51,63}

where Channel 0 is 902.3 MHz and Channel 63 is 914.90 MHz.

The dwell time of the hopping is 62ms. Each channel is used equally on average. CTATES

Page 31 of 37 Report No.: CTA22032100701

4.11 Antenna Requirement

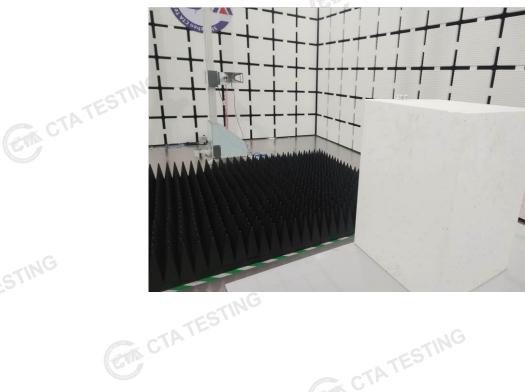
Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Refer to statement below for compliance

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed. CTATES!

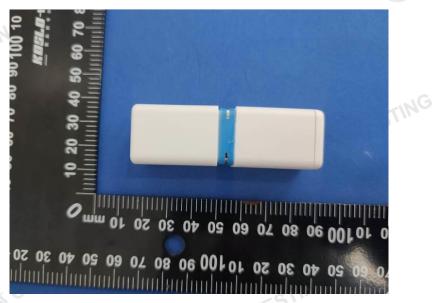

Antenna Connected Construction

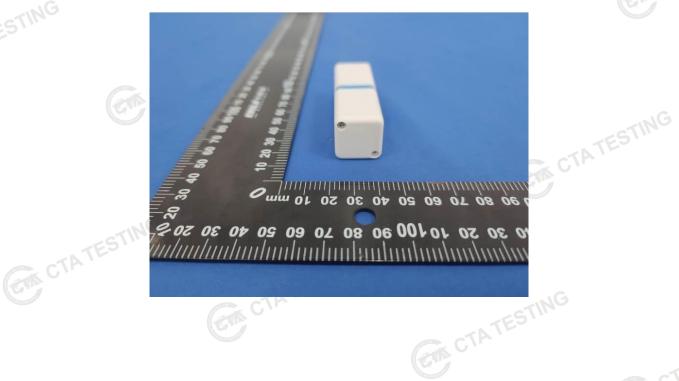
The maximum gain of antenna was 1.00dBi.

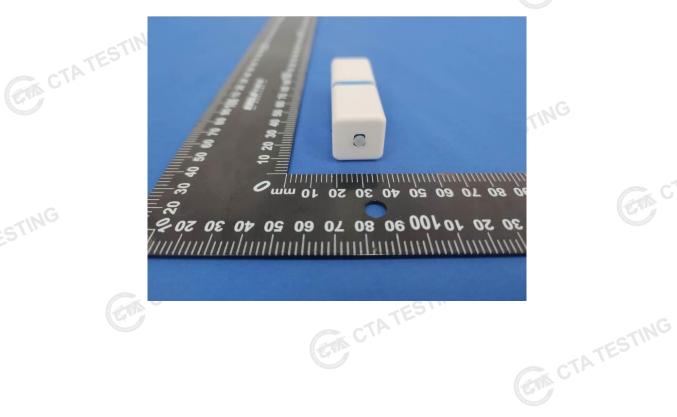
Report No.: CTA22032100701 Page 32 of 37

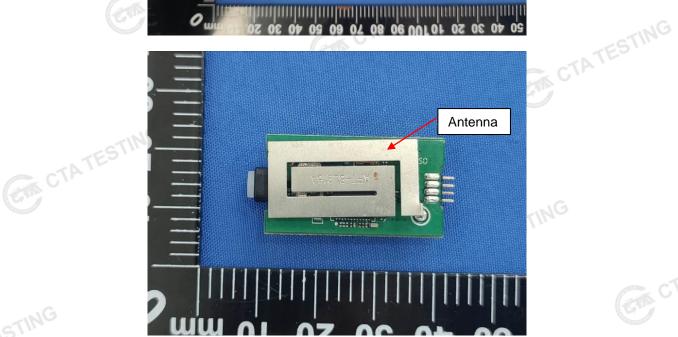
Test Setup Photos of the EUT]

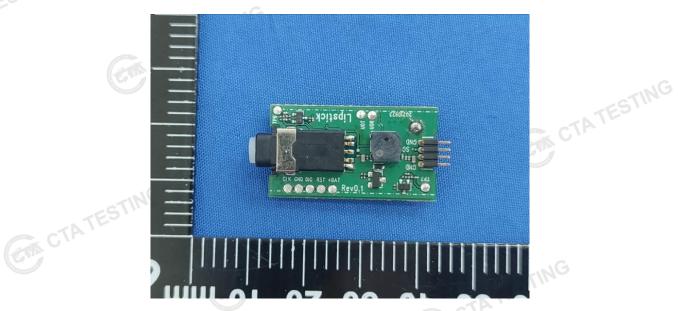
Page 33 of 37 Report No.: CTA22032100701


Photos of the EUT CTATES:

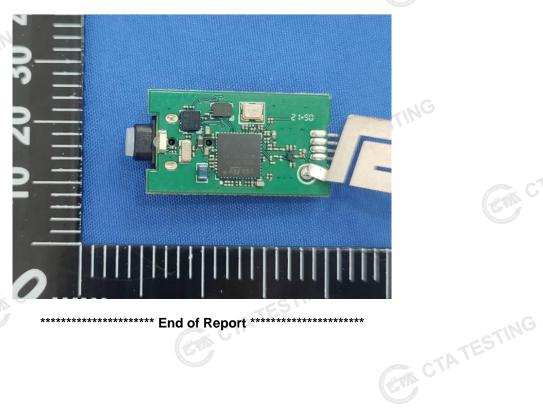



Page 34 of 37 Report No.: CTA22032100701


Page 35 of 37 Report No.: CTA22032100701



Report No.: CTA22032100701 Page 36 of 37


Internal Photos

Report No.: CTA22032100701 Page 37 of 37

