

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE200605202

FCC REPORT (BLE)

Applicant: Swagtek

Address of Applicant: 10205 NW 19th St. Suite 101, Miami, FL, 33172

Equipment Under Test (EUT)

Product Name: 10.0 inch Wi-Fi Tablet

Model No.: T10W, STREAM 10W, U10W

Trade mark: LOGIC, iSWAG, UNONU

FCC ID: 055102420

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 23 Jun., 2020

Date of Test: 24 Jun., to 08 Sep., 2020

Date of report issued: 09 Sep., 2020

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version

Version No.	Date	Description
00	09 Sep., 2020	Original

Mike. DU

Test Engineer Tested by: Date: 09 Sep., 2020

Winner thang Reviewed by: 09 Sep., 2020 Date:

Project Engineer

3 Contents

		Page
1	1 COVER PAGE	
2	2 VERSION	
3		
4		
5	5 GENERAL INFORMATION	5
	5.1 CLIENT INFORMATION	5
	5.2 GENERAL DESCRIPTION OF E.U.T	5
	5.3 TEST ENVIRONMENT AND MODE, AND TEST SAMPLES PLANS	6
	5.4 DESCRIPTION OF SUPPORT UNITS	
	5.5 MEASUREMENT UNCERTAINTY	
	5.6 ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE ME	
	5.7 LABORATORY FACILITY	
	5.8 LABORATORY LOCATION	
	5.9 TEST INSTRUMENTS LIST	
6	6 TEST RESULTS AND MEASUREMENT DATA	8
	6.1 ANTENNA REQUIREMENT:	8
	6.2 CONDUCTED EMISSION	9
	6.3 CONDUCTED OUTPUT POWER	12
	6.4 OCCUPY BANDWIDTH	
	6.5 POWER SPECTRAL DENSITY	
	6.6 BAND EDGE	
	6.6.1 Conducted Emission Method	
	6.7 Spurious Emission	
	6.7.1 Conducted Emission Method	
	6.7.2 Radiated Emission Method	
7		
		32
Ω	R FIIT CONSTRUCTIONAL DETAILS	2/

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (b)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247 (d)	Pass
Spurious Emission	15.205 & 15.209	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method: ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02

5 General Information

5.1 Client Information

Applicant:	Swagtek
Address:	10205 NW 19th St. Suite 101, Miami, FL, 33172
Manufacturer/ Factory:	Swagtek
Address:	10205 NW 19th St. Suite 101, Miami, FL, 33172

5.2 General Description of E.U.T.

5.2 General Description	101 E.0.11
Product Name:	10.0 inch Wi-Fi Tablet
Model No.:	T10W, STREAM 10W, U10W
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	-1.2 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V, 5000mAh
AC adapter:	Model: MKC-0502000SU
	Input: AC100-240V, 50/60Hz, 0.4A
	Output: DC 5.0V, 2000mA
Remark:	Model No.: T10W, STREAM 10W, U10W, were identical inside, the electrical circuit design, layout, components used and internal wiring, The only difference between them is as follows:
	T10W model corresponds to the trademark LOGIC.
	STREAM 10W model correspond to the trademark iSWAG.
	U10W model corresponds to the trademark UNONU.
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

5.3 Test environment and mode, and test samples plans

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.6 Additions to, deviations, or exclusions from the method

Nο

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.110~116, Building B, Jinyuan Business Building, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.8 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.110~116, Building B, Jinyuan Business Building, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.9 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
SIII SAC	SAEIVIC	9111 6111 6111	900	07-22-2020	07-21-2021
Loop Antenna	SCHWARZBECK	FMZB1519B	044	03-07-2020	03-06-2021
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-07-2020	03-06-2021
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-07-2020	03-06-2021
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2020	06-21-2021
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2019	11-17-2020
EMI Test Software	AUDIX	E3	Version: 6.110919b)
Pre-amplifier	HP	8447D	2944A09358	03-07-2020	03-06-2021
Pre-amplifier	CD	PAP-1G18	11804	03-07-2020	03-06-2021
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-05-2020	03-04-2021
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2019	11-17-2020
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-05-2020	03-04-2021
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2020	03-06-2021
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2020	03-06-2021
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2020	03-06-2021
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0	·

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-05-2020	03-04-2021	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-05-2020	03-04-2021	
LISN	CHASE	MN2050D	1447	03-05-2020	03-04-2021	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2017	07-20-2020	
LISIN	Ronde & Schwarz	ESH3-Z3	0430021/010	07-21-2020	07-20-2021	
Cable	HP	10503A	N/A	03-05-2020	03-04-2021	
EMI Test Software	AUDIX	E3	Version: 6.110919b			

Report No: CCISE200605202

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

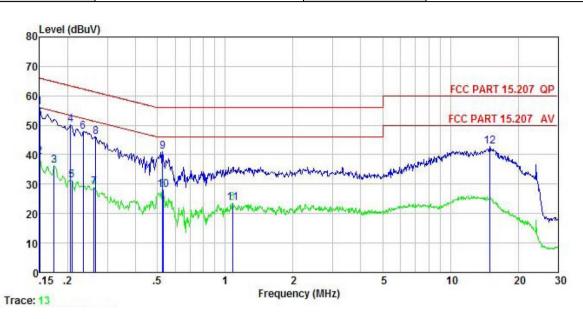
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

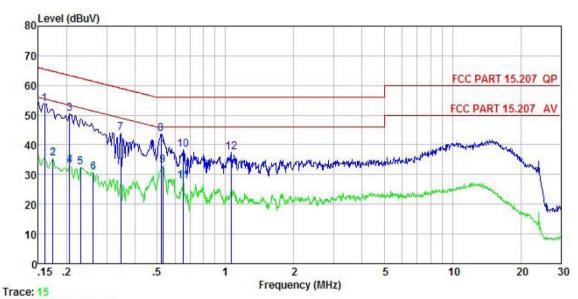
The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is -1.2 dBi.


6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207	7		
Test Frequency Range:	150 kHz to 30 MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9kHz, VBW=30kHz			
Limit:	Frequency range (MHz)	Limit (dBuV)	
		Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30 * Decreases with the logarithm	60	50	
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10(latest version) on conducted measurement. 			
Test setup:	Reference LISN 40cm AUX Equipment E.U.T Test table/Insulation plane Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Net Test table height=0.8m	BOCM Filter EMI Receiver	– AC power	
Test Instruments:	Refer to section 5.9 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data:

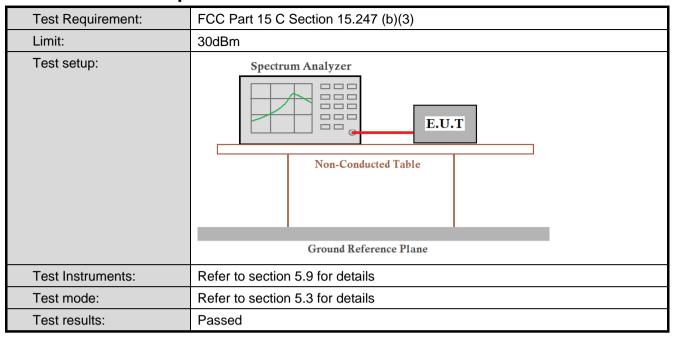
Product name:	10.0 inch Wi-Fi Tablet	Product model:	T10W
Test by:	Mike	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line		Remark
	MHz	dBu∇	₫B		dBu₹	—dBu∇	<u>ab</u>	
1	0.150	45.94	-0.57	10.78	56.10		-9.90	
2	0.150 0.174	29.02 26.21	-0.57 -0.58	10.78 10.77	39.18 36.29			Average Average
4 5 6					50.16		-13.20	
5				10.76				Average
	0.234		-0.57	10.75	47.82		-14.48	
7 8 9	0.262	18.99	-0.56	10.75	28.95	51.38	-22.43	Average
8	0.266	36.10	-0.56	10.75	46.06	61.25	-15.19	QP
9	0.527	31.09	-0.45	10.76	41.04	56.00	-14.96	QP
10	0.529	18.01	-0.45	10.76	27.96	46.00	-18.04	Average
11	1.077	13.05	-0.61	10.88	23.70			Average
12	14.907	28.91	-0.69	10.90	42.70		-17.30	

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

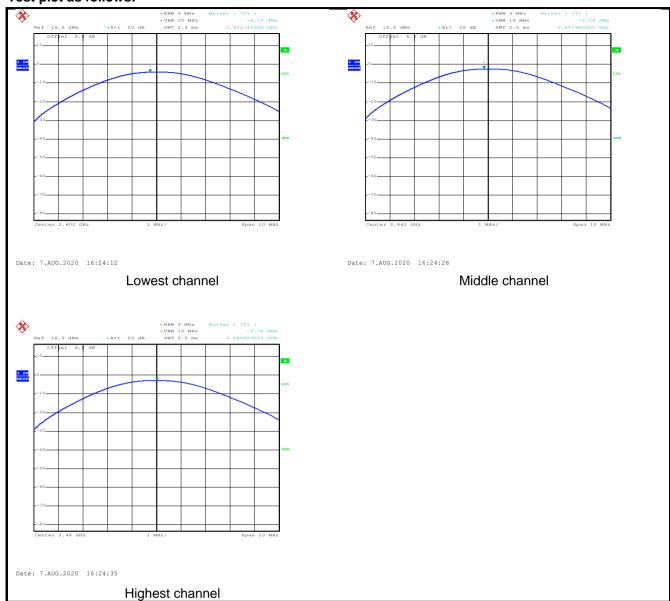
Product name:	10.0 inch Wi-Fi Tablet	Product model:	T10W
Test by:	Mike	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∜	dB	₫B	dBu₹	—dBu∀	<u>d</u> B	
1	0.160	43.76	-0.69	10.77	53.85	65.47	-11.62	QP
2	0.174	25.23	-0.68	10.77	35.32	54.77	-19.45	Average
3	0.206	40.27	-0.67	10.76	50.36	63.36	-13.00	QP
4 5 6 7 8 9	0.206	22.94	-0.67	10.76	33.03	53.36	-20.33	Average
5	0.230	22.27	-0.67	10.75	32.35	52.44	-20.09	Average
6	0.262	20.74	-0.67	10.75	30.83	51.38	-20.55	Average
7	0.346	33.89	-0.65	10.73	43.94	59.05	-15.11	QP
8	0.521	33.47	-0.65	10.76	43.61	56.00	-12.39	QP
9	0.529	22.85	-0.65	10.76	32.99	46.00	-13.01	Average
10	0.651	28.29	-0.64	10.77	38.46	56.00	-17.54	QP
11	0.651	17.70	-0.64	10.77	27.87	46.00	-18.13	Average
12	1.065	27.08	-0.68	10.88	37.37	56.00	-18.63	QP

Notes

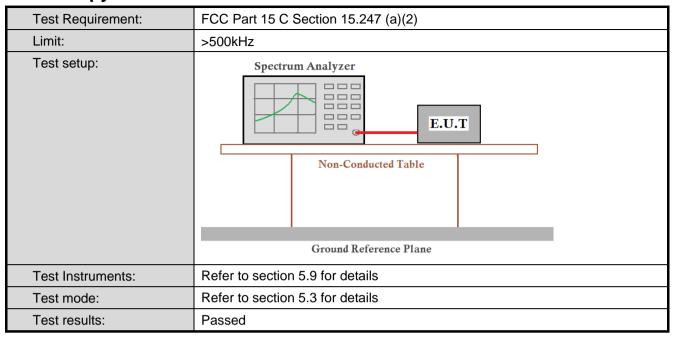
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

6.3 Conducted Output Power



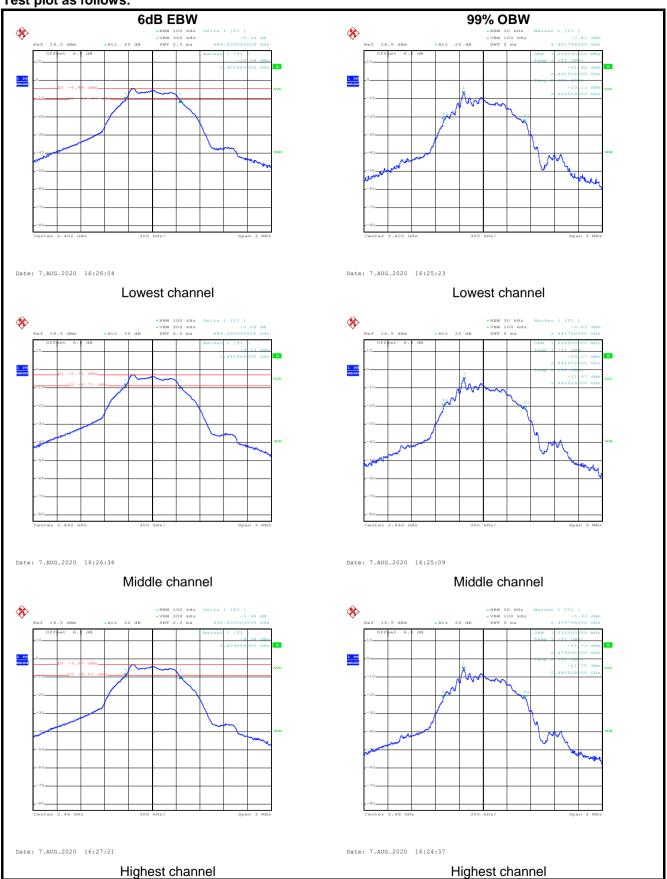
Measurement Data:

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	-4.10		
Middle	-2.39	30.00	Pass
Highest	-2.76		



Test plot as follows:

6.4 Occupy Bandwidth

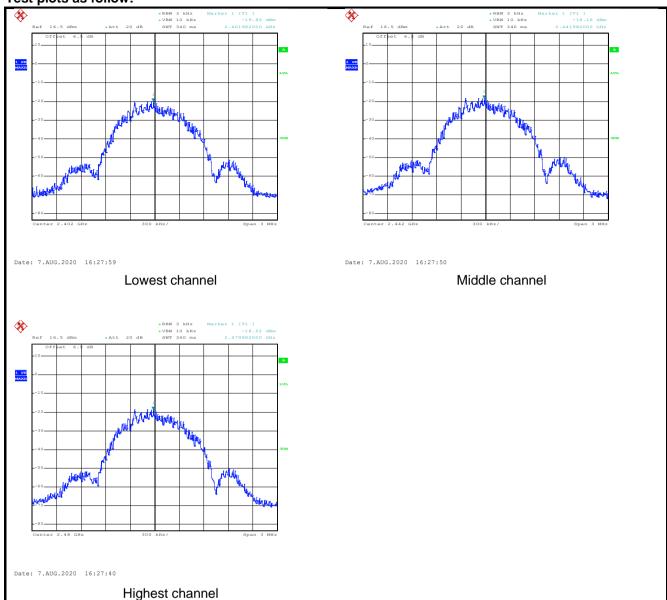


Measurement Data:

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	0.684			
Middle	0.684	>500	Pass	
Highest	0.690			
Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	1.026			
Middle	1.026	N/A	N/A	
Highest	1.032			

Test plot as follows:

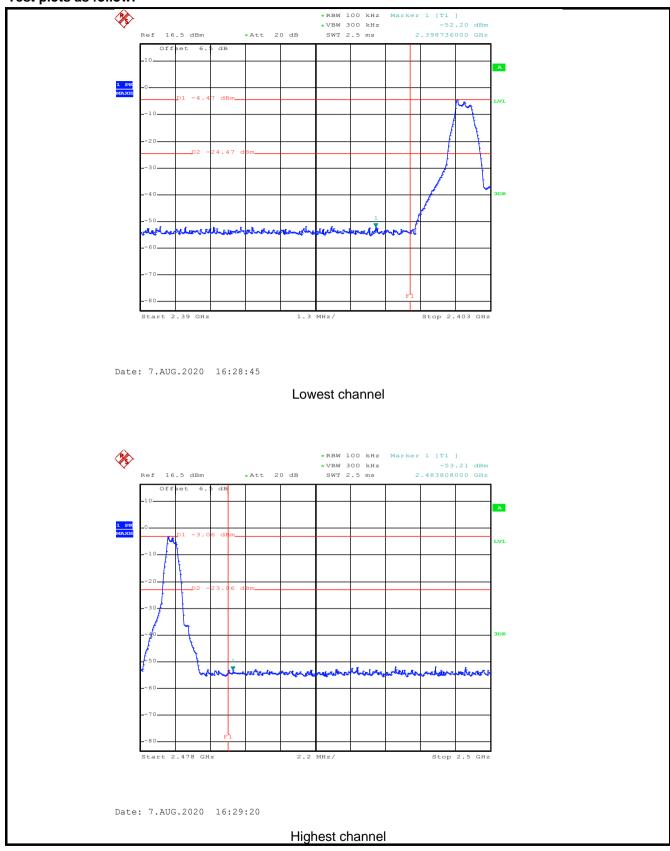
6.5 Power Spectral Density


Test Requirement:	FCC Part 15 C Section 15.247 (e)			
Limit:	8 dBm/3kHz			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.9 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data:

measarement bata.				
Test CH	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result	
Lowest	-19.85			
Middle	-18.16	8.00	Pass	
Highest	-18.52			

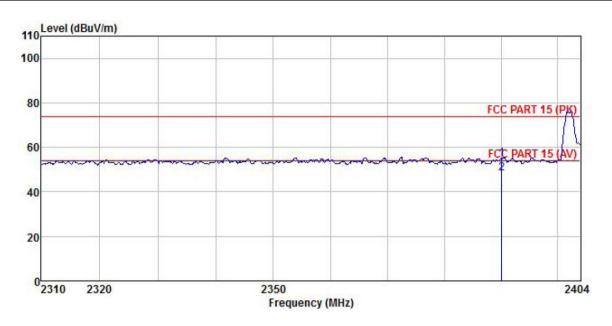
Test plots as follow:


6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.9 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

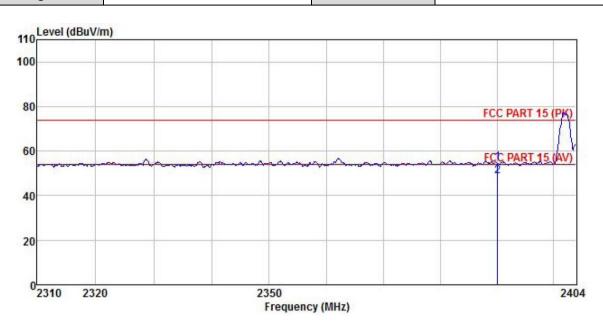
Test plots as follow:



6.6.2 Radiated Emission Method

Test Requirement:		FCC Part 15 C Section 15.205 and 15.209							
Test Frequency Range:	2310 MHz to 2	2310 MHz to 2390 MHz and 2483.5MHz to 2500 MHz							
Test Distance:	3m								
Receiver setup:	Frequency	Detector	RBW	VBW	Remark				
	Above 1GHz	Peak	1MHz	3MHz	Peak Value				
		RMS	1MHz	3MHz	Average Value				
Limit:	Frequer	icy Li	mit (dBuV/m @3 54.00		Remark verage Value				
	Above 10	GHz —	74.00		Peak Value				
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 								
Test setup:	Horn Antenna Tower Ground Reference Plane Test Receiver Ampiñer Controller								
Test Instruments:	Refer to section	on 5.9 for detai	ls						
Test mode:	Refer to section	on 5.3 for detai	ls						
Test results:	Passed								

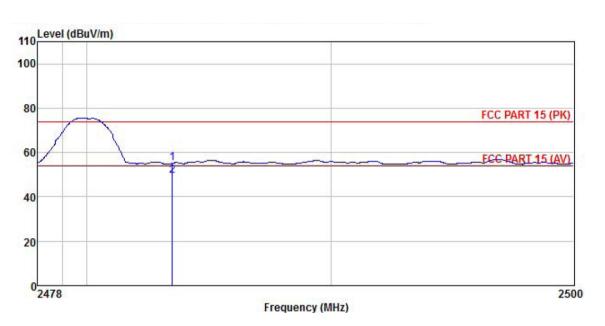
Product Name:	10.0 inch Wi-Fi Tablet	Product Model:	T10W
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%



	Freq		Antenna Factor						
	MHz	dBu∜	— <u>dB</u> /π	 <u>ab</u>	<u>dB</u>	$\overline{\mathtt{dBuV/m}}$	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

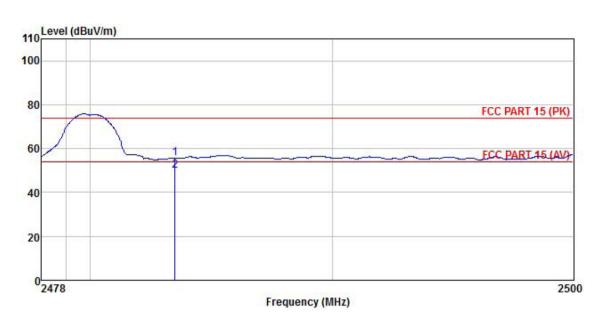
Product Name:	10.0 inch Wi-Fi Tablet	Product Model:	T10W
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%



	Freq		Antenna Factor				Limit Line		Remark
9	MHz	dBu∜	— <u>dB</u> /π	 <u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
	2390.000 2390.000								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	10.0 inch Wi-Fi Tablet	Product Model:	T10W
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%



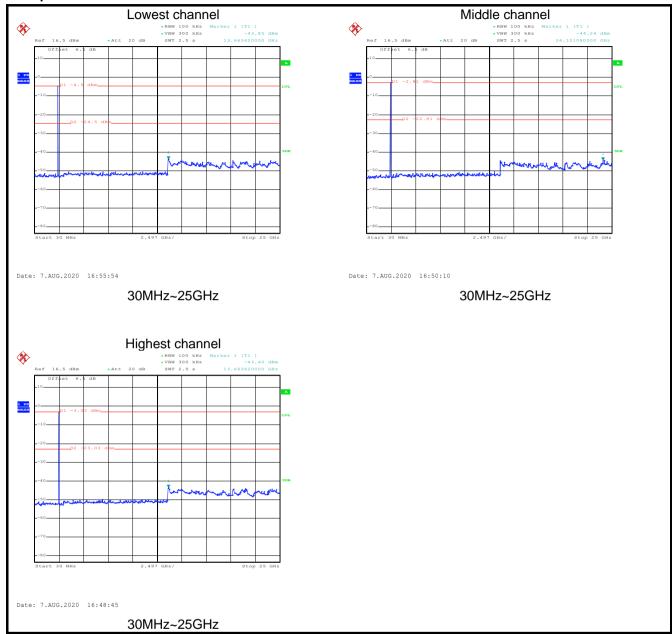
	Freq	ReadA Freq Level			Preamp Factor		Limit Line		
	MHz	dBu∜	<u>dB</u> /π	 <u>ab</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	10.0 inch Wi-Fi Tablet	Product Model:	T10W
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

Freq		Antenna Factor						
MHz	dBu∜	<u>dB</u> /m	 <u>ab</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
2483.500 2483.500								

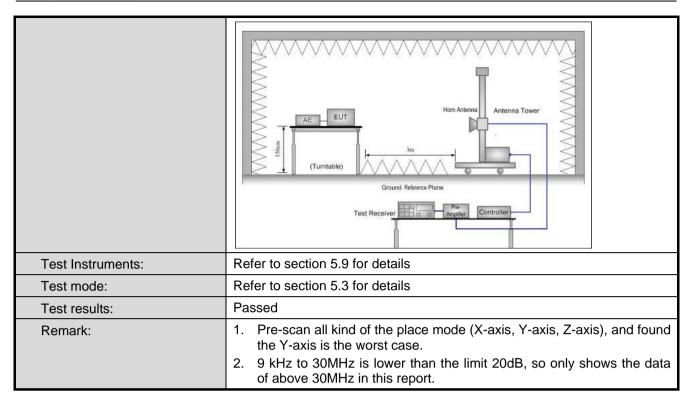
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.


6.7 Spurious Emission

6.7.1 Conducted Emission Method

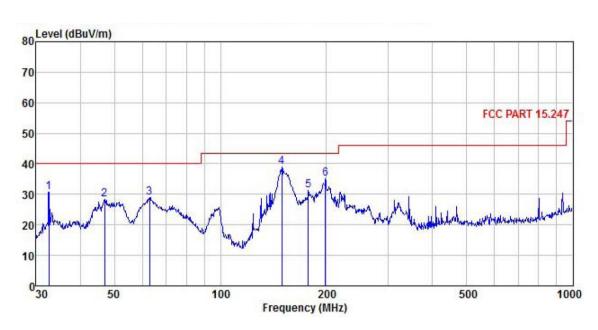
Test Requirement:	FCC Part 15 C Section 15.247 (d)								
Limit:	n any 100 kHz bandwidth outside the frequency band in which the spread pectrum intentional radiator is operating, the radio frequency power that is roduced by the intentional radiator shall be at least 20 dB below that in the 00 kHz bandwidth within the band that contains the highest level of the esired power, based on either an RF conducted or a radiated measurement.								
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane								
Test Instruments:	Refer to section 5.9 for details								
Test mode:	Refer to section 5.3 for details								
Test results:	Passed								

Test plot as follows:



6.7.2 Radiated Emission Method

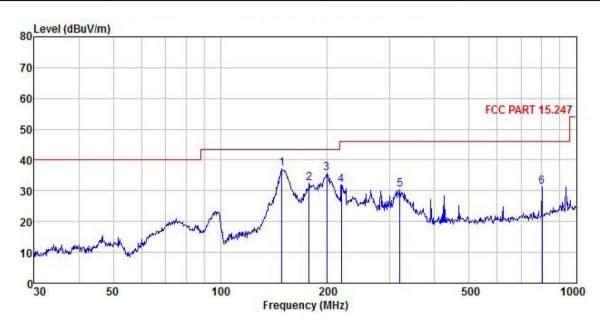
6.7.2 Radiated Emission I Test Requirement:	FCC Part 15 C	Section 15.20)5 and 15.209				
Test Frequency Range:	9kHz to 25GHz						
Test Distance:	3m						
Receiver setup:	Frequency	Detector	RBW	VB	W	Remark	
riocontor cotap.	30MHz-1GHz	Quasi-peak	120KHz	300l		Quasi-peak Value	
	Above 1GHz	Peak	1MHz	3M	Hz	Peak Value	
	Above 1GHZ	RMS	1MHz	3M	Hz Average Value		
Limit:	Frequency	/ L	imit (dBuV/m @	:3m)		Remark	
	30MHz-88M	1	40.0			Quasi-peak Value	
	88MHz-216M	1	43.5			Quasi-peak Value	
	216MHz-960N		46.0			Quasi-peak Value	
	960MHz-1G	HZ	54.0 54.0			Quasi-peak Value Average Value	
	Above 1GF	lz —	74.0			Peak Value	
	The table of highest rad 2. The EUT antenna, we tower. 3. The antennather ground Both horizon make the number of the end of the EUT have 10 de	was rotated diation. was set 3 methods hich was more and height is represented and very measurement and the rota tab maximum real and with the rota tab maximum real and with the rota tab maximum real and width with the rota tab maximum real and with t	neters away unted on the towaried from one the maximutical polarization in the Enna was turned awas turned was set h Maximum Helbert on the EUT in petesting could be ported. Other lid be re-tested	o deter	rmine interior to find a control of the	a 3 meter camber. the position of the efference-receiving ble-height antenna four meters above the field strength. antenna are set to anged to its worst from 1 meter to 4 ses to 360 degrees tect Function and a 10 dB lower than and the peak values ssions that did not using peak, quasi-reported in a data	
Test setup:	EUT	4m 4m 0.8m lm			Antenna Search Antenn Test eiver	1	



Measurement Data (worst case):

Below 1GHz:

Product Name:	10.0 inch Wi-Fi Tablet	Product Model:	T10W
Test By:	Mike	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


	Freq		Antenna Factor			Preamp Factor		Limit Line	Over Limit	Remark
22	MHz	dBu∇	$\overline{-}\overline{dB}/\overline{m}$	<u>d</u> B	āB	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m		
1	32.634	48.19	12.24	0.37	0.00	29.96	30.84	40.00	-9.16	QP
2	46.995	44.87	13.02	0.38	0.00	29.84	28.43	40.00	-11.57	QP
2	62.871	47.99	10.21	0.43	0.00	29.76	28.87	40.00	-11.13	QP
4	149.486	53.20	14.26	0.62	0.00	29.22	38.86	43.50	-4.64	QP
5	177.509	42.87	16.85	0.67	0.00	28.99	31.40	43.50	-12.10	QP
6	198.588	45.12	18.16	0.72	0.00	28.84	35.16	43.50	-8.34	QP

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Product Name:	10.0 inch Wi-Fi Tablet	Product Model:	T10W
Test By:	Mike	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Intenna Factor					Limit Line		Remark
_	MHz	−dBuV	dB/m	<u>ab</u>	<u>ab</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>ab</u>	
1	148.963	51.50	14.22	0.61	0.00	29.23	37.10	43.50	-6.40	QP
2	177.509	43.99	16.85	0.67	0.00	28.99	32.52	43.50	-10.98	QP
2	199.286	45.47	18.23	0.72	0.00	28.83	35.59	43.50	-7.91	QP
4	219.075	41.36	18.38	0.74	0.00	28.71	31.77	46.00	-14.23	QP
5	319.937	39.17	18.74	0.89	0.00	28.50	30.30	46.00	-15.70	QP
6	801.786	37.09	20.93	1.40		28.19	31.23	46.00	-14.77	QP

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Above 1GHz

	Test channel: Lowest channel											
Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4804.00	48.95	30.78	6.80	2.44	41.81	47.16	74.00	-26.84	Vertical			
4804.00	47.15	30.78	6.80	2.44	41.81	45.36	74.00	-28.64	Horizontal			
				Detector:	Average Va	alue						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4804.00	41.50	30.78	6.80	2.44	41.81	39.71	54.00	-14.29	Vertical			
4804.00 42.84 30.78 6.80					41.81	41.05	54.00	-12.95	Horizontal			
	•			•								

Test channel: Middle channel												
Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4884.00	49.78	30.96	6.86	2.47	41.84	48.23	74.00	-25.77	Vertical			
4884.00	48.17	30.96	6.86	2.47	41.84	46.62	74.00	-27.38	Horizontal			
Detector: Average Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4884.00	42.62	30.96	6.86	2.47	41.84	41.07	54.00	-12.93	Vertical			
4884.00	43.19	30.96	6.86	2.47	41.84	41.64	54.00	-12.36	Horizontal			

Test channel: Highest channel											
Detector: Peak Value											
Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
49.95	31.11	6.91	2.49	41.87	48.59	74.00	-25.41	Vertical			
50.14	31.11	6.91	2.49	41.87	48.78	74.00	-25.22	Horizontal			
Detector: Average Value											
Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
40.15	31.11	6.91	2.49	41.87	38.79	54.00	-15.21	Vertical			
39.97	31.11	6.91	2.49	41.87	38.61	54.00	-15.39	Horizontal			
	Level (dBuV) 49.95 50.14 Read Level (dBuV) 40.15	Level (dBuV) (dB/m) 49.95 31.11 50.14 31.11 Read Antenna Level Factor (dBuV) (dB/m) 40.15 31.11	Read Level (dBuV) Antenna (dB/m) Cable Loss (dB) 49.95 31.11 6.91 50.14 31.11 6.91 Read Level (dBuV) Antenna Loss (dB/m) Cable Loss (dB/m) 40.15 31.11 6.91	Read Level Factor (dBuV) Antenna (dB) Cable Factor (dB) Aux Factor (dB) 49.95 31.11 6.91 2.49 50.14 31.11 6.91 2.49 Detector: Read Antenna Level Factor (dBuV) Cable Aux Factor (dB) Factor (dB) 40.15 31.11 6.91 2.49	Detector: Peak Value Read Level Factor (dBuV) (dB/m) Cable Loss Factor Factor Factor (dB) Factor Factor Factor Factor Factor (dB) 49.95 31.11 6.91 2.49 41.87 50.14 31.11 6.91 2.49 41.87 Detector: Average Value Read Antenna Level Factor (dBuV) (dB/m) Cable Cable Factor Factor Factor Factor (dB) Cable Cable (dB) Cable (dB)	Detector: Peak Value Read Level (dBuV) Antenna (dBwV) Cable Loss (dB) Aux Factor (dBwV/m) Preamp Factor (dBwV/m) Level (dBwV/m) 49.95 31.11 6.91 2.49 41.87 48.59 50.14 31.11 6.91 2.49 41.87 48.78 Detector: Average Value Read Level (dBuV) Antenna Loss (dB) Loss (dB) Factor (dB) Level (dBuV/m) (dBuV) (dB/m) (dB) (dB) 41.87 38.79	Detector: Peak Value Cable Aux Preamp Level (dBuV) (dB/m) (dB) (dB) (dB) (dB) (dB) (dB) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/	Detector: Peak Value Cable Aux Preamp Level Limit (dBuV) (dB/m) (dB) (dB)			

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss + Aux Factor - Preamplifier Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.